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We investigate second-order magnetic responses of quantum magnets against ac magnetic fields.
We focus on the case where the z component of the spin is conserved in the unperturbed Hamiltonian
and the driving field is applied in the xy plane. We find that linearly polarized driving fields induce a
second-harmonic response, while circularly polarized fields generate only a zero frequency response,
leading to a magnetization with a direction determined by the helicity. Employing an unbiased
numerical method, we demonstrate the nonlinear magnetic effect driven by the circularly polarized
field in the XXZ model and show that the magnitude of the magnetization can be predicted by the
dynamical spin structure factor in the linear response regime.

I. INTRODUCTION

Nonlinear responses are important phenomena for
probing and controlling quantum states of matter under
strong electromagnetic fields [1]. Nonlinear responses of
charge degrees of freedom to electric fields have been ex-
tensively investigated [2, 3]. Recent work along these
lines includes high-harmonic generation (HHG) realized
in solids [4–10] and bulk photovoltaic effect in noncen-
trosymmetric materials [11–17]. These nonlinear phe-
nomena are closely related to electronic band structures
and collective excitations [18–25].

In analogy to electronic charge responses, nonlinear
effects driven by magnetic fields in quantum magnets
are directly related to structures of spin excitations. Al-
though the energy scale of spin excitations (∼ J exchange
coupling) is much lower than a charge gap in a typi-
cal magnetic insulator, the development of the terahertz
(THz) laser technique opens a pathway to address non-
linear magnetic effects associated with low-energy mag-
netic excitations [26, 27]. In this context, several nonlin-
ear magnetic phenomena in the THz regime have been
proposed theoretically. For example, magnetic HHG un-
der linearly polarized fields [28, 29] and magnetization
induced by circularly polarized fields [30, 31] have been
demonstrated numerically in driven quantum spin sys-
tems. While these numerical studies address the higher-
order effects nonperturbatively, it is important to formu-
late the nonlinear phenomena in the perturbative regime,
where the connection to equilibrium formulas allows for
physical insight which is most relevant to experiments.

In this paper, we investigate second-order magnetic re-
sponses in quantum magnets, where the general structure
of the theory can be elucidated. In particular, assuming
that the z-component of spin is conserved in the unper-
turbed system, we derive the magnetic responses to ac
magnetic fields applied perpendicular to the z-axis. We
find that while the linearly polarized field (with the drive

frequency Ω) can produce a 2Ω component of the mag-
netization, this 2Ω oscillation is absent when circularly
polarized fields are applied. However, applied circularly
polarized fields produce a zero-frequency component of
the magnetization, whose direction depends on the helic-
ity of the applied field. Our results are consistent with
the numerical studies of Refs. [28] and [30]. Specifically,
when the total magnetization vanishes in equilibrium and
the excited states by the spin raising and lowering are

symmetric in the spectrum, the spin magnetization m
(2)
z

at the second order is expressed as

dm
(2)
z

dt
= iγ2χ+−

s (q = 0,Ω) [B(Ω)×B(−Ω)]z ,

where γ is the gyromagnetic ratio, χ+−
s (q,Ω) is the dy-

namical (transverse) spin structure factor at the momen-
tum q, and B(Ω) is the in-plane magnetic field at Ω. We
can see that the magnetization direction is controlled by
the helicity of the applied magnetic field, and the mag-
nitude is predicted by the dynamical spin structure fac-
tor in the linear response regime. This nonlinear mag-
netic effect owing to low-energy spin excitations should
be contrasted with the inverse Faraday effect in metals,
which is described by the cross product of the electric
field E(Ω) × E(−Ω) [32], because the inverse Faraday
effect in metals is essentially caused by electronic orbital
degrees of freedom [33, 34]. We also demonstrate the
nonlinear magnetic effect in a driven XXZ model employ-
ing the infinite time-evolving block decimation (iTEBD)
method [35] and confirm the above relation numerically.

The rest of this paper is organized as follows. In Sec. II,
we introduce the spin model that we address. In Sec. III,
we derive the magnetization in the second order and dis-
cuss the polarization dependence. Then, we focus on the
magnetization induced by the circularly polarized field.
In Sec. IV, we provide the results of the numerical demon-
stration. Discussions and summary are given in Sec. V.
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II. MODEL

We consider a system under a magnetic field;

Ĥ(t) = Ĥ0 − ~γB(t) · Ŝ, (1)

where Ĥ0 is the Hamiltonian of the spin system and
the second term is the Zeeman coupling between the to-
tal spin Ŝ (=

∑
j Ŝj) and the external magnetic field

B(t). Ŝνj (ν = x, y, z) is the spin operator at site j
and γ = −gµB/~ is the gyromagnetic ratio, where g
is the g-factor, µB is the Bohr magneton, and ~ is the
Planck constant. In this paper, we assume [Ĥ0, Ŝ

z] =

0, i.e., the eigenstate |ψm〉 of Ĥ0 satisfies Ĥ0 |ψm〉 =

~ωm |ψm〉 and Ŝz |ψm〉 = Szm |ψm〉, where ~ωm and Szm
are the eigenenergy and quantum number of Ŝz, re-
spectively. In this paper, we focus on the magnetiza-
tion Mz(t) = 〈Ŝz(t)〉 under the magnetic field B(t) =
(Bx(t), By(t), 0). The magnetization in the ground state

is M
(0)
z = 〈ψ0|Ŝz|ψ0〉 = Sz0 .

III. SECOND-ORDER MAGNETIC EFFECTS

A. Magnetization

We derive the field-induced magnetization using the
perturbation theory at zero temperature [see details in

Appendix A]. Note that we do not assume M
(0)
z = 0

at this stage. The magnetization at the first order in

B(t) vanishes [i.e., M
(1)
z (t) = 0] because the perturba-

tion V̂(t) = −~γ[Bx(t)Ŝx + By(t)Ŝy] induces the spin-

flip (Ŝ±) and 〈ψ0|ŜzŜ±|ψ0〉 = 0. Then, the lowest order
of the field-induced magnetization is of the second or-
der. Using the perturbative expansion [see Appendix A],
the time-dependent magnetization at the second order

M
(2)
z (t) is given by

M (2)
z (t) =

γ2

4

∫ t

−∞
dt1

∫ t

−∞
dt2

∑
ζ=±

∑
m

ζ| 〈ψζm|Ŝζ |ψ0〉 |2e−i(ω
ζ
m−ω0)(t1−t2)B(t1) ·B(t2)

+
γ2

4i

∫ t

−∞
dt1

∫ t

−∞
dt2

∑
ζ=±

∑
m

| 〈ψζm|Ŝζ |ψ0〉 |2e−i(ω
ζ
m−ω0)(t1−t2) [B(t1)×B(t2)]z , (2)

where ~ω0 is the ground-state energy of |ψ0〉 and ~ωζm (ζ = ±) is the eigenenergy of |ψ±m〉, in which Ŝz |ψ±m〉 =

(M
(0)
z ± 1) |ψ±m〉. When the magnetic field B(t1) =

∑
Ω1

B(Ω1)e−iΩ1t1 is applied adiabatically from t1 = −∞, the

magnetization M
(2)
z (t) is given by

M (2)
z (t) =− γ2

4

∑
Ω1,Ω2

∑
ζ=±

∑
m

e−i(Ω1+Ω2)t

Ω1 + Ω2 + 2i0+

[
ζ| 〈ψζm|Ŝζ |ψ0〉 |2

Ω1 + ωζm − ω0 + i0+
+

ζ| 〈ψζm|Ŝζ |ψ0〉 |2

Ω2 − ωζm + ω0 + i0+

]
B(Ω1) ·B(Ω2)

− γ2

4i

∑
Ω1,Ω2

∑
ζ=±

∑
m

e−i(Ω1+Ω2)t

Ω1 + Ω2 + 2i0+

[
| 〈ψζm|Ŝζ |ψ0〉 |2

Ω1 + ωζm − ω0 + i0+
+

| 〈ψζm|Ŝζ |ψ0〉 |2

Ω2 − ωζm + ω0 + i0+

]
[B(Ω1)×B(Ω2)]z . (3)

B. Second-harmonic generation

The oscillation of the magnetization with ω = mΩ (Ω:
driving frequency) corresponds to high-harmonic gener-
ation from magnetic dipoles [28]. When a monochro-
matic field B(t) = B(Ω)e−iΩt + B(−Ω)eiΩt is applied,

the magnetization at the second order M
(2)
z (t) in Eq. (3)

has the component of second-harmonic generation (SHG)
at Ω1 = Ω2 = Ω. Since B(Ω) ×B(Ω) = 0, the Fourier

component M
(2)
z (ω = Ω1 + Ω2 = 2Ω) is given by

M (2)
z (2Ω) =− γ2

4

∑
ζ=±

∑
m

ζ

2(Ω + i0+)

[
| 〈ψζm|Ŝζ |ψ0〉 |2

Ω− ωζm + ω0 + i0+
+

| 〈ψζm|Ŝζ |ψ0〉 |2

Ω + ωζm − ω0 + i0+

]
B(Ω) ·B(Ω). (4)

The above Eq. (4) is written as

M (2)
z (2Ω) = αz(2Ω; Ω,Ω)B(Ω) ·B(Ω). (5)

When a linearly polarized magnetic field B(t) =
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Figure 1. Schematic pictures of the second-order magnetic
effects. Top panel: Magnetization under the linearly polar-

ized magnetic field when M
(0)
z > 0 in the ground state, where

M
(2)
z (2Ω) is activated. Bottom panel: Helicity-dependent

magnetization under the circularly polarized magnetic fields

when M
(0)
z = 0.

BL(cos Ωt, cos Ωt) [i.e., B(Ω) = BL/2(1, 1)] is applied,
we find

M (2)
z (2Ω) =

1

2
αz(2Ω; Ω,Ω)B2

L, (6)

and thus magnetic SHG is allowed. Note that
αz(2Ω; Ω,Ω) = 0 when | 〈ψ+

m|Ŝ+|ψ0〉 |2 = | 〈ψ−m|Ŝ−|ψ0〉 |2

and ω+
m = ω−m, implying that M

(2)
z (2Ω) is nonzero only

when the spin-flipped states by Ŝ+ and Ŝ− are asymmet-

ric. For example, M
(2)
z (2Ω) 6= 0 when the ground state

|ψ0〉 has net magnetization |M (0)
z | > 0 [28]. A schematic

picture of this effect is shown in the top panel of Fig. 1.
On the other hand, when a circularly polarized field

B(t) = BC(cos Ωt,± sin Ωt) [i.e., B(Ω) = BC/2(1,±i)],
where ± indicates the right- and left-handed circularly
polarization, is applied, we find

M (2)
z (2Ω) = 0, (7)

because B(Ω) · B(Ω) = 0. Hence, in contrast to the

response under the linearly polarized field, M
(2)
z (2Ω) is

absent under the circularly polarized field.

C. Zero-frequency component

The second-order magnetization M
(2)
z (t) in Eq. (3) also

has a zero-frequency component at Ω1 +Ω2 = 0. Because
[Ω1 +Ω2 +2i0+]−1 diverges at Ω1 +Ω2 = 0, Eq. (3) is not
a well-defined formula for describing the zero frequency
component. In order to get rid of the divergence arising
from Ω1 + Ω2 = 0, we consider the time-derivative of

M
(2)
z (t). When B(t) = B(Ω)e−iΩt + B(−Ω)eiΩt, the

time-derivative of M
(2)
z (t) is given by

dM
(2)
z (t)

dt
= T (2)

z (0)− i
∑
n=±1

2nΩM (2)
z (2nΩ)e−2inΩt,

(8)

with the zero-frequency (ω = Ω1 + Ω2 = 0) component

T (2)
z (0) =

πγ2

2

∑
ζ=±

∑
m

ζ| 〈ψζm|Ŝζ |ψ0〉 |2
[
δ
(
Ω− ωζm + ω0

)
+ δ

(
Ω + ωζm − ω0

)]
B(Ω) ·B(−Ω)

+
iπγ2

2

∑
ζ=±

∑
m

| 〈ψζm|Ŝζ |ψ0〉 |2
[
δ
(
Ω− ωζm + ω0

)
− δ

(
Ω + ωζm − ω0

)]
[B(Ω)×B(−Ω)]z . (9)

Equation (8) implies that the magnetization grows lin-

early with t when T
(2)
z (0) 6= 0. Because matrix elements

of the total spin raising (ζ = +) and lowering (ζ = −)
operators are involved, some properties of the first term
in Eq. (9) are linked to the equilibrium magnetization

M
(0)
z . For example, when the spin is fully polarized with

M
(0)
z > 0, the first term gives the negative contribution

because | 〈ψ+
m|Ŝ+|ψ0〉 |2 = 0. On the other hand, this

B(Ω) ·B(−Ω) term vanishes if the ζ = + (raising) and
− (lowering) contributions are equivalent. This condi-

tion would require M
(0)
z = 0. Note that effects of re-

laxation are not taken into account in the above formula.
The effects may be incorporated phenomenologically into
Eq. (3) by replacing 0+ with a relaxation factor Γ. In this

case, the magnetization M
(2)
z converges to a finite value

of the order of T
(2)
z (0)/Γ.

Equation. (9) may be written as

T (2)
z (0) = α′z(0; Ω,−Ω)B(Ω) ·B(−Ω)

+ iβ′z(0; Ω,−Ω) [B(Ω)×B(−Ω)]z . (10)

When a linearly polarized magnetic field B(t) =
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BL(cos Ωt, cos Ωt) is applied, we find

T (2)
z (0) =

1

2
α′z(0; Ω,−Ω)B2

L. (11)

On the other hand, when a circularly polarized field
B(t) = BC(cos Ωt,± sin Ωt) is applied,

T (2)
z (0) =

1

2
[α′z(0; Ω,−Ω)± β′z(0; Ω,−Ω)]B2

C. (12)

In both cases, the B(Ω) · B(−Ω) term can be nonzero.
In contrast, the B(Ω) × B(−Ω) term can be nonzero
only for a circularly polarized field. In this case,
the magnetization exhibits helicity dependence. Hence,
the nonlinear magnetic responses under the right- and
left-handed circularly-polarized fields are asymmetric if
α′z(0; Ω,−Ω) 6= 0. The bottom panel of Fig. 1 is a

schematic picture of the effect when M
(0)
z = 0 and

α′z(0; Ω,−Ω) = 0. As shown in Fig. 1, we can manip-
ulate the magnetization direction by the helicity of the
magnetic field.

D. Magnetization by circularly polarized fields

In the previous sections, we only assume the conserva-
tion of Sz in the unbiased Hamiltonian Ĥ0, and thus the
expressions are general. Here, to see the nonlinear re-
sponse can be connected to the dynamical spin structure
factor, we focus on specific cases, where | 〈ψ+

m|Ŝ+|ψ0〉 |2 =

| 〈ψ−m|Ŝ−|ψ0〉 |2 and ω+
m = ω−m are satisfied in Eqs. (4)

and (9). These conditions may be realized, e.g., when

M
(0)
z = 0 and the Hamiltonian Ĥ0 is invariant under

the time-reversal operation (or π-rotation around the y

axis) Ŝ±j → −Ŝ
∓
j and Ŝzj → −Ŝzj . When the above con-

ditions are satisfied, αz(2Ω; Ω,Ω) = α′z(0; Ω,−Ω) = 0
and the response to a linearly polarized field vanishes
[see Eqs. (6) and (11)]. However, even in this condition,
the B(Ω)×B(−Ω) term in Eq. (9) can be nonvanishing,

implying that a magnetization M
(2)
z (t) can be generated

from M
(0)
z = 0 by applying a circularly polarized field.

Since M
(2)
z (2Ω) = 0 in Eq. (8), the second-order mag-

netic response is described by

dM
(2)
z

dt
= iπγ2

∑
m

| 〈ψm|Ŝ−|ψ0〉 |2 [δ(Ω− ωm + ω0)− δ(Ω + ωm − ω0)] [B(Ω)×B(−Ω)]z , (13)

where we denote |ψ±m〉 and ω±m by |ψm〉 and ωm.
Equation (13) is related to the commonly-used dynam-

ical (transverse) spin structure factor

χ+−
s (q,Ω) = π

∑
m

| 〈ψm|Ŝ−q |ψ0〉 |2δ(Ω− ωm + ω0),

(14)

where Ŝ−q = 1√
N

∑
j Ŝ
−
j e
−iq·Rj [N : number of lattice

sites] is the spin-flip operator in the momentum (q)
space. Using χ+−

s (q,Ω), the magnetization per unit

m
(2)
z (= M

(2)
z /N) at Ω > 0 is given by

dm
(2)
z

dt
= iγ2χ+−

s (q = 0,Ω) [B(Ω)×B(−Ω)]z . (15)

Hence, by introducing the structure factor χ+−
s (q,Ω),

we can describe the magnetization at the second order
in the simple formula. Under a circularly polarized field
B(Ω) = BC/2(1,±i), this magnetization exhibits the he-
licity (±) dependence

dm
(2)
z

dt
= ±1

2
γ2χ+−

s (q = 0,Ω)B2
C. (16)

For the magnetic effect described by Eq. (15), the dy-
namical spin structure factor must be χ+−

s (q = 0,Ω) 6= 0.
In other words, once we know the dynamical spin struc-
ture factor χ+−

s (q,Ω) in the linear response regime, we

can predict the main features of the magnetization at the
second order. In the isotopic Heisenberg model (or spin-
SU(2)-symmetric Hubbard model), χ+−

s (q = 0,Ω) = 0

at Ω > 0 and no magnetization m
(2)
z is induced. This

implies that χ+−
s (q = 0,Ω) 6= 0 may arise from magnetic

anisotropies, e.g., Ising anisotropy in the XXZ model [see
Sec. IV] and the Dzyaloshinskii-Moriya interaction. As
discussed in Appendix B, we can interpret this nonlinear
magnetic effect in the rotating frame, where the system
can be described by a static Hamiltonian [30, 31].

Equation (15) is very similar to the formula of the cir-
cular photogalvanic effect (CPGE) in which a generated

second-order photocurrent J
(2)
µ under an electric field E

is described by d
dtJ

(2)
µ = iηµ(Ω)[E(Ω)×E(−Ω)]µ [18, 36].

While the magnetization and electric current are differ-
ent, we may find similar time-dependent properties with
the CPGE.

IV. NUMERICAL DEMONSTRATION

Finally, we numerically demonstrate the nonlinear
magnetic effect described by Eq. (15) using the spin-1/2

XXZ model. As Ĥ0 in Eq. (1), the Hamiltonian of the
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Figure 2. (a) Time-dependent magnetization mz(t) under
the magnetic field B(t) = BC(cos Ωt,± sin Ωt), where J = 1,
∆ = 4, and ~γBC = 0.005 [~/J is a unit of time]. The
solid and dotted lines indicate the magnetization under right-
handed circularly polarized (RCP) and left-handed circularly
polarized (LCP) fields, respectively. The data at Ω = 1 and
7 are overlapped around mz(t) ∼ 0. (b) Comparison between
the dynamical spin structure factor χ+−

s (q = 0,Ω) (solid line)
and the Ω-dependence of the magnetization normalized as
mz(t)/(tγ2B2

C/2)
∣∣
t=40

(circles).

one-dimensional XXZ model is

ĤXXZ
0 = J

∑
j

[
Ŝxj Ŝ

x
j+1 + Ŝyj Ŝ

y
j+1 + ∆Ŝzj Ŝ

z
j+1

]
, (17)

where J > 0 is the antiferromagnetic exchange coupling
and ∆ is the magnetic anisotropy along the z-direction.
Here, we set J (~/J) as a unit of energy (time). When
∆ > 1, the magnetic excitation in the XXZ chain is
gapped and χ+−

s (q = 0,Ω) obtains the spectral weights
above the gap. Thus, the second-order magnetic ef-
fect described by Eq. (15) is anticipated. To demon-
strate this effect, we employ the infinite time evolving
block decimation (iTEBD) [35] and calculate the time-
dependence of mz(t) under the circularly polarized field
B(t) = BC(cos Ωt,± sin Ωt).

Figure 2(a) shows the magnetization mz(t) at ∆ = 4
in the XXZ model. Corresponding to χ+−

s (q = 0,Ω)
[see Fig. 2(b)], the magnetization mz(t) is generated at
2 . Ω . 6. The sign of the magnetization is inverted
by switching the helicity (±) of the magnetic field B(t).
While mz(t) ∝ t is expected in the long-time limit [see

Appendix C], mz(t) already grows up linearly with time
up to t = 40. Since iγ2 [B(Ω)×B(−Ω)]z = γ2B2

C/2
in Eq. (15), we plot the Ω-dependence of the normal-
ized magnetization mz(t)/(tγ

2B2
C/2)

∣∣
t=40

in Fig. 2(b).

As plotted in Fig. 2(b), the magnetization shows good
agreement with χ+−

s (q = 0,Ω). Therefore, the second-
order magnetic effect in the gapped phase of the XXZ
model is actually described by Eq. (15). While a similar
numerical simulation has been performed in Ref. [30], in
our study, we formulate the nonlinear magnetic effect in
a simple equation (15) and identify the relation with the
low-energy magnetic excitation described by χ+−

s (q,Ω).

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the second-order
magnetization perpendicular to the driving magnetic
fields. We have derived that while Mz(ω = 2Ω) can be
induced under the linearly polarized field, it is absent
under the circularly polarized field. Mz(ω = 0) can be
induced by circularly polarized fields and exhibits helic-
ity dependence. We have also discussed the specific case
when the ground state has no net magnetization, where
we have demonstrated the effect numerically in the driven
XXZ model and have shown that the main features of
the magnetization are determined by the dynamical spin
structure factor χ+−

s (q = 0,Ω).
This second-order magnetic effect emerges in a quan-

tum magnet with magnetic anisotropy. For example,
BaCo2V2O8 is described as an antiferromagnetic XXZ
chain with ∆ > 1 [37–39], where we may find a similar
magnetic effect demonstrated in Fig. 2. For J ∼ 3 meV
close to the value reported in BaCo2V2O8 [39], Ω = 2
and ~γB0 = 0.005 in Fig. 2 correspond to 1.45 THz
and 0.13 T [40], respectively, which may be accessi-
ble in experiments. In the recently realized twisted
WSe2 that can be represented as a triangular lattice
Hubbard model [41–43], the displacement field leads to
a Dzyaloshinskii-Moriya-type anisotropic interaction in
the effective Heisenberg model in the strong-coupling
limit [42, 43]. Because of the gapped magnetic excitation
due to the anisotropic interaction, this moiré Hubbard
system may also be a candidate for the host of the second-
order magnetization. While in Fig. 2 we used a model
that only has an excitation continuum, the relations we
derived are exact regardless of the type of magnetic exci-
tations. A magnetic collective mode, which gives a large
response at a resonant excitation frequency in a dynam-
ical spin correlation function, can be a good source for
efficient nonlinear magnetic effects.

In our study, effects of relaxation, which are present
in any realistic systems (e.g., by spin-lattice relaxation),
are not taken into account. When effects of relaxation
are incorporated, the linear growth of the magnetization
[e.g., in Fig. 2(a)] is observed until the relaxation time
τ . The magnetization converges to a finite value in a

steady state at t� τ , where the magnitude of m
(2)
z may
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be proportional to τ .
While we focus on the responses to the magnetic field

component of a THz field, the electric field component
is usually larger than the magnetic field component [29].
Hence, if a spin–electric field coupling is crucial in a mag-
netic insulator, we might find a larger nonlinear magnetic
response, which is useful for electromagnetic field ma-
nipulation of quantum materials. In order to address
this issue, one needs to consider a coupling term be-
tween an electric field and a spin system via, e.g., spin-
phonon or spin-orbit coupling. On the other hand, a
recent technique using a split-ring resonator enables us
to selectively enhance the strength of the THz magnetic
field [26, 44, 45], which may also open a pathway to re-
alize a large nonlinear magnetic effect.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid
for Scientific Research from JSPS, KAKENHI
Grants No. JP18K13509 (T.K.), No. JP20K14412,
No. JP20H05265, No. JP21H05017 (Y.M.), and
No. JP21K03412 (S.T.) and JST CREST Grant No. JP-
MJCR1901 (Y.M.) and No. JPMJCR19T3 (S.T.). T.K.
was supported by the JSPS Overseas Research Fellow-
ship. A.J.M. was supported in part by Programmable
Quantum Materials, an Energy Frontier Research Center
funded by the U.S. Department of Energy (DOE), Office
of Science, Basic Energy Sciences (BES), under award
DE-SC0019443. The Flatiron Institute is a division of
the Simons Foundation.

A: Perturbation theory

We employ the perturbation theory to derive a for-
mula for the magnetization Mz(t). With respect to

the perturbation V̂(t) = Ĥ(t) − Ĥ0, the wave function

|Ψ(t)〉 = e−i
Ĥ0
~ t |ΨI(t)〉 evolved from the ground state

|ψ0〉 is obtained via

|ΨI(t)〉 = |ψ0〉+
1

i~

∫ t

−∞
dt1 V̂I(t1) |ψ0〉 (A1)

+

(
1

i~

)2 ∫ t

−∞
dt1

∫ t1

−∞
dt2 V̂I(t1)V̂I(t2) |ψ0〉+ · · · ,

where the subscript I indicates the interaction picture

and ÔI(t) = ei
Ĥ0
~ tÔ(t)e−i

Ĥ0
~ t. Assuming a transverse

magnetic field, i.e., Bz(t) = 0, in the Hamiltonian (1),
the perturbation term is given by

V̂I(t) = −~γ
[
Bx(t)ŜxI (t) +By(t)ŜyI (t)

]
. (A2)

Using the interaction picture, the magnetization is

Mz(t) = 〈ΨI(t)|ŜzI (t)|ΨI(t)〉 . (A3)

The magnetization in the ground state |ψ0〉 is M
(0)
z =

〈ψ0|Ŝz|ψ0〉 = Sz0 . Although the magnetic field in
Eq. (A2) is applied, the magnetization at the first order

in B(t) vanishes, i.e., M
(1)
z (t) = 0, because V̂I(t) induces

the spin-flip (Ŝ±) and 〈ψ0|ŜzI (t)V̂I(t
′)|ψ0〉 = 0.

Using Eq. (A1), the magnetization at the second order

M
(2)
z (t) is given by

M (2)
z (t) =

1

~2

∫ t

−∞
dt1

∫ t

−∞
dt2 〈ψ0|V̂I(t1)ŜzI (t)V̂I(t2)|ψ0〉

− 1

~2

∫ t

−∞
dt1

∫ t1

−∞
dt2 〈ψ0|ŜzI (t)V̂I(t1)V̂I(t2)|ψ0〉

− 1

~2

∫ t

−∞
dt1

∫ t1

−∞
dt2 〈ψ0|V̂I(t2)V̂I(t1)ŜzI (t)|ψ0〉 .

(A4)

Because V̂I(t) is comprised of the spin-flip operators Ŝ±,
we introduce the intermediate eigenstate |ψ±m〉 in which

Szm = Sz0 ± 1. Using Ŝz |ψ±m〉 = (M
(0)
z ± 1) |ψ±m〉, the

integrand of the first term in Eq. (A4) is given by

〈ψ0|V̂I(t1)ŜzI (t)V̂I(t2)|ψ0〉

=
∑
ζ=±

∑
m

(
M (0)
z + ζ

)
〈ψ0|V̂I(t1)|ψζm〉 〈ψζm|V̂I(t2)|ψ0〉 .

(A5)

The term involving M
(0)
z in Eq. (A5) cancels out the

second and third terms in Eq. (A4). Hence, we obtain

M (2)
z (t) =

1

~2

∫ t

−∞
dt1

∫ t

−∞
dt2

∑
ζ=±

∑
m

ζ 〈ψ0|V̂I(t1)|ψζm〉

× 〈ψζm|V̂I(t2)|ψ0〉.
(A6)

Combining the relations

〈ψ0|Ŝν |ψ±m〉 〈ψ±m|Ŝν |ψ0〉 =
1

4
| 〈ψ±m|Ŝ±|ψ0〉 |2, (A7)

〈ψ0|Ŝx|ψ±m〉 〈ψ±m|Ŝy|ψ0〉 = ± 1

4i
| 〈ψ±m|Ŝ±|ψ0〉 |2, (A8)

where ν = x, y, we find

〈ψ0|V̂I(t1)|ψζm〉 〈ψζm|V̂I(t2)|ψ0〉

=
~2γ2

4
| 〈ψζm|Ŝζ |ψ0〉 |2e−i(ω

ζ
m−ω0)(t1−t2)B(t1) ·B(t2)

+
~2γ2

4i
ζ| 〈ψζm|Ŝζ |ψ0〉 |2e−i(ω

ζ
m−ω0)(t1−t2) [B(t1)×B(t2)]z .

(A9)

Here, ~ω0 is the ground-state energy of |ψ0〉 and ~ωζm
(ζ = ±) is the eigenenergy of |ψ±m〉. Then, applying
Eq. (A9) to Eq. (A6), we obtain Eq. (2).

While the above formulas are the results at zero tem-
perature, we may obtain the corresponding formulas
at nonzero temperature by replacing 〈ψ0| · · · |ψ0〉 with
1/Z

∑
n e
−β~ωn 〈ψn| · · · |ψn〉, where β and Z are the in-

verse temperature and the partition function, respec-
tively.
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B: Magnetization in a rotating frame

In this appendix, we consider magnetization in a ro-
tating frame. In this frame, we can discuss the magneti-
zation under the circularly polarized field as the dynam-
ics described by the static Hamiltonian with an effective
magnetic field [30, 31].

With respect to the original Schrödinger equation
[i~ d

dt −Ĥ(t)] |Ψ(t)〉 = 0, a state given by a unitary trans-

formation |Ψ′(t)〉 = Û(t) |Ψ(t)〉 satisfies [30]

Û(t)

[
i~
d

dt
− Ĥ(t)

]
U(t)† |Ψ′(t)〉 = 0. (B1)

Here, assuming the U(1) spin rotational symmetry

around the z axis in the Hamiltonian Ĥ0, we apply

Û(t) = eiξΩŜ
zt, (B2)

where ξ = ±1 denotes clock/anticlockwise rotation.
Then,

Û(t)i~
d

dt
Û(t)† = i~

d

dt
+ ξ~ΩŜz (B3)

and

Û(t)Ĥ(t)Û(t)† = Ĥ0 − ~γBx(t)
[
Ŝx cos Ωt− ξŜy sin Ωt

]
−~γBy(t)

[
Ŝy cos Ωt+ ξŜx sin Ωt

]
.

(B4)

Hence, for the time-dependent equation[
i~
d

dt
− Ĥ′(t)

]
|Ψ′(t)〉 = 0, (B5)

we find

Ĥ′(t) = Ĥ0 − ~γ [Bx(t) cos Ωt+ ξBy(t) sin Ωt] Ŝx

− ~γ [By(t) cos Ωt− ξBx(t) sin Ωt] Ŝy − ξ~ΩŜz.
(B6)

Here, we consider the case under the circularly polar-
ized field. When frame rotation corresponds to the helic-
ity of the magnetic field as B(t) = BC (cos Ωt, ξ sin Ωt),
we obtain the static Hamiltonian

Ĥ′C = Ĥ0 − ~γBCŜ
x − ξ~ΩŜz (B7)

for [i~ d
dt − Ĥ

′
C] |Ψ′(t)〉 = 0 [30, 31]. This static Hamilto-

nian in the rotating frame indicates that the frequency Ω
gives the effective Zeeman term −ξ~ΩŜz and the magne-
tization direction depends on the helicity (ξ) of the cir-

cularly polarized field. Since [Ĥ0 − ξ~ΩŜz, Ŝz] = 0, the

effective Zeeman term −ξ~ΩŜz itself cannot change the

magnetization Mz = 〈Ŝz〉 from the ground state |ψ0〉 of

Ĥ0. However, the perturbation due to −~γBCŜ
x breaks

the conservation of Sz and can modify the magnetization
in anisotropic magnets [30, 31]. In this picture, when

M
(0)
z = 0 at t = −∞ in |ψ0〉, the magnetization at the

second order is given by

M (2)
z (t)=γ2B2

C

∫ t

−∞
dt1

∫ t

−∞
dt2 〈ψ0|Ŝx′I (t1)Ŝz′I (t)Ŝx′I (t2)|ψ0〉 ,

(B8)

where Ô′I(t) = e
i
~ (Ĥ0−ξ~ΩŜz)tÔe− i

~ (Ĥ0−ξ~ΩŜz)t with re-

spect to |Ψ′(t)〉 = e−
i
~ (Ĥ0−ξ~ΩŜz)t |Ψ′I(t)〉. Assuming

| 〈ψ+
m|Ŝ+|ψ0〉 |2 = | 〈ψ−m|Ŝ−|ψ0〉 |2 (ω+

m = ω−m), we finally
obtain

dM
(2)
z

dt
= ξ

πγ2B2
C

2

∑
m

| 〈ψm|Ŝ−|ψ0〉 |2
[
δ(Ω− ωm + ω0)

−δ(Ω + ωm − ω0)
]
.

(B9)

This is consistent with Eq. (13) since i[B(Ω) ×
B(−Ω)]z = ξB2

C/2.

C: Time evolution from t = 0

In the above derivations, we assumed adiabatic switch-
ing from t = −∞. Here, for real-time numerical
simulations, we derive the formula when the magnetic
field is switched at t = 0. When | 〈ψ+

m|Ŝ+|ψ0〉 |2 =

| 〈ψ−m|Ŝ−|ψ0〉 |2 and ω+
m = ω−m are satisfied, the time-

dependent magnetization in Eq. (2) under a monochro-
matic field B(t) = θ(t)B(Ω)e−iΩt + c.c. is given by

M (2)
z (t) = 2iγ2

∑
m

| 〈ψm|Ŝ−|ψ0〉 |2
[

sin2[(Ω−ωm+ω0)t/2]

(Ω− ωm + ω0)2

− sin2[(Ω+ωm−ω0)t/2]

(Ω + ωm − ω0)2

]
[B(Ω)×B(−Ω)]z ,

(C1)

where |ψ±m〉 and ω±m are denoted by |ψm〉 and ωm.

M
(2)
z (t) ∝ t4 at t ∼ 0. On the other hand, in the limit

t→∞, we find

M (2)
z (t) = itπγ2

∑
m

| 〈ψm|Ŝ−|ψ0〉 |2
[
δ (Ω− ωm + ω0)

− δ (Ω + ωm − ω0)
]

[B(Ω)×B(−Ω)]z .

(C2)

Hence, M
(2)
z (t → ∞) ∝ t and its time-derivative is con-

sistent with Eq. (13).
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