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Fracton order features point excitations that either cannot move at all or are only allowed to
move in a lower dimensional sub-manifold of the whole system. In this paper, we generalize the 2 +
1D U(1) Chern-Simons (CS) theory – a powerful tool in the study of 2+1D topological orders – to
include infinite gauge field components and find that they can describe interesting types of 3 + 1D
fracton order beyond what is known from exactly solvable models and tensor gauge theories. On the
one hand, they can describe foliated fractonic systems for which increasing the system size requires
insertion of nontrivial 2 + 1D topological states. The CS formulation provides an easier approach
to study the phase relation among foliated models. More interestingly, we find simple examples that
lie beyond the foliation framework, characterized by 2D excitations of infinite order and irrational
braiding statistics. This finding extends our realm of understanding of possible fracton phenomena.

I. INTRODUCTION

Fracton models1,2 are characterized by the peculiar
feature that some of their gapped point excitations are
completely localized or are restricted to move only in
a lower dimensional sub-manifold. Two large classes
of models have been studied extensively, with very
different features. The exactly solvable fracton models
(see for example 3–8), on the one hand, are gapped
and exhibit properties like exponential ground state
degeneracy, nontrivial entanglement features,9–12 and
foliation structure.13 The higher rank continuum gauge
theories (see for example 14–17), on the other hand,
host gapless photon excitations, on top of which gapped
fracton excitations emerge due to nontrivial forms of
symmetry like dipole conservation. The fracton models
discovered so far host features that are very similar
to those in topological models like fractional quantum
Hall and (rank-1) gauge theories, but also generalize the
topological framework in nontrivial ways.

One theoretical tool that plays an important role in the
study of 2+1D topological phases is Chern-Simons gauge
theory.18 In particular, it has been shown that multi-
component U(1) gauge theories with a Chern-Simons
term give a complete characterization of 2 + 1D abelian
topological phases.19 The Lagrangian of the theory is
given by

L = − 1

4e2

∑
i

F iµνF i,µν +
1

4π

∑
ij

Kijε
µνλAiµ∂νA

j
λ, (1)

where µ, ν, λ = 0, 1, 2, and i, j label the different gauge
fields and take values in a finite set i, j = 1, ..., N .
The matrix K is an N × N symmetric integer matrix.
The universal topological features are captured in the
K matrix, from which one can derive the ground state

degeneracy, anyon fusion and braiding statistics, edge
states, etc. of the topological phase.19

Can we take the number of gauge fields to infinity
and extend this formalism to describe 3 + 1D fractonic
order? In this paper, we call such theories “iCS”
theories, “i” for infinite. This idea comes from the simple
observation that if we take this extension and choose
the infinite dimensional K matrix to be simply diagonal
(with diagonal entries being, for example, 3),

K =


. . .

3
3

3
. . .

 , (2)

then the Lagrangian describes a decoupled stack of 2+1D
fractional quantum Hall states (each with filling fraction
ν = 1/3 in this example). Such decoupled stacks of 2+1D
topological states, while simple, contain several of the
key features of fracton physics: ground state degeneracy
that increases exponentially with the height of the stack,
anyon excitations that are mobile in 2D planes only and
cannot hop vertically, and entanglement entropy of sub-
regions that contains a sub-leading term which scales
linearly with the height of the region.9 Therefore, this
simple stack system described by a diagonal infinite K
matrix is a fracton model, although a very trivial one.

Can iCS theories with more complicated K matrices
lead to more interesting types of fractonic behavior?
In this paper, we show that this is indeed the case.
In section II, we show that some gapped iCS theories
have foliated fractonic order, which was first identified
in several exactly solvable fracton models.12,13,20 The
iCS models cover both twisted and non-twisted foliated
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fractonic phases and can represent foliated phases
without an exactly solvable limit. More interestingly,
in section III, we present a gapped iCS theory that
is qualitatively different from any exactly solvable
fracton model we know before. The ground state
degeneracy does not follow exactly a simple exponential
form, but approaches one in the thermodynamic limit.
Quasiparticles move in planes and braiding statistics
become ever more fractionalized as system size increases.
[This example represents a new class of gapped fractonic
order beyond the foliation framework, and it is not yet
clear to us how the renormalization procedure should
work so that this model becomes a renormalization fixed
point.] Note that the gapped iCS theories discussed
in this paper are “fractonic” in the sense that they
contain point “planon” excitations that move in 2D
planes only but not the third direction. There are
no true “fracton” excitations in these models which
are completely localized when on their own. Next, in
section IV, we discuss an iCS theory which is gapless.
On top of the gapless photon excitation, the system
has a constant ground state degeneracy and fractional
excitations generated by membrane operators. What
kind of 3 + 1D physics this model describes is an
intriguing question. Some of these iCS theories have been
studied in the context of three dimensional quantum Hall
systems21–24 where their unusual properties of braiding
statistics, edge states, etc., were first pointed out.

To substantiate the results we obtain from field theory
analysis, we present an explicit lattice construction in
section V. [The construction works for any K matrix
that is 1. integer-valued, 2. symmetric, Kij = Kji,
3. quasi-diagonal, i.e. non-zero entries of K are restricted
to some finite distance from the diagonal. This lattice
construction demonstrates] that the corresponding iCS
theory indeed describes the effective low energy physics
of an anomaly-free 3 + 1D local model. In particular, we
write down a lattice Hamiltonian and the lattice form of
the string operators for the planons, and calculate the
spectrum (from field theory). [We emphasize here that
the main purpose of the lattice construction is to confirm
the legitimacy of the iCS field theory, rather than for
numerical or experimental study.]

Finally, in section VI, we summarize our result and
discuss the various open questions that follow the initial
exploration of iCS theory presented here.

In Appendix C we discuss the tangential problem
of how to construct the K matrix representation of a
2+1D abelian topological order if we are given the fusion
group and statistics of its anyons. This translates to the
math problem of quadratic forms on finite abelian groups
and a complete solution is known.25,26 We present the
procedure step by step for interested physics readers.

Note that in this paper, we are considering 2+1D gauge
fields with 2+1D gauge symmetries although the model is
a 3+1D model. It is possible to add a z component to the
gauge field and modify the model so that it satisfies 3+1D
gauge symmetries. We find that in most such cases, the

FIG. 1. Foliated fracton order and its interpretation in terms
of K matrix. In Figure (a) (first line), we start with a system
H(L) of size L in the z direction. A finite depth local unitary
circuit U is applied to the green region {(x, y, z) : z1 ≤ z ≤
z2}. The result is the same system H(L−1) of size L−1 in the
z direction and a decoupled 2+1D gapped system (red layer).
In Figure (b) (second line), we start with a quasi-diagonal
K(N) of size N ∝ L with periodic boundary condition. Only
entries in the blue region can be non-zero. We apply the
transformation K(N) 7→ WK(N)WT , where W ∈ GL(N,Z)
shown in the dashed box is equal to the identity except in the
green block, so the action of W on K(N) is within the green
cross in the second figure. The result is the direct sum of the
same system K(N − a) of size N − a and a decoupled block
K′ of size a = O(1) (red block).

model becomes gapless, similar to the case studied in 27.
We leave these cases out of the scope of this paper.

[Moved here: In the following discussion, we will
always use the convention that each gauge field has x
and y spatial components, but not a z one. As we will
show, the i index of the K matrix can be interpreted as
the z direction spatial coordinate.]

II. GAPPED FOLIATED THEORIES

A number of the fracton models discovered so far have
a “foliation structure”.12,13,20 That is, a model with a
larger system size can be mapped under a finite depth
local unitary circuit U to the same model with a smaller
system size together with decoupled layers of 2 + 1D
gapped states, as shown in Fig. 1 (a). For example, it was
shown13 that the X-cube model of size Lx×Ly ×Lz can
be mapped to one with size Lx ×Ly × (Lz − 1) together
with a 2 + 1D toric code. Actually, the same process
can be implemented in all x, y and z directions, and
hence the X-cube model is said to be “3-foliated”. Other
fracton models with a “foliation structure” include the
semionic X-cube model,28,29 the checkerboard model,30

the Majorana checkerboard model31.
An iCS theory can have a “foliation structure” as well

and the K matrix formulation provides a particularly
simple mathematical framework to study it, as explained
in Fig. 1 (b). Obviously the diagonal K matrix, for
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example the one in Eq. 2, represents a rather trivial 1-
foliated fracton model where a model of height L (in
the stack direction) is the same as a model of height
L − 1 together with a decoupled 2D layer. Moreover,
in Ref. 20, it was shown that it is possible to represent
more nontrivial types of foliated fracton order using an
iCS theory. In particular, it was shown that an infinite
dimensional K matrix of the form

KF =



e1 m1 e2 m2 e3 m3 e4
. . .

0 2 -1
2 0
-1 0 2 -1

2 0
-1 0 2 -1

2 0
-1 0

. . .


. (3)

describes a twisted 1-foliated fracton order. All non-zero
entries in the matrix lie within distance 2 from the main
diagonal; the matrix is hence said to be quasi-diagonal.
It is translation invariant with a period of 2: i 7→ i + 2,
j 7→ j + 2. We have added a subscript “F” to indicate
that it is foliated. The meaning of the column labels will
become clear once we take the inverse of this matrix.

To see what kind of physics this KF matrix describes,
we first notice that the determinant of the KF matrix of
size 2L is given by detKF(2L) = (−4)L. Therefore, the
ground state degeneracy on a 3D torus is given by

log2 GSD = 2L,

which takes a simple linear form in L. Next, the quasi-
particle content can be read from the K−1F matrix

K−1F =
1

4



m0 e1 m1 e2 m2 e3 m3

. . .
0 1

0 2
1 2 0 1

0 2
1 2 0 1

0 2
1 2 0

. . .


. (4)

The column labels ei and mi follow from those in Eq. 3.
It is now easy to see that we choose these labels because
the statistics of ei and mi are similar to those in a Z2

gauge theory where the e and m excitations are bosons
and have a mutual −1 braiding statistics. But this
KF matrix represents not just a decoupled stack of Z2

gauge theories, because the m excitations have mutual
i statistics between neighbors. Indeed, it was shown in
Ref. 20 to describe a twisted 1-foliated fractonic order.
That is

1. The model is gapped and has fractional excitations
that move only in the xy plane, hence a fracton
model.

2. The model of height L in the z direction (corre-
sponding to a KF matrix of size 4L) can be mapped
to one of height L− 1 (corresponding to a KF ma-
trix of size 4L−4) together with a 2+1D topological
state layer (a twisted Z2 × Z2 gauge theory in this
case).

3. The model is not equivalent to a pure stack of 2+1D
topological layers. Note that the entries in K−1F are
strictly zero once we move sufficiently far away from
the main diagonal.

Comparing this to examples discussed in later sections,
we see that this is a hallmark of foliated iCS theories.

The way to see the foliation structure is to apply a
local, general linear transformation W of the form

W =



ẽ1 m̃1 ẽ
A m̃A ẽB m̃B ẽ2 m̃2 ẽ3

. . .

e1 1 -1 -1
m1 1
e2 1
m2 1 1
e3 1
m3 1 1
e4 -1 1
m4 1
e5 1

. . .



,

(5)
so that KF is transformed into

WKFW
T =



ẽ1 m̃1 ẽ
A m̃A ẽB m̃B ẽ2 m̃2 ẽ3

. . .

0 2 -1
2 0

0 2 -1 0
2 0 0 0
-1 0 0 2
0 0 2 0

-1 0 2 -1
2 0
-1 0

. . .



,

where the middle 4×4 block is decoupled from the rest of
the system and the remaining part of the transformed K
matrix is the same as the original one in Eq. 3, only
slightly smaller. Note that, although the W matrix
looks quite big, it acts non-trivially only within the finite
block shown in Eq. 5. Its action is the identity outside.
This transformation hence realizes the renormalization
group transformation13,32 of the 1-foliated fracton model
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formulated in terms of infinite dimensional K matrices,
as shown schematically in Fig. 1 (b).

The iCS theory, and correspondingly the infinite
dimensional K matrix, hence provide a convenient
formulation for studying the foliation structure in a 1-
foliated fracton model. The example discussed above can
be generalized to a whole class of 1-foliated models with
a similar foliation structure, as discussed in Appendix A.

III. GAPPED NON-FOLIATED THEORIES

While the iCS formulation is useful in the study of
foliated fracton models, a more surprising finding is that
iCS theories can also be non-foliated. Among all type I
fracton models – ones with mobile fractional excitations –
that we know so far, the abelian ones are all foliated. The
iCS theory, being an abelian type I fracton model, hence
extends our understanding of what is possible within the
realm of fractonic order.

Consider the iCS theory with a simple tridiagonal K
matrix

KnF =


3 1 1
1 3 1

. . .
. . .

. . .

1 3 1
1 1 3

 . (6)

Note that we have taken periodic boundary condition in
the matrix. The “nF” subscript denotes non-foliated.
This theory was studied in Refs. 22–24, and 33 as
an effective theory for coupled fractional quantum Hall
layers. Many aspects of its properties have been studied.
Here we look at the theory from a fracton perspective,
that is, to address the question: is this a fracton model
and if so, what type of fracton model?

A field theory calculation shows that this theory is
gapped (see section V B). The determinant D(N) of the
matrix of size N , and hence the ground state degeneracy
of the model on a 3D torus of height N , follow a rather
complicated form

D(N) =

(
3 +
√

5

2

)N
+

(
3−
√

5

2

)N
− 2(−1)N . (7)

The exponential growth of GSD in system size indicates
fractonic order. However, unlike in the foliated case, the
GSD does not follow a simple exponential form (with
possible pre-factors), but only approaches such a form in
the thermodynamic limit N →∞ with an irrational base(
3 +
√

5
)
/2.

Another way to see that this model is “weird” is from
the fusion group and statistics of its planons. Such
information can be read from the inverse of the matrix,

which for size N = 5 takes the form

K−1nF =
1

25


11 −4 1 1 −4
−4 11 −4 1 1
1 −4 11 −4 1
1 1 −4 11 −4
−4 1 1 −4 11

 ,

and for size N = 7 takes the form34

K−1nF =
1

65



29 −11 4 −1 −1 4 −11
−11 29 −11 4 −1 −1 4

4 −11 29 −11 4 −1 −1
−1 4 −11 29 −11 4 −1
−1 −1 4 −11 29 −11 4
4 −1 −1 4 −11 29 −11
−11 4 −1 −1 54 −11 29


.

Note the difference from the foliated case (for example
Eq. 4). First of all, the magnitude of the entries decay
exponentially away from the main diagonal, but they
never become exactly zero. Secondly, each entry varies
as the system size increases and approaches an irrational
number as the system size goes to infinity

(
K−1nF

)
ij
→ (−1)i−j√

5

(
3 +
√

5

2

)−|i−j|
. (8)

In terms of quantum Hall physics, this indicates an
irrational amount of charge in layer j attached to a flux
inserted in layer i.21 In terms of abelian topological order,
this indicates an irrational phase angle in the braiding
statistics between the ith anyon and the jth anyon

θij = 2π
(−1)i−j√

5

(
3 +
√

5

2

)−|i−j|
.

KnF of size N gives a fusion group GN = ZFN
× Z5FN

,
where FN is the Nth number in the Fibonacci sequence.
Therefore, the fusion group has two generators, one of
order FN , the other of order 5FN .

These features preclude a foliation structure in KnF.
In both cases, the fusion group is exponentially large
and correspondingly the ground state degeneracy grows
exponentially with system size. But the underlying
reasons for this growth are very different. In the foliated
models, as the planons come from the hidden 2D layers,
they have finite orders and correspondingly rational
statistics. At the same time, the fusion group has a
lot of generators, a number that grows linearly with
system size. In the non-foliated example however, the
fusion group has only two generators, each of infinite
order (exponentially growing with system size). Their
self and mutual statistics also become more and more
fractionalized as the system size grows and eventually
approach an irrational number.

It is therefore straightforward to see that the theory
represented by KnF cannot be foliated. In particular,
not every local (in the z direction) planon can be
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decoupled into an anyon in a foliation layer. First,
the ground state degeneracy does not follow a simple
formula of abN , with b being an integer or a root of an
integer, as expected in a foliated model. Secondly, the
elementary planon has an infinite order and nontrivial
(although exponentially decaying) statistics with planons
a large distance away. This cannot happen in a foliated
model. In a foliated model, when each foliation layer
is inserted, we can apply a local unitary transformation
to “integrate” the layer into the bulk. The anyons
that come from the layers can acquire a different (but
still local) profile in the z direction when becoming a
planon. In particular, if the unitaries have exponentially
decaying tails, the profile can have exponential tails,
which is not surprising. But it is not possible for
the planons to have exponentially decaying tails in its
statistics because unitary transformations cannot change
statistics. The only thing we can do when mapping the
anyons in the foliation layers into planons is to relabel
them, i.e. choose a different set and call them elementary.
But when combining anyons into a new generating
set, it is not possible to combine fractions of them
together in the form of an exponentially decaying tail.
Therefore, the exponential decaying infinite statistics
precludes a foliation structure. Moreover, this “profile”
of braiding statistics defines an intrinsic length scale in
the system along the z direction, determined entirely by
the topological order and can not be tuned continuously.
As we show below, the length scale characterizes the
spread of anyon string operators in the z direction.

Similar phenomena can be found in many other iCS
theories, as discussed in Appendix B. In fact, the
properties of KnF are so unusual that one may wonder
if it represents a physical 3 + 1D theory at all and if
so, whether the planons are indeed point excitations. In
Ref. 22–24, and 33, the theory was studied in terms of
its related Laughlin wave-function and the corresponding
quantum Hall Hamiltonian, which partially addresses
this question. In section V, we address this question for
all iCS theories with quasi-diagonal K matrices through
explicit lattice construction. We show that all such
theories are local 3+1D models and in particular for KnF,
the elementary planons are indeed point excitations.
They move in the xy plane and are hence planons.

IV. GAPLESS THEORIES

If we change the diagonal entries in Eq. 6 from 3 to 2,

Kgl =


2 1 1
1 2 1

. . .
. . .

. . .

1 2 1
1 1 2

 , (9)

we get a very different theory. In particular, the
calculation in section V B shows that the theory becomes

gapless. The “gl” subscript denotes “gapless”. It is not
clear what the nature of the gapless phase is. In this
section, we will simply list some of the properties of Kgl.

The eigenvalues of Kgl form a gapless band with a
quadratic dispersion. Therefore, according to discussion
in section V B, the photon sector in the theory is gapless
with a quadratic dispersion in the z direction. As the
band touches the zero energy point when the size N of
the matrix is even, the determinant of the matrix is zero
with even N . With odd N , the determinant is always 4.

The inverse of the matrix looks like, for N = 5,

K−1gl =
1

4


5 −3 1 1 −3
−3 5 −3 1 1
1 −3 5 −3 1
1 1 −3 5 −3
−3 1 1 −3 5

 ,

while for N = 7,

K−1gl =
1

4



7 −5 3 −1 −1 3 −5
−5 7 −5 3 −1 −1 3
3 −5 7 −5 3 −1 −1
−1 3 −5 7 −5 3 −1
−1 −1 3 −5 7 −5 3
3 −1 −1 3 −5 7 −5
−5 3 −1 −1 3 −5 7


.

The fusion group in this case turns out to be Z4 and
the topological spin of the generating anyon is θ = qπ/4,
where q = N mod 8. Hence, the topological order is that
of the ν = 2q fermionic Z2 gauge theory in Kitaev’s 16-
fold way.35 The entries in K−1gl decay linearly away from
the main diagonal. However, unlike for KnF in Eq. 6, the
statistics do not become more fractional as the system
size grows. Instead, the fractional part remains ±1/4
no matter the distance. Because of this, the fractional
excitations are hence very different from those inKnF. As
we will show in section V, while the fractional excitations
in KnF have a localized profile in the z direction and can
be considered as point excitations, those in Kgl have an
extensive profile in the z direction and should be regarded
as a line excitation (if such consideration is valid at all
given the existence of gapless modes in the model).
Kgl is a representative of the class of gapless iCS

theories with quasi-diagonal K matrices. In Ref. 22,
it was mentioned that some of these theories might
have an instability towards “staging”, that is, translation
symmetry breaking in the z direction. Whether that
always happens, or whether some of these theories might
be gapless spin liquids or gapless fracton phases is not
clear. We will leave more in-depth study of these gapless
phases to future work.

V. LATTICE CONSTRUCTION

In the previous sections, we have presented some
interesting and sometimes even surprising properties of
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the iCS theories without addressing one crucial question:
are the iCS theories legitimate 3 + 1D models? In
particular, can we interpret the i index in Eq. 1 as a z
direction spatial coordinate? After all, the Chern-Simons
gauge fields Ai are not local degrees of freedom and
can have complicated commutation relations between one
another. For example, when e→∞,[

Aix,Ajy
]
∝ K−1ij .

The situation is particularly worrisome in the case of
KnF and Kgl where the entries in K−1 are all nonzero.
It means that if we try to interpret i and j as the z
direction spatial coordinate, the gauge field in the ith
layerAi would have nontrivial commutation relation with
the gauge field in the jth layer even though they are very
far away.

This is related to the question of what the fractional
excitations look like, in particular whether the ones
associated with the unit vectors (. . . , 0, 0, 1, 0, 0, . . .) have
a local profile in the z direction. In the CS formulation,
this seems to be the case because these excitations are
unit gauge charges of the gauge field Ai and are created
simply by string operators of the form (in the e → ∞
limit)

Wi = exp

[
−i
∫
path

dxαAiα
]
,

but this seems to be at odds with the fact that the ith
excitation has a nontrivial braiding statistic with the jth
excitation no matter how far away they are.

In this section, we clarify these issues by presenting a
lattice construction whose low energy effective theory is
described by Eq. 1. Our construction works for any iCS
theory with a quasi-diagonal K matrix, i.e. symmetric
integer matrices whose entries are zero beyond a certain
distance from the main diagonal and whose nonzero
entries are all bounded by some finite number. Therefore,
our construction shows that all such iCS theories are
legitimate 3 + 1D local models. [We stress that the
main purpose of constructing the lattice models —
which are rather complicated — is not to aid numerical
study or to propose an experimental realization, but
to confirm the legitimacy of the field theory.] We also
write down the explicit form of the string operators that
generate fractional excitations and show that for KF,
KnF, the elementary excitations associated with unit
vectors (. . . , 0, 0, 1, 0, 0, . . .) are local in the z direction
and are hence point excitations. For Kgl, however, the
elementary excitation is not localized in the z direction
and should not be thought of as a point excitation.

A. Lattice model

We now describe the lattice model that realizes a quasi-
diagonal iCS theory. For clarity, we start with a toy
example K = (2), a 1×1 matrix. Although this K matrix

has finite dimension, it contains much of the relevant
physics, and will also be revisited in Section V C when
we study string operators. We then proceed to the less
trivial example of KnF defined in Eq. 6. Finally, we
present the construction in full generality which works
for arbitrary quasi-diagonal K with bounded entries.

FIG. 2. Lattice model realizing K = (2). The matter content
of the system is two IQH layers Ω1 and Ω2 (blue lines) with
Chern number Cl = 1. The layers are coupled each with unit
charge to a dynamical U(1) gauge fields A.

The K = (2) CS theory can be realized as a chiral
spin liquid, as discussed for example in Ref. 36. Here we
present a more complicated construction so that it can
be generalized to all iCS theories. We start with two
integer quantum Hall (IQH) layers Ωl, l = 1, 2, with
Chern number Cl = 1. Each layer is a free fermion
hopping model in the xy plane. The fermions in each
layer carry unit charge under a global charge conservation
symmetry and we can gauge the system by coupling the
layer to a dynamical U(1) gauge field A. More precisely,
we add gauge degrees of freedom Arr′ on the horizontal
links 〈rr′〉. As usual, we define the electric field Err′

as the conjugate variable to Arr′ , [Arr′ , Err′ ] = i. The
Hamiltonian after gauging is

H =
∑
l=1,2

∑
〈rr′〉

urr′e
iArr′ c†l,r′cl,r +

∑
〈rr′〉

gE (Err′)
2

− gB
∑
p

cosBp + gQ
∑
r

(Qr)
2
, (10)

where r, r′ are 2-component vectors labelling the sites in
each layer, urr′ is the IQH hopping coefficient, Bp is the
flux of A through plaquette p, and

Qr = (∇ ·E)r −
∑
l=1,2

c†l,rcl,r (11)

is the Gauss’s law term (see Fig. 3). Note that here
Gauss’s law is only being imposed as an energetic
constraint, not a Hilbert space constraint. Because of
this, the resulting theory is fermionic instead of bosonic.
More specifically, we will show below that the resulting
theory is the K = 2 bosonic theory together with two
decoupled fermionic IQH layers.

At low energies, the model is described by an effective
CS theory (we kept only the topological CS terms and
omitted the Maxwell term and source term AµJ

µ)

L = − 1

4π

∑
l=1,2

Clεµνλalµ∂νa
l
λ +

1

2π

∑
l=1,2

εµνλAµ∂νa
l
λ,

(12)
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FIG. 3. The flux and Gauss’s law terms in Eq. 14. Reversing
the direction of the edges changes the signs in front of A and
E. In the context of our first example K = (2), the index i
should be ignored and qil = 1 for l = 1, 2.

whose K matrix with respect to the basis (a1, a2, A) is

K0 =

−1 0 1
0 −1 1
1 1 0

 . (13)

Note that an IQH layer with Chern number 1 corresponds
to a −1 in the K matrix. To see how K0 relates
to the desired K = (2), we apply the transformation

K0 7→ K̃0 = WK0W
T with

W =

1 0 0
0 1 0
1 1 1

 .

We obtain

K̃0 =

−1 0 0
0 −1 0
0 0 2


in terms of the new fieldsã1ã2

Ã

 =
(
W−1

)T a1a2
A

 =

a1 −Aa2 −A
A

 .

We see that K̃0 contains the decoupled block K = (2) in
its lower right corner. We also have two decoupled IQH

layers in K̃0, but these have no anyon content. Therefore,
the construction, as written, realizes not exactly the K =
2 theory, but a very close fermionic cousin represented by
K̃0.

Next, we consider the example of KnF defined in Eq. 6.
To realize KnF, we take infinitely many IQH layers Ωl,
l ∈ Z, each with Chern number Cl = 1. We couple the
layers to infinitely many dynamical U(1) gauge fields Ai,
i ∈ Z, as follows: fermions in layers Ω1, Ω2, Ω3 have unit
charge under A1, those in layers Ω3, Ω4, Ω5 have unit
charge under A2, those in layers Ω5, Ω6, Ω7 have unit
charge under A3, etc. All other pairs of Ωl and Ai not
following this pattern are uncoupled (see Fig. 4). This

FIG. 4. Lattice model realizing KnF. The matter content
of the system is infinitely many IQH layers Ωl (blue lines)
with Chern number Cl = 1. The layers are coupled with unit
charge to infinitely many dynamical U(1) gauge fields Ai in
the way indicated by the curly brackets.

model has a low energy effective CS theory similar to
Eq. 12, but now with K matrix

K0 =



. . .

−1 1
−1 1

1 1 0 1
1 −1 1

−1 1
1 1 0 1

1 −1
. . .


.

with respect to the basis
(
..., a1, a2, A1, a3, a4, A2, a5, ...

)
.

Like in the previous example, we apply the transforma-

tion K0 7→ K̃0 = WK0W
T with

W =



. . .

1
1

1 1 1 1
1

1
1 1 1 1

1
. . .


.

W is a local transformation in the sense that it can be
decomposed into two layers where each layer is a product
of non-overlapping general linear transformations that
act on three nearest neighbor dimensions. Borrowing
the terminology for local unitary transformations, W is
a “finite depth circuit” of general linear transformations.
This is an important point because it shows that locality
is preserved when we map from the lattice model to the
effective iCS theory. Specifically, W can be decomposed
into a finite product of block diagonal integer matrices
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W = W1W2, where

W1 =



. . .

1
1

1 1
1

1
1 1

1
. . .


,

W2 =



. . .

1
1
1 1 1

1
1
1 1 1

1
. . .


.

The result of this transformation is

K̃0 =



. . .

−1
−1

3 1
−1
−1

1 3
−1

. . .


,

which breaks into KnF consisting of rows and columns
with indices ..., 3, 6, 9, ... together with decoupled ν = 1
IQH layers. Similar to the previous case, we get almost
the theory we want except for some extra IQH layers
which do not have any impact on the anyon statistics of
the theory.

Having discussed two examples, we finally present a
construction that works for an arbitrary quasi-diagonal
K with bounded entries. Similar to the KnF example,
we start with a stack of IQH layers Ωl. The Chern
number of layer l is Cl = ±1, to be fixed later.
We introduce gauge degrees of freedom Airr′ and their
conjugate momenta Eirr′ on the horizontal links 〈rr′〉 and

impose the commutation relation [Ajrr′ , E
k
rr′ ] = iδjk as

usual. We then couple Ωl to Ai with charge qil, also to

be fixed later. The resulting Hamiltonian is

H =
∑
l

∑
〈rr′〉

ul,rr′ exp

(
i
∑
i

qilAirr′

)
c†l,r′cl,r

+
∑
i

∑
〈rr′〉

gE
(
Eirr′

)2 − gB∑
p

cosBip

+gQ
∑
r

(
Qir
)2]

, (14)

where ul,rr′ is the IQH hopping coefficient determined by
Cl, Bip is the flux of Ai through plaquette p, and

Qir = (∇ ·E)ir −
∑
l

qilc†l,rcl,r (15)

is the Gauss’s law term (see Fig. 3). We think of the
fermion and gauge field layers as interlaced in the z
direction. The interactions are local as long as only a
finite number of neighboring layers are charged under
each Ai, or equivalently, each row and column of qil has
bounded support, which turns out to hold with our choice
of qil later. The low energy field theory of Eq. 14 is given
by

L = − 1

4π

∑
l

Clεµνλalµ∂νa
l
λ +

1

2π

∑
il

qilεµνλAiµ∂νa
l
λ.

(16)
Here we have only kept the CS terms and omitted the
Maxwell and source terms.

To realize a particular K = (Kij), we need to specify
Ωl, Cl and qil. We adopt the following setup:

1. For each index i of K, we have a dynamical U(1) gauge
field Ai.

2. For each i such that

∆i := Kii −
∑
j 6=i

Kij 6= 0,

we have IQH layers Ωi,sd where s = 1, 2, ..., |∆i| and the

subscript “d” stands for “diagonal”. Each Ωi,sd has
Chern number Cid = sgn(∆i) and carries +1 charge

under Ai only. The emergent gauge field of Ωi,sd is

denoted by ai,sd . If ∆i = 0, no diagonal layer is needed.

3. For each pair i < j such that Kij 6= 0, we have IQH
layers Ωij,to where t = 1, 2, ..., |Kij | and the subscript
“o” stands for “off-diagonal”. Each Ωij,to has Chern
number Cijo = sgn(Kij) and carries +1 charge under
Ai and Aj only. The emergent gauge field of Ωij,to is
denoted by aij,to .

Since K is quasi-diagonal with bounded entries, all
these IQH layers Ω and physical gauge fields A can
be interlaced in the z-direction in such a way that the



9

interaction is local. We denote by A the collection
of emergent and physical gauge fields ordered in this
particular way, and K0 the K matrix of the CS theory
Eq. 16 with respect to the basis A. Next, we apply

the local transformation Ãi =
∑
j

(
W−1

)jiAj , K̃0 =

WK0W
T defined by

ãi,sd = ai,sd − sgn(∆i)A
i,

ãij,to = aij,to − sgn(Kij)
(
Ai +Aj

)
,

Ãi = Ai.

This transformation is local in the sense that W can
be decomposed into a finite depth circuit (i.e. a finite
product) of local, block diagonal integer matrices. In
fact, the circuit has depth 2. The first step of the circuit
is to map

ai,sd 7→ ai,sd − sgn(∆i)A
i,

aij,to 7→ aij,to − sgn(Kij)A
i,

and the second step is to map

aij,to 7→ aij,to − sgn(Kij)A
j .

Each step is block diagonal because each a is modified by
at most one A, and each block is local because we have
arranged the degrees of freedom in the z direction such
that each Ai is some finite distance away from each ai,sd
and aij,to . After the transformation, the ãd and ão fields

are in decoupled IQH states, and the Ã fields have the
desired K matrix.

We conclude this subsection by relating the general
construction to the two examples we gave. For K = (2),
we have

A =
(
a1, a2, A

)
=
(
a1,1d , a1,1d , A1

)
,

with no “off-diagonal” layers. For KnF, we have

A =
(
..., a1, a2, A1, a3, a4, A2, a5, ...

)
=
(
..., a01,1o , a1,1d , A1, a12,1o , a2,1d , A2, a23,1o , ...

)
.

B. Spectrum of iCS theory

Given an iCS theory, we can calculate its spectrum
from its Lagrangian Eq. 1. Note that it is important
to include the Maxwell term for this calculation. In the
temporal gauge A0 = 0, the equations of motion are

∂2tA
i
x + ∂x∂yA

i
y − ∂2yAix +

e2

2π
Kij∂tA

j
y = 0,

∂2tA
i
y + ∂x∂yA

i
x − ∂2xAiy −

e2

2π
Kij∂tA

j
x = 0.

They are solved by

Aix,y = αx,yv
i
q exp [i(kxx+ kyy − ωt)] ,

where viq is an eigenvector of K with eigenvalue Kq,
labelled by q. We find the spectrum

ω2 = k2x + k2y +

(
e2

2π
Kq

)2

.

If K is invariant under translation along the diagonal
such as KnF and Kgl, then q is the momentum in the z
direction. For KnF we have Kq = 3 + 2 cos q therefore
the whole spectrum is gapped. For Kgl we have Kq =
2 + 2 cos q which is gapless and the full spectrum has a
zero mode at momentum (kx, ky, q) = (0, 0, π).

C. String operators

We now study the string operators of the fractional
excitations in our lattice model Eq. 14. We work in
the limit of gE = 0, and will argue later about the case
where gE is nonzero but small. For simplicity, we first
consider the example K = (2) studied in section V A, for
which we wrote down a lattice model with low energy CS
theory given by Eq. 13. This system contains one type
of fractional excitation, which is a semion. A charge
vector that lies in the semion superselection sector is
Q = (0, 0, 1)T ; the general form of a semion charge vector
is (−a,−b, a + b + 2c + 1)T where a, b, c ∈ Z. The flux
vector attached to Q is

Φ = −2πK−10 Q =

−π−π
−π

 . (17)

The −π fluxes for the emergent fields a1 and a2 should
be interpreted as −1/2 fermion charges in each fermion
layer. Therefore, the semion consists of a +1 external
charge, a −π dynamical flux, a −1/2 charge in Ω1 and a
−1/2 charge in Ω2.

The string operator W consists of three parts, W =
W1W2W3, as follows (see Fig. 5):

1. W1 =
∏

path e
−iA acts on the dynamical gauge field

along the path and creates a +1 external charge at
the end of the path (and a −1 charge at the start).

2. W2 =
∏
⊥path e

−iπE acts on the dynamical gauge field
along adjacent links to the right of and perpendicular
to the path, and creates a −π flux at the end of the
path. W2 acts only on the gauge DOF.

3. W3 is the quasi-adiabatic response37 of the fermions
to the −π flux insertion. More precisely, in each gauge
field sector {Arr′} of the Hilbert space, we insert an
external −π flux adiabatically, which is implemented
by an A-dependent evolution operator W3[A] on the
fermion Hilbert space. As the fermion hopping model
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FIG. 5. The string operator for the lattice model realizing
K = (2). Fermions live in the blue layers Ω1 and Ω2, and
the gauge field in the middle, green layer. The operators Ol
are generated by hopping operators c†l,r′e

iArr′ cl,r. The action

of Ol is non-trivial only near the path (grey region), and is
exponentially close to the identity away from the path. The
string operator W consists of e−iA acting on the dashed red
line, e−iπE acting on the solid red segments and O1, O2 acting
near the path.

is not exactly solvable, we do not know the exact
expression for W3[A] except that it is of the form

W3[A] = O1

[
c†1,r′e

iArr′ c1,r

]
O2

[
c†2,r′e

iArr′ c2,r

]
,

where Ol
[
c†l,r′e

iArr′ cl,r

]
is some gauge invariant

operator generated by hopping operators c†l,r′e
iArr′ cl,r.

Nonetheless, properties of quasi-adiabatic evolution
ensure that W3[A] is local, acting only near the path
(grey region in Fig. 5). A −1/2 charge in Ω1 and a
−1/2 charge in Ω2 are accumulated in the process near
the end of the string operator, which correspond to the
−π fluxes of a1 and a2.

We check the correctness of our string operator by
computing the semion braiding phase, which we expect
to be 2πQTK−10 Q = π. To see this from the string
operator, we break the overall commutation relation into
the commutations of:

1. W1 withW2. This takes a +1 charge counterclockwise
around a −π flux, giving a phase of π.

2. W2 with W1. This gives a phase of π for the same
reason.

3. the product W2W3 with itself. This contributes a
phase −π which can be understood as the Berry phase
obtained due to the following actions on the fermions:
increasing the (background) flux in the x direction
by π, increasing the flux in the y direction by π,
decreasing the flux in the x direction by π, decreasing
the flux in the y direction by π. In each IQH layer,
the Berry phase over the entire flux parameter space

[0, 2π)2 is −2π. The Berry phase over a quarter of the
parameter space is therefore −π/2. As we have two
IQH layers, the total phase is −π.

4. W1 with itself, W1 with W3 and W3 with W1. All of
these are trivial.

Summing these contributions up, we find a total braiding
phase π + π − π = π as expected. Of course, phases are
defined mod 2π, but we have been careful distinguishing
e.g. −π from π so that this argument extends naturally
to general K.

So far we have considered the gE = 0 limit, where
we showed that W is a string operator for the charge
vector Q = (0, 0, 1)T . In fact, in this limit we could write
down many other different string operators for Q which
all commute with the Hamiltonian except near the end
points. For example, we could have W ′ = W ′1W ′2W ′3
whereW ′1 =

∏
path e

−iA as before, W ′2 =
∏
⊥path e

iθE for

arbitrary θ andW ′3 is the quasi-adiabatic response of the
fermions to a θ flux insertion. To see why we chose the
particular W that satisfies the charge-flux attachment
condition Eq. 17, we turn on a small gE > 0, much
smaller than the other couplings in the Hamiltonian and
the Landau level spacing. Now if the string operator
creates a θ flux and hence a θ/2π charge in each IQH
layer, then Gauss’s law (Eq. 11) implies

∇ ·E = 1 +
θ

π
.

If ∇ · E 6= 0, then we have an electric energy that
diverges at least logarithmically. Therefore, we must
choose θ = −π so that ∇·E = 0. This way, when gE > 0,
it is possible to modify W in a region near the path such
that the electric energy is finite. Furthermore, since gE is
small, the gauge field sectors {Arr′} that are present in
the ground state can differ from the flat configuration
B ≡ 0 at most by a small perturbation. Therefore,
even with the new hopping coefficients ul,rr′e

iArr′ , the
fermions are still in a Cl = 1 IQH state, so the −π flux
is indeed bound with a −1/2 charge in each layer. The
exact expression of the new W is not important, and
the braiding statistic remains unchanged as long as the
correct amount of external charge, fermion charge and
flux are created.

A similar construction of string operators works for
iCS theories. When gE = 0, the string operator Wi

corresponding to standard basis vector ei takes the form

Wi = Wi
1Wi

2Wi
3. First, Wi

1 =
∏

path e
−iAi

creates a +1

external Ai charge. Next,

Wi
2 =

∏
⊥path

exp

−2πi
∑
j

(
K−1

)ij
Ej


creates fluxes according to the ith row of K−1, as
required by Gauss’s law Eq. 15 when a small gE >
0 is present. The IQH layers then respond quasi-
adiabatically, giving an evolution operator Wi

3. The
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braiding statistic of Wi and Wj results from the
commutations of Wi

1 with Wj
2 , Wi

2 with Wj
1 , and Wi

2Wi
3

with Wj
2W

j
3 . In particular, the commutation of Wi

2Wi
3

with Wj
2W

j
3 correspond to the following actions on the

fermions: increasing the (background) Ak flux in the x

direction by 2π
(
K−1

)ik
for all k, increasing the Al flux in

the y direction by 2π
(
K−1

)jl
for all l, decreasing the Ak

flux in the x direction by 2π
(
K−1

)ik
for all k, decreasing

the Al flux in the y direction by 2π
(
K−1

)jl
for all l. A

diagonal layer Ωk,sd is coupled to Ak only, and contributes
a Berry phase of

θkd,ij = −2π sgn(∆k)
(
K−1

)ik (
K−1

)jk
,

whereas an off-diagonal layer Ωkl,to , k < l, is coupled to
Ak and Al, and contributes

θklo,ij = −2π sgn(Kkl)
[(
K−1

)ik
+
(
K−1

)il]
×
[(
K−1

)jk
+
(
K−1

)jl]
.

The braiding phase of Wi
2Wi

3 with Wj
2W

j
3 is then∑

k

|∆k|θkd,ij +
∑
k<l

|Kkl|θklo,ij = −2π
(
K−1

)ij
,

as can be confirmed by a straightforward calculation.
Finally, we find the total braiding phase to be

2π
(
K−1

)ij
+ 2π

(
K−1

)ij − 2π
(
K−1

)ij
= 2π

(
K−1

)ij
,

as expected.
The string operators allow us to understand the profile

of fractional excitations in the z direction, which is
determined by the fractional part of K−1 (the integral
part of K−1 corresponds to local fermion and integer flux
excitations). In particular, for the example of KnF, the
entries of each row of K−1nF decay exponentially, which
means that both Wi

2 and Wi
3 become exponentially close

to the identity as we move in the z direction (Wi
1 is

always local in the z direction). Therefore, Wi is local in
the z direction with an exponentially decaying tail, and
the fractional excitations are localized particles. On the
other hand, for Kgl, the fractional parts of the entries

of K−1gl do not decay. This means that the fractional
excitations in the Kgl theory, if valid at all, are line
excitations extended along the z direction.

VI. DISCUSSION

In this paper, we established the iCS theory as a
viable path to study a variety of fractonic phases. First
of all, we showed in section V A that iCS theories
with a quasi-diagonal K matrix are indeed legitimate
local 3 + 1D models by giving an explicit lattice

realization for the theory. Using the method discussed
in section V B, we can further determine which iCS
theories are gapped and which are gapless. Moreover,
we found in section V C the explicit form of the
string operators that create the fractional excitations
in the model. From the string operators, we can
learn about the nature of the fractional excitations (for
example when they are localized point excitations versus
when they are extensive line excitations). Based on
these understandings, we found through examples an
interesting variety of fractonic phenomena in iCS theories
with quasi-diagonal K matrices. There are 1-foliated
fracton models; there are abelian type I models which do
not have a foliation structure — a feature not present
in previously studied models; and there are gapless
theories whose nature is not clear. Some of the non-
foliated gapped models have been studied previously
from the perspective of coupled fractional quantum Hall
layers22–24,33, which interestingly suggests a route toward
experimental realization of these particular fracton
phases.

The next step would be to study iCS theories more
systematically and address questions such as

1. For gapped iCS theories, how can foliated theories be
distinguished from non-foliated ones?

2. If an iCS theory is foliated, how does one find the RG
procedure that extracts 2D layers?

3. How can we understand the non-foliated models, for
example in terms of RG s-sourcery?38

4. What is the nature of the gapless models?

We hope that by addressing these questions, we can
have a more complete picture of possible fractonic orders,
beyond what we can learn from exactly solvable models
or other frameworks.

Of course, the possibilities represented by the iCS
theories are limited. The only kind of fractional
excitations in these models are planons in the xy plane.
They do not even contain fracton excitations which are
completely immobile. But as we have learned from
previous studies, planons play an important role in type I
models. Once we have a better understanding of planons,
maybe we can combine them with fractons and other sub-
dimensional excitations to achieve a more complete story.
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structure, take

W =



1 −1 1
1

1 −1
1 −1

1
1 1

1
1 1

1 −1
1 −1

1 −1 1
1



,

where the action of W outside this 12 × 12 block is
the identity. We find that WKF(N)WT decouples into
KF(N − 2) and two copies of Zn × Zn twisted gauge
theories described by

K0 =

 0 n −r
n 0
−r 0 n

n 0

 .

The fusion group when n and r are coprime is

G =


Z2N−2
n2 × Z4

n if N is even,

Z2N
n2 if N is odd, n is odd,

Z2N−2
n2 × Z2

n2/2 × Z2
2 if N if odd, n is even.

When n and r are not coprime, we can factor out
gcd(n, r) from K and analyze similarly.

Appendix B: A class of non-foliated iCS theories

In this appendix, we generalize KnF and Kgl to a class
of non-foliated iCS theories described by

K(N) =


n 1 1
1 n 1

. . .
. . .

. . .

1 n 1
1 1 n


N×N

,

n ∈ Z, and derive various quantities regarding K(N).
We first consider a different matrix

K ′(N) =


n 1
1 n 1

. . .
. . .

. . .

1 n 1
1 n


N×N

,

which is obtained from K(N) by removing the entries in
the top-right and bottom-left corners. We will compute
D′(N) := detK ′(N), which will be useful when we

compute D(N) := detK(N) and K(N)−1 later in this
appendix. To do this, we need to take exactly one entry
from each row and one from each column. If entry (1, 1) is
used from the first row, then the rest is just K ′(N − 1).
Otherwise, entry (1, 2) must be used, and therefore so
must be entry (2, 1), and the rest is K ′(N − 2). We thus
obtain the recurrence relation

D′(N) = nD′(N − 1)−D′(N − 2). (B1)

Solving this with the initial conditions D′(0) = 1 and
D′(1) = n, we find

D′(N) =
1√

n2 − 4

(
xN+1
+ − xN+1

−
)
,

where x± =
(
n±
√
n2 − 4

)
/2.

Now we compute D(N). Depending on whether entries
(1, N) and (N, 1) are used, we can write

D(N) = D′(N)+(−1)N+1+(−1)N+1+D′(N−2), (B2)

where the first term uses neither of the entries (1, N) and
(N, 1), the second and third terms uses exacly one, and
the third term uses both. Further simplification then
gives Eq. 7. Incidentally, the recurrence relation Eq. B1
has characteristic polynomial

p′(x) = x2 − nx+ 1,

and Eq. B2 implies that D(N) satisfies a third order
recurrence relation whose characteristic polynomial p(x)
has a third root −1 in addition to those of p̃(x). Thus

p(x) = (x+ 1)p′(x)

= x3 − (n− 1)x2 − (n− 1)x+ 1,

and D(N) satisfies a third order recurrence relation

D(N) = (n− 1)D(N − 1) + (n− 1)D(N − 2)−D(N − 3).

The fusion group for K(N) is of the form

G = G1 ×G2 = Za−1/2D1/2 × Za1/2D1/2 ,

where a depends on n and N as follows:

• If N is odd, then a = n + 2. A choice of generators is
(n+ 1)e1 + e2 for G1 and e1 for G2.

• If N is even and n is odd, then a = n2 − 4. A choice
of generators is (n(n+ 1)/2− 2) e1 + e2 for G1 and e1
for G2.

• If N is even and n is even, then a = (n2 − 4)/4. A
choice of generators is (n/2)e1 + e2 for G1 and e1 for
G2.

Finally, after manipulating determinants like we did
when computing D′ and D, we find(

K(N)−1
)
ij

=
1

D(N)
[(−1)N−dD′(d− 1)

+ (−1)dD′(N − d− 1)],

where d = |i−j|. Eq. 8 then follows by plugging in n = 3.
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Appendix C: Determining K matrix from statistics

In this appendix, we answer the following question:
given an abelian topological order with its anyon fusion
and statistics specified, how does one construct a
corresponding CS theory?

More precisely, the setup of the problem consists of:

1. A finite abelian fusion group G. We write the fusion
product of x and y as x+ y instead of the usual xy.

2. A symmetric bilinear function b : G × G → Q/Z
which gives the braiding statistic e2πib(x,y) between
anyons x and y. Bilinearity means that b(x + y, z) =
b(x, z)+b(y, z) and similarly for the second argument.

3. A function q : G→ Q/2Z which is related to b via

b(x, y) =
1

2
(q(x+ y)− q(x)− q(y)) ,

and determines topological spins by θx = eiπq(x).
With respect to a minimal generating set {e1, ..., en}
of G, we can write q as a matrix (q)ij where qii =
q(ei) ∈ Q/2Z and qij = b(ei, ej) ∈ Q/Z if i 6= j.

Note that b does not determine q even though the
converse is true. Indeed, q(x) = b(x, x) mod 1, but q(x)
itself is defined mod 2. This is the minus sign ambiguity
in determining exchange statistic from braiding statistic.
We focus on bosonic topological orders and assume
modularity of the topological S-matrix, which in our
language means that (G, q) is non-degenerate in the sense
that if b(x, y) = 0 for all y, then x = 0. We comment on
fermionic topological orders in Section C 4.

Our goal is to find a K matrix that produces the (G, q)
specified above. Naively, this is achieved by inverting the
matrix q. For example, the toric code has

q =

(
0 1

2
1
2 0

)
,

so we can take

K = q−1 =

(
0 2
2 0

)
.

However, q−1 is not an integer matrix for a generic q. For
example, the three-fermion theory has G = Z2 × Z2 and

q =

(
1 1

2
1
2 1

)
,

but q−1 is not an integer matrix. Instead, we need to
“enlarge” q to q̃ by adding transparent bosons (i.e. bosons
that braid trivially with everything) to the bottom right
corner:

q̃ =


1 1

2 0 0
1
2 1 1 0

0 1 2 1
0 0 1 2

⇒ K = q̃−1 =

 4 −6 4 −2
−6 12 −8 4
4 −8 6 −3
−2 4 −3 2

 .

To obtain an enlargement algorithm that works for
arbitrary (G, q), we follow the strategy by Wall25,26: first
we present a structure theorem for (G, q), which classifies
all irreducible building blocks of q and gives an algorithm
for decomposing q into these blocks. Then we write down
an enlargement for each irreducible block.

1. Structure theorem

Given (G, q) and subgroups G1, G2 of G, we say that
G is the orthogonal direct product of G1 and G2 if
G = G1 ×G2 and b(x1, x2) = 0 for all x1 ∈ G1, x2 ∈ G2.
We have the following structure theorem:

Theorem C.1 If (G, q) is non-degenerate, then G can
be written as an orthogonal direct product G =

∏
iGi

such that (Gi, q|Gi
) is in one of the following irreducible

classes labelled by letters A through F :

1. A2k
∼= Z2k , and q =

(
2−k

)
.

2. Apk ∼= Zpk , p > 2 prime, and q =
(
2αp−k

)
where α

is coprime with p and is a quadratic residue mod p.
(x is a quadratic residue mod p if x = y2 mod p for
some y.) Different choices of α lead to the same q up
to change of generator.

3. B2k
∼= Z2k , and q =

(
−2−k

)
.

4. Bpk ∼= Zpk , p > 2 prime, and q =
(
2βp−k

)
where β is

coprime with p and is not a quadratic residue mod p.
Different choices of β lead to the same q up to change
of generator.

5. C2k
∼= Z2k , k ≥ 2, and q =

(
5× 2−k

)
.

6. D2k
∼= Z2k , k ≥ 2, and q =

(
−5× 2−k

)
.

7. E2k
∼= Z2k × Z2k , and q =

(
0 2−k

2−k 0

)
.

8. F2k
∼= Z2k × Z2k , and q =

(
21−k 2−k

2−k 21−k

)
.

The above decomposition is not unique, e.g. Apk×Apk =
Bpk ×Bpk and A2 ×A2 ×A2 = A2 ×E2. The toric code
is in class E2 and the three-fermion theory is in F2.

Before we describe how the decomposition in Theo-
rem C.1 can be performed, we state the following useful
lemma:

Lemma C.2 Let (G, q) be non-degenerate, H a subgroup
of G such that (H, q|H) is non-degenerate. Then G is
the orthogonal direct product of H and its orthogonal
complement H◦ := {g ∈ G : b(g, h) = 0 ∀ h ∈ H},
and (H◦, q|H◦) is also non-degenerate.

We perform the decomposition in Theorem C.1 using
the following three steps:
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• Step 1. We can uniquely decompose

G =
∏

p prime

Gp, (C1)

where Gp is the unique Sylow p-subgroup of G. This
product is always orthogonal.

• Step 2. Now we replace G = Gp for fixed p. Let pr

be the exponent of G, i.e. the least common multiple
of the orders of all elements in G. Write G as a (non-
orthogonal) direct product of a homogeneous subgroup
H of exponent pr,i.e. H ∼= Zmpr for some m, and another
subgroup of smaller exponent. One can show that
(H, q|H) is non-degenerate. Lemma C.2 then gives
G = H × H◦ which is an orthogonal direct product,
and H◦ has exponent smaller than pr. Proceeding in
this way, we can decompose G into an orthogonal direct
product of homogeneous subgroups.

• Step 3. Replace G again by a homogeneous group
of exponent pr, r ≥ 1. We look for x ∈ G such that
prb(x, x) ∈ Zpr is coprime with p. Such x need not
exist when p = 2, but when it exists it is often easy to
spot by inspection. However, for generality we present
a more organized method (readers may skip this part
and jump to Cases 3.1 & 3.2 below). Consider the
subgroup G0 =

{
g ∈ G : ord(g) ≤ pr−1

}
of G, where

ord(g) is the order of g, and write [x] for the coset
containing x in G/G0. Define a new bilinear function
b′ : (G/G0)× (G/G0)→ Q/Z by

b′ ([x], [y]) = pr−1b(x, y) ∈ Q/Z.

Now we look for some [x] such that pb′([x], [x]) ∈ Zp is
coprime with p. If p 6= 2, such [x] always exists, and
although we may still need an exhaustive search, this
search is easier since G/G0 has a smaller size than G.
If p = 2, such [x] exists if and only if the ith diagonal
element of pr−1q is nonzero for some i, in which case
the generating element [ei] satisfies our requirement.
Our next step depends on whether or not such [x] was
found:

Case 3.1. We found some [x] ∈ G/G0 with pb′([x], [x])
coprime with p. Then

(
〈x〉 , q|〈x〉

)
is non-degenerate,

where x ∈ [x] is an arbitrary coset representative and
〈x〉 is the subgroup of G generated by x. Lemma C.2
then gives G = 〈x〉 × 〈x〉◦, and we go back to Step 3.

Case 3.2 (occurs only if p = 2). b′([x], [x]) = 0
for all [x] ∈ G/G0. Pick some x ∈ G of order 2r,
e.g. a generating element x = ei. One can show
that there exists y ∈ G (not necessarily unique) such
that b′([x], [y]) = 1/2. Let x ∈ [x] and y ∈ [y] be
arbitrary coset representatives. Then

(
〈x, y〉 , q|〈x,y〉

)
is non-degenerate, and 〈x, y〉 ∼= E2r or F2r . Again we
apply Lemma C.2 and then go back to Step 3.

Recursive application of the above steps leads to full
decomposition of (G, q).

2. Enlargement algorithm

Now we describe how to enlarge the matrix q to q̃
such that K = q̃−1 is an integer matrix with even
diagonal, so that K describes a bosonic CS theory. Using
Theorem C.1, we assume without loss of generality that
(G, q) is in one of the classes A through F .

1. (G, q) ∼= A2r , B2r or E2r . No enlargement is
needed.

2. (G, q) ∼= Apr or Bpr with p > 2. Write q = (np−r)
for some −pr < n < pr. Then there exist d1
even and d2 odd such that 1 = nd1 − prd2 and
0 < d2 < |d1|. Next, choose a1 even such that
a1d2 is the closest even multiple of d2 to d1, and
write d1 = a1d2 − d3. Continuing this algorithm,
we obtain

1 = nd1 − prd2
d1 = a1d2 − d3
d2 = a2d3 − d4
· · ·

dk−1 = ak−1dk − 1

dk = ak

where ajdj+1 is always the closest even multiple of
dj+1 to dj . Then we take

q̃ =



np−r 1
1 a1 1

1 a2
. . .

ak−1 1
1 ak

 .

The algorithm we employed to produce {ai} is a
variation of the Euclidean algorithm.

3. (G, q) ∼= C2r or D2r . In this case the Euclidean
algorithm still works, but we need to take d1 odd
and d2 even.

4. (G, q) ∼= F2r . We take

q̃ =


21−r 2−r

2−r 21−r 1

1 2
3 (2r + (−1)r−1) 1

1 2(−1)r−1

 . (C2)
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3. Example

We demonstrate the procedures in the previous
sections with a coined example G = Z5

8 = 〈e1, ..., e5〉,

q =



5
8

1
4

1
8 0 3

8
1
4

5
4 0 7

8
1
4

1
8 0 5

8
7
8

3
4

0 7
8

7
8

3
2

1
2

3
8

1
4

3
4

1
2

7
8

 .

Since G is already homogeneous, we jump straight to
Step 3. First we spot that eT1 qe1 = 5/8 has additive order
8 mod 1, so

(
〈e1〉 , q|〈e1〉

)
is non-degenerate. We therefore

compute 〈e1〉◦ = 〈f1, f2, f3, f4〉, where f1 = −2e1 + e2,
f2 = e1 + 3e3, f3 = e4, f4 = e1 + e5. With respect to
these generators, we have

q1 := q|〈e1〉◦ =


3
4

1
4

7
8

1
2

1
4 1 5

8
5
8

7
8

5
8

3
2

1
2

1
2

5
8

1
2

1
4

 .

Since all diagonal entries of q1 have denominators at most
4, we turn to Case 3.2 and pick any generator, say f1.
The equation fT1 q1y = 1/8 has a solution y = −f3. Then
we work out

〈f1,−f3〉◦ = 〈−3f1 + f2, 4f1 + 4f3 + f4〉 .

With respect to the generators {f1,−f3,−3f1 +f2, 4f1 +
4f3 + f4}, we have

q1 = q2 ⊕ q3 =

(
3
4

1
8

1
8

3
2

)
⊕

(
1
4

1
8

1
8

1
4

)
,

where ⊕ is the direct sum of matrices on the direct
product group. Picking appropriate generators {f1 +
f3, 2f1 − 3f3}, we can put q2 into a standard form

q2 =

(
0 1

8
1
8 0

)
.

To summarize,

q ∼=
(

5

8

)
⊕

(
0 1

8
1
8 0

)
⊕

(
1
4

1
8

1
8

1
4

)
∼= C8 × E8 × F8 (C3)

with respect to the generators

{e1, f1 + f3, 2f1 − 3f3,−3f1 + f2, 4f1 + 4f3 + f4}.

However, this decomposition is not unique; with respect
to some other generators, we also have

q ∼=
(

5

8

)
⊕
(
−1

8

)
⊕
(
−1

8

)
⊕
(
−1

8

)
⊕
(
−5

8

)
.

Next, we enlarge each summand in Eq. C3. To enlarge
the C8, we apply the Euclidean algorithm:

1 = 5× 13− 8× 8

13 = 2× 8− 3

8 = 2× 3− (−2)

3 = (−2)× (−2)− 1

−2 = (−2)× 1

which gives

(
5

8

)
7→


5
8 1

1 2 1
1 2 1

1 −2 1
1 −2

 .

The E8 does not need enlargement, and the F8 can be
enlarged to Eq. C2.

This completes our example. The total inverse K
matrix is

K−1 =


5
8 1

1 2 1
1 2 1

1 −2 1
1 −2

⊕
(

0 1
8

1
8 0

)
⊕


1
4

1
8

1
8

1
4 1

1 6 1
1 2

 ,

and the total K matrix is

K =


104 −64 24 16 8
−64 40 −15 −10 5
24 −15 6 4 2
16 −10 4 2 1
8 −5 2 1 0

⊕
(

0 8
8 0

)

⊕

 48 −88 16 −8
−88 176 −32 16
16 −32 6 −3
−8 16 −3 2

 .

4. Fermionic case

Finally, we consider fermionic topological orders. Now
a local fermion excitation is a superselection sector
that braids trivially with everything, i.e. a transparent
fermion, so we need to modify our non-degeneracy
assupmtion. We assume that (G, q) is weakly non-
degenerate in the sense that if b(x, y) = 0 for all y and
q(x) = 0, then x = 0.

Suppose that ψ is a transparent fermion. Since 2ψ = 0,
in the decomposition Eq. C1 we must have ψ ∈ G2.
Suppose ψ = mx for some m ∈ Z and x ∈ G2. Then

0 = b(x, 2ψ) = 2mb(x, x) mod 2,

1 = q(ψ) = m2b(x, x) mod 2,

so m must be odd. But 2ψ = 2mx = 0 ∈ G2, so
2x = 0 and hence ψ = x. Thus we have proved
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that ψ is not a non-trivial multiple of any x, so G2

can be decomposed into an orthogonal direct product
of 〈ψ〉 = {0, ψ} and 〈ψ〉◦. Continuing this process, we
end up with G = Zr2 ×G′ where each Z2 is generated by
a transparent fermion and (G′, q|G′) is non-degenerate.
The bosonic result can then be applied to (G′, q|G′).

As an example, consider the ν = 1/3 fractional
quantum Hall effect. Treated as a bosonic theory, the
fusions group is G = Z6, whose generator we call x, and
q = (1/3). This theory is only weakly non-degenerate,
with 3x a transparent fermion. Following the above
recipe, we decompose G = Z2 × Z3 = 〈3x〉 × 〈2x〉. Now(
〈2x〉 , q|〈2x〉

)
is non-degenerate, where

q|〈2x〉 =

(
4

3

)
=

(
−2

3

)
.

We can then use the Euclidean algorithm to enlarge it to

q̃ =

(
− 2

3 1

1 −2

)
=⇒ K = q̃−1 =

(
−6 −3
−3 −2

)
.

Putting the transparent fermion back, we get a 3 × 3
matrix which can be mapped through a general linear
transformation as follows:

W

−6 −3
−3 −2

1

WT =

3
−1
−1

 ,

where

W =

 1 0 3
0 1 1
−1 1 −1

 .

This shows the equivalence of our result with the
standard K matrix (3) for the ν = 1/3 fractional
quantum Hall state.
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