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Ingenieŕıa y Agrimensura, Universidad Nacional de Rosario, Rosario, Argentina

We present a numerical study of competing orders in the 1D t-J model with long-range RKKY-like
staggered spin interactions. By circumventing the constraints imposed by Mermin-Wagner’s theo-
rem, this Hamiltonian can realize long-range Néel order at half-filling. We determine the full phase
diagram as a function of the exchange and particle density using the density matrix renormalization
group (DMRG) method. We show that pairing is disfavored and the AFM insulator and metallic
phases are separated by a broad regime with phase segregation, before spin-charge separation re-
emerges at low densities. Upon doping, interactions induce a confining potential that binds holons
and spinons into full fledged fermionic quasi-particles in a range of parameters and densities. We
numerically calculate the photoemission spectrum of the model, showing the appearance of a coher-
ent quasi-particle band splitting away from the holon-spinon continuum with a width determined
by J that survives at finite doping. Comparison with analytical results using the self-consistent
Born approximation (SCBA) and by solving the spinon-holon problem offer insight into the inter-
nal structure of the quasi-particles and help us explain the different features in the spectrum. We
discuss how this simple toy-model can teach us about the phenomenology of its higher dimensional
counterpart.

I. INTRODUCTION

Understanding the properties of doped antiferromag-
nets has been a topic of great theoretical interest for the
past few decades[1, 2]. This is motivated by the lack of
a universal theory of high-temperature superconductors
that can explain the mechanisms behind the formation
of Cooper pairs in this kind of materials, where strong
electronic correlations are assumed to play a dominant
role. Most of the research in this area has been focused
on the study of paradigmatic simple model Hamiltoni-
ans that are supposed to capture all the basic ingredi-
ents for high temperature superconductivity such as the
Hubbard and t − J models and variations of them[1, 3–
7]. In this context, much effort has been devoted to
their low-dimensional versions[8–26]. Particularly, in one
dimension the physics of these systems can be univer-
sally described in the framework of Luttinger liquid (LL)
theory[27–32]: the natural excitations in 1D are de-
scribed in terms of spin and charge excitations that prop-
agate coherently with different velocities and are charac-
terized by distinct energy scales, leading to the concept
of spin-charge separation. The spectrum of a spin-full
LL is determined by a convolution of the spin and charge
spectra, which leads to a continuum without well defined
Landau quasi-particles and Fermi-edge singularities in-
stead of quasi-particle peaks[33, 34]. Interestingly, the
Hubbard model in 1D admits an exact solution in terms
of the Bethe ansatz [35–37], and the t − J model also
realizes an exactly soluble “supersymmetric” point at
J/t = 2[38–42], allowing one to infer information about
the nature of the excitations.

An important difference between one and two dimen-
sions is established by the Mermin-Wagner theorem[43,
44]: at zero temperature, gapless one-dimensional local

Hamiltonians cannot realize long-range order, while two
dimensional systems can display spontaneous symmetry
breaking. At half-filling, where the physics can be more
easily understood in the context of the Heisenberg model,
the ground state of a 1D chain is a spin-liquid with alge-
braically decaying correlations and domain-wall-like spin
excitations (spinons) that carry spin S = 1/2. On the
other hand, the ground state in two dimensions displays
Néel order, and excitations are magnons that condense
into Goldstone modes.[45]

Besides the omnipresent question concerning the role
of antiferromagnetism as a glue for pairing, a more ba-
sic and fundamental one has also remained central to
the problem: is it possible for spin-charge separation to
survive in two dimensions? [46–65]. Alternatively, one
can postulate the opposite question: What is the fate of
spin charge separation in the presence of long-range an-
tiferromagnetic order? The spin-charge separation phe-
nomenon is usually considered as a manifestation of 1D
physics, and whether it exists in higher dimensions is a
topic of debate, especially in the context of understanding
high-Tc superconductivity[55] and recent experiments in
cold-atom systems[66–82]. Over the past decades it has
become quite clear that a definitive answer to these ques-
tions can only be obtained numerically. Unfortunately,
quantum Monte Carlo (QMC) has not been able to pro-
vide evidence since calculations are carried out at finite
temperature and with the use of difficult to control an-
alytic continuation[83–86]. At the same time, the suc-
cess of the density matrix renormalization group method
(DMRG) [87, 88] and tensor networks has only partially
extrapolated to two dimensions[89–92].

One possible avenue to circumvent these hurdles and
study the dimensional crossover consists of introducing
long-range interactions in one-dimension since[93–99]: (i)
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FIG. 1. Particle number as a function of chemical potential
for the (a) conventional t−J model (α =∞) and (b) α = 2 for
several values of J in descending order from left to right.(c)
Charge and spin gaps for a conventional t − J chain with
L = 64 sites.

they effectively increase the dimensionality of the prob-
lem through all-to-all interactions; (ii) overcome the limi-
tations of Mermin-Wagner theorem allowing one to probe
for true long range order and spontaneous symmetry
breaking; (iii) they offer a relatively simple and intuitive
playground where to test for higher dimensional physics
within the reach of powerful numerical techniques such
as the DMRG method.

In this work, we focus on understanding the role of long
range interactions in a doped one-dimensional antiferro-
magnet using an extended t− J model with RKKY-like
AFM long-range interactions:

H = Ht−J +HRKKY (1)

FIG. 2. (a) Phase diagram of the conventional t − J chain.
Regions A and B represent regimes where the occupation
changes by ∆N = 1 and ∆N = 2 with varying the chemical
potential, respectively. The solid and dashed blue curve are
the phase boundaries of the paired and Luther-Emery phase,
respectively. (b)-(c) Phase diagrams for the t− J chain with
long range spin interactions and (b) α = 2 and (c) α = 1.6.
The dotted-dashed line indicates the boundary between phase
separation and fermionic quasiparticles (see text). All results
are for a chain with L = 64 sites.

Ht−J = −t
∑
iσ

(c†i,σci+1,σ + h.c.) (2)

+ J
∑
i

(~Si · ~Si+1 −
1

4
nini+1)

HRKKY = λ
∑

i,j>i+1

(−1)j−i+1

|j − i|α
(~Si · ~Sj), (3)

where the operator c†iσ creates an electron on site i along
the chain with spin σ =↑, ↓, ni is the electron number
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FIG. 3. Left panel: binding energy between two holes, extrap-
olated to the thermodynamic limit with second order polyno-
mial fit for n = 0.5, α = 2. The exchange J varies through
region B in phase diagram Fig.2(b). Right panel: spin gap
extrapolated to thermodynamic limit with second order poly-
nomial fit obtained with DMRG for density n = 0.25 and
α = 2; the exchange J ranges from metallic phase to the
phase separation boundary.

operator, ~S represents spin S = 1/2 operators. The con-
stants J and λ parametrize the magnitude of the spin
exchange and RKKY interactions that decay as a power
law with exponent α. In the rest of the paper and for sim-
plicity, we focus on the case λ = J and we study finite
chains of length L. The t − J model describes the low-
energy physics of the Hubbard model when the Coulomb
repulsion is very large compared to the hopping constant
t, that we take as our unit of energy. In this context, a
constraint forbidding double-occupancy is implicitly as-
sumed.

The quantum phase diagram of conventional t − J
model in 1D has been extensively studied[100, 101].
At half-filling, this Hamiltonian reduces to the one-
dimensional Heisenberg chain. Upon doping and for large
J , spins prefer to form antiferromagnetic domains and
clump together phase separating into electron-rich and
hole-rich regions. In the metallic phase with J/t < 2,
the low energy physics can be well described in terms
of Luttinger liquid theory. In this phase, the low energy
excitations are holons carrying charge with characteristic
velocity vh and a bandwidth determined by the hopping
t, and spinons carrying spins with velocity vs and a band-
width proportional to J .

In addition to the Luttinger liquid metallic phase, in
the intermediate J/t range the t − J model exhibits a
Luther-Emery regime at low densities with a spin gap
and dominant pairing correlations and a superconducting
phase at high densities between the metallic LL phase
and phase separation (See Fig.2(a)).

One can in principle assume that the origin of the
RKKY term can be the proximity to a two dimensional
layer with long range antiferromagnetic order[63]. Notice
that the sign of the interactions alternates between anti-

ferro and ferromagnetic depending on the sublattice and
it enhances the tendency of the spins to antiferromagnet-
ically align. At half-filling, this translates into a regime
with spontaneous symmetry breaking and long range or-
der for α small enough α < 2.2[94]. While the elemen-
tary excitations of the Heisenberg chain are deconfined
domain-wall-like spinons, an effective confining potential
emerges as a consequence of the long-range interactions
that binds spinons together to form coherent magnon-like
gapless excitations above the antiferromagnetic ground
state. In this work, we aim at describing and under-
standing how similar effects can alter the spin-charge sep-
aration picture and induce confinement between spinons
and holons such that they bind forming composite quasi-
particle states that carry both, spin and charge degrees of
freedom. Moreover, we observe that with these modifica-
tions to the t−J model, excitations will no longer display
a linear dispersion at the Fermi level and LL theory will
not apply in its conventional formulation[102].

This paper is organized as follow: firstly we study the
quantum phase diagram for t− J chain with long range
spin couplings and show the dominant orders in different
phases in sec.II. In sec.III we discuss the stability of com-
posite quasi-particles using energetic considerations. We
support this evidence by means of numerical and analyti-
cal calculations of the spectral function for a single hole in
sec.IV using DMRG, the self-consistent Born approxima-
tion (SCBA) and by solving the spinon-holon problem.
We extend these considerations to finite doping in sec.V.
We finally close with a summary and discussion of the
results.

II. PHASE DIAGRAM

In order to determine the quantum phase diagram of
the model, we use the DMRG method with open bound-
ary conditions to calculate the ground state energies
E0(J,N) by varying J in steps of 0.1 and changing the
total particle number N between 0 and L, where L is
the length of the chain. In all calculations we chose the
bond dimension such that the truncation error is always
below 10−6. Interestingly, despite the long range inter-
action, we observe that the entanglement does not grow
dramatically, allowing us to maintain all sources of error
under control (basically, by using enough DMRG states).
We use the Maxwell construction to obtain the N ver-
sus chemical potential µ curves and determine the stable
ground state densities, as shown in Fig.1 (basically, for
a fixed chemical potential µ, the corresponding density
is determined by the minimum of E0 − µN). For valida-
tion, we include results for the conventional t − J chain
of length L = 64. We can identify different behaviors in
terms of how the density N jumps from one value to the
next as µ is varied. One can distinguish three regimes,
summarized in the phase diagram Fig.2(a): (i) a metallic
phase where the occupation changes in steps of one par-
ticle (∆N = 1) labeled as “A”; (ii) a region “B” where it
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FIG. 4. Singlet pair-pair, density-density, and spin-spin cor-
relations in real space for L = 64, n = 0.625, and α = 2. J
varies through region B in phase diagram Fig.2(b)

FIG. 5. Cartoon picture in the Ising limit illustrating: (a) A
confined holon and spinon pair; (b) a spinon a distance r = 1
from the holon, still forming a bound pair; (c) deconfined
spinon and holon. The box highlights the position of the spin
domain wall.

changes in steps of two (∆N = 2); and finally (iii) the oc-
cupation abruptly jumps between an intermediate value
and n = N/L = 1. This sudden change is associated
to phase segregation: for large J the system splits be-
tween hole-rich regions and domains with density n = 1
and AFM correlations. The steps ∆N = 2 can be inter-
preted as an indication of pairing. However, it turns out
that an alternative explanation is possible: due to spin-
charge separation, the creation of a hole translates into
the excitation of both a spinon and a holon that, as we

mentioned, have characteristic velocities vs and vh. This
means that in the regime with vs > vh it is energetically
more favorable to create two holons without exciting any
spinons, rather than a single holon and a spinon[42, 103].
This is expected to occur for large enough J , which is
precisely where this is observed in the phase diagram.
To support this argument, we define the singlet-triplet
spin gap:

∆s = E(N,Sz = 1)− E(N,Sz = 0)

and the charge gap:

∆c = E(N + 1, Sz = 1/2) + E(N − 1, Sz = 1/2)

− 2E(N,Sz = 0).
(4)

In Fig.1(c) we show both quantities for L = 64 and den-
sity n = N/L = 0.75. As one can see, the charge gap
has a very weak dependence on J and is essentially de-
termined by the level spacing ∆c ∼ 4t/L = 0.0625. Both
gaps extrapolate to zero in the L→∞ limit (not shown)
but in finite systems they display a crossing at precisely
the value of J where the steps change from ∆N = 1 to
∆N = 2. Hence, this is a finite-size effect since both
spinons and holons are gapless in the thermodynamic
limit. However, it is a feature that should remain ob-
servable in finite chains and can help us as a guide in our
search for pairing, since that should also manifest itself
as steps ∆N = 2 as well. As a matter of fact, pairing
is known to be stable in this regime [101], as shown in
the same figure. There are two distinct paired phases:
a gapless one with algebraically decaying but dominant
pair-pair correlations, and a spin-gapped Luther-Emery
phase.

In Figs.2(b) and (c) we show similar phase diagrams for
the t− J model with long-range RKKY interactions and
for two values of exponent α = 1.6, 2.0. We firstly recall
that at half-filling the system undergoes a transition from
spin liquid for large α to Néel AFM for small α at a value
of αc ∼ 2.2. The long-range interaction plays the role of
enhancing the AFM order. As a consequence, upon dop-
ing with holes, electrons tend to clump together in a large
ordered domain, displacing the holes toward the bound-
aries of the chain. Therefore, smaller alpha translates
into a growing phase separated region that dominates the
phase diagram, also pushing the metallic phase to lower
densities. On the other hand, at a value of α = 2 close to
the transition we see that the ∆N = 2 regime survives al-
beit in a much narrower window. However, pairing does
not survive. To show this, we calculate the pair binding
energy describing the energy gain for creating a pair of
holes

Eb = (E2holes − E0)− 2(E1hole − E0)

= E0 + E2holes − 2E1hole,
(5)

where we have defined E2holes = E(N = L− 2, Sz = 0);
E1hole = E(N = L − 1, Sz = 1/2) and E0 = E(N =
L, Sz = 0). Finite size extrapolations of ∆b and the spin
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FIG. 6. Binding energy between holon and spinon as a func-
tion of (a) α for fixed J = 1 and (b) as a function of J for
different values of α, extrapolated to the thermodynamic limit
using chains of lengths L = 4m and L = 4m + 2 (see text).
(c) Confining potential between holon and spinon in the Ising
limit.

gap ∆s are shown in Fig.3 clearly indicate that both are
zero in the thermodynamic limit within our error bars.

To offer more insight into this issue, we also calculate
the spin-spin correlation:

S(r) = 〈Sz0Szr 〉, (6)

density-density correlation:

N(r) = 〈n0nr〉 − 〈n0〉〈nr〉 (7)

and pair-pair correlation:

P (r) = 〈∆†0∆r〉 (8)

where ∆† operator represents creation operator for a sin-
glet pair on neighboring sites:

∆†i =
1√
2

(c†i,↓c
†
i+1,↑ − c

†
i,↑c
†
i+1,↓) (9)

In Fig.4 we compare the long distance behavior of these
correlations for various J values, and we find no indi-
cation of dominant pairing, in agreement with the pre-
vious considerations. Therefore, we are led to conclude
that the ∆N = 2 regime is due to a mismatch between
the spin and charge velocities. As we will discuss below,

FIG. 7. Spin-spin correlation in momentum space for J = 1
and (a) α = 1.6 and (b) α = 2 and several densities.

for decreasing α holons and spinons will bind into com-
posite quasi-particles, leading the ∆N = 2 window to
completely disappear. According to these observations,
we deduce that long range antiferromagnetic interactions
tend to destroy pairing in favor of phase separation, even
at low densities.

We finally comment on the small steps appearing at
densities n ∼ 1 in Fig.1. The first step from the top
shows that the single hole configuration is energetically
robust. This is a singular case, since it is a 1/L effect
and speaking of phase separation with only one hole has
no significance. However, in open chains we find that the
first few holes may tend to cluster at the edges of the
chains.

III. QUASI-PARTICLE REGIME

As a consequence of the attraction between spinons
and holons, it is possible to realize composite fermionic
states that propagate coherently and carry both spin and
charge degrees of freedom. These states have been re-
ferred to in the literature as “polarons”, “mesons” or
“string states” (see e.g. Ref.65 for a discussion). In this
work we favor the idea of a composite state in which
spinon and holon “orbit” each other as in a Rydberg-like
atom or diatomic molecule where the potential that holds
them together, or glue, is a consequence of the long range
antiferromagnetic interactions. The argument in favor of
quasi-particle formation is more easily understood when
presented in the limit of Ising-like interactions in the
t − Jz model[104–114]: as a hole is created in the an-
tiferromagnetic background, it does so accompanied by
a domain wall, a spinon (see Fig.5). A contact-like local
potential proportional to J tends to bind them, but is
easily overcome by the kinetic energy of the hole. How-
ever, in the presence of RKKY interactions, the effective
binding potential is non-local and grows sub-linearly with
the separation distance r between hole and spinon due
to the string of unaligned spins left behind, as shown in
Fig.5(c):

V (r) = EIsing(r)− EIsing(r = 1), (10)
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EIsing(r) =
∑
i6=j

(−1)i−j+1
〈0, r|Szi Szj |0, r〉
|i− j|α

, (11)

where the state |i, j〉 represents a holon at position i and
a spinon at position j. In Fig. 6(c) we show the profile
of this potential for different values of α obtained in the
Ising limit. Due to the long-range nature of the inter-
actions, the corresponding energy cost would grow with
the number of anti-aligned spins. As a result, holon and
spinon will now energetically prefer to stick together as
a composite object.

In the fully SU(2) spin rotational case, we can numeri-
cally calculate the binding energy ∆b between holon and
spinon following a prescription proposed in Ref.[109, 110].
This quantity can be obtained as:

∆(L) = Ep(L)− Es(L)− Eh(L) (12)

= [E(L,L, 0) + E(L,L− 1, 1/2)]

−
1

2
[E(L− 1, L− 1, 1/2) + E(L+ 1, L+ 1, 1/2)]

−
1

2
[E(L− 1, L− 2, 0) + E(L+ 1, L, 0)]

where E(L,N, Sz) represents the ground state energy of
a system with length L, particle number N and total
spin Sz, and L is taken to be even in this definition. The
spinon energy Es is determined by the average ground
state of chains with L ± 1 sites at half-filling; the holon
energy Eh is obtained by adding one hole; finally, the
spinon-holon quasi-particle energy Ep is given by the
ground state of chains with L sites at half filling with
and without one hole. In these calculations we used pe-
riodic boundary conditions with 1600 DMRG states to
keep the truncation error under 10−6 for system sizes up
to L = 44. In order to obtain a better extrapolation
to the thermodynamic limit we divided the calculation
into two groups using (i) L = 4m and L = 4m − 1 (ii)
L = 4m + 2 and L = 4m + 1, with m ∈ Z. To make
the extrapolation better conditioned, we flip the sign of
hopping term to transfer the lowest energy from k = π to
k = 0 for the chains with length 4m+ 1 and one hole(see
Ref.109 for details). The extrapolated results as a func-
tion of α are shown in panel (a) of Fig. 6. When α is
increased through the antiferromagnetic transition into
the spin-liquid phase, the binding energy vanishes. We
also notice that the data for both L = 4m and L = 4m+2
have consistent extrapolations, so we only include the re-
sults for L = 4m+ 2 sector in panel (b) of Fig. 6, which
shows the dependence with J for different values of α.
Our results indicate a dramatic increase (practically ex-
ponential) of the binding energy upon entering into the
antiferromagnetically ordered phase.

Notice that similar arguments can be used to explain
pairing near half-filling, since the same confining poten-
tial would also act between two holes. However, in the
presence of RKKY interactions this potential is so strong
that it forces the holes to clump together and the system
to phase separate, as observed to occur in the phase di-
agram near half-filling.

FIG. 8. (a): Momentum distribution function (b): Spin-spin
correlations across the hole as defined in the text. The inset
shows an enlarged part of the main figure. Results are for a
chain of length L = 64, density n = 0.75, and parameters in
the legend.

When the system is deep in the metallic phase, a spin
density wave instability appears as a cusp at k = 2kF in
the spin correlations in momentum space:

S(k) =
1

L

∑
i,j

eik(i−j)〈Szi Szj 〉. (13)

In Fig.7 we show the spin structure factor for several
values of J and total density n = N/L. One can see
that as the density increases, a dominant peak appears
at k = π, induced by the RKKY exchange term. The
boundary between the low density metallic phase and the
high density regime with antiferromagnetic spin correla-
tions is demarked by a dot-dashed line in Figs.2(b) and
(c). As observed here, this double-peak structure is not
related to phase separation. We postulate that in this
window of the phase diagram labeled as “QP”, fermionic
composite quasi-particles are stable, and that the AFM
order survives inside the quasi-particles, which can have
a large characteristic “size”.

As the density is lowered and we enter into the metal-
lic phase, antiferromagnetic correlations are still domi-
nant and the composite quasi-particles persist for a small
range of parameters before spinon and holon finally de-
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FIG. 9. Photoemission spectrum at half-filling n = 1 for J = 1 and different values of α (α =∞ indicates the conventional t−J
model). The lower panels display cuts in frequency along the k = π/2 line showing the development of a coherent quasi-particle
peak.

confine. We offer two indirect indications that this is the
case. The first evidence of fermionic composite states
comes from the momentum distribution function n(k),
that displays a kink around k = kF right after crossing
the boundary in the phase diagram, as seen in Fig.8(a).
This implies the possibility of a jump or discontinuity, in-
stead of a singularity, a sign of finite quasi-particle weight
(unfortunately numerical uncertainty makes the calcula-
tion of this quantity very unreliable). We also define
the correlations across the hole[58, 75] as 〈nh,0Sz−rSzr 〉,
where the hole is projected on the reference site 0 which
is taken to be at the center of the chain. The results
shown in Fig.8(b) are normalized by 〈nh,0〉. In the quasi-
particle regime we find that spins equidistant from the

hole are aligned in the same direction. This is consis-
tent with a charge and spin configuration as the one de-
picted in Fig.5(a), corresponding to a composite state of
a spinon and a holon. Notice that the correlations at
distance r = 1 in Fig.8(b) are antiferromagnetic, indi-
cating fluctuations with a heavy contribution from the
configurations in Fig.5(b), that is to be expected since
the quasi-particle moves combining hopping and spin-
flip processes. Outside of the quasi-particle regime, the
correlations across the hole tend to oscillate with mo-
mentum 2kF indicating deconfined spinons and holons,
as illustrated in Fig.5(c). The presence of coherent quasi-
particles will be supported by calculations of the photoe-
mission spectra in the following section.

IV. SINGLE HOLE SPECTRAL FUNCTION

A. DMRG at half-filling

We are seeking signatures of coherent quasi-particles
in the photoemission spectrum of the generalized t − J

model with long-range RKKY interactions using the
time-dependent DMRG method (tDMRG) [115–118].



8

FIG. 10. Top row: Photoemission spectrum at half-filling n =
1 for α = 1.6, deep into the Néel phase and different values
of J . Bottom row: cuts in frequency along the k = π/2 line
showing the development of a coherent quasi-particle band
splitting from the continuum.

We follow the standard prescription detailed in the origi-
nal work Ref.[115] and subsequent studies of the Hubbard
model[119, 120]. We calculate the two-time correlator:

〈c†r↑(t)c0↑(0)〉 = 〈ψ0|eiHtc†r↑e
−iHtc0↑|ψ0〉, (14)

where c0σ here is defined at the center of the chain, and
r is the distance from center. By Fourier transforming to
momentum and frequency, we reconstruct the momen-
tum resolved spectral function. This procedure is car-
ried out numerically over a finite time window tmax with
tmax = 20 unless otherwise stated. In order to attenuate
artificial ringing we use standard windowing techniques.
The spectrum will exhibit an artificial broadening that
is inversely proportional to tmax. The long-range terms
in the Hamiltonian make it convenient to use a time-step
targeting procedure with a Krylov expansion of the time-
evolution operator [121] and a time step δt = 0.1 (time
is measured in units of hopping t−1 and t is our unit of
energy). We study chains of length L = 48 using up to
400 DMRG states that guarantees that the truncation
error remains smaller than 10−6 over the time window.
In all results shown here we introduced a shift in ω given
by µ = E1 − E0, where E0 is the energy of the ground
state |ψ0〉 with N = L and E1 = 〈ψ1|H|ψ1〉/〈ψ1|ψ1〉 with
|ψ1〉 = cL/2|ψ0〉.

We show results at half-filling in Fig.9 for J/t = 1 and
varying α across the transition from Néel to spin liquid.
The spectral function of the conventional t − J is dis-
played in panel Fig.9(d). The spectrum displays features
of both spinon and holon dispersions[122, 123]: assum-

FIG. 11. Photoemission spectrum for a single hole for several
values of J and α in a color log scale, showing features asso-
ciated with strings inside the continuum.

ing holon and spinons dispersions εh(qh) and εs(qs), one
can construct all possible energies with momentum k as
ε(k) = εh(qh) + εs(qs), with k = qh + qs. Clearly, this
construction will yield a continuum of energies with mo-
mentum k. The figures show the development of a co-
herent quasi-particle peak as we cross the critical value
of αc ∼ 2.2 from above. In addition, we observe that
the dispersion develops two minima. This is explained
by realizing that the composite quasi-particles will have
to move by means of a combination of hopping and
spin flips. Therefore, the particle will effectively acquire
a second (next-nearest) neighbor hopping contribution
since each spin flip moves a spinon by two sites. In the
lower panels of the same figure we show cuts along the
k = kF = π/2 line. We can clearly resolve the quasi-
particle peak splitting from the upper edge of the con-
tinuum (ringing oscillations are artifacts of the Fourier
transform, as noted above).

In Fig.10 we compare the behavior with varying J at
a fixed value of α = 1.6, deep into the AFM ordered
phase, where we see an increase of spectral weight in
the quasi-particle band with increasing J . Looking more
carefully, we notice the development of new structures in-
side the incoherent continuum. In order to resolve these
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FIG. 12. Photoemission spectrum at half-filling n = 1 for J =
1 and different values of α obtained with the self-consistent
Born approximation (SCBA). In the lower panels (c) and (d)
We show cuts in frequency along the k = π/2 line.

new features, we plot the spectral weight in a log scale in
Fig.11. The “ladder” appearing inside the continuum is
not a numerical artifact but a manifestation of the string
confining potential (10). These “string” excitations are
not stable, and decay into a spinon and a holon as we
discuss below. We also look at two extreme cases with
α = 1.1 and small J = 0.2 and 0.4 in panels (a) and
(b) of the same figure, where we observe just one or two
prominent string states. One way to interpret the en-
ergy spacing between them is by considering a simplistic
picture in which spinons cannot move and holes behave
as particles trapped by the confining potential of Fig.6.
In a linear potential, these bound states would be Airy
functions with equally spaced energy levels [106]. In our
case, the behavior is less trivial, but analogous, with a
spacing that increases with increasing J or with smaller
α. We provide a more detailed theoretical description
and analysis in the following sections.

B. SCBA

In order to gain further physical insight, we compare
the DMRG photoemission spectra with the predictions

of an analytic approach that correctly describes the mo-
tion of a hole tightly coupled with the semiclassical spin-
wave excitations of an antiferromagnetic state, giving rise
to a spin-polaron quasiparticle. Hence, we have calcu-
lated the single hole spectral functions by means of the
self-consistent Born approximation (SCBA) [124–127], a
method that has been proven to compare quantitatively
very well with exact diagonalization (ED) results on finite
two-dimensional clusters with short range interactions in
different antiferromagnets [124, 128–131]. It is one of the
more reliable and checked analytical methods up to date
to calculate the hole Green’s function, and in particular,
its QP dispersion relation. In order to do such calcula-
tion, we follow standard procedures [124]. On one hand,
the magnetic elementary excitations are obtained treat-
ing the Heisenberg exchange terms of the Hamiltonian
at the linear spin-wave (LSW) approximation. Thus, we
restrict this description to the long range magnetically
ordered regime of the phase diagram, whose magnetic
spectrum consists of semiclassical magnons within the
LSW approximation. In this sense, the SCBA will have
the ability to exhibit the physics of a single hole interact-
ing with one-dimensional magnons only, excluding other
possible excitations like spinons. On the other hand, the
electron creation and annihilation operators in the hop-
ping terms are mapped into holons in the slave-fermion
representation (details in the Supplementary Material
of Ref. [132]). Within SCBA, we arrive at an effective
Hamiltonian:

Heff =
∑
k

ωkθ
†
kθk +

2S√
N

∑
kq

(
Mkqh

†
khk−qθq + H.c.

)
,

(15)
where there is no hole tight-binding-like free hopping
term, since the ground state magnetic pattern consists
in a 180◦ antiferromagnetic Néel order. The magnon dis-
persion relation ωk is given by [93, 94]:

ωk =
√
ε2
k − g2

k, (16)

εk = 2JS

L/2∑
n=1

1

(2n− 1)α
− 2JS

L/2∑
n=1

cos(2nk)− 1

(2n)α

gk = −2JS

L/2∑
n=1

cos[(2n− 1)k]

|2n− 1|α
, (17)

and Mkq is the vertex interaction that couples the hole
with magnons:

Mkq = 2t[cos(k)uk−q + cos(q)vk−q], (18)

where uk and vk are the usual Bogoliubov coefficients.
We have evaluated the sums in (17) up to where conver-
gence is reached within a given tolerance. The self energy
is calculated within the SCBA taking into account non-
crossing diagrams only, which leads to the self consistent
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equation

Σk(ω) =
1

L

∑
q

|Mkq|2

ω + iε− ωk−q − Σq(ω − ωk−q)
(19)

from which the hole spectral function is obtained.
In Fig. 12 the SCBA spectrum is shown. All the SCBA

results are for L = 100 sites, as it was checked that it
already accurately describes the thermodynamic limit.
Similar to the DMRG results, Fig. 10, the SCBA spec-
trum also shows a well defined quasiparticle band and a
high energy continuum. However, in this case, the high
energy spectrum is clearly composed of strings. Strings
are well known manifestations of chains of misaligned
spins left behind by the hole as it hops [124, 125]. As pre-
viously discussed, as the hole hops, misaligned spins are
left behind, creating an energy potential that binds the
hole, promoting its return to the original position. As in
1D there are no closed Trugman loops [133], the only op-
tion for the hole to “cure” the strings of wrongly aligned
spins is to retreace its path. In this picture, the energy
cost of moving the hole increases with distance, such that
it is favorable for the hole to return to its original posi-
tion by reabsorbing the magnetic excitations, in this case
magnons, in reverse order of creation. These processes
produce non-crossing diagrams that are precisely what
lies underneath the SCBA. However, the presence of spin-
flip interactions in the Hamiltonian offers an alternative
channel for the magnetic fluctuations to repair the mis-
aligned spins, giving the hole the possibility of moving
coherently. These processes are responsible for the QP
peak in the spectrum. In the case of the t − Jz Ising
case, it has been shown that the (k-independent) spec-
trum consists of several strings [111]. In our model the
same physics appears when α ' 1, as the magnetic order
becomes almost classical, with a very low probability of
spin-flip processes. As α increases and the long range or-
der is weakened, the QP spectral weight decreases, and
the high energy string continuum gains weight, but the
SCBA picture remains essentially the same.

In Fig. 13 we show the SCBA spectra at low α, where
the order is more rigid, varying J/t. At low J/t, where
the characteristic time of magnetic fluctuations is much
larger than that of the hole hopping, strings are mani-
fested.

On one hand, the QP spectrum of the SCBA and
DMRG show good qualitative agreement in the ordered
regime of the phase diagram, i.e. for α < 2.2. This in-
dicates that the QP in the ordered regime is effectively
a magnetic polaron, where the hole dynamics is deter-
mined by its interaction with magnons. However, the
high energy spectrum of the SCBA and DMRG differ,
especially when J/t and α are not very low. For low α
both methods show a string picture. However, strings
are unstable at high energies and decay into a continuum
of spinon-holon excitations. On the other hand, in the
SCBA approximation, strings spread over the entire en-
ergy range and are mostly responsible for the incoherent

FIG. 13. Photoemission spectrum at half-filling n = 1 for α =
1.1 and different values of J obtained with the self-consistent
Born approximation (SCBA). In the lower panels (c) and (d)
We show cuts in frequency along the k = π/2 line.

part of the spectrum. The noticeable differences between
both methods in the intermediate to high energy sector
arise because in the SCBA, due to the linear spin wave
treatment of the magnetic spectrum, spinons are absent,
and spin-charge separation is not possible.

Hence, it can be concluded that the exact DMRG spec-
trum exhibits a spin-polaron quasiparticle at the lowest
energy, and a few unstable strings for low α, a typical
behavior in higher dimension antiferromagnets. This QP
is the result of the confinement of the holon and spinon
excitations at low energies, while for higher energies there
are signatures of spin-charge separation even for α < 2.2,
where there is long range order. Hence, the 1D RKKY
system displays signatures of a dimensional crossover as
a function of the energy, with the 1D physics surviving
at high energies.

C. Spinon-holon problem

In order to provide an intuitive physical picture that
accounts for spin charge separation and can allow us to
peek into the internal structure of the composite quasi-
particle, we start from the Ising limit, in which the
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FIG. 14. Spectrum of the spinon-holon problem for two dif-
ferent values of J and α = 2.

ground state without a hole is just a trivial classical Néel
order. When the insulator is doped with a hole it intro-
duces a domain wall (a spinon) in the AFM background,
as shown in Fig.5(a). Besides the motion of the hole,
we consider additional quantum fluctuations mediated by
spin-flip processes that allow the domain wall to move,
ignoring processes that create new spinons for being en-
ergetically too costly (this includes long-range spin-flips).

In order to make this scenario more concrete, we ex-
plicitly solve the two-body problem of a spinon and a
holon. As noted previously, the spinon propagates by
two sites with each spin-flip, and therefore it has a dis-
persion εs(k) = J cos (2k), while the holon dispersion is
εh(k) = −2t cos (k). Both particles interact via a con-
fining potential V (r), Eq.10), where r is the separation
between the two. The formulation we use to study the
two particle bound state has been extensively applied in a
number of scenarios in the literature, including Hubbard-
like models[134–140], the formation of excitons in multi-
band problems[141], and magnons [98]. In our case, as
the hole and spinon move apart, they leave behind a
string of anti-aligned spins in the antiferromagnetic back-
ground that, unlike the conventional 1D t−J model, costs
an energy that grows with the relative distance between
spinon and holon – the length of the string. In our case,
we assume the following Hamiltonian:

H|rs, rh〉 = −t(|rs, rh + 1〉+ |rs, rh − 1〉)
+ J/2(|rs + 2, rh〉+ |rs − 2, rh〉).
+ V (|rs − rh|)|rs, rh〉, (20)

where rs and rh refer to the position of the spinon
and holon respectively, and the potential V is given by
Eq. (10). We consider periodic boundary conditions,
which allows us to construct a basis of states that are

translationally invariant and labeled by a momentum k:

|r, k〉 =
1√
L

L−1∑
x=0

eikxTx|rs = 0, rh = r〉. (21)

=
1√
L

L−1∑
x=0

eikx|rs = x, rh = r + x〉

In this basis, the Hamiltonian matrix can be easily ob-
tained and numerically diagonalized for each momentum
sector. The spectrum of a chain with L = 40 sites is
shown in Fig.14 for α = 2, J = 0.4 and 1. Without in-
teractions, the spectrum consists of a continuum with a
lower edge given by ω(k) = εs(k)− εh(k = 0) = εs(k)−2.
Long-range interactions favor the formation of composite
fermionic bound states splitting from the spinon-holon
continuum, resembling our numerical results obtained
with DMRG and the SCBA in previous sections. How-
ever, in this picture the spinon-holon continuum is mani-
fest while the SCBA cannot account for it. Despite being
a crude approximation, it offers intuition about the na-
ture of the quasi-particle excitations: the hole and spinon
form a Rydberg-like state or diatomic molecule, confined
by the string potential of Fig.6. In order to move co-
herently, the spinon-holon pair has to do it in two steps:
first, a spin flip moves the spinon by two sites; second,
the holon needs to follow and settle in between the two
parallel spins. As a consequence, the dispersion of the
“polaron” will display two minima, as already observed,
with a bandwidth determined primarily by J .

V. PHOTOEMISSION AT FINITE DOPING

At finite doping the existence of coherent quasipar-
ticles in one-dimension is less expected. One argument
against it is the presence of pervasive nesting at all densi-
ties, making Fermi liquid theory unstable and LL theory
apparently unavoidable. However, in Fig. 15 we show
the spectrum at momentum k = kF at density n = 0.75
for the conventional t− J model displaying a Fermi edge
singularity, and α = 2, showing a coherent peak that
seems to split from the continuum. This numerical evi-
dence suggests that indeed quasiparticles may be stable,
at least in a range of (relatively high) densities. We pos-
tulate, without offering a proof, that this occurs when-
ever the spin correlations have a dominant AFM peak at
k = π, the region labeled as “QP” in Fig.2.

VI. CONCLUSIONS

We have studied the stability of fermionic quasiparti-
cles in a doped antiferromagnet in a relatively simple
one-dimensional model that realizes much of the phe-
nomenology of the higher dimensional t − J model. At
half-filling, the all-to-all-interactions lead to a transition
to a phase with spontaneous symmetry breaking and Néel
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FIG. 15. Photoemission spectrum at density n = 0.75 for
J = 1, α = 1.6 and the conventional t − J model (α = ∞).
We show cuts in frequency along the k = kF line showing the
development of a coherent quasi-particle peak.

order. Interestingly, pairing is no longer stable and gets
replaced by a large region where phase separation into
AFM and hole-rich domains takes place: long-range in-
teractions lead to holes clumping, or clustering, indicat-
ing that in order to stabilize and have mobile pairs, a
weaker confining potential might be required. Such sce-
narios have been explored in the conventional t−J model
with a staggered magnetic field where the potential is lin-
ear and pairing is robust[106], or in a square lattice with
long range AFM order but where the holes are allowed
to move only along the x direction [63]. In the context of
our model, one possible way to counteract the instabil-
ity toward phase separation is by including a long range
Coulomb repulsion and second-neighbor hopping to in-
crease the hole kinetic energy. Work in this direction is
underway.

Upon doping the antiferromagnet with a hole, we
observe spinons and holons binding to form composite
quasiparticles in the regime with long-range antiferro-
magnetism for small α, while they remain deconfined in
the spin-liquid phase for α > αc ∼ 2.2. These excita-
tions appear in the photoemission spectrum in the form
of a coherent band splitting from the edge of the con-

tinuum of width determined by the exchange J and the
exponent α. This band has also been observed in calcu-
lations on the 2D Hubbard model[15, 25, 26, 142, 143]
and t − J model [65]. The composite nature of the
quasi-particles is supported by calculations of the spinon-
holon binding energy that show a dramatic enhancement
upon transitioning to the Néel phase and it is analo-
gous to the observed physics in doped two dimensional
antiferromagnets[124, 130, 144]. This picture is further
confirmed by SCBA calculations and the spectra of the
spinon-holon problem. While the system exhibits well
defined fermionic quasi-particles, their internal structure
can be described as a spinon and holon oscillating around
a common center of mass. Also, the SCBA calculations
exhibit high energy strings in the long range ordered
regime, but this physics is present in the DMRG calcula-
tions only at very low α, where the magnetic order is very
rigid. This leads us to conclude that a single hole, even in
the ordered phase, couples at high energies to magnetic
excitations that are spinons instead of magnons.

The physical size of the composite quasi-particle can
be quite large, and will be dictated by both J and α and
will diverge at the transition point αc. As a matter of
fact, it might be possible that close enough to αc the size
of the “polaron” can be larger than the chain length, in
which case one would only see spin-charge separation. At
higher energies, both spinon and holon deconfine and we
observe a continuum that can be associated with the orig-
inal dispersions of the two objects. Therefore, while the
system exhibits higher-dimensional physics at low ener-
gies, the 1D physics of spin-charge separation re-emerges
at higher energies. This implies that at finite tempera-
ture, larger than the binding energy between holon and
spinon, the quasi-particles would decay into their original
constituents, establishing a limitation to our experimen-
tal ability to resolve them.

At finite doping, upon crossing the phase separated
region, we encounter evidence of surviving quasiparticles
near the Fermi points. This is a quite puzzling surprise,
since one would expect a 1D metal to be a Luttinger
Liquid due to nesting and the fact that the Fermi sur-
face consists only of discrete points (we are loosely refer-
ring to the regime with spin-charge separation as the LL
phase, even though the excitation spectrum is no longer
linear in the presence of long-range interactions). In fact,
at low densities, the AFM order melts and spin charge
separation re-emerges. However, it may seem as though
the confining potential is strong enough to induce domi-
nant AFM interactions and coherent quasi-particles even
away from half-filling, albeit in a narrow window of den-
sities. We point out that one-dimensional metals with
fermionic quasi-particles are indeed possible, but this
typically occurs in gapped systems, such as ladders.[145–
148] In these systems the spin and charge gap may survive
at finite doping[149]. However, our model Eq. (3) is gap-
less in both channels. Further numerical and theoretical
work is needed to elucidate the mechanisms that might
possibly stabilize fermionic quasi-particles in this regime.
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Finally, this work demonstrates the interesting phe-
nomenology that can arise from the inclusion on long
range interactions and, in particular, establishes Eq. (3)
as a rich toy model Hamiltonian to study higher di-
mensional physics with methods usually considered more
amenable to one dimensional problems.
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233 (2004).

[13] J. M. P. Carmelo, K. Penc, P. D. Sacramento, M. Sing,
and Claessen, J. Phys. Cond. Mat. 18, 5191 (2006).

[14] J. M. P. Carmelo, D. Bozi, and K. Penc, J. Phys. Cond.
Mat. 20, 415103 (2008).

[15] M. Kohno, Spectral Properties near the Mott Transition
in the One-Dimensional Hubbard Model, Phys. Rev.
Lett. 105, 106402 (2010).

[16] T. L. Schmidt, Imambekov A., and L. I. Glazman, Phys.
Rev. Lett. 104, 116403 (2010).

[17] R. G. Pereira and E. Sela, Phys. Rev. B 82, 115324
(2010).

[18] F. H. L. Essler, Phys. Rev. B 81, 205120 (2010).
[19] T. L. Schmidt, A. Imambekov, and L. I. Glazman, Phys.

Rev. B 82, 245104 (2010).
[20] A. Imambekov, T. L. Schmidt, and L. I. Glazman, Rev.

Mod. Phys. 84, 1253 (2012).
[21] L. Seabra, F. H. L. Essler, F. Pollmann, I. Schneider,

and T. Veness, Phys. Rev. B 90, 245127 (2014).
[22] F. H. L. Essler, R. G. Pereira, and I. Schneider, Phys.

Rev. B 91, 245150 (2015).
[23] A. C. Tiegel, T. Veness, P. E. Dargel, A. Honecker,

T. Pruschke, I. P. McCulloch, and F. H. L. Essler, Phys.
Rev. B 93, 125108 (2016).

[24] T. Veness and F. H. L. Essler, Phys. Rev. B 93, 205101
(2016).

[25] C. Yang and A. E. Feiguin, Spectral function of the two-
dimensional hubbard model: A density matrix renor-
malization group plus cluster perturbation theory study,
Phys. Rev. B 93, 081107(R) (2016).

[26] Y. Wang, K. Wohlfeld, B. Moritz, C. J. Jia, M. van
Veenendaal, K. Wu, C.-C. Chen, and T. P. Devereaux,
Origin of strong dispersion in hubbard insulators, Phys.
Rev. B 92, 075119 (2015).

[27] S.-i. Tomonaga, Remarks on Bloch’s Method of
Sound Waves applied to Many-Fermion Prob-
lems, Progress of Theoretical Physics 5, 544
(1950), https://academic.oup.com/ptp/article-
pdf/5/4/544/5430161/5-4-544.pdf.

[28] J. M. Luttinger, An exactly soluble model of a many-
fermion system, Journal of Mathematical Physics 4,
1154 (1963).

[29] D. C. Mattis and E. H. Lieb, Exact solution of a many-
fermion system and its associated boson field, Journal
of Mathematical Physics 6, 304–312 (1965).

[30] F. D. M. Haldane, 'luttinger liquid theory' of one-
dimensional quantum fluids. i. properties of the lut-
tinger model and their extension to the general 1d in-
teracting spinless fermi gas, Journal of Physics C: Solid
State Physics 14, 2585 (1981).

https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1007/978-0-387-68734-6_13
https://doi.org/10.1007/978-0-387-68734-6_13
https://arxiv.org/abs/2104.00064
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.10.031016
https://doi.org/10.1103/PhysRevB.93.081107
https://doi.org/10.1103/PhysRevB.92.075119
https://doi.org/10.1103/PhysRevB.92.075119
https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1143/ptp/5.4.544
https://arxiv.org/abs/https://academic.oup.com/ptp/article-pdf/5/4/544/5430161/5-4-544.pdf
https://arxiv.org/abs/https://academic.oup.com/ptp/article-pdf/5/4/544/5430161/5-4-544.pdf
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704281
https://doi.org/10.1063/1.1704281
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1088/0022-3719/14/19/010


14

[31] A. O. Gogolin, A. A. Nerseyan, and A. M. Tsvelik,
Bosonization and Strongly Correlated Systems (Cam-
bridge University Press, Cambridge, England, 1998).

[32] T. Giamarchi, Quantum Physics in One Dimension
(Clarendon Press, Oxford, 2004).

[33] F. H. L. Essler and A. M. Tsvelik, Finite temperature
spectral function of mott insulators and charge density
wave states, Phys. Rev. Lett. 90, 126401 (2003).

[34] J. M. P. Carmelo, T. Čadež, and P. D. Sacramento,
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