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When quantum flavor Hall insulator phases of itinerant fermions are disordered by strong quantum
fluctuations, the condensation of skyrmion textures of order parameter fields can lead to supercon-
ductivity. In this work, we address the mechanism of skyrmion condensation by considering the
scattering between (2+1)-dimensional, Weyl fermions and hedgehog-type tunneling configurations
of order parameters that violate the skyrmion-number conservation law. We show the quantized, fla-
vor Hall conductivity (σf

xy) controls the degeneracy of topologically protected, fermion zero-modes,
localized on hedgehogs. The overlap between zero-mode eigenfunctions or ’t Hooft vertex is shown
to control the nature of paired states. Employing this formalism for the N = 2 model of twisted
bilayer graphene, we describe the competition among flavor Hall orders, charge 4e− 4e− supercon-
ductivity, and various charge 2e− paired states in BCS and pair-density-wave channels. At charge
neutrality, we show that the competition between flavor Hall insulators and charge 2e− states can
be captured by SO(9) non-linear sigma models. If topological pairing mechanism can dominate
over conventional pairing mechanism, our work predicts the flavor-symmetry-preserving, charge 4e−

superconductivity as a natural candidate for the paired state in the vicinity of charge neutral point.

I. INTRODUCTION

Skyrmions are smooth, topologically non-trivial, tex-
tures of three-component, unit vector field Ω̂(x) of O(3)
non-linear sigma model (NLSM) at two spatial dimen-

sions.1 Since Ω̂(x) is equivalent to a two-sphere (S2), the
skyrmion configurations are classified by the second ho-
motopy group: π2(S2) = Z. Inside the ordered phase
of NLSM, the skyrmion requires a finite creation energy
Esk = 4πρs|Wsk|, where ρs is the spin-stiffness of the
NLSM, and Wsk is the integer-valued, winding number.
If Ω̂(x) is coupled to (2+1)-dimensional Weyl fermions
as a mass type order parameter, the skyrmions can sup-
port induced “fermion numbers”, indicating the pres-
ence of fluctuating competing orders inside the skyrmion
core.2–18 When the NLSM is disordered by quantum
fluctuations, the vanishing of excitation gap can allow
the condensation of skyrmions. Hence, the quantum-
disordered, anti-ferromagnet (AFM) and quantum spin
Hall (QSH) states can support nucleation of spin-singlet,
valence bond solids (VBS)8 and s-wave superconductiv-
ity,9,13–15 respectively.

The analysis of such competing orders is often guided
by the construction of SO(5) NLSMs that treat spin-
triplet and spin-singlet orders on an equal footing. After
integrating out the gapped fermion fields, one obtains a
non-Abelian, Berry’s phase for the five-component vec-
tor field6–16, which is also known as the Wess-Zumino-
Witten (WZW) term. The relationship between SO(5)
WZW model and the unconventional, continuous quan-
tum phase transitions between two ordered states19 is
being actively studied by many groups.20–22

Owing to the discovery of superconductivity in twisted
bilayer graphene (TBLG) in the vicinity of correlated in-
sulating states, the analysis of competing particle-hole

and particle-particle orders of Weyl fermions has become
an important, physically relevant problem.23–35 The in-
teractions between fermion fields and bosonic collective
modes, such as phonons and smooth order parameter
fluctuations are being vigorously investigated, as po-
tential candidates for pairing mechanism.36–43 Recently,
the skyrmion condensation has also been considered for
addressing the competition between correlated insula-
tors and adjacent superconducting states.44–47 Based on
the low energy theories of 4− and 8− flavors of Weyl
fermions, different types of level-144 and level-245 SO(5)
WZW models have been proposed for the integer filling
fractions ν = 2, and 0, respectively. The topological pair-
ing mechanism can provide critical, non-perturbative in-
sights into the nature of competing orders and emergent
symmetries, which are generally inaccessible through per-
turbation theories about topologically trivial configura-
tions of collective modes. This motivates us to ask the
following question.

How do the skyrmions condense and determine the na-
ture of competing orders? Due to the vanishing of Esk,
all topologically distinct ground states, labeled by dif-
ferent Wsk’s can become energetically degenerate. Such
infinite degeneracy of ground states is removed by hedge-
hog or monopole type tunneling configurations of order
parameter in Euclidean space-time. They violate the
skyrmion-number conservation law and lead to a super-
position of different skyrmion configurations as the true
ground state.48–50 Therefore, the mechanism of conden-
sation and the nature of superconducting states cannot
be clearly understood, without considering interactions
between Weyl fermions and hedgehogs.

Furthermore, for 4N -flavors of Weyl fermions with
N > 1, a spin-triplet order has many competing spin-
singlet, mass orders, which anti-commute with each
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other. Naturally, there are multiple candidates for level-
N SO(5) WZW theories, and they cannot provide an un-
biased description of competing spin-singlet orders. Such
issues for the N = 2 case were identified in Refs. 16,17,
while addressing the competition between AFM, VBS,
and Kondo-singlets. Ref. 17 has showed the space-time
dependent, Weyl operator in the presence of hedgehog
configurations of AFM order parameter possesses topo-
logically protected fermion zero-modes. Many similari-
ties between this problem and (3+1)-dimensional quan-
tum chromodynamics51,52 were pointed out. The over-
lap between zero-modes was shown to cause an effec-
tive 2N -fermion interaction or ’t Hooft vertex (TV).53

For N = 1, TV is a frequency-momentum dependent
fermion billinear, describing VBS order. For N ≥ 2, the
quartic TV corresponds to a composite, spin-singlet or-
der, which cannot be described by VBS or Kondo-singlet
type fermion bilinears.

The primary goal of our current work is to address
the nature of paired states arising from the condensa-
tion of skyrmion textures of quantum flavor Hall (QFH)
insulators for 4N -flavors of Weyl fermions, by explicitly
considering the role of hedgehogs. For the clarity of pre-
sentation, we will only consider triplet orders for one of
the SU(2) sub-groups of SU(4N). In response to the ex-
ternally applied electric fields, uniformly ordered, QFH
states exhibit quantized Hall conductivity σfxy = 2N for
the spin or valley type flavor currents. For TBLG, we
will mainly focus on ν = 0.

Our manuscript is organized as follows. In Sec. II, we
set up the effective theory of (2 + 1)-dimensional, free
Weyl fermions and outline its U(4N) = SU(4N)× U(1)
flavor symmetry. The skyrmion texture and induced
fermion number of QFH triplet insulating orders, which
breaks one SU(2) sub-group of SU(4N), are discussed in
Sec. III. The fermion zero modes of dynamic Weyl op-
erator with hedgehog tunneling configurations and the
U(1) global symmetry breaking, pairing bilinears from
zero mode channel are described in Sec. IV, and Sec. V,
respectively. The dynamic ’t Hooft vertex describing the
flavor symmetric charge 2Ne− state is constructed in
Sec. VI. The effects of flavor-symmetry-breaking (FSB)
for commensurate filling fractions away from charge neu-
trality are considered in Sec. VII. We conclude by dis-
cussing physical significance of our results in Sec. VIII.
For technically non-inclined readers, the important phys-
ical results and predictions of our work are summarized
in Table I and Figs. 2-4.

II. FLAVOR SYMMETRY OF WEYL
FERMIONS

The low energy theory of many two-dimensional sys-
tems can be described by multiple species of linearly
dispersing Weyl fermions. The Weyl points with chiral-
ity +1 (−1) act as unit strength vortices (anti-vortices)
in momentum space. In this work, we denote them

as the right- and the left- handed Weyl points, respec-
tively, which come in pairs, due to the fermion dou-
bling theorem. On a general ground, we will consider
2N pairs of right- and left- handed fermions, where
the factor of 2 (N) counts for the spin (layer or other
internal) degrees of freedom. We will describe the
two-component, right-handed and left-handed fermion
fields by RTi,s(t,x) = (RA,i,s,(t,x), RB,i,s(t,x)), and

LTi,s(t,x) = (LA,i,s(t,x), LB,i,s(t,x)), respectively, where
s =↑, ↓ is the spin index, i = 1, ..., N is the collective in-
dex for layer/internal degrees of freedom, and A/B corre-
sponds to the sub-lattice (SL) index. The Hamiltonians
for the right- and left- handed fermions are

HR = −ivfτ ·∇, HL = τ2HRτ2, (1)

where ∇ = (∂1, ∂2) is the two-dimensional gradient
operator, and the 2× 2 identity matrix τ0 and the Pauli
matrices τj ’s with j = 1, 2, 3 act on the sub-lattice (SL)
index. We can absorb the Fermi velocity vF on the imag-
inary time to write x0 = −ivF t. Then, after performing
the SL transformation Li,s → τ2Li,s and combining all

degrees of freedom into an 8N -component spinor ψ†8N =

(R†1,↑, R
†
1,↓, ..., R

†
2N,↑, R

†
2N,↓, L

†
1,↑, L

†
1↓, ..., L

†
2N,↑, L

†
2N↓),

the Euclidean action of 4N flavors of Weyl fermions can
be written in a manifestly flavor-symmetric form

S0 =

∫
d3x ψ̄8N 14N×4N ⊗

[
2∑

ν=0

γν ∂ν

]
ψ8N , (2)

where 14N×4N is the 4N × 4N identity matrix, ψ̄8N =

ψ†8N14N×4N ⊗ γ0, γ0 = τ3, γ1 = τ2, γ2 = −τ1. Notice
in the Euclidean frequency-momentum space, the Weyl
points appear as the unit strength, hedgehog singulari-
ties.

The action is invariant under (i) the global U(1) trans-
formation: ψ8N → exp[iθ 14N×4N ⊗ τ0]ψ8N , and (ii)
the global, flavor symmetry transformation: ψ8N →
Uψ8N , with U ∈ SU(4N). Hence, the free fermion
action possesses U(1) × SU(4N) = U(4N) symmetry,
and we can define the conserved total number current
J0
µ = ψ̄8N14N×4N ⊗ γµψ8N , and the flavor currents

J iµ = ψ̄8N Λ̂i⊗γµψ8N , where Λ̂i with i = 1, 2, .., (4N)2−1
are the 4N×4N , Hermitian generators of SU(4N) group.
For the N = 1 model of spinful mono-layer graphene
(MLG), QFH order can describe the QSH or the quantum
valley Hall (QVH) states. The N = 2 model corresponds
to the simplest low energy theory of nearly-flat bands of
TBLG.54–57 For TBLG, the QFH mass can correspond
to the QSH, the QVH, or the quantum mini-valley Hall
(QMVH) states. Additional Weyl points can also arise
from the effects of trigonal warping.58 The SU(4N) gen-
erators can be expressed as suitable linear combinations
of direct products of log2(4N) sets of identity and Pauli
matrices operating on spin and valley type degrees of
freedom. While describing MLG and TBLG, we will re-
serve σλ, ηλ, ρλ respectively for the spin, the valley (L vs.
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(a) (b) (c)

FIG. 1: Illustrations of (a) static skyrmion textures in two-dimensional space with Wsk = −1 [see Eq. 3 ], (b) radial
hedgehog singularity in (2+1)-dimensional Euclidean space-time with topological invariant q = +1 [see Eq. 7 ], and
(c) a dipole configuration due to a pair of hedgehog singularities in (2+1)-dimensional Euclidean space-time with
qh = ±1. If the hedgehogs are separated along the imaginary time axis, all spatial planes, lying between (outside)

the hedgehogs, will (not) exhibit skyrmion textures. Such planes possess “magnetic flux” of unit vector field Ω̂,
obtained by integrating the skyrmion number density Jsk0 . If the hedgehogs are separated along any spatial

direction, the orthogonal space-time planes will display skyrmion textures. Such planes support “electric flux” of Ω̂,
obtained by integrating the spatial components of skyrmion current density Jski , with i = 1, 2.

R), and the mini-valley (R1 vs R2 within a Moíre Bril-
louin zone) sectors. Individually, each set of Pauli ma-
trices represents an SU(2) sub-group of SU(4N). Next,
we consider the skyrmion textures of QFH orders that
breaks the corresponding SU(2) sub-group and reduces
the symmetry from SU(4N) to SU(2N)× U(1).

III. SKYRMIONS OF QFH ORDERS

The SU(2)s symmetry breaking and SU(2N) symme-
try preserving, QSH mass term is given by OQSH =
Ω(x) · ψ̄12N×2N ⊗ σ ⊗ τ0ψ, where Ω(x) is a three-
component, vector field. A uniform order parameter
field determines a global spin quantization axis along
Ω = Ω0 and the total U(1) spin-current Jsµ = Ω̂0 ·
ψ̄12N×2N ⊗ σ ⊗ γµψ. In response to the externally ap-
plied electro-magnetic and spin gauge fields, the QSH
phase supports cross-correlated, charge and spin Hall

currents, J0
α =

σsxy
2π εαµνF

0
µν , and Jsα =

σsxy
2π εαµνF

s
µν

where σsxy = 2N is the quantized spin-Hall conductiv-

ity, and the Abelian field strength tensors are F iµν =

∂µA
i
ν − ∂νA

i
µ. Similar results for the cross-correlated

charge and flavor quantum Hall currents can be obtained
for QVH and QMVH mass orders in TBLG, respectively
defined as OQVH = Ω(x) · ψ̄η ⊗ ρ0 ⊗ σ0 ⊗ τ0ψ, and
OQMVH = Ω(x) · ψ̄η0 ⊗ ρ⊗ σ0 ⊗ τ0ψ.

The smooth, static skyrmion textures of QSH order
parameter are described by

Ω̂(ρ, ϕ) =

(
sin[θn(ρ)] cos(nϕ), sin[θn(ρ)] sin(nϕ),

cos[θn(ρ)]

)
, (3)

where ϕ = tan−1(x2/x1), and θn(ρ) is an interpolating

function of the radial variable ρ =
√
x21 + x22, such that

θn(ρ→ 0)→ 0 and θn(ρ→∞)→ π, with n = ±1,±2, ...
For any fixed n, the choice of interpolating function
θn(ρ→ 0)→ π and θn(ρ→∞)→ 0 changes the sign of
skyrmion’s winding number, defined by

Wsk =
n

2
(cos[θn(0)]− cos[θn(∞)]). (4)

The Belavin-Polyakov solutions of unit skyrmions,59

which minimize the energy of static NLSMs, correspond
to

cos(θ) = ±R
2|n| − ρ2|n|

R2|n| + ρ2|n|
, (5)

where R is the size of skyrmion core. In Fig. 1(a), we have
illustrated the unit skyrmion textures with Wsk = −1,
by using dimensionless coordinates ρ/R, n = +1, and
cos(θ) = −(R2 − ρ2)/(R2 + ρ2).

Deep inside the ordered phase, the induced fermion
current can be computed by employing the gradient ex-
pansion scheme, which is controlled by the amplitude |Ω|.
The spin-singlet, total number current is found to be

J0
µ = σsxyJ

sk
µ = 2NJskµ , (6)

where Jskµ = 1
4π εµνλΩ̂ · (∂νΩ̂ × ∂λΩ̂) is the skyrmion

current density. Since the ordered phase does not al-
low singular tunneling events or hedgehog configurations,
both Jskµ and J0

µ satisfy the continuity equation. Hence,

the induced fermion number 〈ψ̄γ0ψ〉 = 2N
∫
d2xJsk0 =

2N Wsk, is determined by the quantized, spin Hall con-
ductivity, and Wsk acts as the generator of flavor-singlet,
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U(1) symmetry.

As the SU(2N) flavor symmetry remains unbroken,

the spin-singlet SU(2N) flavor currents J0,l
µ = ψ̄λ̂l ⊗

σ0⊗γµψ, with l = 1, .., (2N)2−1 remain identically con-
served. When the QSH order is destroyed, the SU(2)s
symmetry is restored, and the condensation of skyrmions
is expected to give rise to a spin-singlet, paired state,
breaking global U(1) symmetry. Similarly, the valley-
(mini-valley-) singlet paired states can arise from the
quantum-disordered QVH (QMVH) phase. However,
charge 2e− fermion bilinears break SU(2N) flavor sym-
metry, when N > 1 (see Section V). Can the skyrmion
condensation determine the pattern of flavor-symmetry-
breaking (FSB) by paired states? To answer this question,
we consider the role of hedgehog configurations, which
serve as the source and sink of Jskµ .

IV. HEDGEHOGS AND FERMION ZERO
MODES

The tunneling singularities in Euclidean space-time are
also classified according to the second homotopy group
Π2(S2) = Z. The topological invariant or hedgehog
charge is given by

q =
1

8π

∫
d2Saεabc εαβλ Ω̂α∂bΩ̂β∂cΩ̂λ, (7)

where the integrals are performed over a sphere sur-
rounding the singularity.60 The minimal or unit strength
(q = ±1), radial (anti-)hedgehog configurations corre-

spond to Ω̂µ = ±x̂µ, i.e.,

Ω̂ =

[
ρ√

ρ2 + x20
cosϕ,

ρ√
ρ2 + x20

sinϕ,
x0√
ρ2 + x20

]
. (8)

In Fig. 1(b), we have illustrated Ω̂µ = x̂µ with q = +1.
More general hedgehogs with charge qh = l can be de-
scribed by

Ω = [F1,l(ρ) cos(lϕ), F1,l(ρ) sin(lϕ), F2,l(x0)] , (9)

where F1,l and F2,l are two profile functions with the
asymptotic properties: (i) F1,l(ρ→ 0) ∼ ρl, and F1,l(ρ→
∞) ∼ c1, and (ii) F2,l(x0 → 0) ∼ x0 and F2,l(x0 →
±∞) ∼ ±c2, with c1 and c2 being two constants. By
normalizing the vector field in Eqn. 9 we obtain the unit
vector field:

Ω̂(x0, ρ, ϕ) =

(
sin[θl(x0, ρ)] cos(lϕ),

sin[θl(x0, ρ)] sin(lϕ), cos[θl(x0, ρ)]

)
, (10)

with cos[θl(x0, ρ)] =
F2,l(x0)√

F 2
1,l(ρ)+F

2
2,l(x0)

. By rotating these

configurations by an angle φ about any arbitrary con-

stant unit vector n̂, we can construct various topologi-
cally equivalent, hedgehog configurations Ω̂′ = R(n̂, φ)x̂.
where R(n̂, φ) is a 3× 3 rotation matrix.

To elucidate the relationship between skyrmions and
hedgehogs, we have also illustrated in Fig. 1(c) the dipole
configuration of unit vector field due to a pair of hedge-
hogs with opposite charges q = ±1. We have used

Ω̂ = [sin θ1 cos(ϕ), sin θ1 sin(ϕ), cos θ1] ,

cos[θ1(x0, ρ)] =
x20 + ρ2 −R2√

(x20 + ρ2 −R2)2 + 4ρ2
, (11)

and dimensionless space-time coordinates xµ/R. The
hedgehogs, occurring at xµ = (0, 0,±R), are separated
along the imaginary time axis. All spatial planes with
|x0| < R exhibit skyrmion textures with core radius√
R2 − x20 and Wsk = +1. The spatial planes with
|x0| > R do not support any skyrmion textures. Con-
sequently, at the locations of hedgehogs, the skyrmion
number jumps by ±1. If we rather consider a dipole con-
figuration with hedgehogs separated along the spatial x1-
axis, the x0 − x2 planes will display skyrmion textures.
The skyrmions textures for spatial (space-time) planes

lead to the quantized magnetic (electric) flux of Ω̂. For
xµ − xν planes, the flux is

Φµν =

∫
dxµdxν Fµν = 2π ελµν

∫
dxµdxν J

sk
λ . (12)

Due to the non-conservation of skyrmion currents, the
continuity equation for the total number current must be
modified to

∂µJ
0
µ = 2N

∑
i

δ3(x− xi)qi. (13)

To satisfy the overall neutrality condition (i.e.,
∑
i qi =

0), we must have an equal number of hedgehogs and anti-
hedgehogs. A fully self-consistent treatment of fermion-
hedgehog interactions lies beyond the scope of current
work and we will only discuss the topological structure
of fermion propagator or functional determinant in the
presence of fixed hedgehog configurations.

Let us consider the coupling between hedgehogs of
QSH order parameter and one species of four-component
Weyl fermions with sub-lattice and spin index. Due to
the SU(2N) flavor symmetry, the results for all species of
Weyl fermions will be identical. To facilitate our analysis
of fermion-hedgehog scattering and induced pairing, we
introduce the Nambu spinor ΨT

N = (ψT , ψ̄γ1 ⊗ σ2)/
√

2

and Ψ̄N = (ψT γ1 ⊗ σ2, ψ̄)/
√

2, leading to

S =

∫
d3x Ψ̄NDNΨN =

∫
d3x Ψ̄N

(
0 D†
D 0

)
ΨN ,(14)

where D = γν∂ν + σ · Ω. In this basis, all charge 2e−,
fermion bilinears will be block diagonal operators. While
D and D† are not Hermitian or anti-Hermitian operators,
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DN is an Hermitian operator. Therefore, the fermion
fields ΨN and Ψ̄N can be expanded in the eigenbasis of
DN . The eigenvalues follow from the squared operator

D2
N =

(
D†D 0

0 DD†
)
. (15)

Since {DN , α3} = 0, where α3 is the diagonal Pauli ma-
trix, operating on the particle-hole index, the non-zero
eigenvalues of DN come in pairs.

The zero-modes possess definite chirality, correspond-
ing to α3 = +1 (right/annihilation channel) or −1
(left/creation channel). The four-component, right zero-
mode φR (column vector) satisfies DφR = D†DφR = 0
and the four-component, left zero-mode φL (row vector)

obeys D†φ†L = DD†φ†L = 0. The difference between the
number of right zero-modes nR and the number of left
zero-modes nL is always -|l| for hedgehogs and +|l| for
anti-hedgehogs. This result is protected by Callias’s in-
dex theorem.61–63

For the unit-strength, radial (anti-)hedgehog configu-
rations, with Ωµ = ± m(x) x̂µ, where m is amplitude
of the order parameter, the zero-mode eigenfunctions are
given by

φ∗+,L = φT−,R = (0, 1,−i, 0)f(|x|), (16)

where f(|x|) ∝ exp
[
−
∫
dx′m(x′)

]
. For a constant m, we

obtain f(|x|) =
√
|m|3
2π e−m|x|.17 In this case, one can also

determine the full spectra of D by following Refs. 61,62.
The bound states of DN have eigenvalues

λn = ±m
√

1− n−2, (17)

with n = 1, 2, .., and they exhibit 2N × n2-fold degener-
acy.

After accounting for the 2N -fold degeneracy in flavor
index, we find that the total number of topologically pro-
tected fermion zero-modes is equal to σfxy × |l| = 2N |l|.
This is a highly non-trivial result, as the quantum-
disordered state does not support long-range quantum
flavor Hall order. In the absence of adiabatic control
provided by the long-range order, only the direct cal-
culations of fermion zero modes of dynamic Weyl oper-
ator can unambiguously demonstrate the breakdown of
fermion number conservation law.

The effective action of isolated hedgehogs due to
the coupling with fermion fields is determined by
Tr[log

(
G−1

)
] = log[det(G−1)], where the inverse propa-

gator of fermion fields G−1 = DN . The functional deter-
minant det(G−1) = det(DN ) is also known as the fermion
determinant (or Pfaffian). The existence of zero-modes
for the dynamic Weyl operator DN indicates the fermion
determinant vanishes in the presence of isolated hedge-
hogs and hence the effective action of hedgehogs displays
logarithmic, infra-red divergence. This signals instabil-
ity toward competing mass order generation, which we
outline in the next section.

V. PAIRING BILINEARS

In this section, we identify charge 2e− pairing mass
terms which anti-commute with both the Hamiltonian
and QFH mass terms, and cause superconducting gaps
for the Weyl fermions. Since the zero-mode expecta-
tion values for all particle-hole bilinears vanish identi-
cally, only charge 2e− pairing mass operators can possess
non-vanishing expectation values from zero-mode eigen-
functions, and are capable of curing the instability of the
vacuum, arising from the vanishing of the fermion deter-
minant (or the logarithmic divergence of action). Using
the examples of MLG (N = 1) and TBLG (N = 2),
we will also elucidate the relationship with appropriate
SO(5) and SO(9) NLSMs of competing orders as well as
WZW terms.

For the general case of 4N -flavors of Weyl fermions, all
momentum-independent, charge 2e− pairing terms can
be described as φl,1Ψ†α1Λ̂′lΨ and φl,2Ψ†α2Λ̂′lΨ, where

Ψ† = (ψ†, ψT )/
√

2 is the 16N -component Nambu spinor,

Λ̂′l are the 4N(8N − 1) number of 8N × 8N , imaginary,
SU(8N) Gell-Mann matrices, and the Pauli matrices αj ’s
operate on the particle-hole index. Notice that the num-
ber of pairing bilinears 4N(8N − 1) exactly equals the
number of generators for SO(8N) group. Out of these

bilinears, only Ψ†αj⊗M̂⊗τ2Ψ, with symmetric 4N×4N

matrix M̂ can anti-commute with the Hamiltonian of free
fermions and act as superconducting mass terms. There
are 2N(4N + 1) independent, charge 2e−, mass terms,
which is equal to the number of generators for USp(4N)
group. By absorbing the imaginary Pauli matrices (η2,
ρ2 etc.) from all SU(2) sectors on the lower component of
Nambu spinor, the pairing mass terms can be organized
in a more convenient singlet and triplet forms.

A. MLG

For MLG with N = 1, we will absorb η2 ⊗ σ2 ⊗ γ1
into the lower component of Nambu spinor: ΨT

1 =

(ψ1, ψ̃
∗
1)T /

√
2 = (ψ1, η2 ⊗ σ2 ⊗ γ1ψ̄T1 )T /

√
2, and define

the barred Nambu spinor with an additional α1 absorbed:
Ψ̄1 = α1(ψ̄1, ψ̃

T
1 )/
√

2 = (ψT1 η2⊗σ2⊗ γ1, ψ̄1)/
√

2. In this
basis, the QSH and QVH mass terms become

OQSH = Ω1 · Ψ̄α1α3 ⊗ η0 ⊗ σ ⊗ τ0Ψ, (18)

OQVH = Ω2 · Ψ̄α1α3 ⊗ η ⊗ σ0 ⊗ τ0Ψ, (19)

while the Hamiltonian operator of free fermion acquires
the form Hf =

∑2
j=1 Ψ̄α1α3 ⊗ 14×4 ⊗ γj∂jΨ. The ten

possible pairing masses can be rewritten as

Os,j = φs,jΨ̄α1αj ⊗ η0 ⊗ σ0 ⊗ τ0Ψ, (20)

Omnt,j = φmnt,j Ψ̄α1αj ⊗ ηm ⊗ σn ⊗ τ0Ψ, (21)

with m and n being equal to 1, 2, 3. Only the spin
and valley singlet, s-wave, pairing mass Os,j can anti-
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commute with Hf , OQSH and OQVH . Hence, the con-
densation of skyrmion textures of both QSH and QVH
order parameters in the para-magnetic phase can lead
to a unique, charge 2e−, spin- and valley- singlet, s-
wave pairing mass. This pairing mass order will shift
the zero mode spectrum and lead to non-zero fermion
determinant. This can be seen by considering Os,1 =
φs,1Ψ̄α0 ⊗ η0 ⊗ σ0 ⊗ τ0Ψ with constant amplitude φs,1
and hedgehog order parameter. In this case, both zero
modes will obtain a finite energy eigenvalue φs,1. Con-
sequently, the fermion determinant will receive a factor
of φ2s,1. Hence, the fermion determinant will no longer
vanish and the instability of the ground state or vacuum
is cured by forming a superconducting condensate.

From the pairing mass orders, we can consequently
construct two quintuples

N1 = (Ω1,1,Ω1,2,Ω1,3, φs,1, φs,2), (22)

N2 = (Ω2,1,Ω2,2,Ω2,3, φs,1, φs,2), (23)

for describing competition between particle-hole and
particle-particle channels. Simple matrix algebra shows
the resulting SO(5) NLSMs support level-1 WZW term.
Since the pairing mass orders are valley singlets and
hence preserve the flavor symmetry of MLG, it is ex-
pected that the effective pairing vertex should be a charge
2e− bilinear. We will show in the next section that this
is indeed the case. [see Eq. (38) ]. Since the spin and val-
ley triplet pairing mass terms Omnt,j do not anti-commute
with OQSH or OQVH , they are not favored as emergent,
pairing orders.

B. TBLG

For TBLG with N = 2, we absorb η2 ⊗ ρ2 ⊗ σ2 ⊗
γ1 into the lower component of Nambu spinor: ΨT

2 =

(ψ2, ψ̃
∗
2)T /

√
2 = (ψ2, η2⊗ρ2⊗σ2⊗γ1ψ̄T2 )T /

√
2, and define

the barred Nambu spinor with an additional α1 absorbed:
Ψ̄2 = α1(ψ̄2, ψ̃

T
2 )/
√

2 = (ψT2 η2⊗ρ2⊗σ2⊗γ1, ψ̄2)/
√

2. In
this basis, the QSH, QVH, QMVH mass terms become

OQSH = Ω1 · Ψ̄α1α3 ⊗ η0 ⊗ ρ0 ⊗ τ0 ⊗ σΨ, (24)

OQVH = Ω2 · Ψ̄α1α3 ⊗ η ⊗ ρ0 ⊗ τ0 ⊗ σ0Ψ, (25)

OQMVH = Ω3 · Ψ̄α1α3 ⊗ η0 ⊗ ρ⊗ τ0 ⊗ σ0Ψ, (26)

while the Hamiltonian operator of free fermion acquires
the form Hf =

∑2
j=1 Ψ̄α1α3⊗18×8⊗γj∂jΨ. The pairing

mass terms can be grouped into four categories:

O00l
st,j = φ00lst,jΨ̄α1αj ⊗ η0 ⊗ ρ0 ⊗ σl ⊗ τ0Ψ, (27)

Ol00vt,j = φl00vt,jΨ̄α1αj ⊗ ηl ⊗ ρ0 ⊗ σ0 ⊗ τ0Ψ, (28)

O0l0
mt,j = φ0l0mt,jΨ̄α1αj ⊗ η0 ⊗ ρl ⊗ σ0 ⊗ τ0Ψ, (29)

Olmnat,j = φlmnat,j Ψ̄α1αj ⊗ ηl ⊗ ρm ⊗ σn ⊗ τ0Ψ, (30)

where l, m, and n can take values 1, 2, 3. They respec-
tively describe pairing bilinears, which are spin-triplet,
valley-triplet, mini-valley-triplet, and triplets in all fla-
vor channels. The physical significance of relevant pair-
ing mass terms are described in Table I.

The QSH mass for N = 2 model anti-commutes with
charge 2e− bilinears Ol00vt and O0l0

mt . Similar to MLG,
each of the TBLG pairing bilinears will by itself con-
tribute a factor of (φl00vt,j)

4 or (φ0l0mt,j)
4 to the fermion de-

terminant and hence cure the instability. However, any
of the valley(mini-valley)-triplet bilinears Ol00vt (O0l0

mt ) by
itself will lead to two zero modes obtaining positive eigen-
values and the other two zero modes obtaining negative
eigenvalues, which explicitly breaks SU(4) flavor symme-
try in the valley (mini-valley) sector. Hence, the effective
pairing vertex cannot be in the form of charge 2e− bilin-
ears and must be a four-fermion term that preserves the
SU(4) flavor symmetry. We will construct this pairing
vertex in the next section.

From the pairing mass orders in TBLG, there are six
possible ways to form quintuples

Nl
1 = (Ω1,1,Ω1,2,Ω1,3, φ

l00
vt,1, φ

l00
vt,2), (31)

Nl
2 = (Ω1,1,Ω1,2,Ω1,3, φ

0l0
mt,1, φ

0l0
mt,2), (32)

with l = 1, 2, 3, and all six types of SO(5) NLSMs will
support level-2 WZW term. Again, due to the presence
of multiple pairing mass terms, the skyrmion condensa-
tion cannot select any specific charge 2e− pairing chan-
nel, without any additional mechanism of breaking SU(4)
flavor symmetry.

It is possible to combine all competing mass terms into
a nonuple

L = (Ω1,Ω2,Ω3, φ
100
vt,1, φ

200
vt,1, φ

300
vt,1, φ

010
mt,2, φ

020
mt,2, φ

030
mt,2),

(33)

and write down SO(9) NLSM for L̂. The SO(9) NLSM
treats all mutually anti-commuting mass orders on an
equal footing. The resulting coset space SO(9)/SO(8)
is closely tied to the octonion gauge theories and de-
tails of such exotic aspects will be provided elsewhere.
Within the SO(9) model, the pairing mass terms are
embedded as a sextuple. The appearance of SO(6) is
a natural consequence of SU(4) being the double cover
of SO(6). Similar results can be obtained for the combi-
nations (OQVH ,O00l

st,j ,O0l0
mt,j) and (OQMVH ,Ol00vt,j ,O00l

st,j),
as shown in Table I. This type of triality is a consequence
of the underlying SU(8) flavor symmetry.

In Table I, we also identify the irreducible representa-
tion of pairing mass terms under the discrete symmetry
operations of point group D6

45. For our Nambu spinors
Ψ and Ψ̄, we have defined the following operations:

C3 : k± → e±i
2π
3 k±, Ψ→ e−i

2π
3 γ0Ψ, Ψ̄→ Ψ̄ei

2π
3 γ0 ,

(34)

C2x : kx → kx, ky → −ky, Ψ→ α0η3ρ1γ2Ψ,

Ψ̄→ −Ψ̄α0η3ρ1γ2, (35)
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Charge 2e−

pairing

operators

Anti-commuting

QFH orders
Physical significance

Ol00vt,j QMVH, QSH

O100
vt,j : spin-singlet, A1, PDW pairing; (C+

3 , C+
2x, C+

2y, C+
2 )

O200
vt,j : spin-singlet, B1, PDW pairing; (C+

3 , C+
2x, C−2y, C−2 )

O300
vt,j : spin-singlet, A2, BCS pairing; (C+

3 , C−2x, C−2y, C+
2 )

O0l0
mt,j QVH, QSH

O010
mt,j : spin-singlet, B2, MPDW pairing; (C+

3 , C−2x, C+
2y, C−2 )

O020
mt,j : spin-singlet, A1, MPDW pairing; (C+

3 , C+
2x, C+

2y, C+
2 )

O030
mt,j : spin-singlet, A1, BCS pairing; ; (C+

3 , C+
2x, C+

2y, C+
2 )

O00l
st,j QVH, QMVH O00l

st,j : spin-triplet, B2, BCS pairing; (C+
3 , C−2x, C+

2y, C−2 )

TABLE I: List of pairing mass terms [defined by Eqs. 27-29 ] that anti-commute with the three types of quantum
flavor Hall (QFH) orders [defined by Eqs. 24 - 26 ] for twisted bilayer-graphene (TBLG with N = 2). They describe
relevant competing charge 2e− orders of QFH insulators in the vicinity of charge neutrality (ν = 0). The physical
significance of pairing mass terms with j = 1, 2, and l = 1, 2, 3, and the corresponding irreducible representation
under point group D6 are identified. Acronyms used for pairing masses are: PDW – intra-valley, inter-mini-valley,
pair-density waves with large center of mass momentum, MPDW – inter-valley, intra-mini-valley, Moíre pair-density
waves, with small center of mass momentum, and BCS – inter-valley, inter-mini-valley, zero center of mass
momentum pairing. All pairing masses in this table preserve three-fold rotation symmetry and C+

i (C−i ) denotes
whether a discrete symmetry (Ci) of D6 point group is preserved (broken) [see Eqs. 34-37 ]. For each QFH order,
there are six competing charge 2e− bilinears, which describe a basis for addressing residual SO(6) = SU(4)/Z2

flavor symmetry. Since the skyrmion textures of QFH orders do not break flavor symmetry and carries charge 4e−,
all six pairing bilinears and flavor symmetry preserving charge 4e− pairing will exist inside the skyrmion core as
fluctuating orders. With a suitable gauge choice for pairing amplitudes, the six pairing mass terms and the QFH
orders can be combined into a nonuple or nine-component vector field for an unbiased description of competing
orders, leading to U(1)× SO(9) = U(1)× USp(8)/Z2 non-linear sigma models [see Eq. 33 ].

C2y : kx → −kx, ky → ky, Ψ→ α3η1ρ0γ1Ψ,

Ψ̄→ Ψ̄α3η1ρ0γ1, (36)

C2 : kx → −kx, ky → ky, Ψ→ α3η2ρ1γ0Ψ,

Ψ̄→ −Ψ̄α3η2ρ1γ0,

(37)

with k± = kx ± iky. By construction, all pairing mass
terms transform as rotational scalars. Based on the
transformation properties under C2x, C2y, and C2, the
mass terms will follow A1, A2, B1 and B2 representa-
tions of D6, as summarized in Table I.

VI. ’t HOOFT VERTEX AND PAIRING AT ν = 0

Now we construct the SU(4N) flavor-symmetry-
preserving effective TV for MLG and TBLG in the vicin-
ity of quantum phase transitions, where we can consider
a dilute gas of hedgehogs due to the divergent correla-
tion length. Therefore, the overlap between widely sepa-
rated zero-modes provides a clear idea about the nature
of competing orders, arising from the condensation of
skyrmions.

Since a strength l (anti-)hedgehog leads to 2N |l| zero-

modes in the (annihilation) creation channel, we antic-
ipate a (anti-)hedgehog creation operator will be cou-
pled to 2N |l| number of fermion (annihilation) creation
operators. The calculation of such effective TV can be
performed by following Refs.17,51,53 It is crucial to av-
erage over the arbitrary orientations of hedgehogs for
a disordered or para-magnetic phase. The eigenfunc-
tion of arbitrarily oriented and radial hedgehogs are
related by SU(2) rotations ψ(n̂, φ) = U†ψ(x̂), where
U = ±eiφ/2n̂·σ, such that n̂ ·σ = U†x̂ ·σU . Since higher-l
hedgehogs will have lower probability, we will only con-
sider TV due to l = ±1 hedgehogs.

After performing the integral over SU(2) group, the
two-fermion, TV for MLG with N = 1 becomes

Y = y

∫
d3kf2(k)k2εij [ψTi (−k)ψj(k) + ψ̄i(k)ψ̄Tj (−k)],

(38)
where y is the fugacity of l = ±1 hedgehogs, i, j ∈ {R,L},
and ψT and ψ̄T have γ1⊗σ2 absorbed by definition. The

form factor f(k) = 4
√
2πm5/2

(k2+m2)2 is the Fourier transform

of f(r) =
√
|m|3
2π e−|m|r. The TV describes frequency-

momentum dependent charge 2e− bilinear in the spin-
singlet, s-wave pairing channel. Due to the exponentially
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localized behavior of zero-mode eigenfunctions, f(k) ex-
hibits short-ranged behavior. Since the minimal hedge-
hogs induce charge 2e− pairing mass, the use of level-
1 SO(5) WZW theory for describing competing orders
is justified. The charge 4e− pairing for MLG is associ-
ated with condensation of skyrmions with Wsk = ±2,
which can only take place through interactions between
fermions and double hedgehogs. However, on a very gen-
eral ground we expect the fugacity (or probability) of
double hedgehogs to be suppressed in comparison with
single hedgehogs. Therefore, the charge 2e− (4e−) pair-
ing is (not) a natural candidate for MLG.

For TBLG with N = 2, the calculation of quartic TV
due to four degenerate zero-modes of minimal hedgehogs
requires some algebraic manipulations. The final result
is given by

Y =y

∫
d3k1

∫
d3k2|f(k1)|2|f(k2)|2k21k22

εijkl[ψTi (−k1)ψj(k1)ψTk (−k2)ψl(k2) + h.c.],

(39)

where i, j ∈ {R1, R2, L1, L2} and ψT and ψ̄T have γ1⊗σ2
absorbed by definition. The quartic, TV describes spin-
singlet, composite, charge 4e− paired state that preserves
SU(4) symmetry in the combined valley and mini-valley
space (enforced by εijkl). Obviously, such a phase can-
not be described by fermion bilinears. Similar conclu-
sions can be drawn for the quantum-disordered QVH
and QMVH phases. In summary, hedgehogs only break
U(1) symmetry and induce pairing, without breaking fla-
vor symmetry. Therefore, quantum-disordering of all
three types of QFH orders at ν = 0 (or in its imme-
diate vicinity) naturally gives rise to the same charge
4e− superconductivity, which preserves full SU(8) flavor
symmetry and only breaks U(1) (total number) symme-
try down to Z4.

In order to realize charge 2e− states for N ≥ 2, the
SU(2N) symmetry must be broken spontaneously or
through additional mechanism. In contrast to the long-
range tail of Coulomb interactions, the generic short-
range interactions do not respect flavor symmetry, in-
herited from the valley/mini-valley degrees of freedom.
Thus, the precise nature of charge 2e− ground state will
depend on many non-universal details of short-range in-
teractions. For TBLG, the charge 2e− ground state se-
lects one (or a linear combination) out of the six possi-
ble pairing mass orders. For quantum disordered QSH
phase, this corresponds to a pattern of FSB SO(6) =
SU(4)

Z2
→ SO(5) = USp(4)

Z2
, which leads to five Goldstone

modes from the combined valley and mini-valley SU(4)
space. In contrast to this, the flavor symmetry preserving
charge 4e− state does not lead to Goldstone modes from
the SU(4) flavor space. From the stand-point of charge
2e− operators, the charge 4e− state corresponds to the
quantum-disordered phase of SO(6) sigma model fields
Φ = (Φvt,1,Φmt,2). In this phase, charge 2e− pairing
fields can have non-vanishing amplitude, i.e., |Φ| = Φ0.

FIG. 2: Summary of the main results for twisted
bi-layer graphene (TBLG with N = 2), with correlated
insulator at ν = 0 being described by the quantum spin
Hall (QSH) order. The most favorable paired state at
ν = 0 or its immediate vicinity is a SU(8) flavor
symmetry preserving charge 4e− phase. Inside the
superconducting state, the SO(6) = SU(4)/Z2

symmetry in the combined valley and mini-valley space
can be spontaneously broken down to SO(5)
= USp(4)/Z2, giving rise to charge 2e− BCS, or
pair-density-waves, or Moíre-pair-density waves [see
Table I], and five Goldstone modes. The other two types
of quantum flavor Hall orders support the same charge
4e− state. But the fragmentation of 4e− state through
spontaneous symmetry breaking will involve charge 2e−

spin-singlet and spin-triplet pairings. Whether the
charge 4e− or 2e− states are realized can be detected
from the presence of hc/4e or hc/2e vortices.

But they do not exhibit global long-range order, i.e.,

〈Φ(x1) ·Φ(x2)〉 ∼ e−(|x1−x2|)/ξ, (40)

where ξ is the correlation length of charge 2e− pairing
fields.

This structure of SO(6) flavor symmetry remains in-
tact even in the presence of finite carrier densities (or a
chemical potential E0). Within a mean-field description,
if we consider uniform amplitudes of various components
of nonupole L = (Ω0,Φ0) [see Eq. 33 ], the fermion spec-
tra will be given by

E(k) = ±[(

√
k2 + Ω2

0 ± E0)2 + Φ2
0]1/2. (41)

where ±E0 describe the asymmetry between conduc-
tion (-) and valence bands (+). At charge neutrality,
due to the symmetry between conduction and valence
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FIG. 3: The degeneracy of fermion zero-modes,
localized on hedgehog configurations of quantum spin
Hall order parameter and the nature of paired state.
Here, E1, E2 and E3 represent three different types of
flavor symmetry breaking chemical potentials.

bands the spectral gap at Dirac points is determined by

2|L| = 2
√

Ω2
0 + Φ2

0. Away from the charge neutrality,

the spectral gap at the Fermi surfaces from conduction
or hole type carriers is controlled by 2|Φ0|. Therefore,
the quantum-disordering of Φ(x) and charge 4e− pairing
also remain valid for the metallic phase in the vicinity of
ν = 0.

For quantum-disordered QVH and QMVH states, we
can provide similar arguments. For example, for the
quantum-disordered QVH state, the SO(6) vector Φ con-
structed from spin-triplet B2 pairings, spin-singlet A1

BCS pairing, spin-singlet A1 and B2 MPDW pairings
(using Table I ) captures competition between spin- sin-
glet and triplet pairing channels. When Φ has a non-
vanishing amplitude but lacks global long-range order,
the same charge 4e− phase is realized. Our main predic-
tions for pairing in the vicinity of ν = 0 are summarized
in Fig. 2.

VII. EFFECTS OF
FLAVOR-SYMMETRY-BREAKING AT ν 6= 0

The FSB by high-temperature orders can also be in-
strumental in selecting charge 2e− states in the vicin-
ity of ν = ±2,±3. For example, we can consider fla-
vor dependent chemical potentials, which shift various
Weyl points to different reference energies. Such chemi-
cal potentials couple to the flavor-density operators and
reduce the strength of σfxy from being 2N to N or lower.
The experimental data of Refs. 32,33 indeed suggest the
presence of FSB chemical potentials, which can cause re-
vival of Weyl points, in the vicinity of Fermi level. For
TBLG, in addition to the conventional chemical poten-
tial (E0) for the total number operator, we can consider
three types of spin-singlet, chemical potentials (Ej with
j = 1, 2, 3) in the valley and mini-valley space. When
E0 = ±Ej , the degeneracy of zero-modes is reduced to 2.

FIG. 4: Summary of the main results for mono-layer
graphene (MLG) at charge neutrality and the twisted
bi-layer graphene in the vicinity of ν = ±2,±3, if the
correlated insulating states are described by quantum
spin Hall order. The presence of flavor symmetry
breaking, high temperature order described by flavor
chemical potentials in TBLG give rise to N = 1 type
low-energy Dirac theories. As discussed in Sec. VII and
illustrated in Fig. 3, the form of charge 2e− pairing is
determined by the type of flavor chemical potentials. If
the correlated insulator is described by quantum valley
or mini-valley Hall orders, the charge 2e− spin-triplet
BCS type pairing become important.

As illustrated in Fig. 3, depending on the explicit nature
of FSB chemical potentials, charge 2e− BCS (zero cen-
ter of mass momentum), pair-density-waves/PDW (large
center of mass momentum or short wavelength modula-
tions), and Moíre pair-density-waves/MPDW (small cen-
ter of mass momentum or long wavelength modulations)
states can be realized by destroying QSH order. Very
similar considerations for QVH and QMVH orders show
the possibilities of realizing spin-singlet and spin-triplet,
charge 2e− states in BCS and pair-density-wave channels.
Since SU(4) flavor symmetry is already reduced to SU(2)
by high-temperature order, the pairing due to skyrmion
condensation does not give rise to additional Goldstone
modes from flavor space. The situation is similar to the
MLG case, which is summarized in Fig. 4.

VIII. OUTLOOK

Our work provides a non-perturbative framework for
understanding the competing ground states of TBLG in
the vicinity of ν = 0. We have predicted the possibility
of realizing charge 4e− pairing in the proximity of charge
neutral point due to the condensation of skyrmion tex-
tures of QSH, QVH, or QMVH orders. While charge 4e−
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state shows SU(8)×Z4 flavor symmetry, the charge 2e−

states exhibit SU(2) × USp(4) × Z2 symmetry. These
states can be distinguished by identifying Goldstone
modes and performing Josephson junction type experi-
ments. While the genuine two dimensionality of TBLG
does not allow for bulk scattering experiments, the col-
lective modes can in principle be identified by studying
elastic properties under applied strain. The simplest di-
agnosis of charge 4e− vs. charge 2e− states by studying
the flux quantization rule (hc/4e vs. hc/2e vortices) is
within the reach of current experiments.

On the technical front, we have described the mech-
anism of skyrmion condensation inside the quantum-
disordered or para-magnetic phase of non-linear sigma
models by studying the interactions between fermions
and hedgehogs. The analysis of fermion-hedgehog in-
teractions has not been presented in other closely re-
lated works, which have considered topological pairing
mechanism for twisted bilayer graphene. In Ref. 45, only
two out six competing charge 2e− orders (spin-singlet
A1 and A2 ) were identified as potential competing or-
ders of quantum spin Hall phase, and it was suggested
that the charge 2e− pairing could occur through con-
densation of merons (half-skyrmions with winding num-
bers Wsk/2). Our analysis shows that the skyrmions
(merons) of TBLG will support electric charge 4e− (2e−)
and SO(6) structure of flavor symmetry. Thus, the nu-
cleation of charge 2e− paired state must address SO(6)
symmetry breaking, irrespective of the meron or the
skyrmion condensation. The numerical simulations of
microscopic models can provide further guidance on this
intriguing issue of proximate, competing orders. But one
must be careful with non-universal details of microscopic
short range interactions and ungainly details of band-
structures.

The structure of flavor symmetry and the mecha-
nism of skyrmion condensation identify dual relation-
ship between particle-hole orders and particle-particle or-
ders. Can such duality be addressed by experiments?
There are growing experimental and theoretical evidence
in favor of QFH order at various integer filling frac-
tions.23–35,64–68 However, the precise nature of QFH or-
der for all commensurate filling fractions are still un-
known due to the lack of experimental evidence of collec-
tive modes. In Ref. 26,27,34, correlated insulating states
(except at ν = 0) were suppressed in favor of paired
states by using metallic screening layer. Furthermore,
the application of small out of plane magnetic field caused

reappearance of insulating states. These experiments do
emphasize close competition between insulating and su-
perconducting states, which would be consistent with the
duality between particle-hole orders and particle-particle
orders. The screening of Coulomb interactions is a mi-
croscopic tuning mechanism for destroying global long-
range order in particle-hole channel. Within our effective
theory, the disordering of quantum flavor Hall type or-
der implies the proliferation or condensation of hedgehog
type tunneling events. Since the hedgehog creation oper-
ator is directly related to the violation of fermion number
conservation law, we do anticipate superconductivity.

However, to establish any precise notion of duality,
one must address the collective modes which cause ro-
tations between particle-hole and particle-particle orders.
Such operators correspond to additional fermion bilinears
from pairing channels (non-mass operators). These are
the analogs of π-resonance modes in neutron scattering,
proposed by Demler et al. 69 within the framework of
SO(5) theory of competition between spin-triplet, anti-
ferromagnetism and spin-singlet, d-wave superconductiv-
ity. For SO(5) theory, the π-modes correspond to spin-
triplet pairing operators and the number of such spinful,
charged modes is 6. Away from ν = 0, various SO(5)
theories of competing particle-hole and pairing orders
support similar π-modes. Depending on the details of
theories π-modes can be spin-singlet or spin-triplet oper-
ators. For TBLG at charge neutrality, the total number
of π-modes (say rotating spin-triplet QSH to six, com-
plex, spin-singlet, pairing mass terms) is 36 and they
correspond to different types of spin-triplet pairing oper-
ators. Detailed proposals for measuring collective modes
and how they affect states inside the vortex core will be
considered in a future work. We strongly believe that
the identification of charge 4e− pairing will provide com-
pelling evidence of topological pairing mechanism and
duality.
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