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We derive the microscopic spin Hamiltonian for rhombohedral CrI3 using extensive first-principles density
functional theory (DFT) calculations which incorporate spin-orbit coupling and Hubbard U . Our calculations
indicate a dominant nearest-neighbor ferromagnetic Heisenberg exchange with weaker further-neighbor Heisen-
berg terms. In addition, we find a Dzyaloshinskii-Moriya interaction which primarily drives a topological gap
in the spin-wave spectrum at the Dirac point, and uncover a non-negligible antiferromagnetic Kitaev coupling
between the S = 3/2 Cr moments. The out-of-plane magnetic moment is stabilized by weak symmetric bond-
dependent terms and a local single-ion anisotropy. Using linear spin wave theory, we find that our exchange
parameters are in reasonably good agreement with inelastic neutron scattering (INS) experiments. Employing
classical Monte Carlo simulations, we study the magnetic phase transition temperature Tc and its evolution with
an applied in-plane magnetic field. We further demonstrate how future high-resolution INS experiments on the
magnon dispersion of single crystals in an in-plane magnetic field may be used to quantitatively extract the
strength of the antiferromagnetic Kitaev exchange coupling.

I. INTRODUCTION

Two-dimensional (2D) magnetic systems are attracting
considerable research interest in the condensed matter com-
munity due to their ability to display unusual magnetic, elec-
tronic, and topological properties. With the potential to realize
strong coupling between magnetism and electronic or optical
properties, 2D magnetic systems are also well suited to ex-
plore magneto-optical, magneto-transport, magneto-electric,
or topological applications [1–5]. Yet, the formation of mag-
netic long-range order in 2D systems is often inhibited by the
presence of thermal fluctuations, according to the Mermin-
Wagner theorem [6]. In the attempt to evade the Mermin-
Wagner theorem and stabilize magnetic long-range order in
2D systems, several avenues have been explored. Such ideas
include defect engineering via vacancies or adatoms in 2D
MoS2 or graphene [7–9], doping with magnetic atoms [10],
or placing the 2D system in proximity of a ferromagnet [4].
However, a more intrinsic effect – the presence of magnetic
anisotropies which are induced by spin-orbit coupling – can
also help overcome the effect of thermal fluctuations and lead
to magnetic long-range order in 2D systems. In this con-
text, the discovery of magnetically ordered configurations in
the few-layer limits of cleavable van der Waals (vdW) sys-
tems, such as CrX3 (X=Cl,Br,I) [11–13], Cr2Ge2Te6 [14], and
FePS3 [15] has stirred particular excitement. For CrI3, ferro-
magnetic ordering can persist even in a monolayer with order-
ing temperature of 45 K [16].

Bulk CrI3 has been reported to crystallize in a layered
vdW structure and shows ferromagnetic ordering with Tc =
61 K [17]. Further, a strong out-of-plane anisotropy has been
observed with a band gap of 1.2 eV [13]. The increased Tc for
CrI3 when compared to CrCl3 or CrBr3 further highlights the
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important role of the halogen ligands in magnetism. Heavy
halogens, like iodine, can provide a strong spin-orbit cou-
pling (SOC) and magnetocrystalline anisotropy in the system.
In combination with strong SOC from the ligand iodine atoms,
the graphene-like honeycomb network that is formed by the
magnetic Cr atoms also holds the potential to give rise to topo-
logical electronic and magnetic properties. In fact, recent in-
elastic neutron scattering (INS) experiments on CrI3 revealed
a energy gap of 2.8 meV in the spin wave spectrum at the
Dirac point (‘K’-point), suggesting the possibility of nontriv-
ial band topology [17, 18]. Several theoretical models have
been proposed to fit the experimentally observed spin gap.
One possible scenario is that DzyaloshinskiiMoriya (DM) in-
teractions are responsible for opening up the gap, leading to a
Haldane-like model for spin excitations that supports magnon
Chern bands [17–19]. Alternatively, it has also been suggested
that a dominant Kitaev interaction can give rise to a gap at the
Dirac point and may plausibly explain experimental data [18–
20]. In view of these competing proposals, the origin of the
gap in the spin wave spectrum of CrI3 remains an open issue.
It is thus important to carry out first-principles calculations
to distinguish between these two scenarios for the exchange
Hamiltonian for CrI3.

To understand the mechanism that drives the formation of
the spin gap, we employ density functional theory (DFT) cal-
culations to systematically investigate the electronic structure
of CrI3 and directly extract effective in-plane and interlayer
spin exchange interactions. This is in contrast to previous
work which has used perturbation theory [21] or a Hartree-
Fock approach [22] to study an effective tight-binding model
with interactions and SOC for monolayer CrI3. In a sub-
sequent step, we perform Monte Carlo simulations to study
the thermodynamic properties of our effective spin model
and demonstrate that it can realistically capture the mag-
netic ordering transition, which was observed experimentally.
In addition, we also discuss the thermodynamic properties
and magnon spectrum in the presence of an in-plane mag-
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netic field. We show that our model (see Eqs. (1) and (2),
and Table I), which is derived from first-principles calcula-
tions, reproduces essential features of the magnon spectrum
that are known from INS experiments. Finally, we demon-
strate that in the presence of a large in-plane magnetic field,
the momentum-dependent anisotropies of the magnon gaps
at various high symmetry points directly reflect the bond-
directional Kitaev interaction in CrI3 which can thus be ex-
tracted using high resolution INS experiments.

The manuscript is organized as follows. In Sec. II, we
briefly outline the crystal structure of CrI3. Sec. III is devoted
to a detailed discussion of our first-principles DFT calcula-
tions for the electronic structure and the subsequent derivation
of effective magnetic exchange interactions. We then discuss
the thermodynamic properties and the spin wave spectrum of
our effective spin model in Sec. IV and discuss its relevance
to experimental data. Finally, we summarize our findings in
Sec. V.

II. CRYSTAL STRUCTURE OF CrI3

CrI3 crystallizes in rhombohedral R3̄ (space group 148)
structure with the lattice parameters a = b = 6.867 Å and
c = 19.807 Å [13]. The edge sharing CrI6 octahedral net-
work is oriented in the ab-plane, forming a layered structure.
Multiple layers are stacked along the c-axis to form the three-
dimensional crystal structure shown in Fig. 1a. Within each
layer, the Cr-Cr nearest neighbor bonds form a honeycomb
lattice illustrated in Fig. 1b. In each CrI6 octahedron, the Cr-I
bond lengths are equal, yet the bond angles ∠(Cr-I-Cr) and
∠(I-Cr-I) slightly deviate from an ideal octahedral structure;
the average Cr-I bond length, as well as the bond angles, are
displayed in Fig. 1c. This slight distortion of the octahedral
network is expected to affect the crystal-field splitting as we
shall discuss below.

III. DENSITY FUNCTIONAL THEORY CALCULATIONS

To analyze the nature of magnetism in CrI3, we perform
electronic structure calculations. The first-principles den-
sity functional theory (DFT) calculations are performed using
the plane-wave based projector augmented wave (PAW) [23]
method as implemented in the Vienna ab initio simulation
package (VASP) [24]. Exchange and correlation effects are
treated within the generalized gradient approximation (GGA)
of Perdew-Burke-Ernzerhof [25]. To account for the effect
of strong electron-electron correlation at the magnetic Cr
ion, the missing correlation beyond GGA is taken into ac-
count through supplemented Hubbard U (GGA+U ) calcula-
tions [26]. For the Hubbard U we chose typical values for 3D
transition metal oxides; the results reported here are obtained
for U(Cr) = 2.7 eV with Hunds coupling JH = 0.7 eV.
The kinetic energy cutoff of the plane wave basis is chosen as
500 eV and a Γ-centered 9 × 9 × 3 momentum-space mesh
is used for the Brillouin zone integration. The energy conver-
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FIG. 1. Crystal structure of CrI3. (a) Lattice unit cell comprising
of three vdW layers stacked along the c-direction. Cr and I atoms
are colored red and brown, respectively. (b) Honeycomb network of
Cr-Cr atoms within each layer. J1, J2, and J3 indicate Cr-Cr first,
second, and third-nearest neighbor exchange paths. (c) Geometry of
edge-sharing CrI6 octahedra.

gence criterion was set to 10−6 eV during the energy mini-
mization process of the self-consistent cycle.

The on-site energies of the Cr-d states are obtained from
the muffin-tin orbital (MTO) based N th order MTO (NMTO)
method as implemented in the Stuttgart code [27–29]. We
supply self-consistent potentials from the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the NMTO calcu-
lations [30]. Space filling in the self-consistent TB-LMTO
calculations within the atomic sphere approximation (ASA) is
achieved by choosing muffin-tin radii for the Cr and I atoms
to be 1.46 Å and 1.64 Å, respectively.

Ultimately, we extract various exchange interactions for
an effective spin model by employing the four-state method,
where the required total energies for various magnetic config-
urations are calculated using VASP [31–33].

A. Non-spin-polarized electronic structure

The nominal ionic formula for CrI3 is Cr3+(I−)3, where
the Cr3+ ion is in the d3 electronic configuration. Due to the
formation of an octahedral network by the Cr and I ligand
ions, the crystal field is expected to split the Cr-d states into
their t2g and eg manifolds. A small monoclinic distortion of
the octahedral network, as illustrated in Fig. 1c, further lifts
the threefold degeneracy of the t2g states.

In order to verify this qualitative picture and gain more
quantitative insight, we compute the non-spin polarized total
density of states (DOS) as well as the partial DOS for Cr-
d and ligand I-p states. As depicted in Fig. 2a, the partial
DOS of the Cr-d states shows a dominant contribution of the
t2g manifold at the Fermi energy (Ef ) that is hybridized with
the ligands; in contrast, the eg states, which are strongly hy-
bridized with the ligands, are completely depleted. The t2g
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FIG. 2. Density of states in CrI3. The Fermi energy is defined as
the zero energy axis. (a) Total DOS as well as partial DOS of the
Cr-d and I-p states for non-spin-polarized calculations. (b) Total and
partial spin-polarized DOS. The arrows indicate the spin-up and spin-
down channels.

states are half filled, which is consistent with the nominal
ionic formula and lead to a metallic system. Our calculated
value of the t2g-eg splitting is 1.4 eV and the bandwidth of
t2g states is 0.65 eV. Consequently, we retain only the Cr-
d orbitals in the computational basis and downfold all other
orbitals using the NMTO downfolding method. Diagonal-
ization of the on-site block of the corresponding real-space
Hamiltonian then yields the information of crystal field split-
ting. The energy eigenvalues for the Cr-d states are found to
be −3.084, −3.061, and −3.061 eV for the t2g states, as well
as −1.662 and −1.662 eV for the eg states. Here, it becomes
clear that the degeneracy of the t2g levels is indeed lifted as
a consequence of the monoclinic distortion of the octahedral
network. These distortions along with spin-orbit coupling will
be crucial for the emergence of a single-ion anisotropy term
and symmetric off-diagonal Γ-interactions in the model spin
Hamiltonian.

B. Magnetism and isotropic exchange interactions

Our goal is to incorporate the effects of magnetism in our
model; therefore, we employ spin-polarized calculations us-
ing GGA. Here, the ferromagnetic (FM) configuration of Cr
atoms has been considered. Our results for the total DOS as
well as the partial DOS of the constituent atoms are displayed
in Fig. 2b. Within GGA, the DOS exhibits insulating behav-
ior with fully occupied Cr-t2g states in the spin-up channel,
whereas Cr-t2g states in the spin-down channel are fully de-
pleted. This filling is consistent with the d3 electronic con-
figuration of the Cr3+ ion. The DOS reveals a band gap of
0.98 eV and the magnetic moment per Cr site is calculated to
be 3.0 µB . The exchange splitting energy is found to be ap-
proximately 3 eV, which is much greater than the crystal-field
splitting.

In the next step of refining our computation, we incorpo-
rate on-site Coulomb interaction and carry out GGA+U cal-
culations. In the FM configuration, within GGA+U method,

the calculated magnetic moment is 3.0 µB and the band gap is
found to be 1.2 eV. Both, the value of the magnetic moment
and of the correlation induced gap, are in agreement with data
reported in Ref. [13]. To identify the electronic ground state,
besides the FM configuration, we have considered additional
possible magnetic configurations within the unit cell as fol-
lows: (i) intra-layer FM in combination with inter-layer an-
tiferromagnetic (AFM) configuration of Cr spins, and (ii) si-
multaneous intra-layer and inter-layer AFM configuration of
Cr spins. Our total energy calculations reveal that among
those three configurations the FM configuration has the lowest
energy.

In order to determine the effective symmetric Heisenberg
magnetic exchange interaction between the Cr atoms, we em-
ploy the four state method, which allows us to extract the ex-
change constant based on the energies of four distinct spin
configurations [31, 32]. For a particular pair of Cr ions, which
we refer to as i and j, we consider the following spin config-
urations: (i) spin up at site i and spin up site j, (ii) spin up
at site i and spin down at site j, (iii) spin down at site i and
spin up at site j, and (iv) spin down at site i and spin down
at site j. In every one of the four configurations, we keep the
spin of all other Cr sites fixed. In the following, we assume a
Heisenberg spin Hamiltonian of the form H =

∑
ij JijSiSj ,

where the sum runs over arbitrary pairs of Cr ions i and j;
in practice, however, we constrain the sum to only include
terms up to third-nearest neighbor sites. Note that in our no-
tation Jij < 0 amounts to FM coupling and Jij > 0 indicates
AFM interaction. Using VASP, we calculate the energies E1,
E2, E3 and E4, respectively, for the four spin configurations
(i)–(iv). The exchange interaction Jij is then calculated as
Jij = (E1 − E2 − E3 + E4)/4S2, where S=3/2 for Cr3+.

We compute several different Heisenberg exchange con-
stants, three of which are within the honeycomb plane.
We consider nearest neighbor interaction J1, second-nearest
neighbor interaction J2, and third-nearest neighbor interac-
tion J3; in addition, we compute the three distinct inter-layer
exchanges Jc1, Jc2, and Jc3. See Fig. 1b for the definition of
in-plane couplings and Fig. 3c for the inter-plane couplings.
Our calculations reveal strongly FM intra-layer interaction
J1 = −2.9 meV and a weaker AFM inter-layer exchange
Jc1 = 0.1 meV, as well as FM exchanges Jc2 = −0.15 meV
and Jc3 = −0.22 meV. The further neighbor in-plane in-
teractions are found to be FM J2 = −0.3 meV and AFM
J3 = 0.2 meV. These calculated parameters are consistent
with the findings in previous INS studies [19]. The FM nature
of the dominant NN exchange interaction J1 can further be
inferred from the superexchange mechanism between the Cr
sites, as the dominant Cr-I-Cr exchange paths form an angle
of approximately 90◦ (see Fig. 1c).

C. Effect of spin orbit coupling

The large atomic mass of iodine indicates that the inclusion
of SOC in our first-principles calculations is important to cor-
rectly predict the magnetic properties of CrI3. Upon including
SOC, our calculations show that the FM order in the system
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TABLE I. Exchange constants for the microscopic model of CrI3
obtained from our ab initio calculations (DFT) as detailed in Sec. III,
as well as experimental values extracted from inelastic neutron scat-
tering (INS) data in Ref. [18]. A dash signals that the respective
parameter has not been included in the modeling of the experimental
data. All exchange constants are given in units of meV.

DFT INS
J1 −2.70 −2.11

J2 −0.30 −0.11

J3 0.24 0.10

K 0.60 –
Γ −0.12 –
D 0.22 0.17

A −0.13 −0.12

Jc1 0.09 0.05

Jc2 −0.15 −0.07

Jc3 −0.22 −0.07

is further stabilized, and the total energy is further lowered.
The total magnetic moment is calculated to be 3.0 µB per Cr
ion. In addition, the Cr ions also gain a substantial orbital
magnetic moment of 0.07 µB , indicating the strong effect of
SOC. Unlike our previous calculations in the absence of SOC,
we now find that there is an anisotropy in the FM alignment,
which we quantify via the anisotropy energy Eaniso that is
defined as the difference between the energy of the in-plane
FM configuration and that of the out-of-plane configuration.
For CrI3, we find that Eaniso = 0.3 meV per Cr ion. Con-
sequently, magnetic moments are predicted to favor an out-
of-plane FM alignment, which is in agreement with reported
results [13, 19].

Capturing the anisotropy in the magnetic configuration re-
quires a more complicated effective spin model, which goes
beyond simple Heisenberg interactions. We therefore assume
the generalized symmetry-allowed microscopic spin Hamilto-
nian of the form H =

∑
ij,αβ J

αβ
ij S

α
i S

β
j , where the Cr ions

on sites i and j can now couple through arbitrary components
α, β = x, y, z of the S = 3/2 spin operators. The gener-
alized 3 × 3 interaction matrices Jαβij are often expressed in
terms of Heisenberg interaction J , Kitaev interactionK, sym-
metric off-diagonal Γ-interaction, and Dzyaloshinskii-Moriya
interaction D; furthermore, we consider a local magnetic
anisotropy A. The explicit form of the effective spin Hamil-
tonian, where we retain terms up to third-nearest neighbors, is
discussed in the following Sec. IV.

We calculate all relevant exchange interactions for our ef-
fective model using the four-state method and choosing ap-
propriate spin configurations [33]. By far the most dominant
energy scale in the system is set by the FM nearest neigh-
bor Heisenberg interaction J1 = −2.7 meV. All remaining
exchange couplings are found to be significantly smaller; the
complete set of exchange constants is listed in Table I. Gen-
erally, the isotropic Heisenberg terms compare well with our
previous estimate based on spin-polarized calculations in the
absence of SOC. The Kitaev interaction is found to be smaller

than J1, and it is antiferromagnetic; this suggests the impor-
tant role of SOC on iodine. In addition, the Γ-interaction and
local magnetic anisotropy A, which arise from the distortion
of the CrI6 octahedra and SOC, ensure that the FM ground
state configuration is oriented perpendicular to the honeycomb
planes. We however note that while the anisotropic interaction
constants are nonzero, and important to ensure a nonzero Tc
in the CrI3 monolayer, their magnitudes are small and there-
fore subject to some numerical uncertainty. While the sta-
bility of FM correlations is set by the dominant energy scale
J1 and is expected to be numerically sound, the pinning of
magnetic moments to the out-of-plane direction is set by sub-
leading energy scales Γ and A. Interestingly, we find that the
nearest neighbor inter-layer Heisenberg exchange interaction
is antiferromagnetic while the next-nearest neighbor interac-
tion between adjacent layers is ferromagnetic. This is in good
agreement with experimental values extracted from inelastic
neutron scattering (INS) data in Ref. [18].

Among the two possible exchange paths t2g-t2g and eg-t2g
mediated by the ligands, the bond dependent antiferromag-
netic (AFM) Kitaev interaction obtained in our calculations
suggest the importance of the latter path as shown recently
using a perturbative calculation on a tight-binding model [21].
The eg-t2g path is promoted by the I ligands in the distorted
octahedra subject to strong SOC, where the I p-states strongly
hybridize with the eg states of Cr. However, the antiferro-
magnetic Kitaev exchange K/J ∼0.2, which we obtain from
our ab initio calculations, is significantly larger than the previ-
ously estimated value K/J ∼ 0.01 using perturbation theory.
The difference may stem from the estimate of the on-site ener-
gies and hopping parameters employed in Ref. [21], which can
impact the balance between competing pathways with oppo-
site signs for the Kitaev interaction. The relative importance
of these paths may be tailored either by application of strain or
uniaxial pressure [34] leading to the possibility of enhancing
the Kitaev interaction and the emergence of exotic competing
phases. Our estimate for K is a factor-of-two smaller than
a previous Hartree-Fock study [22] based on a tight-binding
model with interactions and SOC. This previous work also
predicted a single-ion anisotropy A that is nearly an order of
magnitude larger than our calculated value, which led to an
unphysically large zone center spin gap.

In the following section, we perform a detailed analysis of
the thermodynamics and spin dynamics of our effective spin
model, both with and without the application of an external
magnetic field. Our aim is to show that we can reasonably
capture the existing experimental data, and to make predic-
tions for future INS experiments.

IV. EFFECTIVE SPIN MODEL

Informed by the properties of CrI3 that we uncovered in
our DFT calculations, our complete microscopic spin model
on a layered honeycomb lattice includes Heisenberg, Kitaev,
Γ, and Dzyaloshinskii-Moriya (DM) spin exchange, as well
as a local single-ion anisotropy. Our model is captured by the
Hamiltonian H = H‖+H⊥, which is parametrized by the set
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FIG. 3. Layered honeycomb model for CrI3. (a) Convention for in-
plane interactions: red (green, blue) bonds denote x-type (y, z-type)
bonds. Dashed arrows from site i to j indicate the orientation of DM
interactions d̂ij ·Si×Sj with d̂ij pointing in the a3 direction. (b) Cr-
atoms (black) surrounded by I-atoms (top layer dark gray, bottom
layer light gray). The local coordinate system for Kitaev-like inter-
actions is spanned by x̃, ỹ, and z̃. The laboratory frame is spanned by
x, y, and z. (c) Layering of honeycomb sheets with inter-plane cou-
plings. The yellow lines indicate inter-plane nearest neighbor cou-
pling Jc1; blue and green lines denote Jc2 and Jc3, respectively.

of exchange constants (J1,J2,J3,K,Γ,D,A,Jc1,Jc2,Jc3); the
first therm,H‖, denotes in-plane interactions while the second
therm, H⊥, resembles inter-plane exchange. The two terms
are given by

H‖ =
∑

〈i,j〉γ 6=α,β

(
J1 SiSj +K S̃γi S̃

γ
j + Γ (S̃αi S̃

β
j + S̃βi S̃

α
j )
)

+
∑
〈〈i,j〉〉

(
J2 SiSj +D d̂ij · Si × Sj

)
+
∑
〈〈〈i,j〉〉〉

J3 SiSj

+
∑
i

A Szi S
z
i (1)

and

H⊥ =
∑
〈i,j〉⊥

Jc1 SiSj +
∑
〈〈i,j〉〉⊥

Jc2 SiSj +
∑

〈〈〈i,j〉〉〉⊥

Jc3 SiSj . (2)

The first sum runs over nearest neighbor bonds of type γ =
x, y, z within the honeycomb layers, with α, β 6= γ denot-
ing the remaining two bond types. The sums over 〈〈i, j〉〉 and
〈〈〈i, j〉〉〉 run over second-nearest and third-nearest neighbors
within the honeycomb planes, respectively; similarly, sums
indicated by 〈i, j〉⊥, 〈〈i, j〉〉⊥, and 〈〈〈i, j〉〉〉⊥ run over inter-
plane nearest, second-nearest, and third-nearest neighbors;
there exists one inter-plane nearest neighbor, six inter-plane
second-nearest neighbors, and three inter-plane third-nearest
neighbors for every Cr ion. Spin operators Si = (Sxi , S

y
i , S

z
i )

represent S=3/2 moments with components in the laboratory
frame (the xyz-frame indicated in Fig. 3b). Rotated spin op-
erators S̃i = (S̃xi , S̃

y
i , S̃

z
i ) in the Kitaev and Γ interaction

terms are written in the local basis, i.e. the x̃ỹz̃-frame il-
lustrated in Fig. 3b. The (unit length) DM vectors d̂ij are
aligned in the ±z direction, with their sign structure as shown
in Fig. 3a. Note that the nearest neighbor DM interactions
vanish by symmetry, while second-nearest neighbor DM inter-
actions are allowed with an out-of-plane DM vector [17]. We
have also computed a symmetry-allowed in-plane DM term
and find it to be negligible. In the following subsections, we
study the thermal and dynamic properties of the model Hamil-
tonian. For the remainder of the manuscript, we shall focus on
the two-dimensional magnetism of the monolayer, neglecting
the inter-plane exchanges in our model Hamiltonian.

A. Magnetic phase diagram

In order to study the stability of the ferromagnetically or-
dered ground state of CrI3 in the presence of thermal fluctu-
ations, we perform classical Monte Carlo simulations of our
model Hamiltonian Eq. (1). We simulate systems of 32 × 32
unit cells (N = 2048 spins in total) with periodic boundary
conditions in the temperature range from 5 K to 80 K. The
simulation of 144 replicas at logarithmically spaced tempera-
ture points is performed in a parallel tempering scheme, which
accelerates the convergence of the simulations [35].

From the Monte Carlo simulations – based on the exchange
constants obtained in our DFT calculations – we find that
CrI3 orders ferromagnetically below a critical temperature of
T 2D
c = 40.6 K, and the magnetic moment of the ordered state

lies perpendicular to the honeycomb plane. The value of the
critical temperature is in good agreement with the transition
temperature T 2D

c,expt = 45 K that has been determined experi-
mentally for monolayer CrI3 samples [16].

Next, we investigate the thermal properties of CrI3 subject
to an external magnetic field B, which is applied within the
honeycomb planes in the [110] direction, i.e., along the arm-
chair direction of x-type bonds, see the geometry illustrated
in Figs. 3a and 3b. To this end, we add a field-coupling term
HB = gµBB

∑
i n̂110Si to the Hamiltonian Eq. (1), where

n̂110 is the unit vector pointing in the [110] direction and
g = 2. The resulting phase diagram as a function of tem-
perature and magnetic field strength is summarized in Fig. 4a,
and it reveals the existence of three distinct phases: At high
temperatures, the system naturally is a thermally disordered
paramagnet. In the presence of a strong external magnetic
field, a field-polarized state manifests in which the magnetic
moment is aligned with the in-plane field with no out-of-plane
magnetization. The third phase, as discussed in the previous
paragraph, is observed when the system undergoes a phase
transition into its low-temperature ferromagnetically ordered
phase in the absence of an external field. In a nonzero in-
plane field, this phase still exhibits canted ferromagnetic or-
der, with the global magnetization no longer perpendicular to
the honeycomb plane; instead, it gradually tilts from an out-
of-plane orientation to an in-plane direction as the magnetic
field strength is increased. We refer to this canted ferromag-
netic ordered phase as FM∗ order.

At zero temperature, the critical magnetic field which drives
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FIG. 4. Phase diagram of CrI3. (a) Magnetic phase as a function
of temperature and external magnetic field B. The dashed blue line
marks a crossover from the paramagnetic state to the field-polarized
state. The solid line indicates the transition into the ferromagneti-
cally ordered state FM∗ with finite out-of-plane magnetization. The
spontaneous polarization in the FM∗ phase tilts continuously from
the out-of-plane direction to the in-plane direction as the magnetic
field is increased. The respective spin configurations are illustrated in
the insets. (b) Specific heat and magnetization as a function of tem-
perature at B = 4.3 T, as indicated by the gray line in subpanel (a).
Results are obtained in Monte Carlo simulations with model param-
eters extracted from our DFT calculations. Statistical error bars are
smaller than the line width.

the transition from the FM∗ ordered state into the field-
polarized phase is found to be B2D

c ≈ 7 T. As such, the
value exceeds the experimentally determinedB2D

c,expt = 3.5 T
approximately by a factor of two [13]. However, we empha-
size that Bc is determined only by the subleading exchange
constants Γ and A, which pin the magnetic moment along the
out-of-plane direction. Since the values of these parameters
are only approximately 5% of the leading energy scale J1
in our DFT calculations, they may be subject to sizable rel-
ative uncertainty; consequently, the numerical prediction for
the critical magnetic field should be interpreted with caution.

The global phase diagram displayed in Fig. 4a implies that
there exists a two-step ordering process for a finite window of
intermediate field strength 3 T . B . 7 T. With decreasing
temperature, the system gradually builds up a finite in-plane
magnetization m‖ = gµB

∑
i n̂110Si as the crossover into
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FIG. 5. Spin wave spectrum of the microscopic model for CrI3
with exchange constants (a) obtained from ab initio calculations and
(b) fitted to experimental inelastic neutron scattering data.

the field-polarized state is approached, see the exemplary data
for specific heat and magnetization in Fig. 4b for an external
magnetic field strength B = 4.3 T. The crossover is fur-
ther signaled by a broad maximum in the specific heat around
T = 45 K. It is noteworthy, however, that the crossover is
not associated with the buildup of any out-of-plane magne-
tization m⊥ = gµB

∑
i n̂001Si. The latter only occurs at a

lower temperature scale T = 23 K and is accompanied by
a sharper peak in the specific heat. Since the data shown in
Fig. 4b is at intermediate field strength, the magnetic moment
in the ground state configuration is neither fully aligned in-
plane nor out-of-plane, i.e., both m‖ and m⊥ assume finite
values at low temperature but do not saturate. We further men-
tion that the specific-heat signature of the lower temperature
transition into the ground state configuration changes with the
applied field strength: At low field, when the phase transition
is associated with the largest possible reconfiguration of the
magnetic moment (from fully in-plane to fully out-of-plane),
the concomitant peak in the specific heat is most distinct. At
increasing field strength, when the shift in the magnetic mo-
ment becomes smaller (i.e., the ground state magnetization is
no longer fully out-of-plane), the signature in the specific heat
is observed to gradually become less pronounced until it dis-
appears entirely above B2D

c ≈ 7 T.

B. Magnon band structure

Having explored the ground state properties of CrI3 in the
previous section, we now turn to the excitation spectrum of
the system. We perform linear spin wave calculations in or-
der to unveil magnon excitations, which may exist on top of
the ferromagnetically ordered ground state. The spin wave
calculations are performed on the two-site magnetic unit cell
depicted in Fig. 3a, resulting in two distinct magnon bands.

In a first step, we compute the spin wave spectrum for CrI3
with the exchange constants obtained from our DFT calcu-
lations. Our theoretical prediction for the spectrum repro-
duces key features that have previously been unveiled in ex-
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periments. In particular, a band gap of approximately 3.5 meV
at the Brillouin zone (BZ) corner is observed in addition to a
0.9 meV gap at the BZ center and an overall bandwidth of ap-
proximately 20 meV. These predictions compare well to the
experimental numbers for the spin gap at the BZ center, 0.3–
1 meV [17, 18, 20], and at the BZ corners, 4 meV [17]. How-
ever, deviations from the experimental data are also observed.
The detailed spectrum, which we predict based on our DFT
calculations for the exchange constants, is shown in Fig. 5a,
plotted along a high-symmetry path from the Brillouin zone
corner (K-point) via the BZ center (Γ-point), the middle of
the BZ edge (M -point), and back to the BZ corner. For refer-
ence, the spin wave spectrum that is obtained from exchange
constants fitted to best reproduce experimental inelastic neu-
tron scattering (INS) data in Ref. [18] is displayed in Fig. 5b.
Note that the data shown here is for in-plane interactions only,
i.e., we neglect the inter-plane interactions extracted from the
experiment. The direct comparison shows that the Dirac gap
at the K-points lies at slightly increased energy levels and the
upper band is significantly flattened around the BZ center. We
further address these deviations in the next subsection.

C. Comparison with experimental data

We now turn to a more detailed discussion of the differences
between the spin wave spectrum predicted from our DFT cal-
culations and the spin wave spectrum extracted from inelas-
tic neutron scattering experiments. We identify two salient
differences: (i) The predicted Dirac gap is shifted towards
higher energy levels and (ii) the upper band is significantly
flattened around the BZ center. The most direct way to tune
the overall band width – and hence the energy level at which
the Dirac gap is observed – is to alter the leading energy scale
in the model, which in our case is the nearest neighbor Heisen-
berg interaction J1. The effect of varying J1 is illustrated in
Fig. 6a, where we plot the band structure based on our DFT
calculations, but with modified exchange constant J1. While
a reduction of J1 indeed reduces the overall bandwidth and
shifts the Dirac gap down to lower energies, solely tuning the
leading energy scale does not remedy the flatness of the up-
per band. Rather, the flatness of the upper band is tied to the
next-nearest neighbor exchange coupling J2; small changes
of the latter can have a strong impact on the shape of the spin
wave spectrum, as illustrated in Fig. 6b. In fact, a reduction
from J2 = −0.3 meV to J2 = −0.1 meV already brings the
predicted spin wave spectrum much closer to the experimen-
tal findings. Such a change of less than 10% of the principal
energy scale in our model can be expected to be within the
uncertainty of DFT calculations.

Yet, in addition to the visible differences in the spin wave
spectrum, there exists a fundamental discrepancy which is
more subtle: On the one hand, DFT computations predict
a nearest neighbor antiferromagnetic Kitaev exchange con-
stant of K = 0.6 meV whereas the fit to experimental data
which includes a DM term does not incorporate Kitaev ex-
change at all. On the other hand, it is possible to fit the ex-
perimental data with an entirely different microscopic model

(b)(a)
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FIG. 6. Modified spin wave spectrum under deformed Heisenberg
interactions J1 and J2, based on our DFT calculations. (a) Nearest
neighbor interactions J1 = −2.7, −2.5, −2.3, −2.1 meV (from
light to opaque color) control the overall band width. (b) Next-
nearest neighbor interactions J2 = −0.3, −0.2, −0.1 meV (from
light to opaque color) generally lower the bands, except at the Bril-
louin zone center.

that has dominant ferromagnetic Kitaev interaction [19, 20];
apparently, the model definition is ambiguous. Assuming
ferromagnetic ground-state order, on a mean-field level, the
nearest-neighbor Heisenberg coupling J1 and the Kitaev ex-
change K contribute an energy Emf = S2(J1 + 1

3K) per
bond, where S = 3/2 is the spin length [20]. We find that,
as long as the mean-field energy scale Emf is kept constant,
it is possible to alter the relative weight of J1 and K with-
out significantly impacting the spin wave spectrum. To il-
lustrate this, we consider the microscopic model which has
been fitted to inelastic neutron scattering data and which has
exchange constants (J1,K) = (−2.11, 0.0) meV, among ad-
ditional interactions detailed in Table I. We then deform the
exchange constants (J1,K)→ (J ′1,K

′) ≡ (J1−κ,K+ 3κ),
where κ denotes the strength of the deformation, such that
the mean-field energy scale Emf is always preserved. Even
a strong deformation of κ = 1 meV, which corresponds to
(J ′1,K

′) = (−3.11, 3.0) meV, only has mild impact on the
spin wave spectrum, as depicted in Fig. 7.

We therefore conclude that it is insufficient to simply fit a
spin wave spectrum to neutron scattering data, since the fit
cannot resolve the ambiguity between the Heisenberg and Ki-
taev exchange terms. Our DFT calculations, which are com-
patible with previous first principles calculations on more re-
stricted model Hamiltonians [36], suggest that the proposal of
a Kitaev-dominated model [20] seems unlikely. In particular,
the relatively small nearest neighbor antiferromagnetic Kitaev
interaction estimated from DFT has little impact on the spin-
wave spectrum. Nonetheless, it would be desirable to be able
to probe the role of Kitaev interactions experimentally. In or-
der to uncover properties of the model that are sensitive to the
relative balance of Heisenberg and Kitaev exchange terms, we
next discuss the impact of an external magnetic field on the
spin wave spectrum.
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FIG. 8. Dirac cones in the spin wave spectrum of the INS model
parameters in the high-field regime at B = 1.5B2D

c . Spectrum is
plotted along different momentum space cuts in panels (a)–(d). The
cut directions are indicated in the insets by an arrow within the Bril-
louin zone; the spin polarization axis in reciprocal space is indicated
by the gray line.

D. Spin waves of CrI3 in a magnetic field

In this subsection, we discuss the changes which can be ob-
served in the spin wave spectrum upon applying an external
magnetic field to the model Hamiltonian Eq. (1). The starting
point for our discussion is the set of exchange constants which
are fitted to the experimental neutron scattering data, listed
in Table I. We then subject the model Hamiltonian to an in-
plane magnetic field along the armchair direction [110]. The
field-coupling term HB = gµBB

∑
i n̂110Si is added to the

model Hamiltonian in analogy to our discussion of the mag-
netic phase diagram in Sec. IV A. By setting the field strength
B = 4.8 T, which corresponds to approximately 1.5 B2D

c

(a) (b) (c) (d)

Γ K M K Γ
0

5

10

15

20

en
er

gy
[m

eV
]

Γ M ΓΓ M ΓΓ K M K Γ

INS+κ

FIG. 9. Dirac gap in the spin wave spectrum of the INS model pa-
rameters with deformed Heisenberg interaction J ′1 = J1 − κ and
Kitaev interaction K′ = K + 3κ at κ = 1 meV in the high-field
regime at B = 1.5B2D

c . Spectrum is plotted along different momen-
tum space cuts in panels (a)–(d). The cut directions are indicated in
the insets by an arrow within the Brillouin zone; the spin polarization
axis in reciprocal space is indicated by the gray line.

for this set of parameters, we ensure that the system is in its
field-polarized phase.

We reiterate that the model Hamiltonian used for these cal-
culations (i.e., with exchange constants fitted to the inelastic
neutron scattering data) does not contain any Kitaev interac-
tion; the existence of a Dirac gap in the absence of an external
magnetic field is solely due to the DM interactions. Now, with
the magnetic moment polarized in-plane – and thus perpen-
dicular to the DM vector – the DM interactions are effectively
negated and the Dirac gap closes. The gapless Dirac cones in
the spin wave spectrum are displayed in Figs. 8a and 8b for
the two symmetry inequivalent directions defined by the ex-
ternal magnetic field. For completeness we also plot the spin
wave spectrum along the two complementary high-symmetry
directions, which cross the M -points of the BZ, see Figs. 8c
and 8d. The key observation, which we point out here, is that
the six-fold rotation symmetry remains intact and that the spin
wave spectrum in the direction of all six Dirac points is equiv-
alent. Similarly, the spectrum along the directions of all six
M -points is identical.

Let us now explore the changes that manifest when the
opening of a Dirac gap is no longer exclusively due to the DM
interaction. For this purpose, we re-introduce the Heisenberg-
Kitaev deformation (J1,K)→ (J ′1,K

′) ≡ (J1−κ,K+3κ),
which was discussed in the previous subsection. Kitaev in-
teractions (in the absence of an external magnetic field) give
rise to a finite Dirac gap, but the gap remains small un-
less the Kitaev interaction becomes the dominant term in the
model [19, 20]. With the Heisenberg-Kitaev deformation in
place, for κ 6= 0, we no longer necessarily expect that the
Dirac gap closes when the system is in its field-polarized
phase. Indeed, we demonstrate in Fig. 9a an example where
for κ = 1 meV the gap remains open. However, this does
not mean that the role of Kitaev interactions in unaffected by
the magnetic field. In fact, its role is highly dependent on the
field: As pointed out in Ref. [18], in the absence of DM in-
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FIG. 10. Gap sizes at the K-points and the M -points for the INS
model parameters with deformed Heisenberg interaction J ′1 = J1−κ
and Kitaev interaction K′ = K + 3κ in the high-field regime at
B = 1.5B2D

c . The gaps at the K-points (blue lines) and M -points
(yellow lines) become anisotropic at finite κ. Solid lines corre-
spond to the momentum direction indicated in panels (a) and (c) of
Fig. 9, dashed lines correspond to the momentum direction in pan-
els (b) and (d), respectively. The gray line indicates Kitaev interac-
tion K′ = 0.6 meV, the value we find in our DFT calculations.

teractions the six-fold rotational symmetry of the Dirac points
is broken. The symmetry breaking persists also in the pres-
ence of finite DM interactions, as demonstrated in Fig. 9b; the
gap remains finite only at four of the Dirac points, while the
remaining two become gapless.

In analogy to the lifting of degeneracies among the Dirac
points, the spin wave spectrum around theM -points of the BZ
also splits into two symmetry inequivalent classes. The band
gap at the two M -points that lie in the direction of the mag-
netic field slightly increases, whereas the band gap at the four
M -points with finite perpendicular components to the mag-
netic field direction decreases, as illustrated in Figs. 9c and 9d.
This effect has implications for our understanding of the un-
derlying microscopic model. Previously, in the absence of a
magnetic field, we established that a reweighting between the
nearest neighbor Heisenberg and Kitaev exchange constants
has negligible impact on the spin wave spectrum as long as the
mean-field energy scale Emf = S2(J1 + 1

3K) remains con-
stant. Now, we have identified an observable that can probe
the existence of Kitaev interactions in the material. We now
make the probe more quantitative. To this end, we calculate
the splitting of gaps between the two classes of symmetry in-
equivalent K-points (M -points) as a function of the deforma-
tion parameter κ. The splitting scales approximately linearly
with κ, as demonstrated in Fig. 10. We shall mention that
the splitting is inherently driven by the exchange constants
based under the assumption of a fully polarized spin configu-
ration; further increasing the magnetic field strength does not
increase the gap splitting. At κ = 0.2 meV, which is the
amount of deformation needed for the model with exchange
constants extracted from neutron scattering to incorporate the
amount of Kitaev interaction that we predict in our DFT cal-
culations (cf. Table I), we find that the splitting between K-
points is ∆K = 0.36 meV and the splitting betweenM -points

is ∆M = 0.91 meV. We have checked that we get very sim-
ilar results for these gap anisotropies even after incorporating
the full 3D dispersion. Such an anisotropy in the spin wave
spectrum could be probed in high-field neutron scattering ex-
periments.

V. DISCUSSION

In this work, we performed first-principle calculations to
predict a complete set of exchange constants for a microscopic
model of CrI3. Our calculations simultaneously include the
effects of Kitaev interaction and DM interaction and therefore
mark a significant extension of earlier work: Previous calcu-
lations only separately addressed the role of Kitaev and DM
interactions, yet both are suited to model a gap in the magnon
band structure that has been observed experimentally at the
Brillouin zone corners (K-points) and that is crucial to captur-
ing the spin dynamics of CrI3 [18, 19]. Including both types
of interactions in our model, we were able to show that the
Dirac gap is likely driven by DM interactions, with only minor
contribution from Kitaev interaction. A previously proposed
microscopic model in which the gap is driven by dominant
Kitaev exchange interactions [20] can be ruled out based on
our calculations. We have found that the magnetic transition
temperature is greatly overestimated by the earlier mean-field
approach [20] which appears to have led to an overemphasis
of the Kitaev interaction.

Furthermore, we performed classical Monte Carlo simula-
tions to determine the phase diagram of our model Hamil-
tonian as a function of temperature and an external in-plane
magnetic field. At zero field, we demonstrated that the model
yields an ordering temperature of T 2D

c = 40.6 K in the mono-
layer limit, which is in good agreement with the experimen-
tally observed value T 2D

c,expt = 45 K. As such, our model si-
multaneously captures the excitation spectrum of CrI3 as well
as its thermal properties.

As seen from our results above, our DFT parameters lead
to a larger polarizing in-plane field (7 T) compared with ex-
periments (4.3 T), and to a larger magnon gap at the BZ cen-
ter (1 meV) compared with INS data (∼ 0.5 meV). We have
checked that the antiferromagnetic Kitaev interaction does
not control the zone center magnon gap. However, we find
that reducing the weakest anisotropic terms A and Γ, which
have the most uncertainty in DFT, by a factor of two (to
A = −0.06 meV and Γ = −0.06 meV) does lead to a corre-
sponding factor of two decrease in the gap at the BZ center as
well as polarizing in-plane field. This brings our results closer
to experiments, while only slightly decreasing Tc to∼38 K as
we find from our MC simulations.

The exchange constants that comprise our model are sim-
ilar to a set of interaction parameters that has been extracted
from inelastic neutron scattering data [18], yet we point out
that the role of sub-dominant Kitaev interactions has not been
tested in this earlier work. We showed that performing such
tests is challenging, because it is possible to systematically
modify the Kitaev interactions of the microscopic model in a
way that has little impact on the magnon band structure, and
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thus on the neutron scattering experiments, leaving an ambi-
guity in their interpretation. However, we demonstrated that
the ambiguity can be lifted by probing the band structure in a
finite in-plane magnetic field. In such setting, when the spins
are fully polarized in the honeycomb plane, the typically dom-
inant contribution of DM interactions towards the opening of
a Dirac gap is suppressed and the effect of Kitaev interactions
becomes measurable. We showed that the degeneracy of the
six Dirac gaps is lifted in the presence of Kitaev interactions,
thus breaking the six-fold rotation symmetry, and that the de-
gree of splitting systematically depends on the strength of the
Kitaev interaction. It would therefore be desirable to perform
higher resolution INS experiments to probe the anisotropy of
the spin wave spectrum of CrI3 in the presence of a magnetic
field.
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