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The instability toward a magnetic skyrmion crystal in centrosymmetric trilayer magnets is in-
vestigated based on a spin model with layer-dependent Dzayloshinskii-Moriya interaction. We find
various types of skyrmion crystal phases with different skyrmion numbers in a low-temperature
phase diagram by performing the simulated annealing. In addition to the Néel skyrmion crystal
phase that is expected to emerge in the presence of the polar-type Dzayloshinskii-Moriya interac-
tion, we obtain the skyrmion crystal phases characteristics of the layered system: the twisted surface
skyrmion crystal, anti-skyrmion crystal, and high-topological-number skyrmion crystal phases. The
rich magnetic phases are brought about by the synergy among the layer-dependent Dzayloshinskii-
Moriya interaction, interlayer exchange interaction, and an external magnetic field. Our results
indicate that the layer degree of freedom at the surface and heterostructures are good platforms to
engineer and design the topological spin textures.

I. INTRODUCTION

Spiral magnetism has long been studied in condensed
matter physics, as it manifests itself not only in unusual
magnetism but also in peculiar transport and multifer-
roics phenomena [1–5]. The concept of spiral magnetism
brings about novel phases of matter, such as spiral spin
liquids [6–11], skyrmion crystals (SkXs) [12–18], hedge-
hog lattices [19–28], meron-antimeron crystals [29–33],
and chiral stripes [34–37]. Moreover, as the formation
of the spiral spin texture often leads to the breaking of
spatial inversion symmetry, it becomes a source of parity-
violating electronic states and physical phenomena, such
as an antisymmetric spin-split band structure [38–40],
magnetoelectric effect [41–50], and nonreciprocal trans-
port [51–63]. In this way, spiral spin ordering provides
a rich playground for exploring intriguing functional ma-
terials that might be utilized for future electronic and
spintronic device applications.

The realization of the spiral ordering has been
achieved under several different spin interactions: the
Dzyaloshinskii-Moriya (DM) interaction in noncen-
trosymmetric magnets [64, 65], the frustrated exchange
interaction in insulating magnets, and the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction in itinerant
magnets [66–68]. Remarkably, these interactions also
induce instabilities toward different types of multiple-Q
states, which are represented by a superposition of spiral
waves. We here introduce instabilities toward the SkXs
and their different aspects under each interaction. In the
case of the DM interaction, the SkX is stabilized when
applying an external magnetic field [69–72]. In this case,
the helicity and vorticity of the SkX are determined by
the DM vector built in the lattice structure; the Bloch
SkX, Néel SkX, and anti-SkX emerge in the polar, chiral,
and D2d systems [14, 17]. As the spiral modulation pe-
riod is determined by the ratio of the DM interaction and
the ferromagnetic exchange interaction, the SkX usually
exhibits the long-period structure, although the recent
studies have shown that the short-period SkX can be
engineered by taking into account the multi-spin inter-

action [73–77], anisotropic exchange interaction [78, 79],
and spin-charge-coupled intearction [80, 81]. More re-
cently, it was shown that the interlayer exchange interac-
tion in the nonsymmorphic lattice system with a screw
axis also leads to the SkX [82].

In contrast to the DM-interaction mechanism, the lat-
ter two mechanisms based on the frustrated exchange
interaction and the RKKY interaction do not require the
noncentrosymmetric lattice structures; they give rise to
the SkXs in centrosymmetric lattice systems [18, 83].
For the mechanism by the frustrated exchange inter-
action, the SkX appears by incorporating the effect of
thermal fluctuations [84], uniaxial spin anisotropy [85–
91], and nonmangetic impurities [92]. Similarly, the
studies have revealed that the SkX in itienrant mag-
nets is stabilized by considering thermal fluctuations [93–
95], single-ion anisotropy [96], spin-charge coupling in-
cluding the biquadratic interaction [97–103], and circu-
larly polarized microwave field [104] in addition to the
RKKY interaction. In these cases, the helicity and vor-
ticity of the SkX are arbitrary, which results in pecu-
liar symmetry breaking states [84, 94, 105] and trans-
port properties [86, 106–111]. In centrosymmetric mag-
nets, the degeneracy in the SkXs is (partly) lifted in the
presence of the symmetric anisotropic exchange interac-
tion and dipolar interaction, the former of which arises
from the discrete lattice symmetry [112–117]. These
anisotropic interactions manifest themselves in the sta-
bilization of the SkXs [112, 115, 117–124], which might
be important to reproduce the experimational phase dia-
grams in SkX-hosting materials, Gd3Ru4Al12 [125, 126],
GdRu2Si2 [127–129], and EuAl4 [130–133].

In the present study, we investigate another stabiliza-
tion mechanism of the SkX in centrosymmetric systems
by focusing on the layer degree of freedom. Especially, we
examine the effect of the layer-dependent polar DM inter-
action that originates from the local inversion symmetry
breaking [134–141]. It has been recently clarified that a
staggered DM interaction yields the SkX in centrosym-
metric bilayer magnets [142, 143]. We here extend such
studies to a trilayer system, where a middle layer without
the DM interaction is sandwiched by the upper and lower
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layers with the opposite sign of the DM vectors. By per-
forming the simulated annealing for the spin model with
the layer-dependent DM interaction, we show that mul-
tifarious SkXs with different layer-dependent skyrmion
numbers are stabilized at low temperatures as a conse-
quence of the interplay between an interlayer exchange
interaction and an external magnetic field. We find that
the skyrmion number in the middle layer is sensitive to
the change in the model parameters. Notably, we dis-
cover the anti-SkX for the small interlayer exchange in-
teraction, which has not been usually stabilized in the
presence of the polar/chiral DM vector in the threefold-
symmetric hexagonal and trigonal systems. We also find
a twisted surface SkX and high-topological-number SkX
in a wide range of model parameters. Our result provides
a possibility of engineering the SkXs that is difficult to
realize for bulk by using the layer, surface, and domain
structures.

The organization of this paper is as follows. In Sec. II,
we introduce a spin model in the trilayer system with
the layer-dependent DM interaction. We also present
numerical methods based on the simulated annealing.
In Sec. III, we examine the instability toward the SkX
by constructing the low-temperature phase diagram. We
discuss the nature of each phase obtained by the sim-
ulated annealing one by one. Section IV is devoted to
a summary of the present paper. In Appendix A, we
present the result for different values of the DM interac-
tion.

II. MODEL AND METHOD

We consider a trilayer triangular-lattice system as
shown in Fig. 1(a); three triangular planes with the lat-
tice constant a lie in the xy plane and they are coupled
along the z direction separated by a distance c. We label
the lower, middle, and upper layers as layer A, layer B,
and layer C, respectively. Three layers are not equivalent
from the symmetry viewpoint; there is no inversion cen-
ter for layers A and C, while there is an inversion center
for layer B. Specifically, the point-group symmetry for
layers A and C corresponds to C6v, while that for layer
B is D6h. Reflecting such a difference, a local polar-type
crystalline electric field is present only for layers A and
C, which results in the layer-dependent DM interaction.
We show the DM vectors in each layer in Fig. 1(b), whose
directions are perpendicular to the intralayer bond direc-
tion and the z direction. Owing to the inversion center
at layer B, the direction of the DM vector for layers A
and C are opposite and their magnitude is equivalent. In
the following, we set a = c = 1.

The classical spin model in the trilayer system to incor-
porate the effect of the layer-dependent DM interaction
is given by

H =
∑
η

H⊥η +H‖ +HZ, (1)

(b) layer A (z=0) layer B (z=c)

E = 0
E

   layer C (z=2c)

E

(a)
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y

x

FIG. 1. (a) The trilayer triangular-lattice system consisting
of layers A, B, and C. The lattice constants, a and c, and the
interlayer exchange coupling J‖ are also shown. (b) Three lay-
ers viewed from the z axis. The green arrows denote the DM
vectors in each layer, where E represents the local crystalline
electric field.

where the Hamiltonian is devided into three parts: the
intralayer contribution H⊥η for layer η = A, B, and C, the

interlayer Hamiltonian H‖, and the Zeeman Hamiltonian
HZ, which are explictily shown as

H⊥η =−
∑
i,j

[
JijSi · Sj + D

(η)
ij · (Si × Sj)

]
, (2)

H‖ =J‖
∑

i,δ=±1

Si · Si+δẑ, (3)

HZ =−H
∑
i

Szi . (4)

The intralayer Hamiltonian H⊥η in Eq. (2) consists of the
layer-independent exchange interaction Jij and the layer-

dependent DM interaction to satisfy D
(A)
ij = −D(C)

ij

and D
(B)
ij = 0 from the symmetry consideration; we

set |D(A)
ij | = |D(C)

ij | = Dij . As discussed above, the

DM vectors are set by the green arrows in Fig. 1(b).
The interlayer Hamiltonian H‖ in Eq. (3) represents the
exchange coupling between the nearest-neighbor spins
along the z direction with the coupling constant J‖;
J‖ > 0 (J‖ < 0) stands for the antiferromagnetic (fer-
romagnetic) exchange interaction. The Zeeman Hamil-
tonian HZ in Eq. (4) describes the Zeeman coupling to
an external magnetic field along the z direction. In the
model in Eq. (1), we neglect a long-range dipole-dipole
interaction, which can affect the SkX instability, for sim-
plicity [119, 124].

When J‖ = 0, the system is decoupled into three inde-
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pendent layers. For layers A and C, the magnetic phases
while changing H are similar, which are determined by
the interplay between the exchange interaction Jij and
the DM interaction Dij . When we consider the ferromag-
netic exchange interaction Jij > 0 and the interactions
are limited to the nearest-neighbor ones, the single-Q spi-
ral state, the Néel SkX, and the fully-polarized state are
stabilized against H, where the Néel SkX is described
by a superposition of three spiral waves connected by
threefold rotation [70, 144, 145]. The difference between
layers A and C appears in the helicity of the spiral and
SkX phases due to the opposite sign of the DM inter-
action. On the other hand, for layer B, there is no in-
stability toward the SkX against H at low temperatures;
the ferromagnetic state is stabilized for the ferromagnetic
exchange interaction, or the conical spiral state, whose
spiral plane lies on the xy plane, is stabilized by con-
sidering the effect of further-neighbor antiferromagnetic
exchange interactions in addition to the nearest-neighbor
ferromagnetic exchange interaction.

Starting from the above situation at J‖ = 0, we inves-
tigate the effect of the interlayer exchange coupling J‖
on magnetic phases. Especially, we focus on the possibil-
ity of the SkXs in the centrosymmetric system consisting
of the different layers with the layer-dependent DM in-
teraction in Figs. 1(a) and 1(b). Owing to the opposite
sign of the DM interaction for the upper and lower layers,
there is a magnetic frustration for the middle layer, which
might be a source of inducing nontrivial topological spin
textures that is difficult to realize in the single-layer sys-
tem. Similar analyses have been recently performed for
the bilayer system where the DM interaction is present
in both layers with the opposite sign [146–149]; the SkX
is robustly stabilized by the interplay between the stag-
gered DM interaction and interlayer exchange interaction
even in the centrosymmetric lattice structure [142, 143].
The present trilayer model is regarded as an extension
of the bilinear model. Meanwhile, the present trilayer
system is qualitatively different from the bilayer system
since there is no DM interaction in the middle layer (layer
B) owing to the presence of the inversion center in the
middle layer rather than the center of the bond between
the adjacent layers [150]. Reflecting such a difference,
the trilayer model exhibits a rich phase diagram regard-
ing the SkXs compared to the bilayer model, as shown in
Sec. III.

To investigate the SkX instability in such a layered
system, we examine the competition between the inter-
layer exchange interaction and the layer-dependent DM
interaction. For that purpose, we ignore spatial fluctua-
tions of spins in the xy plane by simplifying the intralayer
Hamiltonian in Eq. (2) as

H̃⊥η =−
∑
ν

[
JS

(η)
Qν
· S(η)
−Qν

+ iD(η)
ν · (S

(η)
Qν
× S

(η)
−Qν

)
]
,

(5)

where S
(η)
Qν

is the Fourier transform of Si with wave vec-
tor Qν for layer η = A, B, and C; the subscript ν repre-

sents the index of the wave vectors. In Eq. (5), we only
consider the dominant q contributions that give global
energy minima in momentum space, which is obtained
by evaluating the Fourier transform of H⊥η in Eq. (2).
Owing to the sixfold rotational symmetry of the trian-
gular lattice, global minima appear, at least, at six wave
vectors except for high-symmetric wave vectors, such as
q = 0 and the Brillouinze zone boundary [85, 90, 142].
We suppose global minima at Q1 = Q(1, 0), Q2 =

Q(−1/2,
√

3/2), Q3 = Q(−1/2,−
√

3/2), Q4 = −Q1,

Q5 = −Q2, and Q6 = −Q3 with Q = π/3; J ≡ J (η)
Qν

and

D
(η)
ν ≡D

(η)
Qν

similar to Ref. [142]. Although the interac-
tions at the higher-harmonic wave vectors like Q1 + Q2

also contribute to the energy in the multiple-Q states
including the SkX [113, 123], we neglect them by as-
suming their contribution is much smaller than that at
Qν . Furthermore, we drop off the contributions from the
other q components in the interactions. Such a simplifi-
cation is justified when considering the low-temperature
phase diagram, where the q-space dispersion is not im-
portant [85]. In the end, we analyze the total Hamilto-
nian as follows:

H =
∑
η

H̃⊥η +H‖ +HZ. (6)

Hereafter, we set J = 1 as the energy unit of the model
in Eq. (6). We choose the magnitude of the DM inter-

action as |D(γ)
Qν
| = D = 0.2 so that the SkX is stabilized

under the magnetic field H for layers A and C in the case
of J‖ = 0. In this situation, we investigate the instabil-
ity toward the SkX while changing J‖ and H. We also
present the results for different D in Appendix A.

We construct the magnetic phase diagram by perform-
ing the simulated annealing for the model in Eq. (6)
on the trilayer triangular lattice. The simulations are
carried out with standard Metropolis local updates in
real space following the manner in Ref. [142]. Start-
ing from a random spin configuration at high temper-
atures, we gradually reduce the temperature with a rate
Tn+1 = αTn, where Tn is the temperature in the nth step.
We set the initial temperature T0 = 0.1-1.0 and the coef-
ficient of geometrical cooling α = 0.99999 − 0.999995.
The final temperature is set at T = 0.001. We per-
form 105-106 Monte Carlo sweeps for measurements at
the final temperature. In addition to a random spin con-
figuration, the simulations are performed from the spin
configurations obtained at low temperatures when deter-
mining the phase boundaries in the phase diagram. We
adopt the periodic (open) boundary condition for the in-
plane (z) directions. The total number of spins is taken
at N = 3 × L2 with L = 48. We confirmed that quali-
tative features are unchanged for different system sizes,
such as L = 72 and 96.

We calculate the following quantities to identify the
magnetic phases. The spin structure factor for layer η is



4

computed by

Sαη (q) =
1

L2

∑
i,j∈η

Sαi S
α
j e

iq·(ri−rj), (7)

for α = x, y, z. We also compute Sxyη (q) = Sxη (q)+Syη (q).
The net magnetization for each layer is given by

Mα
η =

1

L2

∑
i∈η

Sαi . (8)

The spin scalar chirality is represented by

χsc
η =

1

L2

∑
R∈η

χR (9)

χR = Si · (Sj × Sk), (10)

where χR represents the local scalar chirality at the po-
sition vector R, which lies at the centers of upward and
downward triangles with the vertices i, j, and k in the
counterclockwise order; the upward and downward trian-
gles form the honeycomb network. Nonzero total scalar
chirality χsc = χsc

A + χsc
B + χsc

C in the system is the ori-
gin of the topological Hall effect. We also compute the
skyrmion number in each layer, which is given by

n
(η)
sk =

1

4πNm

〈∑
R∈η

ΩηR

〉
, (11)

where Nm is number of the magnetic unit cell and ΩηR is
the skyrmion density for layer η [151]:

tan

(
ΩηR
2

)
=

Si · (Sj × Sk)

1 + Si · Sj + Sj · Sk + Sk · Si
. (12)

For example, n
(η)
sk = −1 when the Néel SkX appears for

layer η, while n
(η)
sk = +1 when the anti-SkX is realized.

In the real-space picture, the SkX with n
(η)
sk = −1 shows

vortex-like winding of spins around the skyrmion core,

while anti-SkX with n
(η)
sk = +1 shows anti-vortex-like

winding of spins. The averaged skyrmion number in the

system is navesk = (n
(A)
sk + n

(B)
sk + n

(C)
sk )/3.

III. RESULTS

We discuss the results obtained by the simulated an-
nealing for the spin model in Eq. (6). Figure 2(a) shows
the low-temperature phase diagram while changing J‖
and H. The phase boundaries are determined by chang-
ing H by 0.0125 and J‖ by 0.025 in their vicinity regions.
The color stands for the total scalar chirality χsc. As
shown in the phase diagram in Fig. 2(a), we find dif-
ferent thirteen phases with distinct spin and scalar chi-
rality configurations in addition to the fully-polarized
state, whose magnetic moments are along the z direc-
tion. Among them, we find that nine out of thirteen
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FIG. 2. (a) Phase diagram of the model in Eq. (6) obtained by
the simulated annealing while changing J‖ and H. The con-
tour shows the total scalar chirality χsc. The layer-resolved
scalar chiralities, χsc

A and χsc
B , are plotted by the contour in

(b) and (c), respectively, on the same phase diagram as (a).
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TABLE I. Classification of the ordered phases in the model in Eq. (6) obtained by the simulated annealing. n
(η)
sk represents

the skyrmion number for layer η = A, B, and C, and nave
sk represents the averaged skyrmion number. The other quantities

are defined in Eqs. (7) and (9). In the columns of Sxyη (Qν) and Szη(Qν), Q′ stands for the different intensities of the Qν

components.

name n
(A)
sk n

(B)
sk n

(C)
sk nave

sk χsc SxyA (Qν) SzA(Qν) SxyB (Qν) SzB(Qν) SxyC (Qν) SzC(Qν)

Phase I −1 0 −1 −2

3
X 3Q′ 3Q′ 2Q 1Q 3Q′ 3Q′

Phase II −1 0 −1 −2

3
X 3Q 3Q 3Q 3Q 3Q 3Q

Phase III −1 −1 −1 −1 X 3Q 3Q 3Q 3Q 3Q 3Q

Phase IV −1 1 −1 −1

3
X 3Q′ 3Q′ 3Q′ 3Q′ 3Q′ 3Q′

Phase V −1 −1 −1 −1 X 3Q 3Q 3Q 3Q 3Q 3Q

Phase VI −1 2 −1 0 X 3Q′ 3Q′ 2Q 1Q 3Q′ 3Q′

Phase VII −1 −2 −1 −4

3
X 3Q 3Q 3Q 3Q 3Q 3Q

Phase VIII −1 xa −1 −2 − x

3
X 3Q 3Q 3Q 3Q 3Q 3Q

Phase IX 0 1 0
1

3
X 3Q′ 1Qb 3Q′ 3Q′ 3Q′ 1Qb

Phase i 0 0 0 0 No 1Q 1Q 1Q No 1Q 1Q

Phase ii 0 0 0 0 X 3Q′ 2Q′b 3Q′ 3Q′ 3Q′ 1Qb

Phase iii 0 0 0 0 X 3Q′ 3Q′ 2Q 1Q 3Q′ 3Q′

Phase iv 0 0 0 0 X 3Q′ 3Q′ 2Q′ 1Q 3Q′ 3Q′

a −2 < x < 0
b Negligebly small intensities are found at the other Qη components.

phases possess a quantized skyrmion number for any of
the layers. We label these nine phases by using the up-
percase roman numerals as “Phase I”, “Phase II”, · · · ,
“Phase IX”, while we denote the other four phases by us-
ing the lowercase roman numerals as “Phase i”, “Phase
ii”, “Phase iii”, and “Phase iv”.

The nine types of the SkX phases emerge under the
external magnetic field from the ferromagnetic interlayer
exchange interaction to the antiferromagnetic one. The
region where the SkXs are stabilized is asymmetric re-
garding the sign of J‖; the critical value of |J‖| for the
ferromagnetic exchange interaction is larger than that for
the antiferromagnetic one. Although the appearance of
the SkX phases in the trilayer system is common to that
in the bilayer system, only the single SkX phase is real-
ized in the bilayer system [142]. Thus, the present trilayer
system consisting of the inversion-symmetric layer (layer
B) and two inversion-asymmetric layers (layers A and C)
enables us to engineer and design multiple SkX phases.

Especially, we find that the scalar chirality for layer B
is sensitive against the change of J‖ and H compared to
those for layers A and C. We show the contour plots of
the sublattice-dependent scalar chiralities χsc

A and χsc
B in

Figs. 2(b) and 2(c), respectively. The behavior of χsc
C is

almost the same as that of χsc
A . The value of χsc

B takes
both positive and negative values in Fig. 2(c), while that
of χsc

A takes negative values with almost constant mag-
nitude in Fig. 2(b). The latter behavior regarding layer
A is roughly consistent with that in the bilayer system
where only the single SkX phase appears. Indeed, the
skyrmion number in the colored region from Phase I to
Phase VIII in Fig. 2(b) remains the same. On the other
hand, there are multiple skyrmion numbers in the col-
ored region for layer B, as discussed below. The ob-
tained phase diagram indicates that the introduction of
the inversion-symmetric middle layer (layer B) is a source
of multiple SkX phases.

The four phases denoted as Phase i to Phase iv are
characterized by single-Q or triple-Q states with no
skyrmion number. Among them, three phases except for
Phase i take finite values of χsc, although their magni-
tudes are much smaller than those in the SkX phases; for
example, see Figs. 12 and 13.

In what follows, we describe details of the obtained
phases one by one in Sec. III A. We list the skyrmion

number (n
(A)
sk , n

(B)
sk , n

(C)
sk , navesk ), scalar chirality χsc, and
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xy and z components of the spin structure factor
[Sxyη (Qν), Szη(Qν)] for η = A, B, and C in each obtained
phase in Table I for reference. In addition, the real-space
spin and scalar chirality configurations in each phase are
shown in Figs. 3-9, and their corresponding spin structure
factors are shown in Figs. 10 and 11. We also discuss the
H dependences of the magnetization and scalar chirality
for several J‖ in Sec. III B.

A. Details of magnetic phases

a. Phase I: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1, 0,−1).

This state is stabilized for small |J‖| and intermediate
H in Fig. 2(a), which extends to the positive J‖ region
rather than the negative one. As shown in the real-space
spin configuration in the left panel of Fig. 3(a), this state
is characterized by a coexisting state of the Néel SkX for
layers A and C and the triple-Q state for layer B; the
skyrmion core denoted at Szi ' −1 forms the triangular
lattice for layers A and C, although their positions are
different from each other. The helicity of the SkXs for
layers A and C is opposite owing to the opposite sign of
the DM interaction. According to the SkX spin textures,
the scalar chirality seems to be distributed in an almost
threefold-symmetric way, which results in the skyrmion
number of −1. The formation of the SkX is also found
in the spin structure factor in Fig. 10(a); both xy and z
components exhibit almost triple-Q peak structures. It is
noted that the intensities at the triple-Q wave vectors are
slightly different due to the coupling to layer B, whose
spin texture breaks the threefold symmetry of the trian-
gular lattice, as shown in the middle panel of Fig. 3(a).
We use the symbol Q′ to represent the different intensi-
ties of the Qν component in Table I. The spin configura-
tion for layer B is mainly characterized by the double-Q
peaks in the xy component and the single-Q peak in the
z component, as shown in Fig. 10(a). The scalar chiral-
ity for layer B behaves like a chirality density wave along
the Q1 direction. Although there is no skyrmion number
for layer B, the scalar chirality takes a nonzero positive
value. The nonzero scalar chirality for layer B is owing to
the spiral modulation via the interlayer coupling in the
multi-layer system. Indeed, it vanishes when J‖ = 0.

In the vicinity of J‖ = 0, one of the double-Q peaks
in the xy spin component and the single-Q peak in the
z spin component for layer B are suppressed while de-
creasing |J‖|, and then, the spin configuration turns into
the single-Q conical spiral state for J‖ = 0, whose spiral
plane lies in the xy plane. Accordingly, the intensities of
the spin structure factor at triple-Q wave vectors for lay-
ers A and C are equivalent, which indicates the recovery
of the threefold rotational symmetry.

b. Phase II: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1, 0,−1). Phase II mainly emerges for negative
J‖ and intermediate H, which is obtained next to Phase
I upon decreasing J‖. Although this phase also appears
in the narrow region for positive J‖ sandwiched by Phase

I and Phase iii, we here focus on the region for J‖ < 0.
This state exhibits similar spin configurations for layers
A and C to those in Phase I, as shown in Figs. 3(a)
and 3(b). The main difference between Phase I and
Phase II is found in the spin configuration for layer B:
The former is characterized by the anisotropic triple-Q
spin configuration, while the latter is by the isotropic
one satisfying the threefold rotational symmetry. As a
result, the spin texture in Phase II is invariant under
the threefold rotation. Such a feature is also found in
the spin structure factor in Fig. 10(b). Both xy and z
components of spin exhibit the triple-Q peak structures
with the same intensities. Meanwhile, the skyrmion
number in each layer in Phase II is the same as that in

Phase I, i.e., (n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1, 0,−1). In other

words, the spin configuration for layer B exhibits no
skyrmion number, although the scalar chirality takes a
negative value.

By closely looking at the real-space spin configuration
in each layer in Fig. 3(b), one finds that the inplane spin
structure at the same (x, y) position is almost the same
as each other. Thus, the different spin configurations in
different layers arise from the z-spin component, which is
attributed to the phase degree of freedom in the multiple-
Q superposition [62, 101, 121, 152]. The difference in the
spin textures between layers A and C is the relative phase
degree of freedom among the constituent spiral waves at
different wave vectors, while that between layers A and
B is the phase degree of freedom in terms of xy and z
spins [121]. In addition, the tendency that aligns the
xy-spin component rather than the z-spin one between
adjacent layers is energetically understood from the large
amplitude of the xy spin component compared to that of
the z spin, as shown in Fig. 10(b).

c. Phase III: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1,−1,−1). Phase III appears for the ferromag-
netic interlayer exchange interaction J‖ < 0 upon
decreasing H from Phase I and Phase II, as shown in
Fig. 2(a). In contrast to Phase I and Phase II, the spin
texture for layer B turns into the SkX one, as shown in
Fig. 4(a). The skyrmion core position and the helicity
for layer B are the same as those for layer A or layer
C depending on initial random spin configurations.
Thus, the skyrmion number in Phase III is given by

(n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1,−1,−1). The spin structure

factor exhibits the triple-Q peak structure in both xy
and z components with equal intensity, as shown in
Fig. 10(c), although their intensities are different for
different layers. In the scalar chirality sector, the real-
space distribution of χR keeps the threefold rotational
symmetry. The magnitude of χsc

η is slightly different
from each other, as shown in Fig. 12.

The appearance of the spin configuration in Phase III
is owing to the frustration that arises from the compe-
tition between the ferromagnetic interlayer exchange in-
teraction and the layer-dependent DM interaction: The
former favors the same direction of the spin moments,
whereas the latter favors the opposite spin direction in
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FIG. 3. Real-space spin (left panel) and scalar chiraity (right panel) configurations of (a) Phase I [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1, 0,−1)] at J‖ = 0.1 and H = 1.5 and (b) Phase II [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1, 0,−1)] at J‖ = −0.5 and H = 1.2

on layer A (upper panel), layer B (middle panel), and layer C (lower panel). In the left panels, the arrows represent the xy
components of the spin moment and the color shows the z component.

the xy component owing to the different helicity for lay-
ers A and C. The obtained spin configuration in Fig. 4(a)
is a consequence of the optimization of the energies by
both interactions as follows. When the spin configura-
tion is regarded as the periodic alignment of three types
of vortices denoted as green circles, triangles, and squares
in Fig. 4(a), the skyrmion cores are located around the
circles for layers A and B and around the triangles for
layer C. With respect to the interlayer exchange cou-
pling, the z-spin component around the cores denoted by
the circles and triangles does not lead to an energy gain
because the number of parallel spin pairs is the same as
that of anti-parallel spin pairs. Instead of that, there is
an energy gain by J‖ for the xy-spin component; the dif-
ferent skyrmion core positions for layers A and C lead
to an energy gain by the DM interaction. In addition,
there is an energy gain by J‖ for both the xy- and z-spin
components around the cores denoted by the squares.

d. Phase IV: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1, 1,−1). This state appears only for the an-
tiferromagnetic exchange interaction J‖ > 0 while
decreasing H from Phase I. Notably, the spin configura-
tion in Phase IV consists of the SkX for layers A and C
and the anti-SkX for layer B, which take the opposite
sign of the skyrmion number. Indeed, the negative
(positive) contribution of the local scalar chirality χR

is dominant for layers A and C (layer B), as shown in
the right panel of Fig. 4(b). Since the anti-SkX in the
middle layer breaks the threefold rotational symmetry
of the triangular lattice, the other two layers do not also
possess the threefold axis via the coupling to layer B,
and thus, the spin structure factor shows the anisotropic
triple-Q peak structures in Fig. 10(d). The intensities of
the spin structure factor for layers A and C are equal,
which are different from those for layer B. Accordingly,
the magnetization and the scalar chirality for layers A



8

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1
 (layer B)

-1

0

1

(layer C)

-1

0

1

-1

0

1

 (layer A)

 (layer B)

(layer C)

 (layer A)

(a) Phase III: SkX with (b) Phase IV: SkX with 

FIG. 4. Real-space spin (left panel) and scalar chiraity (right panel) configurations of (a) Phase III [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1,−1,−1)] at J‖ = −0.2 and H = 1 and (b) Phase IV [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1, 1,−1)] at J‖ = 0.2 and H = 1

on layer A (upper panel), layer B (middle panel), and layer C (lower panel). In the left panels, the arrows represent the xy
components of the spin moment and the color shows the z component. The three types of vortex cores are represented by green
circles, triangles, and squares.

and C take different values from those for layer B, as
shown in Fig. 13.

The emergence of the anti-SkX for layer B in Phase
IV is understood by considering the energy gain around
the vortex cores. Similar to Phase III, we consider three
types of vortices, but we focus on the different core po-
sitions, as compared to Figs. 4(a) and 4(b). For layer
A, the cores denoted by the circle, triangle, and square
correspond to the skyrmion core, vortex core, and anti-
vortex core, respectively, where the vortex and anti-
vortex cores have the opposite winding numbers from
each other. For layer C, the positions of the skyrmion
and vortex cores for layer A are exchanged so as to gain
energy by the DM interaction. In these situations, the
spin texture for layer B is determined so as to gain the
energy by the antiferromagnetic interlayer exchange in-
teraction; the spins around two out of three cores show

the anti-parallel alignment; specifically, the spins around
the circle (triangle) and square cores point along the op-
posite directions between layers A and B (B and C)

It is noted that the anti-SkX spin texture with the
positive skyrmion number that appears in layer B is rare
in the triangular-lattice system. This is because such a
spin texture breaks the threefold rotational symmetry of
the triangular lattice in the presence of the anisotropic
exchange interaction so that the spin and orbit (lattice)
degrees of freedom are entangled, which usually results
in a higher energy than the Bloch or Nèel SkX with the
threefold axis. In the present situation, the anti-SkX is
brought about by effective mean fields breaking threefold
rotational symmetry via the antiferromagnetic interlayer
exchange coupling under the SkXs with different helici-
ties for layers A and C. Thus, the synergy between the
opposite sign of the DM interaction and the antiferro-
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magnetic interlayer exchange interaction plays a signifi-
cant role in realizing the anti-SkX spin texture for layer
B.

e. Phase V: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1,−1,−1). Phase V appears for the large ferromag-
netic interlayer exchange interaction and intermediate
H, which is obtained when decreasing J‖ from Phase
II [Fig. 2(a)]. This phase consists of three SkX layers
with the skyrmion number of −1, as shown in Fig. 5(a).
In contrast to the other SkX phases, the core positions
and the helicity around the skyrmion core are almost
the same for the three layers. Especially, the helicity
around the skyrmion core is different from the Néel SkX;
the spins around the core are twisted from the Néel
type to the Bloch type. Such twisted spin arrangement
around the core is owing to the surface effect for the
upper and lower layers, which has been discussed in
the context of the twisted surface SkX [153–155]. This
spin state is realized as a result of the energy gain by
the ferromagnetic interlayer exchange interaction rather
than the DM interaction. The spin structure factor
exhibits the triple-Q peak structure in both xy and z
spin components, which is similar to that in Phase III,
as shown in Fig. 10(e). The magnetization and scalar
chirality in each layer are almost the same as each other,
as shown in Fig. 12.

f. Phase VI: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1, 2,−1). This phase appears next to Phase IV
upon increasing J‖ or decreasing H. The real-space
spin configurations for layers A and C are similar to
those in Phase IV, as compared in Figs. 4(b) and 5(b);
the SkXs form the distorted triangular lattice, whose
cores are located at different positions for layers A and
C so that the threefold rotational symmetry is broken.
This indicates that the intensities in the spin structure
factor are different at Qν , as shown in Fig. 10(f). The
difference from Phase IV is found in the real-space spin
and scalar chirality configurations for layer B, as shown
in the middle panel in Fig. 5(b). In this phase, the xy
component of spins shows the double-Q structure with
equal intensity at Q1 and Q3, while the z component
of spins shows the single-Q structure at Q2, as shown
in Fig. 10(f). Although such a peak structure in the
spin structure factor is similar to that for layer B in
Phase I (see also Table I), this spin configuration takes
a high skyrmion number of two per magnetic unit cell,

i.e., n
(B)
sk = 2; almost all the regions exhibit the positive

scalar chirality in the middle-right panel of Fig. 5(b).
The real-space spin ansatz for layer B is rougly given by

Si ∝ [cos(Q1 · ri), cos(Q3 · ri), az cos(Q2 · ri)], (13)

where the coefficient az depends on the model parame-
ters. It is noted that this spin configuration has also been
obtained in the Kondo lattice model with the single-ion
anisotropy [99] and its effective spin model [100], where
the multiple-spin interactions become important. On the
other hand, the present spin texture results from the
interplay between the layer-dependent DM interaction

and the interlayer antiferromagnetic exchange coupling
within the bilinear spin interactions.

As the skyrmion number for layer B is twice that for
layers A and C and their sign is opposite, the averaged
skyrmion number is zero, navesk = 0. This indicates that
the Hall conductivity is not quantized and vanishes in
the case of the insulators. In this context, this state is
regarded as an antiferromagnetic SkX, which has been in-
vestigated in the square, triangular, and honeycomb mag-
nets [156–162]. However, the present antiferromagnetic
SkX (Phase VI) consists of different skyrmion numbers
−1 and 2, which is different from the previous findings.
Thus, qualitatively different transport phenomena, such
as the topological spin Hall effect, can be expected in
Phase VI.
g. Phase VII: SkX with (n

(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1,−2,−1). This phase emerges in the narrow
region close to Phase III for J‖ < 0, as shown in
Fig. 2(a). The real-space spin configuration in this phase
[Fig. 6(a)] is similar to that in Phase II [Fig. 3(b)]. The
spin structure factor is also similar to each other, as
shown in Figs. 10(b) and 10(g). The slight difference
between them appears in the spin configuration for layer
B in the middle panel of Fig. 6(a). By closely looking at
the spins around the vortex core denoted by the circles,
one finds that the sign of the z-spin component becomes
negative. This indicates that the sign of the scalar
chirality around the core is reversed, as found from
the comparison in the middle-right panel of Figs. 6(a)
and 3(b). Such a difference gives rise to the skyrmion
number of −2 for layer B in Phase VII. As the z spin
component around the core is small, its sign is reversed
with a small change of H. This is why Phase VII is
stabilized only in a narrow region compared to the other
phases.

h. Phase VIII: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1, x,−1). This phase appears in the small region next
to Phase II, Phase III, Phase VII, and Phase V. As shown
in Figs. 6(b) and 11(a), the real-space spin configuration
and the spin structure factor resemble those in Phase VII.
Only the difference is found in the skyrmion number for
layer B. In this Phase VIII, the skyrmion number takes
non-integer values 0 < x < 2. From the real-space pic-
ture, the sign of the z-spin component around the core de-
noted by the green circles in the middle panel of Fig. 6(b)
takes both positive and negative values. In other words,
Szi around the core shows the fluctuations with respect
to the sign, which might be attributed to thermal fluc-
tuations. This phase turns into Phase II (Phase VII)
when Szi > 0 (Szi < 0) around all the cores. As the sign
fluctuations around the core distinguish Phase II, Phase
VII, and Phase VIII, a more careful analysis by using the
finite-size scaling might be required, which is left in the
future study.

i. Phase IX: SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (0, 1, 0).

This state is stabilized in both ferromagnetic and antifer-
romagnetic interlayer exchange interactions when |J‖| is
relatively small in Fig. 2(a). In contrast to the other SkX
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FIG. 5. Real-space spin (left panel) and scalar chiraity (right panel) configurations of (a) Phase V [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(−1,−1,−1)] at J‖ = −1 and H = 0.9 and (b) Phase VI [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1, 2,−1)] at J‖ = 0.4 and H = 1

on layer A (upper panel), layer B (middle panel), and layer C (lower panel). In the left panels, the arrows represent the xy
components of the spin moment and the color shows the z component.

phases from Phase I to Phase VIII, the SkX spin texture
appears only for layer B. For layer A, the spin configu-
ration is characterized by the triple-Q peak structure in
the xy-spin component and the single-Q peak structure
in the z-spin component, as shown in Fig. 11(b). Similar
behavior of the spin structure factor is obtained for layer
C, although the peak positions are located at different
wave vectors; the dominant peak position at Q2 for layer
A, while that at Q3 for layer C in Fig. 11(b). Such a fea-
ture is also found in the real-space spin configuration for
layers A and C in the left panel of Fig. 7(a). These spin
configurations accompany the chirality density wave; the
dominant modulations are found along the Q3 (Q2) di-
rection for layer A (layer C), as shown in the right panel
of Fig. 7(a). It is noted that a small uniform negative
chirality occurs for both layers A and C.

As shown in the middle panel of Fig. 7(a), the spin
texture for layer B is characterized by the anti-SkX with

the skyrmion number of +1. This seems to be rather
surprising, as the energy of the anti-SkX with a positive
skyrmion number is usually higher than that of the SkX
with a negative one in the triangular-lattice system with
the threefold rotational symmetry, as discussed above.
The emergence of the anti-SkX is presumably attributed
to the effective threefold-symmetry-breaking field that
arises from the anisotropic spiral spin textures for layers
A and C. Indeed, the summation of the spin configura-
tion over layers A and C leads to the same spin structure
as layer B, which results in the energy gain by the ferro-
magnetic interlayer exchange interaction. Thus, the het-
erostructures sandwiched by the spiral states along the
different directions are one of the ways of engineering the
anti-SkX in the triangular-lattice system.

A similar situation happens when the interlayer ex-
change interaction is antiferromagnetic J‖ > 0. We show
the real-space spin configuration and spin structure fac-
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FIG. 6. Real-space spin (left panel) and scalar chiraity (right panel) configurations of (a) Phase VII [SkX with

(n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1,−2,−1)] at J‖ = −0.6 and H = 0.65 and (b) Phase VIII [SkX with (n

(A)
sk , n

(B)
sk , n

(C)
sk ) = (−1, x,−1)] at

J‖ = −0.6 and H = 0.75 on layer A (upper panel), layer B (middle panel), and layer C (lower panel). In the left panels, the
arrows represent the xy components of the spin moment and the color shows the z component. The green circles stand for the
core positions.

tors at J‖ = 0.3 and H = 0.4 in Figs. 7(b) and 11(c),
respectively. In contrast to J‖ < 0, the relative positions
of the SkX core for layer B to layers A and C are different
so as to have more anti-parallel spin components to gain
the energy by the antiferromagnetic interlayer exchange
interaction.

j. Phase i. This state appears in the three distinct
regions in the phase diagram in Fig. 2(a): One is the re-
gion for small |J‖| and small H, another is the region for
large negative J‖ and small H, and the other is the region
for large positive J‖. The spin configuration in these re-
gions is mainly characterized by the single-Q spiral wave
for all the layers, where the type of the spiral waves for
layers A and C is different from that for layer B, as shown
in the case of J‖ = −0.1 in Fig. 8(a). When consider-
ing J‖ = 0, the spiral wave corresponds to the vertical
spiral wave for layers A and C and the conical spiral for

layer B, where the ordering vector Qν is arbitrary in each
layer. Here, the spiral plane for the vertical spiral state

lies in the plane perpendicular to D
(η)
ν , while that for the

conical state lies in the xy plane. In the presence of J‖,
the dominant Qν component becomes the same for three
layers, as shown in Fig. 11(d). In addition, the spiral
plane for layers A and C is continuously tilted from the
vertical spiral to the conical spiral, as shown in the up-
per and lower panels of Fig. 8(a). Reflecting the single-Q
nature, the local chirality is suppressed for all the lay-
ers; a slightly staggered component for the upward and
downward triangles appears under the conical spiral. As
a result, this phase does not have a uniform scalar chi-
rality.

k. Phase ii. This phase is stabilized in both ferro-
magnetic and antiferromagnetic interlayer exchange in-
teractions for small |J‖| and small H shown in Fig. 2(a).
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FIG. 7. Real-space spin (left panel) and scalar chiraity (right panel) configurations of (a) Phase IX [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) =

(0, 1, 0)] at J‖ = −0.3 and H = 0.4 and (b) Phase IX [SkX with (n
(A)
sk , n

(B)
sk , n

(C)
sk ) = (0, 1, 0)] at J‖ = 0.3 and H = 0.4 on layer

A (upper panel), layer B (middle panel), and layer C (lower panel). In the left panels, the arrows represent the xy components
of the spin moment and the color shows the z component.

The spin configuration in this state in Fig. 8(b) is similar
to that in Phase IX in Fig. 7(a) except for the follow-
ing two points. One is the inequivalence between the
spin configuration for layers A and C; in Phase ii, the
z component of the spin structure factor for layer A ex-
hibits the double-Q peak with different intensities, while
that for layer C exhibits the single-Q peak (the negligi-
bly small intensity is found at the other Qν), as shown
in Fig. 11(e). On the other hand, both layers show the
double-Q peak with equal intensity in Phase IX as shown
in Fig. 11(b). The other is no skyrmion number for layer
B. The zero skyrmion number for layer B is due to the
quasi-stripe structure along the Q2 direction, as shown
in the middle panel of Fig. 8(b). Compared to the real-
space spin configuration in Phase IX in Fig. 7(a), one
finds that the main difference appears in the sign of Szi
around the core denoted by the green circles in Fig. 8(b),
which results in the sign reversal of local scalar chiral-

ity. When its sign is reversed while increasing H, Phase
ii turns into Phase IX. Although there is no skyrmion
number in Phase ii, the uniform scalar chirality arises, as
shown in Figs. 12 and 13.

l. Phase iii. This phase appears as a stable state in
the high-field region in the phase diagram in Fig. 2(a).
For layers A and C, the spin configuration is character-
ized by the anisotropic triple-Q peak structure in both
xy- and z-spin components; the dominant peak positions
are located at Q1 and Q3 in the xy-spin component,
while those are at Q2 in the z-spin component, as shown
in Fig. 11(f). Meanwhile, the double-Q (single-Q) peak
appears in the xy(z)-spin component for layer B. This
spin state accompanies the chirality density waves along
the Q2 direction as shown in the right panel of Fig. 9(a).
There is a negative small scalar chirality in this phase. It
is noted that the other high-field phase with the triple-Q
peak in the xy-spin component and no peak in the z-spin
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FIG. 8. Real-space spin (left panel) and scalar chiraity (right panel) configurations of (a) Phase i at J‖ = −0.1 and H = 0.4
and (b) Phase ii at J‖ = −0.4 and H = 0.2 on layer A (upper panel), layer B (middle panel), and layer C (lower panel). In
the left panels, the arrows represent the xy components of the spin moment and the color shows the z component. The green
circles represent the core positions discussed in the main text.

component at Qν appears for small |J‖| in the vicinity
of the fully-polarized state as an almost energetically-
degenerate state. As it is difficult to distinguish between
them, we summarize them as Phase iii.

m. Phase iv. This phase appears next to Phase iii
upon decreasing H for large |J‖| as shown in Fig. 2(a).
The real-space spin and scalar chirality configurations in
Phase iv are similar to those in Phase iii, as shown in
Figs. 9(a) and 9(b). Their difference is clearly found in
the spin structure factor, as shown in Figs. 11(f) and
11(g); the intensities in the xy-spin component at Qν

are different for all the layers in Phase iv. This state also
exhibits nonzero uniform scalar chirality.

B. Magnetic-field dependence

We discuss the phase sequence for several values of J‖
against H. Figure 12 shows the H dependences of the

magnetization Mz
η and the scalar chirality χsc

η in each
layer under the ferromagnetic interlayer exchange inter-
action. The data correspond to J‖ = −0.1 in Fig. 12(a),
J‖ = −0.4 in Fig. 12(b), J‖ = −0.7 in Fig. 12(c), and
J‖ = −1 in Fig. 12(d). As shown in Figs. 12(a)-12(d), the
almost phase transitions are characterized by the first-
order transitions with the jumps of Mz

η and χsc
η . Among

them, the phase transitions between Phase ii and Phase
IX in Fig. 12(b), Phase III and Phase II in Fig. 12(b), and
Phase iv and Phase iii in Figs. 12(c) and 12(d) as well as
the phase transition between the fully-polarized state and
Phase iii seem to be the second-order phase transitions,
where spin- and chirality-related quantities continuously
change at the transition. In the case of the transition
between Phase ii and Phase IX, the real-space spin con-
figuration in Phase ii is transformed into that in Phase
IX by reversing the sign of Szi around the core denoted
by the green circles for layer B in Fig. 8(b), as discussed
in Sec. III A. For the transition between Phase II and
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FIG. 9. Real-space spin (left panel) and scalar chiraity (right panel) configurations of (a) Phase iii at J‖ = −0.5 and H = 1.5
and (b) Phase iv at J‖ = −1 and H = 1.05 on layer A (upper panel), layer B (middle panel), and layer C (lower panel). In the
left panels, the arrows represent the xy components of the spin moment and the color shows the z component.

Phase III, the spin configuration in Phase III turns into
that in Phase II by reversing the sign of Szi around the
skyrmion core denoted by the green circles for layer B in
Fig. 4(a). For the transition between Phase iii and Phase
iv, they are transformed with each other when changing
the xy component of the spin in the double-Q peak for all
the layers; the dominant double-Q peaks with the same
intensity correspond to the Phase iii, while those with
the different intensity corresponds to Phase iv, as shown
in Figs. 11(f) and 11(g).

Figure 13 shows the results for the antiferromagnetic
interlayer exchange interaction: J‖ = 0.1 in Fig. 13(a),
J‖ = 0.2 in Fig. 13(b), J‖ = 0.3 in Fig. 13(c), and
J‖ = 0.5 in Fig. 13(d). In this case, the transition be-
tween Phase VI and Phase IV in Fig. 13(d) is of sec-
ond order as well as the transitions between the fully-
polarized state and Phase i (or Phase iii). For this transi-
tion, the type of the constituent waves in the multiple-Q
spin configuration for layer B changes; the triple-Q si-
nusoidal waves in Phase VI turn into the triple-Q spiral

waves in Phase IV by changing the relative angle between
the xy and z spins [121].

IV. SUMMARY

To summarize, we have investigated the instability to-
ward the SkX in the centrosymmetric multi-layer system.
By focusing on the layer-dependent DM interaction in
the trilayer triangular-lattice structure, we found multi-
farious SkX phases depending on the interlayer exchange
interaction and the magnetic field. The phase diagram
was constructed by performing the simulated annealing
for the effective spin model. As a result, we obtained nine
types of SkX phases, which are characterized by different
multiple-Q superpositions, scalar chirality distributions,
and skyrmion numbers. In particular, we showed that the
middle layer without the DM interaction exhibits multi-
ple skyrmion numbers from −2 to +2 depending on the
model parameters. This indicates that the layered sys-
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FIG. 10. (Left and second left) The square root of the xy and z components of the spin structure factor for layer A, respectively,
in (a) Phase I at J‖ = 0.1 and H = 1.5, (b) Phase II at J‖ = −0.5 and H = 1.2, (c) Phase III at J‖ = −0.2 and H = 1, (d)
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state at J‖ = −0.6 and H = 0.65. Black hexagons represent the first Brillouin zone. The middle and right two panels represent
the data for layer B and layer C corresponding to the left two ones, respectively.

tem with the layer-dependent DM interaction is promis- ing to realize a variety of the SkXs, such as the twisted
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FIG. 11. (Left and second left) The square root of the xy and z components of the spin structure factor for layer A, respectively,
in (a) Phase VIII at J‖ = −0.6 and H = 0.75, (b) Phase IX at J‖ = −0.3 and H = 0.4, (c) Phase IX at J‖ = 0.3 and H = 0.4,
(d) Phase i at J‖ = −0.1 and H = 0.4, (e) Phase ii at J‖ = −0.4 and H = 0.2, (f) Phase iii at J‖ = −0.5 and H = 1.5, and (g)
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represent the data for layer B and layer C corresponding to the left two ones, respectively.

SkXs, the anti-SkXs, and the high-topological-number SkXs, which have not been stabilized by the polar-type
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DM interaction in the single-layer system.

Although we focus on the layer degree of freedom, a
similar situation is expected in the systems where the in-
version symmetry is preserved globally but broken intrin-
sically at local sites so that the sublattice-dependent DM
interaction is present. Such a situation have been found
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in various lattice systems with the sublattice degree of
freedom, such as the zigzag [163–169], honeycomb [170–
173], and diamond [174–176] structures. Indeed, the frac-
tional antiferromagnetic SkX has recently been observed
in MnSc2S4 with the diamond structure [8, 120]. Our re-
sults provide a possibility of realizing further exotic SkXs
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in the systems with the layer/sublattice-dependent DM
interaction.

Appendix A: Case of different DM interactions

In this Appendix, we briefly discuss the results for dif-
ferent D. Figure 14 shows the H dependences of Mz

η and
χsc
η for layers η = A, B, and C at D = 0.1 [Figs. 14(a),

14(b), 14(e), and 14(f)] and D = 0.4 [Figs. 14(c), 14(d),
14(g), and 14(h)] for different J‖. The phases are pre-
sented above in each figure. In Figs. 14(f)-14(h), “I-like”,
“I-like-2”, and “i-like IV” correspond to the same layer-
dependent skyrmion number as Phase I, Phase I, and
Phase i, respectively, but their spin configurations are
slightly different. For example, in the spin configuration
denoted by “I-like”, the xy-spin component has the same
intensities as SxyB (Q1) = SxyB (Q2) = SxyB (Q3) but the z-
spin component do no have a peak structure at Qν , which
differs from Phase I. In Fig. 14(e), “other” represents a
different triple-Q state without a nonzero skyrmion num-
ber.

For both cases of J‖ < 0 and J‖ > 0, the SkX phases

become more (less) stabilized for large (small) D. Mean-
while, we find that Phase IX and Phase II do not appear
for small D, as shown in Figs. 14(a), 14(b), 14(e), and
14(f), where the skyrmion number for layers A and C is
different from that for layer B. This result indicates that
the overall tendency in terms of the stabilization is simi-
lar among the different types of the SkXs while changing
D, but the SkX phases consisting of layers with differ-
ent skyrmion numbers tend to be destabilized for small
D. In other words, the layer-dependent DM interaction
is essentially important for the stabilization of such com-
plicated SkX phases.
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