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Abstract
The delta phase of Pu is stabilized by Ga doping, but the mechanism of this stabilization re-

mains an open question. Density functional theory calculations focused on how Ga doping affects

the phonons sheds some light on the phonons’ contribution to the stabilization. The calculated

phonon modes of Ga-doped delta phase Pu fall into two distinct types: localized, high frequency

Ga-dominated phonon modes, and Pu-dominated modes at lower frequencies. Increasing the Ga

concentration has an effect on the Pu-dominated phonon modes opposite to that of compression:

higher-frequency modes soften, and lower-frequency modes stiffen. The latter provides an indication

that the stabilization mechanism is not due to a thermodynamic contribution from the phonons.

Furthermore, the stiffened phonon modes include candidate modes that describe possible pathways

into low-temperature phases, suggesting that doping with Ga could impede such pathways.
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I. INTRODUCTION

Phonons contribute critically to controlling the thermal properties of crystalline materials.

As phonons are the normal modes of vibration of the crystal lattice, the structure of the

lattice determines how the forces between the atoms translate into phonon frequencies and

eigenmodes. Accordingly, lattice imperfections change the phonons and hence the material’s

thermal properties. Imperfections such as stacking faults and point defects represent flaws

in the periodicity of the material’s crystal structure, but their presence can be desirable

or undesirable depending on a material’s application.1 Many desirable thermal properties

are achieved by introducing point defects by way of targeted doping. Among the desired

properties, and of particular interest here, is the stabilization of crystal structure phases

into wider temperature ranges.

Doping Pu with small amounts of Ga stabilizes the delta phase to lower temperatures.2

In its pure form, δ-Pu is stable in the 315-450 ◦C range, doping with a few atomic % Ga

extends the range to well below room temperature.

The mechanism of this stabilization remains unclear. This lack of clarity is reflected in

contradictory phase diagrams,3,4 constructed to reflect thermodynamic equilibrium. In one

diagram Ga-doped δ-Pu remains stable to temperatures below 0 ◦C, in the other diagram

Ga-doped δ-Pu decomposes to a mixture of α-Pu and Pu3Ga. Self-irradiation in δ-Pu contin-

uously introduces additional lattice imperfections, making a purely experimental resolution

of the stabilization mechanism a challenge. Because the changing population of lattice im-

perfections changes thermal properties, understanding the stabilization mechanism is crucial

to controlling the thermal properties of aging Ga-doped δ-Pu.

The challenge motivates calculations that examine possible stabilization mechanisms.

Among the mechanisms proposed based on density functional theory (DFT) calculations are

a stabilizing effect of Ga on a disordered magnetic state, thereby allowing the δ-Pu phase

to be preserved at lower temperatures,5 and a reduction in the enthalpy for transformation

from δ to α with increased Ga concentration.6 Calculated bond strengths between a Ga atom

and its Pu neighbors in δ-Pu show that the Ga-Pu bonds are more uniform and symmetric

than the Pu-Pu bonds, suggesting that changes to the bonding stabilize the delta phase,7,8

driven by hybridization of the Pu 6d and Ga 4p states.9,10 Further calculations show a

softening of the elastic moduli with increased Ga concentration,11 indicating a softening of
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the lower-frequency phonons, whose increased contribution to the entropy thereby supports

a phonon-driven thermodynamic mechanism for stabilization.

Examining the phonons is appropriate because structural phase transformations rarely

occur without involving the phonons. They influence the thermodynamics by affecting the

free energy and, in some systems, describe (part of) the pathway the atoms take between

phases. Indeed, Wong et al.12 observe a candidate phonon mode that shows anomalous

behavior in the measured phonon dispersion curves of Ga-stabilized δ Pu: a soft trans-

verse mode at the Brillouin zone boundary, T [111], that suggests neighboring (111) planes

could be easily sheared against each other, thereby pushing δ-Pu toward α-Pu. The ex-

pected phonon softening, a lowering of the mode’s frequency, is however not observed in

Ga-stabilized δ Pu: the mode shows little to no temperature dependence between 200 K

and 307 K,13 in agreement with its calculated behavior in undoped δ-Pu.14 Nonetheless,

the anomalous behavior also appears for shorter wave vectors of the T [ξξξ] branch, which

includes a candidate phonon mode that, based on symmetry arguments, initiates a possible

pathway into the low-temperature phase.15,16

This contribution addresses the Ga stabilization of δ-Pu by calculating how Ga substi-

tution affects the phonons of δ-Pu. The Ga atoms are assumed to be substitutional, as

indicated by experiment and supported by calculations.17,18 Section II provides the details

of the calculations, including a method to trace how phonon modes of the undoped struc-

ture map into the phonon modes of the Ga-doped structure. Results presented in Sec. III

report two effects of a single substitutional Ga in δ-Pu: it creates a local, Ga-dominated

high-frequency mode, and it stiffens the low-frequency modes (Sec. III B). These two effects

are subsequently shown to persist with increasing Ga concentration (Sec. III C). The cal-

culations for these results are performed at the experimental lattice constant, a0 = 4.64 Å.

Further results show that, while compression of δ-Pu softens some of the low-frequency

phonon modes, the Ga-induced stiffening of the low-frequency modes exceeds the softening.

Taken together, these results suggest Ga doping could impede the proposed pathways from

the delta phase into the alpha phase, as discussed in Sec. IV.
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II. METHODS

The present work considers only the harmonic phonons, calculated with density functional

theory as implemented in the VASP package.19,20 The electronic states are treated with the

projector augmented wave method,21 in the generalized gradient approximation of Perdew,

Burke, and Ernzerhof,22 with first-order Methfessel-Paxton smearing (width 27 meV),23 and

a cutoff energy for the plane wave basis set of 500 eV. The k-point meshes are chosen for

each simulation cell such that their density is at least 40 per Å−1. Increasing this density

to at least 60 per Å−1 for the 72-atom system with one Ga (a change of k-point mesh from

3× 3× 4 to 4× 4× 6) shows good convergence: phonon frequencies change by less than 3%,

and phonon mode tracing (defined below) shows no significant changes to the corresponding

modes’ eigenvector (Fig. 1 in the SM24). The phonon moments, which serve as measures

of the phonon density of states relevant for thermodynamics, change by 0.3%. They are

defined on pp. 149âĂŞ152 of Ref. 25,

ln(ω0) = 〈ln(ω)〉, ω1 =
4

3
〈ω〉, and ω2 =

√
5

3
〈ω2〉, (1)

where the average 〈...〉 is over all phonon frequencies (omitting the three translational

modes).

The convergence criteria are 10−8 eV for the electronic self-consistency loop and 10−7 eV

for the ionic relaxation. Following Ref. 6, spinâĂŞorbit coupling and orbital polarization

are neglected in the interest of making the large number of calculations on large system

sizes, required for evaluation of the phonons, computationally feasible. The importance of

spinâĂŞorbit coupling and orbital polarization, however, should not be neglected.

The calculations employ the experimental equilibrium volume of δ-Pu, with a few excep-

tions. The use of a single volume serves to focus on how the Ga substitutions affect the

phonon modes directly, without adding effects due to changing volume – these are considered

separately at the end. The use of the experimental rather than the theoretical volume is

motivated by the experience that, while DFT cold curves (zero-temperature energy vs. vol-

ume curves) are known to be in error for many materials, phonon frequencies calculated at

the experimental geometric parameters tend to be in good agreement with measured fre-

quencies. This experience is reflected, e.g., in the construction of equations of state, where

DFT cold curves are shifted to agree with experimental data while DFT phonon data are
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used at the volume for which they are calculated.26,27

The effects of strongly correlated 5f electrons are approximated by allowing spin

polarization.28 Applied to Pu, spin-polarized DFT calculations successfully describe many

of the material’s remarkable and unusual facets accurately.29–32 This approach has its critics

since magnetic moments are not observed.33 Alternatively, Pu exhibits a fluctuating mag-

netic structure,34 in which case the choice of ordered, or disordered,35 magnetic structure

can be viewed as static snapshots of the fluctuations.36 From a practical point of view of

calculating structural parameters and forces in large systems, however, spin-polarized DFT

calculations appear as a reasonable approximation. Furthermore, doping δ-Pu with Ga

stabilizes the antiferromagnetic (AFM) structure in DFT calculations,37 and experimen-

tal measurements indicate a stable AFM structure for Pu0.92Ga0.08 at low temperatures.38

In addition to being the lowest-energy magnetic structure in DFT calculations, the AFM

structure represents multiple degenerate magnetic structures when all the commensurate

phonons are considered together. More advanced methods such as DMFT are not feasible

for these systems and their phonons, as their application is currently too computationally

expensive. Another alternative method, DFT+U results in unstable modes.39

The zero-temperature phonons are calculated with the small-displacement method.40–42

Inequivalent atoms in the computational cells are displaced by 0.015 Å in all symmetry-

inequivalent Cartesian directions, and the forces calculated with DFT serve to construct

the Hessian matrix. For a system with N atoms at equilibrium positions Ri, diagonalizing

the Hessian delivers the 3N phonon modes n, each described by an eigenvector εn(Ri)

and a frequency ωn. The eigenvectors are normalized so
∑

i εn(Ri) = 1. This allows the

identification of (εn(Ri))
2 as the weight of phonon mode n on atom i.

To investigate how changes to a system affect the phonon modes, the eigenvectors of the

phonon modes with and without the Ga doping are projected onto each other. In the case

of substitutional doping of δ-Pu with Ga, this amounts to a bilinear projection from the

Ga-doped system to the undoped system and individual Ga atom(s). The projection relies

on a one-to-one mapping of atoms, in which (i) the Pu atoms in the doped system β map to

the corresponding Pu atoms in the undoped system (system α1) and (ii) the Ga atoms in the

doped system β map to independent Ga atoms (system α2). The phonons of independent

Ga atoms are the three translational modes with zero frequency.

The projection provides information about changes to the phonon modes that goes beyond
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changes to the phonon density of states (DOS). Changes to the DOS account for changes

to the thermodynamics, but understanding changes to individual modes, in particular the

T [111] mode, requires more detail. While phonon dispersions show detail, once substitutional

atoms are introduced these need to be either calculated for supercells of the already large

doped systems’ unit cells, or the phonon dispersion need to be approximated onto those

of the undoped system by assuming the eigenmodes do not change. While the latter can,

in principle, be compared to experimental phonon dispersions, it fails to deliver the details

sought here. The bilinear projection from the doped system β into the undoped system α1

and the dopant system α2 allows the definition of the weight w(n(β),m(αk)) of a phonon

mode n(β) of the doped system β on a phonon mode m(αk) of the undoped or dopant

system αk,

w(n(β),m(αk)) =

(∑
i∈αk

εn(β)(Ri)εm(αk)(Ri)

)2

. (2)

These weights trace (hence the “phonon tracing” terminology) how individual phonon modes

in the undoped or dopant systems relate to individual phonon modes in the doped system.

III. RESULTS

A. Comparisons with experiment and previous calculations

Before calculating the effects of Ga doping, the quality of the methods used here is put

into perspective. Figure 1 compares the calculated phonon dispersion of undoped δ-Pu with

results from experiment12 and other calculations.36,43 The symmetry breaking due the AFM

structure is evident in differences between the [00x] and the [x00] directions and in the lifting

of some degeneracies. Aside from the symmetry breaking, the agreement with experiment

overall is on par with that of other calculations.

The experimental data compared to above is from δ-Pu that was stabilized at room

temperature by doping with 2 at. % Ga.12 Figure 2(a) compares the phonon DOS derived

from those data with the results from a calculation with 1.4 at. % Ga. Similarly, Figure 2(b)

compares the phonon DOS directly measured on δ-Pu stabilized with 5 at. % Al44 with

the results from a calculation with 4.2 at. % Ga. The comparisons are not one-to-one: in

addition to the approximate doping, the calculated DOS are based only on the phonons

with wave vectors that are commensurate with the 72-atom computational cell. Given these
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FIG. 1. Comparison of the δ-Pu phonon dispersion with experiment and other calculations. The

dispersion in this work is calculated with the AFM structure in a computational cell with 96 atoms

at a0 = 4.64 Å. Unlike experiment (Wong et al.12) and other calculations (Söderlind et al.36, Dai et

al.43), the AFM structure breaks the cubic symmetry by singling out the [00x] direction for the wave

vector of the magnetic structure: consequently, the results are shown along more high symmetry

directions than required for the fcc structure. The experimental data is from measurements on a

δ-Pu sample with 2 at. % Ga.

approximations, the agreement with experiment is reasonable at low frequencies. The high-

frequency peak in the calculated DOS is somewhat low, as is expected from the behavior

near the boundary of the first Brillouin zone (longitudinal [00ξ] and [ξξξ] branches) in Fig. 1.

Absent from the experimental phonon DOS are the dopant-induced localized phonon modes

seen in other experiments (see next section).

B. Single Ga substitution

Figure 3 compares the phonon density of states (DOS) of δ-Pu to that of Pu-1.4 at. % Ga

δ-Pu (and higher concentrations). Most notably, the Ga substitution causes phonon modes

to appear at frequencies well above those of δ-Pu. The frequencies of these Ga substitution-

induced modes agree well with the first moment for Ga, 3.94 THz, measured by Lynn et

al. in Pu-3.6 at. % Ga δ-Pu,45 and with the Ga-Pu bond Debye temperature of 3.92 THz,
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FIG. 2. Comparison of phonon densities of states (DOS) with experiment. The DOS calculated

here employ the AFM structure in computational cells with 72 atoms; only phonons with com-

mensurate wave vectors are shown, with the calculated frequencies convoluted with a Gaussian of

width 0.05 THz. (a) The experimental data of Wong et al.12 is calculated based on measurements

on a δ-Pu sample with 2 at. % Ga at room temperature. (b) The experimental data of McQueeney

et al.44 is measured on a δ-Pu sample with 5 at. % Al at two temperatures; the sample at room

temperature has a reported lattice constant of 4.58 Å.

measured by Nelson et al. in Pu-1.9 at. % Ga δ-Pu.17 The calculated frequencies are a bit

low compared to the Ga-Pu specific correlated-Debye temperature, 4.22 THz, measured by

Allen et al. in Pu-3.3 at. % Ga δ-Pu.46

The appearance of phonon modes with frequencies that are well above those of δ-Pu

originates in the significantly lower mass of Ga. An instructive approximation for the effects

of the substitution can be found by changing the mass of a single atom while retaining

the force constants of the phonon calculation for δ-Pu. The results, shown in Fig. 4, reveal

three phonon modes that, with decreasing mass, increase in both frequency and localization.

Performing the DFT calculation with one Ga substitution shows that the changes to the

ion positions and the force constants further increases the frequencies and especially the

8



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (THz)

0.2

0.4

0.6

0.8

1

Ph
on

on
 D

O
S

0.0 at. % Ga
1.4 at. % Ga
2.8 at. % Ga
4.2 at. % Ga
5.6 at. % Ga

FIG. 3. Phonon densities of states calculated for δ-Pu with and without Ga substitutions in a

computational cell with 72 atoms at a0 = 4.64 Å. The 213 (3 × 72 − 3) phonon frequencies are

convoluted with a Gaussian of width 0.05 THz.
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FIG. 4. Frequencies of localized phonon modes calculated for δ-Pu with a single substitution in a

computational cell with 64 atoms at a0 = 4.64 Å, plotted versus the weight of the phonon modes on

the substitutional atom. The data denoted as “mass-only substitution” are calculated by changing

the mass of one atom (to values 110 a.u. and below, in steps of 5 a.u.) and using the force

constants from the DFT calculation of the 64-atom δ-Pu supercell. The data denoted as “Ga actual

substitution” are calculated from the force constants of the 64-atom δ-Pu supercell with one Ga

substitution and relaxed atomic positions.
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FIG. 5. Phonon mode frequencies calculated for δ-Pu with a single Ga substitution in a computa-

tional cell with 72 atoms at a0 = 4.64 Å, plotted versus the weight of the phonon mode on the Ga

atom. Inset: Ga-dominated modes in computational cells with 16, 36, 64, and 72 atoms. Phonon

modes with zero weight are completely described by a linear combination of the amplitudes of Pu

atoms.

localization. Finally, the non-degeneracy of the localized modes in the approximation (due

the imposed asymmetric magnetic structure) is significantly reduced, especially the spatial

asymmetry.

The frequencies and degree of localization for the complete set of phonon modes calculated

for Pu-1.4 at. % Ga δ-Pu appear in Fig. 5. The separation between Ga- and Pu-dominated

modes is pronounced. The frequencies of the localized modes and their weight on the Ga

atom change little for cell sizes larger than 36 atoms. The strong localization indicates they

may well be described as a local Einstein mode considered as a possibility by Lynn et al.45

In the dilute limit, e.g., substituting one in 72 atoms, corresponding to 1.4 at. % Ga,

changes to the Pu-dominated modes are subtle. Figure 6 reveals the subtle changes by

plotting the weights of the bilinear projection (Eq. 2): the weights of the δ-Pu phonon

modes fall primarily on or near the diagonal. Small weights off the diagonal reflect a small

degree of linear combining of the Pu-dominated modes as they adjust to form modes that

no longer include the substituted Pu atom. The frequencies remain very similar, but show
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FIG. 6. Phonon mode tracing for δ-Pu with one GaPu substitution in computational cell with

72 atoms at a0 = 4.64 Å. Orange circles represent δ-Pu modes with black circles highlighting the

T [111] modes; green diamonds represent Ga modes. The areas of the symbols are proportional to

the weights as defined in Eq. 2; only weights larger than 0.01 are shown.

a slight stiffening at low frequencies and a slight softening at high frequencies. The change

to the low-frequency modes provides a first hint that the stabilization might not be due to

a thermodynamic mechanism: a thermodynamically more stable phase would be driven by

a softening of the low-frequency modes that dominate the entropic term of the free energy.

Among the slightly stiffened phonon modes are phonon modes with wave vectors [ξξξ]T ,

in particular the T [111] modes (highlighted). If these phonon modes initiate the pathway

into the low-temperature phase, then an increase in their frequencies affects the initiation.

The phonon frequencies describe only the local curvature in the delta phase and not the rest

of the pathway. Hence increasing the curvature does not guarantee a higher energy barrier

between the delta and the low-temperature phase. The increased curvature does, however,

suggest that the pathway is likely less favorable.
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∆x ∆y ∆z dGa-Ga ∆E mag ω0 ω1 ω2

(a0) (Å) (meV) (µB) (THz)

0 0.5 0.5 3.36 253 0 1.65 2.36 2.44

0.5 0.5 0 3.48 196 10.7 1.65 2.36 2.45

0 1 0 4.57 176 10.8

0 0 1 4.64 257 11.2

0.5 1 0.5 5.62 -9 0 1.66 2.37 2.45

0.5 0.5 1 5.64 -28 10.8 1.66 2.37 2.45

1 1 0 6.49 -18 10.9 1.67 2.38 2.45

0 1 1 6.53 -35 10.8 1.66 2.37 2.45

1.5 0.5 0 7.33 26 10.9

0 1.5 0.5 7.34 32 0

1 1 1 8.03 -37 10.8 1.66 2.38 2.46

1 1.5 0.5 8.67 -10 0 1.66 2.37 2.45

0.5 1.5 1 8.67 -11 10.7 1.66 2.37 2.45

1.5 1.5 0 9.84 11 10.5

1.5 1.5 1 10.88 -25 10.8 1.66 2.38 2.46

TABLE I. Energies and magnetic moments for two Ga substitutions in 72-atom fcc δ-Pu cell at

a0 = 4.64 Å. The 72-atom cell is a 3× 3× 2-conventional cell supercell, so the maximum distance

from the first Ga substitution to the second Ga substitution in x and y is 1.5 a0 and in z is 1.0 a0.

The resulting magnetic moment is indicative of whether the two Ga atoms substitute Pu atoms

with the same or opposite spins. The energy difference ∆E is relative to that of two independent Ga

substitutions, i.e., ∆E = [E(Pu70Ga2) − E(Pu72)] − 2[E(Pu71Ga1) − E(Pu72)], and is evaluated

with the finer (4× 4× 6) k-point mesh. Some rows are left incomplete because the cost of phonon

calculation outweighs the value of the results.

C. Multiple Ga substitutions

To address the effects of increased Ga concentration, first all unique arrangements of

two Ga atoms (2.8 at. % Ga) in a 72-atom cell are considered. The energy cost of two

Ga substitutions relative to twice that of a single substitutions, reported in Tab. I, shows
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a dramatic drop off beyond the second nearest-neighbor (NN) shell. Beyond this drop off

the energy cost continues to vary, the most favored location being in rough agreement with

all-electron DFT calculations.9

Table I shows negligible dependence of the phonon moments on the Ga atoms’ relative

positions. (Consequently, the phonon calculations were not performed for all configurations.)

Small differences could be expected from allowing the volumes to relax. At the fixed volume,

the preferred relative positions of the Ga substitutions appears not to involve thermal effects.

For larger concentrations, i.e., three and four substitutions, the calculations sample com-

putational cells with well-separated Ga substitutions. These consist of two cells with three

Ga atoms and one with four Ga atoms, with atoms arranged no closer than the fourth NN

shell. The energy cost of these substitutions approximate the range of the double substi-

tutions beyond the second shell, with correspondingly defined ∆E of 33 meV, 46 meV, and

-47 meV.

Figure 7(c) shows the phonon moments calculated for Ga-doped δ-Pu increasing linearly

with Ga concentration. The phonon moments calculated for only the Pu-dominated modes,

shown in Fig. 7(b), exhibit no discernible change as the Ga concentration increases, indi-

cating that the increase for Ga-doped δ-Pu stems from the linear increase of the number of

high-frequency, Ga-dominated modes. The average frequency of the Ga-dominated modes in

Fig. 7(a) decreases slightly with increasing Ga concentration, signifying subtle interactions

between the multiple Ga atoms.

The lack of discernible change in phonon moments of the Pu-dominated modes in Fig. 7(b)

results from an averaging over phonon modes, some of which stiffen and some that soften.

The stiffening occurs mainly at lower frequencies, as seen in Fig. 8 (see Fig. 2 in the

SM24 for the complete frequency range). In particular, the eight transverse [111] modes

at f = 0.98 THz, which loose their degeneracy, become increasingly stiffer with increasing

Ga concentration. Small weights of the T [111] modes fall below the diagonal (i.e., below

0.98 THz) to couple with the mode originally at 0.90 THz, but these modes of Ga-doped

δ-Pu have minimal character related to the T [111] modes.

The results above by themselves suggest that a mechanism for Ga stabilization due to the

phonons could involve impeding the proposed pathways. The low-frequency modes become

stiffer with increased Ga concentration, thereby lessening the entropy that would favor

thermodynamic stabilization. Furthermore, the zeroth phonon moment of both Ga-doped
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FIG. 7. Average frequency of Ga-dominated phonon modes (a), phonon moments for Pu-dominated

phonon modes (b), and phonon moments for all phonon modes (c), calculated for Ga-doped δ-Pu

in computational cells with 72 atoms at a0 = 4.64 Å. Data include one calculation at 1.4 at. % Ga,

ten at 2.8 at. % Ga, two at 4.2 at. % Ga, and one at 5.6 at. % Ga.

δ-Pu and the Pu-dominated modes do not decrease with Ga concentration, and the zeroth

phonon moment is the dominant quantity describing high-temperature entropy effects.25

Among these stiffened modes are the [ξξξ]T modes suggested as pathways to the α-Pu

structure, indicating that Ga tends to block these pathways. The results supporting these

arguments are all for a fixed volume, but allowing the volume to change should only add

support: Ga doping contracts the volume, experimentally and theoretically,2,9 and smaller

volume increases the forces, which leads to even stiffer phonons.

However, this last point, while generally true, does not completely hold for δ-Pu. Fig-

ure 9 (a) demonstrates an unusual softening of most lower-frequency modes in undoped δ-Pu

as the volume is compressed. The volume change is larger than that from Ga doping but
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(a) (b)

(c) (d)

FIG. 8. Low-frequency excerpt of phonon frequency tracing for δ-Pu with (a) one, (b) two, (c)

three, and (d) four substitution Ga atoms in computational cell with 72 atoms at a0 = 4.64 Å.

Orange circles represent the δ-Pu modes with black circles highlighting the eight transverse [111]

modes at f = 0.98 THz (degenerate in undoped δ-Pu). The areas of the symbols are proportional

to the weights as defined in Eq. 2; only data with weight larger than 0.01 are shown.

serves to distinguish the differing behavior among phonon modes. This unusual behavior of

phonon softening with compression likely relates to the unusual negative thermal expansion

measured in δ-Pu.47 To check how this softening due to the smaller volume compares with

the stiffening due to Ga doping, the phonons are calculated for the 4.2 at. % Ga-doped

system at the corresponding experimental lattice constant, a0 = 4.60 Å.2 Figure 9 (b) shows

that the softening due to compression is more than offset by the Ga-doped stiffening (see

Fig. 3 in the SM24 for complete frequency range). This result is consistent with the sugges-

tion that a mechanism for Ga stabilization due to the phonons could involve impeding the

proposed pathways.
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(a) (b)

FIG. 9. Phonon frequency tracing from δ-Pu at 4.64 Å (a) to δ-Pu at a0 = 4.52 Å and (b) to Pu-

4.2 at. % Ga δ-Pu at a0 = 4.60 Å (the corresponding experimental lattice constant) in computational

cells with 72 atoms. Orange circles represent the δ-Pu modes with black circles highlighting the

eight transverse [111] modes at f = 0.98 THz (degenerate in undoped δ-Pu). The areas of the

symbols are proportional to the weights as defined in Eq. 2; only data with weight larger than 0.01

are shown.

IV. DISCUSSION

DFT calculations on substitutional doping of δ-Pu with Ga reveal two distinct types

of phonon modes. The Ga atoms introduce high-frequency modes that are localized and

separated in frequency from lower-frequency, Pu-dominated modes.

The Pu-dominated modes change their frequencies, and to some degree their charac-

ter, with small concentrations of Ga doping. In particular the low-frequency Pu-dominated

modes stiffen, while the high-frequency Pu-dominated modes soften. Among the stiffened

low-frequency Pu-dominated modes are those proposed to initiate a structural transforma-

tion into the α-Pu structure. Increasing the Ga concentration enhances the stiffening. These

results suggest that, as far as the phonons are concerned, the mechanism with which Ga

doping stabilizes δ-Pu is likely not by way of the free energy but rather by stiffening the

initial slope of the structural transformation.

This suggestion comes with caveats. It does not consider how Ga changes the low-

frequency modes of the other phases: if those were stiffened to an even larger degree, ther-

modynamic stabilization would play a role. It does not consider the effects of self-irradiation,

which leaves Pu with significant damage; chemical analysis of Ga-doped Pu shows many
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impurities.48 These defects can partially be annealed out,49 but any sample history leaves

lattice imperfections that can affect the structural phase transformation. DFT calculations

predict interactions between Ga and such lattice imperfections.18

Additional support for a pathway-impeding mechanism comes from considering volume

effects. Compressing Ga-doped δ-Pu can transform the crystal into the Ga-doped alpha

phase, but only for small amounts of Ga: larger Ga concentration inhibits the transformation

with compression.48 The present calculations show that Ga doping and compression have

opposing effects on the phonon frequencies. If the transformation is initiated by a softening

with compression of, e.g., the T [111] phonon mode, aided by lattice imperfections, does Ga

doping still stiffen the mode more than compression softens it? Research aimed at just this

issue is underway.
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