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We measure the full elastic tensors of Mn3sGe and Mn3zSn as a function of temperature through
their respective antiferromagnetic phase transitions. Large discontinuities in the bulk moduli at
the Néel transitions indicate strong magnetoelastic coupling in both compounds. Strikingly, the
discontinuities are nearly a factor of 10 larger in Mn3Ge than in Mn3Sn. We use the magnitudes
of the discontinuities to calculate the pressure derivatives of the Néel temperature, which are 39
K/GPa 14.3 K/GPa for Mn3Ge and Mn3Sn, respectively. We measured the in-plane shear modulus
ce6, which couples strongly to the magnetic order, in magnetic fields up to 18 T and found quan-
titatively similar behavior in both compounds. Recent measurements have demonstrated strong
piezomagnetism in MnsSn: our results suggest that MnzGe may be an even better candidate for

this effect.

I. INTRODUCTION

Elastic strains offer a fast, local, and reversible way
to manipulate the magnetic properties of solids. On a
microscopic level, strains alter bond distances and the
angles between magnetic ions, leading to changes in mag-
netic exchange coupling and magnetic anisotropy [I]. On
a phenomenological level, these effects can lead to a strain
dependence of the critical temperature and of the to-
tal magnetic moment. In the most extreme case, exter-
nally applied strains can break the crystal symmetry and
drive magnetic phase transitions. The strain-dependence
of the magnetization most commonly comes in the form
of magnetostriction, piezomagnetism, or flexomagnetism.
All of these effects find useful applications in the recently-
emerging field of straintronics [2,[3]. This necessitates the
search for materials with large magnetoelastic coupling.

In this regard, the noncollinear antiferromagnets
MnsX (X = Ge, Sn) are promising candidates. 120° tri-
angular magnetic order forms in these compounds well
above room temperature. This magnetic order is the
source of several anomalous transport properties includ-
ing giant anomalous Hall, Nernst, and thermal Hall ef-
fects [4HII]. These quantities were recently shown to
be strongly strain dependent. For example, dos Reis
et al. [12] demonstrated the ability to change the sign
of the Hall angle in Mn3Ge by applying hydrostatic pres-
sure, and Ikhlas et al. [I3] switched the sign of the Hall
coefficient in Mn3Sn by applying uniaxial strain. Ad-
ditional evidence for large magnetoelastic coupling has
been found in neutron diffraction studies [14], as well as
in spontaneous magnetostriction at Ty [I5] in MnsGe.
Most recently, Mn3sSn was found to exhibit an extraordi-
narily large piezomagnetic effect [I3]. These findings re-
veal an intimate connection between magnetism, anoma-
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lous transport properties, and elastic strain in MnsX,
making it a prime candidate for applications in strain-
tronics.

While many anomalous transport coefficients have
been documented in MnsX, the fundamental quantity re-
lating stress and strain—the elastic tensor—has not been
measured. From a practical standpoint, the elastic mod-
uli are needed to convert stress—the quantity typically
known in an experiment—to strain. From a fundamental
standpoint, elastic moduli are a powerful thermodynamic
probe into the symmetry breaking at the magnetic phase
transition.

We directly measure the full elastic tensors of MnzGe
and Mn3Sn through the respective phase transitions. We
study the elastic moduli using resonant ultrasound spec-
troscopy (RUS) and pulse-echo ultrasound. We find large
discontinuities at T in the compressional elastic mod-
uli and, using Ehrenfest relations, relate them to large
derivatives of the Néel temperature with respect to hy-
drostatic pressure. We calculate dT/dP to be roughly
39 K/GPa in Mn3Ge and 14.3 K/GPa in MnsSn—some
of the largest values ever reported for itinerant antiferro-
magnets. We measure cgg—corresponding to the strain
that switches the sign of the anomalous Hall coefficient
[13]—in magnetic fields up to 18 tesla. We find that,
while the elastic moduli of Mn3zGe and Mn3Sn exhibit
large quantitative differences in zero field, their magnetic
field dependencies are quite similar.

This paper is structured as follows: in we

describe our pulse-echo and RUS measurements and how
our data is analyzed. In we describe the mea-
sured elastic moduli and their temperature dependencies.
We analyze the temperature dependencies quantitatively
in [section TV] We analyze the magnetic field dependence
of cge in [section V] Finally, we summarize our conclu-
sions in
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II. METHODS

MnsX (X = Ge, Sn) crystallizes with a hexagonal unit
cell (point group Dg, a), with lattice parameters
a =53A and ¢ = 4.3 A for Mn3Ge [16], and a = 5.7 A
and ¢ = 4.5 A for Mn3Sn [17]. Mn atoms form a Kagome
lattice in the a-b plane, and local moments on the Mn
sites order in a chiral antiferromagnetic stucture (Fig-
[ure 1] b) [18 [19], with a small in-plane magnetic moment
due to spin canting [20]. Neutron diffraction studies find
a magnetic order parameter of the F;, representation
in the Dg, point group [19, 21I]. The Néel tempera-
ture (Ty) for MnsGe is 370 K. For Mn3Sn, T depends
strongly on the exact stochiometry: here we investigated
Mn3z . g19Sng.9g1 With a critical temperature of 415 K. This
composition of Mn3Sn features an additional phase tran-
sition to spiral spin order below about 270 K [22], 23].
For simplicity, we will refer to Mns g19Sng.9s1 as MnzSn
for the remainder of this paper.

The strain tensor in Dg, consists of four indepen-
dent elements. Linear combinations of these form ir-
reducible representations (irreps, ). The ir-
reps are divided into two one-component compressional
strains that transform as the A;, irrep, and two two-
component shear strains transforming as the Ey, (out-
of-plane shear) and FEj, (in-plane shear) irreps. The
elastic moduli corresponding to each irrep are defined
according to cr = 0*F /0ek, where F is the free energy
and T" labels the irreps. The resulting elastic moduli are
caign = (c11+¢12) /2, caige = €33, CE1g = Ca4, and
CE2g = Ce6 = (€11 — c12) /2. An additional, fifth elastic
modulus, ca14,3 = c13, couples the in-plane and out-of-
plane compressional strains. illustrates these
irreducible strains, provides their definitions in terms of
the strains €;;, and gives the corresponding elastic mod-
uli.

We measured the temperature dependence of the the
full elastic tensor using resonant ultrasound spectroscopy
(RUS). In RUS, a sample is placed on its corners in weak
mechanical contact between two piezoelectric transducers
to provide nearly-free elastic boundary conditions. One
transducer is driven at a fixed frequency and the resulting
charge generated at the other transducer is detected us-
ing a custom-built charge amplifier and digital lockin (the
amplifier and lockin are described in Balakirev et al. [24]).
By sweeping the drive frequency in the range of 0.1 to 5
MHz, we can measure the lowest mechanical resonance
frequencies of a three-dimensional solid. From these res-
onance frequencies, we then determine the elastic moduli
by inverse-solving the elastic wave equation (see [25] 26]
for details on technique and data analysis). In contrast to
the conventional pulse-echo ultrasound technique, where
only one elastic modulus is measured at a time, RUS al-
lows the extraction of the temperature dependence of the
full elastic tensor with one experiment.

To access the relatively high Néel temperatures of
Mns3X, we built an RUS apparatus inside an insulated
box on a hotplate (see SI for pictures of the measure-
ment setup). The temperature was monitored with a
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FIG. 1: Crystal structure and irreducible strains
of Mn3X. a) Mn3X crystal structure. A hexagonal
unit cell consists of AB-stacked Kagome planes of Mn
atoms. Different shades of green indicate A and B
planes, respectively. b) View of one Mn Kagome layer,
with purple arrows that illustrate one possible
ordered-state spin configuration. c) Visualization of the
irreducible representations of strain. The definition of
irreducible strains are given in terms of ¢;;, alongside
the symmetry representations and the corresponding
elastic moduli.

Lakeshore PT100 platinum resistance thermometer and
recorded with a Cryocon Model 22C temperature con-
troller. For the fits of the elastic tensor, we used the
lowest resonance frequencies up to 4 MHz in both com-
pounds. This included 84 resonances for Mn3zGe and 68
for Mn3Sn. Our fits converged with root mean square er-
rors of 0.18 % (387 K) and 0.42 % (300 K) for Mn3Ge, and
0.23 % (438 K) and 0.48 % (300 K) for MnsSn. More de-
tails, including a full list of experimental and calculated
resonances, can be found in the SI.

The requirement of weak mechanical contact between
transducers and the sample makes it difficult to reliably
perform RUS in magnetic fields. To measure the cgg
elastic modulus as a function of magnetic field, we em-
ployed the pulse-echo ultrasound technique [27]. Ultra-
sound waves were generated by 41° X-cut LiNbOg3 shear
transducers with a fundamental frequency of 40 MHz,
purchased from Boston Piezo-Optics Inc. The transduc-
ers were driven at 199 MHz for Mn3Ge and at 175 MHz



for Mn3Sn. The transducers were glued to polished sur-
faces of the sample, perpendicular to the c-axis, using
AngstromBond AB9110LV from Fiber Optic Center Inc.
Short (80 ns) bursts of ultrasound were generated from
the transducer using a Tektronix TSG 4106A RF gen-
erator and amplified with a Mini-Circuits ZHL-42W+
power amplifier. The ultrasonic echoes are detected us-
ing the same transducer, amplified with a Mini-Circuits
7X60-3018G-S+ amplifier and captured on a Tektronix
MSO64 oscilloscope. A software lockin is used to track
phase changes in the echoes as a function of tempera-
ture and magnetic field, allowing relative changes in the
sound velocity, Av/v, to be measured with a precision
of better than one part in 10°. In this configuration, we
measure changes in vgg, which are converted to the asso-
ciated elastic modulus change by Acgg/ces = 2Av66/Us6-

The pulse-echo measurements were performed with
a custom high-temperature probe in an Oxford Instru-
ments variable temperature insert (VTI) in an Oxford
Instruments 20 Tesla superconducting magnet system.
The sample space of the VTI was pumped continuously
throughout the experiment to ensure high vacuum. We
performed these measurements with an in-plane mag-
netic field applied parallel to the polarization vector of
the sound wave (and perpendicular to the direction of
sound propagation).

III. DATA

lists the elastic moduli of MnzGe and Mn3Sn
at room temperature and at high temperatures—above
their respective antiferromagnetic phase transitions—as
well as their bulk moduli and Poisson’s ratios. In their
respective paramagnetic states, the compresional elastic
moduli, (c11 + ¢12) /2 and ¢33, are 13 % and 28 % larger
in Mn3Ge than in MnsSn. This implies tighter bond-
ing in MngGe, which is also consistent with its smaller
unit cell. The value of the in-plane Poisson ratio, vy, is
consistent with what is found in most conventional met-
als [28]. v., on the other hand, is anomalously small,
even compared to other layered materials like SroRuQOy4
(vzx = 0.16 [26]), URuzSiz (v = 0.20 [29]), Celrlng
(V2 = 0.32 [30]), and LagCuOy4 (v, = 0.21 [31]), im-
plying extremely weak elastic coupling between different
planes in the hexagonal crystal structure of Mn3X.

To investigate the coupling between magnetism and
elasticity in MnsX, we first measured the elastic mod-
uli as a function of temperature through their respective

Néel temperatures T (see .

We first discuss the temperature dependence of the
compressional elastic moduli (upper panels of .
Starting well above Ty, all three compressional moduli
in Mn3Ge decrease smoothly upon cooling towards the
phase transition. This anomalous softening is in contrast
to the conventional stiffening of elastic moduli when the
temperature is lowered [32], and implies sizable antifer-
romagnetic fluctuations well above T. Anomalous soft-
ening of the elastic moduli approaching Ty also suggest

a non-mean-field phase transition in MnsGe. The soft-
ening of the compressional moduli above Ty is followed
by a step-like feature at the phase transition.

Qualitatively similar behavior is seen in MngSn, but
with quantitative differences. In Mns3Sn, c¢i3 and
(c11 + ¢12) /2 are almost temperature independent well
above T, and ¢33 increases upon cooling. All compres-
sional elastic moduli eventually soften above Ty, but
much more weakly than in MnsGe. Additionally, the
absolute sizes of the steps at Ty are nearly a factor of
10 smaller in Mn3Sn than in Mn3Ge. Both the smaller
precursor softening and the smaller steps at Ty suggest
that the coupling between magnetism and the lattice is
significantly stronger in Mn3Ge than in MnzSn.

We now turn to the shear moduli (lower panels in
ure 2)). The behavior of cy4 is relatively conventional,
with no precursor softening and only a change in slope
at Tn. cgg, on the other hand, softens towards the Néel
temperature upon cooling, similar to the compressional
modes. The much stronger signature in MnzGe than
in Mn3Sn again indicates stronger magnetoelastic cou-
pling in the former compound. While a step in cg¢ at
Ty is allowed by symmetry for the chiral order in MnzX
[13, B3, [34], no feature that is comparable in width to
the steps in the compressional moduli is seen in cgg (see
SI for a derivation of which moduli can show discontin-
uous jumps at the phase transition). Note that the Eo4
strain associated with cgg is the same strain that is re-
sponsible for the piezomagnetic effect and the switching
of the anomalous Hall effect. The precursor softening in
this channel again indicates the non-mean-field nature of
the magnetic phase transition in MnsX, and will be the
subject of a future study.

IV. DISCONTINUITIES IN COMPRESSIONAL
ELASTIC MODULI AT Tn

The discontinuities in the compressional moduli at T
are indicative of a second-order phase transition and are
reminiscent of a heat capacity anomaly [35]. Indeed,
Ehrenfest relations require that the changes in the heat
capacity and in the compressional moduli across T are
proportional to each other, and the coefficient of pro-
portionality is the square of the derivative of Ty with re-
spect to hydrostatic pressure Phyqaro. Using the measured
heat capacity and our measurements of the compressional
moduli, we can calculate dT /dPyydro-

The Ehrenfest relation between the bulk modulus and
heat capacity discontinuities is [26]

dTn \? AB (AC\ .
(dphydro> B B? (TN) ’ ( )
where AB and AC are the discontinuities in the bulk
modulus and specific heat, respectively, and B is the ab-
solute bulk modulus at Ty .
To extract the derivative of the Néel temperature with

hydrostatic pressure from our data, we plot the bulk
modulus B/B (Tx)? on the same scale as the specific heat




Compound Temperature Elastic Moduli (GPa) lBulk Modulus Poisson’s Ratios I
(K) =g e cag M52 B (GPa) Voy Vi

MnsCe 300 87.0(5) | 12.5( 15 201.5( 16 48.4(1) 43. 0(5)'65 9(7 0.334(6) 0.041(5)

3 387 90.4(2) 14:6 194:6 45.09(5) 48.1(2) 67. ( ) 0.300(2) 0.053(2)

NS 300 85.8(5)| 18.1( 14 165.3( 11 52.0(2) 50.8(5)[64.5(7) 0.246(7) 0.083(7)]

3 438 79.7(2)| 17. O 151. 3 48.11(8) 51.2(2) 59.7(3) 0.206(3) 0.089(3)

TABLE I: Elastic properties of Mn3zX. All quantities are reported at 387 K for MnzGe and at 438 K for Mn3Sn,
where each compound is in the paramagnetic state, as well as at room temperature. Elastic moduli, as well as the
bulk modulus, are given in GPa. The Poisson’s ratios v,, and v, are also given. The definitions of these Poisson’s

ratios in terms of elastic moduli are given in the SI. In a hexagonal crystal, cgg

= 542 We show full temperature

dependences of the Poisson’s ratios and the bulk moduli in the SI.
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FIG. 2: Change in elastic moduli as a function of temperature for MnzGe (left) and MnzSn (right).
Upper and lower panels show changes compressional and shear elastic moduli, respectively. The change is defined as

Ac(T) = ¢(T) — ¢(387K) for Mn3zGe and Ac(T)

= ¢(T) — c(438K) for Mn3Sn. The Néel temperatures are indicated

by vertical dashed lines.

scaled by dTw /dPhydre, i.e. —AC/Tn (dTx/dPhyaro)’
(see and footnote [36]). This analysis for
Mng3Ge, along with the specific heat data for Mn3zGe from
Chen et al. [I9], is shown in the main panel of
We extract a derivative of Ty with respect to pressure of
dTN/dPhydro =39+3 K/GP&

Specific heat data are not available for Mn3Sn through
its high temperature phase transition. However, us-
ing the specific heat data for Mn3sGe, we estimate
dTN/dPaydro =~ (14.3 £ 2) K/GPa for Mn3Sn (see inset
of . This value is about a factor of three smaller
than for MnzGe. It is possible that the true heat capacity
of Mn3Sn is a factor of 9 larger than in Mn3Ge. Either
way—whether it is due to a factor of 9 difference in heat
capacity or a factor of 3 difference in dT'n/dPhydro—this

observation is puzzling given that the two compounds
share similar values of Ty, the same room-temperature
magnetic structure, and the same crystal structure with
only marginally different unit cell parameters.

Table Il compares the size of dTy /dPhydm between

several metallic antiferromagnets. Mn3Ge and MnzSn
stand out with some of the largest pressure derivatives
of their respective Néel temperatures. Only the alloy
MngPt and elemental chromium have transition temper-
atures more sensitive to pressure than MnzGe. Note that
these compounds and MngX are also the only materi-
als with transitions above room temperature. These fea-
tures, as well as their metallic conductivity, make MnzGe
and Mn3Sn two of only a few materials exceptionally well
suited for applications in straintronics.
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FIG. 3: Ehrenfest scaling for the bulk moduli and
specific heat of Mn3zX. Blue points are the specific
heat of Mn3Ge taken from [19] divided by the Néel
temperature T and scaled by a factor with units of
(kelvin/GPa)?. The bulk modulus of Mn3Ge, divided
by Bf, —the square of the value of the bulk modulus at
Tn—is shown as black points in the main panel. Both
data sets are given in units of 1/GPa. The scaling
factor used here corresponds to a value of
dTn/dP = 39K/GPa, and the shaded region
corresponds to deviations of £3 K/GPa. In the inset,
this analysis is repeated for the bulk modulus of MnzSn.
It reflects a value of dTn/dP =~ (14.3 £ 2) K/GPa.

dTy T
dPpydro
Compound (K/GPa) (K) Reference
Mn3Ge 39 370 This work
MnsSn 14.3 415 This work
MnsPt 70 475 [37]
Cr 51 312 [3§)
a-Mn 17 95 [39]
UN 93 53 [0
CuMnSb 4.7 50 [41]
MnPds 20 195 [42)
UPtGas 15 26 [0
CrB2 1.0 87 [43]
TiAu 06 33 |44
UrGe 0.11 16.5 [45]

TABLE II: The derivative of the Néel temperature with
respect to hydrostatic pressure for selected metallic
antiferromagnets.

V. 6 IN MAGNETIC FIELD

The in-plane shear strain, egoy = {€zz — €4y, 262y},
plays a special role in the coupling between magnetism
and strain in MngX. Unlike most shear strains in mag-
netic systems, € ga4 can couple to the magnetic order pa-
rameter 1) = {1z, 1y} as ((€zo — £yy) (13 _712) +4eaynany)
within a Landau free energy. This type of coupling—
linear in shear strain and quadratic in order parameter—
can reorient the magnetic moments on the Kagome lat-

tice and align domains [I3] [33]. Tkhlas et al. [13] used
€E2g strain to change the sign of the Hall coefficient and
to find a large piezomagnetic effect in MngSn. This mo-
tivates a measurement of the associated elastic modulus,
Ce6, in external magnetic fields.

The inset to shows the change in cg as a
function of temperature in zero magnetic field for MnzGe
and Mn3Sn, measured with pulse-echo ultrasound. The
main panel of shows this temperature depen-
dence at different magnetic fields with the zero-field data
subtracted from each curve. The data are shown as a
function of the reduced temperature (T'— Tn) /TN above
their respective phase transitions. The data end at (or
just before) Ty because the ultrasonic attenuation be-
comes too large to resolve a clear signal in the ordered
phase.

As noted earlier, the temperature dependence of cgg
in zero field shows much stronger precursor fluctuations
in Mn3Ge than in Mn3Sn. However, once we account
for this difference in the zero-field temperature depen-
dence, the change with magnetic field is quite similar for
the two compounds. With increasing magnetic field, the
softening towards Ty becomes more pronounced. This
behavior is reminiscent of ferromagnetic transitions and
is indicative of the trilinear coupling allowed by symme-
try between shear strain, magnetic order parameter, and
the external field in MnsX (see SI for a description of this
coupling).
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FIG. 4: The field dependence of cg5 in MnzX. The
changes in cgg for Mn3Ge (solid lines) and MnzSn (dashed
lines) at different fields with respect to the zero-field elas-
tic moduli are shown as a function of the reduced tem-
perature. The data were taken at 1, 2, 5, 9, and 15 T
for Mn3zGe and at 1, 2.7, 5, 10, 14, and 18 T for Mn3Sn.
The inset shows the zero-field data for both compounds.

VI. DISCUSSION

In summary, we used resonant ultrasound spectroscopy
and pulse-echo ultrasound to measure the elastic moduli
of Mn3Ge and Mn3zSn. In addition to the full elastic ten-



sor, we also provide the bulk moduli and Poisson’s ratios.
We find an anomalously small out-of-plane Poisson’s ra-
tio, V.4, in both materials, implying weak elastic coupling
between different layers of the hexagonal crystal struc-
ture. By scaling the bulk modulus anomalies to match
the heat capacity anomaly at T, we extract large deriva-
tives of the Néel temperatures with respect to hydrostatic
pressure: (39+3) K/GPa and (14.3 £2.0) K/GPa in
Mn3Ge and MngSn, respectively. Finally, although the
zero-field magneto-elastic coupling appears to be much
larger in Mn3Ge than in Mn3Sn, we find that the field
dependence of the in-plane shear modulus—associated
with the strain that couples strongly to the magnetism
in MngX—is similar in the two compounds.

The Mn3X family hold promise for straintronic ap-
plications because it combines metallic conductivity, ro-
bust room-temperature magnetism, a large anomalous
Hall effect whose sign can be switched with strain, and
strong piezomagnetism. The latter two properties—
piezomagnetism and strain dependence of anomalous
transport properties [I3]—have only been performed on
Mn3Sn. Our measurements suggest that these effect may
be even more dramatic in Mn3Ge.
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Appendix A: Resonant Ultrasound Spectroscopy
(RUS)

To access temperatures above the Néel temperatures
of Mn3X, our RUS experiments were performed in a
custom-built experimental setup (see . It con-
sists of a large copper mount placed on a hotplate and
insulated with firebricks. Ultrasound was created by two
compressional-mode lithium niobate transducers glued to
stainless steel rods with ceramic epoxy. These transducer
rods were placed in the copper mount such such that free
vertical motion was allowed for the top transducer. The
single crystal sample was mounted on its corners between
the transducers to ensure nearly-free elastic boundary
conditions for the sample.

We use the output of a custom-built lockin amplifier
to excite one transducer at a fixed frequency and detect
the quadrature response of the other transducer. We
measure both in-phase (X) and out-of-phase (Y) compo-
nents of the response. We achieve a full frequency sweep
by stepping the drive frequency from about 100 kHz to

5 MHz. More details on the technique can be found in

25, 46).
Figure 6 shows the amplitude (X2+Y?) of an exem-

plary frequency sweep. We can identify mechanical res-
onances of the sample as frequencies at which maximum
transmission between the drive and receive transducers
occurs. From the position of these resonances we deter-
mine the full elastic tensor by inverse solving the elastic
wave equation [25, 46]. Lists of all experimental reso-
nances included in the fit, alongside the calculated res-
onances and their differences, are shown in the supple-
mental material [47].

Each resonance is a function of the density and di-
mensions of the sample, as well as all elastic moduli.
We quantify the composition, o, of each resonance f;
by the logarithmic derivative with respect to the elastic
moduli ¢,

9 (In f?)

Yr = P (ney,)’

(A1)

with > p Qi =1 These a-coefficients are essentially ge-
ometric factors and depend only weakly on temperature.
The temperature dependence of the resonance frequen-
cies is therefore entirely determined by the temperature
dependence of the elastic moduli and we can write

= i

0 (.
fi W CH

(A2)

12 and cg are the values of resonance frequencies and
elastic moduli at a reference temperature: 387 K for
Mn3Ge and 438 K for Mn3Sn, respectively. We compute
these a-coefficients by taking logarithmic derivatives of
the calculated resonance frequencies at the elastic mod-
uli returned by our fit. Specific values for all measured
resonance frequencies are shown in [47]. With this anal-
ysis and we determined the temperature

dependence of all elastic moduli. See [25] and for more
details on the algorithm.

Appendix B: Samples Used in Measurements

All samples used in our measurements were cut from
one large Mn3Ge and one MngSn crystal. Final samples
were polished to the shape of parallel prisms, with edges
oriented along high symmetry directions. Dimensions of
the samples are given below in the format (a x b x c¢),
where a and b are in-plane directions and c is parallel to
the c-axis. For Mn3zGe, we cut one (915 x 2575x3080) pm
piece for our pulse echo ultrasound measurements and
one (911 x 1020 x 1305) pum piece for our resonant ul-
trasound spectroscopy (RUS) measurements. This RUS
sample was used for our fit at 387 K and to measure the
temperature dependence of the elastic moduli. For the
fit at room temperature, this sample was further polished
to (869 x 1010 x 1193) pum. All RUS measurements on
Mn3Sn were performed on a (743 x 836 x 1.136) pm piece
cut out of the original crystal.



FIG. 5: Custom-built high temperature RUS setup. Panel A) shows the entire setup covered by insulating
firebricks. In panel B), one of the firebricks has been removed to give a better view of the copper mount. Panel C)
shows a sample being mounted on its corners between two piezoelectric transducers.
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FIG. 6: Raw RUS signal. Amplitude of the response of the receiving transducer in the RUS measurement of
Mn3Sn at room temperature.

Appendix C: Poisson Ratios and Bulk Modulus

The full temperature dependence of the Poisson ratios
Vyy and v, are shown in [Figure 7] and the bulk moduli

are shown in [Figure 8|

Appendix D: Landau Free Energy

Elastic moduli are thermodynamic quantities defined
as the second derivative of the free energy with respect to
strain. The precursor fluctuations above T in Mn3X in-
dicate that there are substantial, non-mean-field correc-
tions to the thermodynamics near the phase transition.
However, defining a Landau free energy is still useful to
illustrate the symmetry of the coupling terms and the
expected behavior of the moduli “not too close” to the
phase transition.

The free energy, #, relevant to our measurements can

be divided into an elastic part f.;, the free energy for the
order parameter fop, a term considering the coupling
between order parameter and strain feoupting, & Zeeman-
term fzeeman, and fpiezo—a term trilinear in order pa-
rameter, magnetic field, and Ey, strain. The total free
energy is then

(D1)

F = fel + fOP + fcoupling + fZeeman + fpiezo~

These parts will be discussed separately in the following
subsections.
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FIG. 7: Poisson Ratios. Poisson ratios v, (left
panel) and v,, for Mn3Ge (purple) and MnzSn (red) as
a function of reduced temperature (T'— Tn)/Tn. In a

hexagonal crystal v., = v.,.

1. Elastic Free Energy and Poisson’s ratio

The elastic tensor only has five independent elements
in Dgp,. In Voigt notation, it reads

C11 C12 C13 0 0 0
ci2 c11 ci3 0 O 0
_ |3 a3 ez3 0 0 0
1o 0 0 cu 0 0
0 0 0 0 Cqq 0
0 0 0 0 0 =522
With a strain  vector defined as ¢ =

{€ams Eyys €221 2642, 2642, 265y }, the elastic free energy in

65
©
o
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(T—=T\)/Ty

FIG. 8: Bulk Moduli. Bulk moduli for Mn3Ge
(purple) and MnzSn (red) as a function of reduced
temperature (T'— Tn)/Tn.

DGh is
1

fa = Seicije;

1
= 5 [2012 (—Eiy + ExIEyy)

+enr (g2, + QEiy + siy) +degq (€2, + azz)
+ 2¢13 (€ze + Eyy) €22 + 033832]
1

C — C
) {11212 (Caa + yy)” + c3362,

+ 201362 (Euw + Eyy) +deas (€2, + 532]

C11 — C12 2
e ).

1

2 2
-5 (CAlg,lEAlg,l + Ca1g,2€414,2

: (D5)

2 2
+2CA14,3EA19,1€A1g,2 T+ CE1g |EE14]” + CE2g |EB24] ) .
Here, the irreducible strains er are defined as

EAlg,1 = Exx T Eyy, (D6)

€Al1g,2 = €2z, (D7)

€1y = {2642, 264.}, (D8)

€r2g = {€xz — Eyy» 262y} (D9)

These strains are linear combinations of elements of the

strain tensor €;; and are the physically relevant quantities

as they transform as irreducible representations I" with

respect to the Dgp point group. The elastic moduli cr
corresponding to these strains are

c11 + Ci2

2 )

CAlg,1 =

(D10)

CAl1g,2 = C33, ( )
CA1g,3 = C13, (D12)
CElg = Ca4, (D13)
C11 — C12 ( )

CE2
g 2



In a hexagonal crystal, in—plane and out—of—plane Pois-
son’s ratios are given by

2
v — G137 C12€33 (D15)
Ty — 2 9
Ci3 — €11€33
(c11 —c12) c13
Vi = vy = L~ 12) 13 (D16)
—613 + C11C33

The bulk modulus is defined in terms of elastic moduli
as

ciitciz _ 2
B=_—2 7% (D17)
T2 + 33 — 2013

2. Order Parameter Free Energy

The order parameter that forms in both MnzSn and
Mn3zGe at the high-temperature T studied here is of
the Ei4 representation [19, 2I]. It is therefore a two-
component order parameter that can be written as n =
{Nz,ny}. Up to fourth order in n, the Landau free energy
is

for =a(T =Ty) >+ 1 In|* + B2 (n? — n2) + Bsm2ny-

(D18)

Hexagonal crystal symmetry requires bs = 4by, which
simplifies the free energy to

for = a(T =Tn)n*+ B, (D19)

with b = by + by, and where we have parametrized the
order parameter as 1 = 1 {cos (¢,) ,sin (¢,)}.. Note that
this free energy is isotropic—sixth-order is the lowest or-
der at which anisotropy appears.

3. Coupling of Order Parameter and Strain in the
Free Energy

The order parameter has to appear in even powers be-
cause it breaks time reversal symmetry. The allowed cou-
plings between strain and order parameter are

3

fcoupling = Z’YAlg,iEAlg,i |’l’]2‘ + VE1g ‘EQE'lg’ ’77
i=1

?|
(D20)

+ YE2g (5E2g,x (77;% - 77;) + 25E29-,y77x77y)
3
= Z’YAlg,iEA1g,i772 +vp1g €51, n*  (D21)
i=1

+ YB2gM € B2g €08 (2 (P — D1))

where we have used the parametrization of the or-
der parameter given above, as well as e€gy, =

€g2g {08 (2¢.) ,sin (2¢.)}.

4. Zeeman Energy

At zero applied strain, the total magnetization M is
proportional to the order parameter:

M = én, (D22)

where 0 is a coefficient. The Zeeman term in the free
energy in the presence of an in-plane magnetic field, H =

h{cos (¢n) ,sin (¢p)}, is given by

fZeeman - *577H
= —dnhcos (¢y — ¢n).

(D23)
(D24)

5. Piezomagnetic Term

Both the order parameter and an in-plane magnetic
field break time-reversal symmetry and transform as the
4 representation. Thus, a term in the free energy which
is trilinear in order parameter, magnetic field, and Ay,
or Ey, strain is allowed by symmetry. Forming all Ay,
products of order parameter, field, and strain, we find

2
fpiezo = Z )\Alg,ﬁAlg,z‘nh CoSs ((bn - ¢h) (D25)

i=1

+ Aegagnh cos (¢ + dn — 2¢¢)

using the same polar coordinates as above.

6. Full Free Energy

Combining all the term discussed above, the full free
energy is given by

1

aF — 2 2
I =5 (CA19715A19,1 + CA1g,2€ A19,2

. (D26)

+2cA14,35A19,1€A19,2 T CE1g |€E1g\2 + Cr2g |€E2g\2>
+a(T —Ty)n" + '
3
+ Z’YAlg,i€Alg,i7l2 +VE1g ’€%1g| n?
i=1
+ YE2gn € B2y €08 (2 (4 — By))

— onhcos (¢, — dn)
2
— Z /\Alg,ié‘A1g7i’l7h COS (¢n — (bh)
=1

— Xegagnh cos (¢ + dn — 20 .

Appendix E: Elastic Constants at the Phase
Transition

To estimate the behaviour of the elastic moduli
through the phase transition, we consider the free energy
at zero field, and constant angles ¢y, ¢,, and ¢., which



are the constraints of our ultrasound measurements. In

this case, the free energy given by simpli-
fies to

1 2 2
F = 9 (CA19,15A19,1 T CA19,2€414,2 (E1)

2 2
+2cA19,36419,1€419,2 + CE1g [€B19]” + CE2g |€B24] )

3
+a(T—TN) 772 + 5774 + Z ’YAlg,iEAlg,m2
i=1

+YE1y ’5?319‘ n” + ’YE2g772€E2g

2
- Z AAlg,i€A1g,iMN — Aegagnh,
i=1

where the cosine terms from are absorbed

into the expansion coefficients. We find the equilibrium
order parameter, 1, through (d.# /dn)|, =0, and the

10

elastic moduli cr are defined through (9% /9e?) |n€q.

For €414 and egay strains, which couple linearly to
the square of the order parameter as ern?, we find a
step discontinuity in the temperature dependence of their
respective elastic moduli at the phase transition

272
Acr = (CF (T > TN) —Cr (T < TN>)THTN ==L
(E2)
However, for cg14 whose corresponding strain couples to
the order parameter as |£E19\2172 to lowest order, this
mean-field analysis yields

ACElg = [CElg (T > TN) — CE1g (T < TN)]T%TN =0.
(E3)
We therefore expect to see only a change in slope in the
temperature dependence of cgi4 at T .
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