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Abstract: The effective spin Hamiltonian method is very useful for simulating and 

understanding the behavior of magnetism. However, it is not easy to construct an 

appropriate spin Hamiltonian for a magnetic system, especially for complex magnets 

such as itinerant topological magnets. Here, we put forward a machine learning (ML) 

approach, applying an artificial neural network (ANN) and a local spin descriptor to 

construct effective spin Hamiltonian for any magnetic systems. The obtained 

Hamiltonians include an explicit Heisenberg part and an implicit non-linear ANN part. 

Such a method successfully reproduces artificially constructed models and also 

accurately describes the itinerant magnetism of bulk Fe3GeTe2. Our work paves a new 

way for investigating complex magnetic phenomena (e.g., skyrmions) using ML 

techniques. 
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Main text 

Magnetism covers a major area of condensed matter physics and is of both 

fundamental and technical importance. Novel magnetic phases, such as skyrmion states, 

magnetic Weyl semimetals, spin liquids, and spin glasses, have been attracting a lot of 

scientific attention in recent years [1–9]. These diverse spin textures and colorful 

physics are driven by magnetic interactions of various forms. Effective spin 

Hamiltonian containing necessary interactions is a low-energy approximation that is 

widely adopted to describe the magnetic properties of various systems [10–12]. A well-

known example is the Heisenberg model, 𝐻𝑠pin = ∑ 𝑱𝒊𝒋𝐒𝒊 ⋅ 𝐒𝒋𝒊>𝒋 , where 𝐽𝑖𝑗 denotes the 

coupling strength between spins 𝐒𝒊 and 𝐒𝒋 , and it can be obtained from ab initio 

calculations or fitting to experiments. Such a model is frequently adopted since it 

captures the basic physics of ferromagnetism and antiferromagnetism, as well as, 

frustrations in most systems. However, such a model becomes insufficient when novel 

mechanisms come into play. For example, novel states arise from Dzyaloshinskii–

Moriya interaction (DMI) [13] and Kitaev interaction [14] that is related to spin-orbit 

coupling (SOC), and it is also challenging to describe systems in which many-body and 

higher-order interactions unrelated to SOC are crucial. For instance, (i) biquadratic 

interactions are reported to widely exist in 2D magnets [15,16], (ii) three/four-body 

interactions are found to stabilize some skyrmions [17], and (iii) topological orbital 

magnetism with even higher orders are predicted to play important roles in non-

coplanar spin patterns [18]. There may exist numerous different many-body and higher-

order interactions, which makes it almost impossible to determine the exact form and 

the interacting parameters of the effective spin Hamiltonian [19]. Therefore, a new 

method for constructing an effective spin Hamiltonian for any system is highly desired 

to accurately describe complex magnetism. 

The fast-developing machine learning potential (MLP) method is a promising 

solution. MLP built with artificial neural networks (ANN) has demonstrated its 

significant advantages in accuracy and efficiency [20–26]. It has been proven to be a 

powerful tool to solve problems in simulations of non-magnetic materials [20,27–29]. 

A central concept in the MLP method is the descriptor which serves as the suitable input 

representation of atomistic systems [30]. To the best of our knowledge, almost all 

reported descriptors do not consider the intrinsic spin property, which dominates the 
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behavior of the magnetic systems. Descriptors without information of spin fail to 

capture the spin interactions in magnetic materials. Therefore, spin descriptors for 

describing the spin configurations of magnetic materials are necessary for machine 

learning modelling. The application of MLPs to spin systems has just started and is still 

in its infancy. Recent attempts include (i) the magnetic moment tensor potentials 

(mMTP) that well describe the single element magnetic systems [32] and (ii) the spin-

dependent atom-centered symmetry functions (sACSF) [28]. However, both methods 

only deal with simple collinear magnetic orders, which prevent the study of complex 

noncollinear states (e.g., spirals, skyrmions, and bimerons). Hence, a general MLP 

method dedicated to spin systems with complex interactions and colorful spin patterns 

is still highly desired. 

In this work, we present a general machine learning method to construct spin 

Hamiltonians based on ANN. We propose a new local spin descriptor to describe spin 

configurations where spins can freely rotate to any three-dimensional direction. Our 

spin Hamiltonian contains an explicit Heisenberg part and an implicit nonlinear part to  

take into account all other possible forms of spin interactions. Such machine learning 

method can not only reproduce any artificially created models with peculiar complex 

interactions but also well describe the complex magnetism of Fe3GeTe2, where 

ferromagnetism, diverse spirals and skyrmionic states are observed [31–33]. 

Machine learning spin Hamiltonian approach. In this work, we aim at building 

the machine learning spin Hamiltonian (MLSH) 𝐻 for a given atomic structure, which 

can be subsequently used to obtain the thermodynamic and kinetic properties of the 

spin system by performing Monte-Carlo simulations or spin dynamic simulations. In 

principle, one can express the MLSH using solely ANN. However, we find that it is 

beneficial (see tests below) if the MLSH contains explicitly the isotropic Heisenberg 

spin Hamiltonian besides the ANN part: 𝐻 = 𝐻𝐻𝐵 + 𝐻𝑁𝑁, where the Heisenberg part 

𝐻𝐻𝐵 = ∑ 𝐽𝑖𝑗𝐒𝑖 ⋅ 𝐒𝑗𝑖>𝑗   (𝐽𝑖𝑗  are the exchange interactions and 𝐒𝑖  are spin vectors) and 

𝐻𝑁𝑁 is the remaining energy contribution as described by the ANN. The Heisenberg 

interaction is of the second-order two-body form and usually dominates in most 

magnets. However, many-body and higher-order spin interactions are important in 

many interesting systems such as itinerant metallic magnets. The ANN contribution 
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𝐻𝑁𝑁 is intended to describe such complicated interactions. Such treatment of separating 

Hamiltonian into explicit Heisenberg and implicit ANN parts results in a good balance 

between efficiency and accuracy.  

The whole process of our method is demonstrated below. First, the data of different 

spin configurations and corresponding energies are generated. The data can be 

calculated with non-collinear spin constrained density functional theory (DFT). Then, 

the spin configurations are transformed into spin descriptors. MLSH is built with the 

Heisenberg part and a neural network contribution whose input is the spin descriptors. 

With the trained MLSH, the Monte Carlo simulation is carried out for thermodynamic 

theories. More training details of the MLSH are presented in the Supplementary 

Materials (SM)  [34] (see, also, references  [35–40] therein). 

Similar to the case of machine learning atomic potentials  [20,41,42], the ANN part 

of the spin Hamiltonian can be written as a sum of contributions from individual central 

spins:  

𝐻𝑁𝑁 = ∑ 𝐻𝑁𝑁,𝑖𝑖 (𝑫𝑖),        Eq. (1) 

where 𝑫𝒊 is the descriptor vector that describes the local spin environment of the i-th 

central spin, and 𝐻𝑁𝑁,𝑖  is a function expressed in terms of ANN. A natural way to 

choose central spins in 𝐻𝑁𝑁 is that each spin in the system acts as a central spin. The 

form (i.e., ANN parameters) of 𝐻𝑁𝑁,𝑖 depends on the local atomic environment around 

the i-th central spin. As inequivalent Wyckoff positions have different local atomic 

environments, we can classify the central spin according to the Wyckoff position that it 

belongs to. If the crystal has n inequivalent magnetic Wyckoff positions, the ANN part 

of the Hamiltonian can be written as 𝐻𝑁𝑁 = ∑ ∑ 𝐻𝑁𝑁,𝜇𝛾 (𝑫𝑖=[𝜇,𝛾])
𝑛
𝜇=1 , where 𝜇 and 𝛾 

are the spin class index and index of spins within the 𝜇-th spin class, respectively. 
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Figure 1. Workflow of the present ANN method to obtain spin Hamiltonians. (a) 

Illustration of the local structure centered on spin 𝑺𝟎 within a cutoff radius of Rc. The 

CuMO2 structure is shown here as an example, where the red balls indicate magnetic 

sites of M. (b) The local spin descriptor centered on spin 𝑺𝟎, involving all neighboring 

spins within cutoff radius Rc. (c) Demonstration that one set of NN is enough for two 

different spin classes, as the descriptor of A spin class includes the spin interaction 

information of the B site. (d) The whole Hamiltonian that contains an explicit 

Heisenberg part and an implicit part, which includes all other forms of interactions. The 

total energy consists of energies from both parts. 

 

Let us now concentrate on the spin descriptors 𝑫𝑖 that depends not only on the 

central spin 𝐒𝑖 itself, but also on the 𝑁𝑖 neighboring spin vectors of 𝐒𝑖. The reason why 

we need to transform the spin vectors into descriptors instead of directly using the spin 
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vectors as inputs to the ANN is that the symmetry properties of the spin Hamiltonian 

can be enforced strictly through the descriptors. In this work, we mainly focus on the 

usual case where the spin-orbit coupling (SOC) effects can be neglected. To consider 

the SOC effects within our framework (e.g., DMI, Kitaev interaction and/or single ion 

anisotropy terms), we can add these terms into the explicit Heisenberg part. The ANN 

part of the Hamiltonian 𝐻𝑁𝑁 is intended to deal with the high-order spin interactions in 

the absence of SOC effects. In the absence of SOC effects, the spin interaction energy 

is invariant under any simultaneous global rotation of all the spin vectors. In addition, 

the spin interaction energy is invariant under the time-reversal operation that reverses 

all the spin directions. To satisfy these conditions, each element of the descriptor vector 

is set to a dot product between two spin vectors 𝐒𝑝 ⋅ 𝐒𝑞. To be more specific, let us 

consider the spin descriptor 𝑫0 of the central spin 0 with 𝑁0 spin neighbors within the 

cutoff distance Rc (see Fig. 1). We define the descriptor vector 𝑫0 with the elements 

taken from the upper triangular matrix of ( 𝐒𝑝 ⋅ 𝐒𝑞)𝑵𝟎×𝑵𝟎
 : 𝑫0 = (𝐒0 ⋅ 𝐒0, … , 𝐒0 ⋅

𝐒𝑁0
, 𝐒1 ⋅ 𝐒1, … , 𝐒1 ⋅ 𝐒𝑁0

, … , 𝐒𝑁0
⋅ 𝐒𝑁0

)𝑇. There is another symmetry that the descriptor 

must be able to account for. If the Wyckoff position that the central spin belongs to 

displays the point group G symmetry with m operations, then any operation R of G on 

the spin configuration (𝐒0, 𝐒1, … , 𝐒𝑁0
) will leave the spin interaction energy invariant. 

Note that R will not only change the spin directions but may also result in a permutation 

of the spin sites. To take the point group symmetry into account, we first generate all m 

spin configurations by applying m operations to a given spin configuration, then we 

select a representative spin configuration among the m spin configurations according to 

some predefined criteria (see SM [34]). The representative spin configuration is used 

to construct the spin descriptor 𝑫0. In this way, these m spin configurations will be 

guaranteed to have the same spin interaction energy. As the symmetry analysis is 

performed automatically, the construction of descriptors is an automatic process 

without any manual intervention. 

To better demonstrate the process of constructing the spin descriptor, a simple 

example is presented. Here, we take CuMO2 (M is a magnetic ion) with the CuAlO2-

type structure as an example to show how the spin descriptor is constructed. For 

simplicity, the cutoff radius is chosen to be 3 Å including only the nearest neighbor 

magnetic sites. We consider the descriptor of site 0 shown in Fig. 2. First, we analyze 
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the symmetry of atoms in the unit cell. As only site M in CuMO2 has magnetization and 

all M sites are equivalent, the neighbor information for each M site is the same. The M 

ion at site 0 in Fig. 2 has 6 neighbor magnetic atoms. The Wyckoff position that the site 

0 belongs to displays the point group D3d symmetry with 12 operations including 

{𝑒, (𝑠6
1, 𝑠6

5), (𝑐3
1, 𝑐3

2), 𝑖, 3𝑐2

′
, 3𝜎𝑑}. Then, we construct a local spin descriptor for site 0. 

For illustration purposes, we take the spin configuration in Fig. 2(a) as the input. With 

the operation R of D3d on the spin configuration, we get 12 different spin configurations 

and descriptors (𝑫0
1 , … , 𝑫0

12) corresponding to 12 point group operations. Two spin 

configurations for different point group operations are shown in Fig. 2. More precisely, 

Fig. 2(a) is the input spin structure, while Fig. 2(b) is the spin configurations 

corresponding to the operation 𝑠6
1. Their corresponding descriptors are: 

(𝑎):

[
 
 
 
 
 
 
1 1 −1 1 1 1 1
0 1 −1 1 1 1 1
0 0 1 −1 −1 −1 −1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1 ]

 
 
 
 
 
 

      (𝑏):

[
 
 
 
 
 
 
1 −1 1 1 1 1 1
0 1 −1 −1 −1 −1 −1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1 ]

 
 
 
 
 
 

 

These 12 descriptors should have the same energies: 𝐻𝑁𝑁(𝑫0
𝑖 ) = 𝐻𝑁𝑁(𝑫0

𝑗
)  with 

i,j=1,…,12 due to the local point group symmetry. To satisfy these conditions, we select 

a representative descriptor among all 12 descriptors so that 𝐻𝑁𝑁(𝑫0
𝑖 ) = 𝐻𝑁𝑁(𝑫0

𝑟𝑒𝑝) 

with i=1,…,12. In principle, any ordering scheme of the descriptors should work. Here, 

we adopt the following ordering scheme. The descriptor with the smallest 𝐒0 ⋅ 𝐒1 is set 

as the final descriptor. If the values of 𝐒0 ⋅ 𝐒1 are the same, other elements in the matrix 

are used to compare from 𝐒0 ⋅ 𝐒2 to 𝐒0 ⋅ 𝐒n. The descriptor of (b) is selected as the final 

descriptor. 
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Figure 2. Schematization of the local structure that is involved in a descriptor. (a) The 

input spin structure under e point group operation. (b) The spin structure under 𝑠6
1 point 

group operation with site 0 as the center. The descriptor with the lower value of 𝐒0 ⋅ 𝐒1 

are selected as the final descriptor. Blue balls represent the magnetic sites with the red 

vectors denoting the spin vectors. The order of the spins that appear in the descriptor is 

denoted by the number imposed on the magnetic sites.  

In our above discussion on the ANN part of the spin Hamiltonians (see Eq. 1), 

every spin in the system acts as a central spin. We find (see tests below) that the 

efficiency can be significantly improved by reducing the number of central spins in the 

case of multiple inequivalent magnetic Wyckoff positions (i.e., n > 1). Consider the 

crystal [see Fig. 1(c)] with two inequivalent magnetic Wyckoff positions A and B, one 

can select A as the central spin but leave out B. This is because the spin interactions 

involving the B spin are included in that related to the neighboring central spins (A 

spins here) within a cutoff distance Rc. Reducing the number of central spins not only 

reduces the number of ANN parameters and thus the risk of overfitting but also speeds 

up the evaluation of the total spin interaction energies. We note that this idea of using a 

reduced number of central sites can also be adopted to construct the highly efficient 

machine learning atomic potential for simulating atomic process (e.g., conduction of 

heat, ferroelectric phase transition) that maintains the basic framework of the crystal 

(see SM [34]). 
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Figure 3. (a) Schematization of the CuMO2-type structure, where only the magnetic M 

sites are shown. The atoms connected by red lines form an example of the four-body 

cluster, for which the fourth-order interaction is considered in Eq. (2). (b) Comparison 

of the energies among three different fitting methods – only Heisenberg terms, only NN 

and both Heisenberg and NN. The Mean Absolute Error (MAE) of each fitting method 

is shown in the legend. (c) The (↑↑↓↓) AFM magnetic ground state of the exact model 

Hamiltonian is reproduced by the HB+NN method. (d) The frustration induced a short 

period spiral, which is the ground state predicted by the pure Heisenberg method. 

 

An artificial model. To validate our machine learning approach for constructing 

spin Hamiltonian, we employ a simple model Hamiltonian. This model is intended to 

describe the spin interactions between magnetic ions that occupy the Al sites of the 

CuAlO2-type [43] structure. The model spin Hamiltonian contains both intralayer 

interactions within the triangular lattice and interlayer couplings:  

𝐻 = ∑ 𝐽𝑛

𝑛=1,…,5

<𝑖𝑗>𝑛

𝐒𝑖 ⋅ 𝐒𝑗 + ∑ 𝐾𝑛

𝑛=1,5,7

<𝑖𝑗>𝑛

(𝐒𝑖 ⋅ 𝐒𝑗)
2
+ ∑ 𝐿1

<𝑖𝑗𝑘𝑙>1

(𝐒𝑖 ⋅ 𝐒𝑗)(𝐒𝑘 ⋅ 𝐒𝑙). (2) 



10 

 

Here (i) 𝐽𝑛  are the 2nd-order Heisenberg spin interactions, where 𝐽1 − 𝐽3  are AFM 

intralayer couplings and are thus strongly frustrated, while 𝐽4  are relatively weak 

interlayer couplings and 𝐽5 is set to zero but included while fitting for testing purposes; 

(ii) 𝐾𝑛  are the 4th-order biquadratic interactions for the 1st, 5th and 7th nearest 

neighboring pairs; and (iii) 𝐿1 represents the four-body fourth-order interaction for the 

triangular cluster with the fourth site in the center of the triangle as shown in Fig. 3(a). 

The values of  𝐽 , 𝐾 , and 𝐿  as listed in Table I, are set in such a way that leads to a 

complex spin model with strong frustrations and high-order interactions. Our MC 

simulations using the exact model Hamiltonian suggest that our model with the 

parameters from Table I results in a nontrivial (↑↑↓↓) antiferromagnetic (AFM) ground 

state, as shown in Fig. 3(c). 

We now try to reproduce the results from the model Hamiltonian by building our 

MLSH. The data set of 10,000 fully random spin configurations is generated based on 

a 4×4×2 supercell with 96 magnetic sites (i.e., six layers of 4×4 triangular lattices), 

and their energies are obtained from Eq. (2). Our MLSH contains five Heisenberg terms 

and a multi-layer fully connected neural network. During the fitting, 90% of the data 

are used for training and the remaining 10% for testing. To check whether the explicit 

inclusion of the Heisenberg interaction is crucial to the accuracy of the MLSH, we 

consider three different forms of the spin Hamiltonian: (i) HB Hamiltonian which only 

includes the Heisenberg interactions (five terms for this system) (ii) NN Hamiltonian 

which includes the ANN part, and (iii) NN+HB full Hamiltonian which includes both 

Heisenberg and ANN parts. 

As shown in Fig. 3(b), the comprehensive NN+HB Hamiltonian is found to display 

a much smaller (1.03×10-5 meV/site) mean absolute error (MAE, defined as 
∑∣𝑓(𝑥𝑖)−𝑦𝑖|

𝑛
) 

in total energy than that (3.4×10-5 meV/site) of the HB Hamiltonian and that (1.1×

10-4 meV/site) of the NN Hamiltonian. Further, by performing Monte Carlo (MC) 

simulations, we find that the NN+HB Hamiltonian can correctly reproduce the (↑↑↓↓) 

AFM ground state [see Fig. 3(c)], while the HB Hamiltonian predicts incorrectly a non-

collinear ground state [see Fig. 3(d)]. The Néel temperature obtained with the NN-HB 

Hamiltonian is also in agreement with that obtained with the exact model Hamiltonian. 

Note that the MLSH can also well describe non-collinear exotic spin states. For 

example, by tuning J1 from 3.659 meV to 18.295 meV, the ground state of the exact 
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model becomes a noncollinear order spiral state with q-vector as (1/3, 0) in triangular 

lattice plane, which can be well reproduced by the MLSH approach. 

Table I. Original and fitted magnetic coefficients for the artificial model in Eq. (1) 

and the real compound of Fe3GeTe2 (Energy unit meV). The subscript 𝑖, 𝑗 of bulk 

Fe3GeTe2 part represents the atom index of the two-body Heisenberg interaction 𝐽𝑖,𝑗 in 

Fig. 1a. Note that “HB” denotes the results from pure Heisenberg model, while 

“NN+HB” refers to the model with Heisenberg part and implicit part treated by ANN 

separately. 

Artificial model Eq. (1) Bulk Fe3GeTe2 

  Model NN+HB HB   NN+HB HB 

𝐽1 3.659 3.714 3.659 𝐽1,3 -0.486 -0.474 

𝐽2 1.117 0.988 1.114 𝐽1,2 -0.207 -0.199 

𝐽3 1.728 1.779 1.729 𝐽2,2 0.069 0.065 

𝐽4 1.003 0.995 0.998 𝐽1,1 0.034 0.023 

𝐽5 0.000 -0.002 0.003 𝐽1,3(2) -0.078 -0.069 

𝐾1 -1.386 \ \ 𝐽1,6 0.007 0.010 

𝐾5 -0.376 \ \ 𝐽2,6 -0.008 -0.006 

𝐾7 -0.143 \ \ 𝐽2,5 -0.006 -0.007 

𝐿1 0.316 \ \       

 

  

 

Figure 4. (a) Crystal structure of bulk Fe3GeTe2. The unit cell consists of two Van der 

Waals layers with six Fe atoms, that are categorized into two types, two Femid and four 

Fetop/Febot. (b) Comparison of the CPU time between the single-NN method and two-

NN method, as a function of magnetic atom number. Both sets of simulations are 

performed on Intel Xeon Gold 6244. The inset indicates similar accuracy of the two 

methods. (c) Comparison among energies from DFT and three different fitting 

strategies. The MAE of each method is shown in the legend.  



12 

 

 

Metallic ferromagnet Fe3GeTe2. Fe3GeTe2 (FGT) is a metallic Van der Waals 

layered ferromagnetic (FM) material [see crystal structure in Fig. 4(a)]  for which the 

Curie temperature is experimentally determined to be 150~230 K [44,45] and can 

further be tuned to near room-temperature with gate voltage [31]. Recently, FGT thin 

films of about a few tens of nanometers in thickness are intensively studied and 

skyrmions and domain walls are widely observed there [32,33,44,46,47]. These 

interesting observations suggest that complex high-order interactions are essential 

besides second-order Heisenberg interactions [48–50]. We thus apply the presently 

developed ANN method to explore the magnetism of bulk FGT. 

As shown in Fig. 4(a), each Van de Waals layer of bulk FGT contains three layers 

of Fe ions, where the top and bottom Fe ions are equivalent but are different from the 

middle Fe ion. In another word, there are two kinds of inequivalent magnetic Wyckoff 

positions, i.e., n = 2. To see whether the strategy of reducing the number of central spins 

works, we consider two cases: (i) use all Fe sites as central spins (refers to as multi-NN 

strategy) versus (ii) only use the middle Fe sites as central spins (refers to as single-NN 

strategy). For our NN-HB Hamiltonian, the Heisenberg part includes both intralayer 

and interlayer couplings interactions up to 18 Å, while the ANN part only considers 

intralayer interactions with Rc = 9 Å. The data set consists of 8000 random spin 

configurations within a 3×3×1 supercell, which contains 54 Fe, and their energies are 

computed with DFT and see details in Methods of SM [34]. Again, 90% of the data are 

used for training and 10% for testing. We find that the MLSH obtained with the single-

NN strategy is as accurate as that with the multi-NN strategy [see insets of Fig. 4(c)]. 

However, the single-NN strategy is much more efficient than the multi-NN strategy for 

two reasons. In the training process, it takes much less time as the number of parameters 

in the single-NN strategy is one half of that in the multi-NN strategy. When using the 

MLSH, the calculations of the spin interaction energies in the case of single-NN 

strategy costs only 1/3 computational time of that in the case of the multi-NN strategy 

because the number of central spins in the formal case is 1/3 of that in the latter case 

[see Fig. 4(c)]. Hereafter, we will thus adopt the more efficient single-NN strategy for 

FGT. 

Similar to the case of the model spin Hamiltonian, we find that the NN+HB 
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Hamiltonian is more accurate than the HB Hamiltonian and NN Hamiltonian: the MAE 

in these three cases are 0.94 meV/Fe, 1.56 meV/Fe, and 1.04 meV/Fe, respectively;  in 

addition, the errors in the predicted energies for some low-energy spin configurations 

are rather large when using the NN Hamiltonian [see insets of Fig. 4(b)]. These tests 

suggest that the NN+HB Hamiltonian is desirable in general cases. We also compare 

the performance of another newly developed Machine Learning Method for 

Constructing Hamiltonian (MLMCH)  [10] considering up to four-body and four-order 

magnetic interactions. In MLMCH, the model consists of 44 terms including the 

Heisenberg interaction and two-body fourth-order interaction up to the first 20 

neighbors, three-body fourth-order up to the first 11 neighbors, and four-body fourth-

order up to the first 4 neighbors. It gives a worse MAE as 1.07 meV/Fe in the test 

dataset which shows the priority of our MLSH method. It also proves that our new 

MLSH methods can take into account many-body and high-order magnetic interaction 

beyond the above-mentioned magnetic interactions. 

The finite-temperature properties of FGT are then simulated with parallel tempering 

Monte Carlo (PTMC) [51,52] (see PTMC details in SM [34]). The ANN model from 

NN+HB scheme (iii) results in a Curie temperature of 554 K. Such value is based on 

the data from DFT with no Hubbard U correction, while further calculations (See details 

in SM [34]) indicate that finite U correction may lead to Curie temperature that 

compares well with experiment [45]. 

In summary, we develop a machine learning method to construct spin Hamiltonians. 

Such a method involves a local spin descriptor and adopts an artificial neural network 

to describe the complex spin interactions of any form. During the fitting, the Heisenberg 

part and other interactions are treated separately, which leads to improvement in 

accuracy. The effectiveness and accuracy of such a method are verified with an artificial 

complex Hamiltonian and also with the interesting itinerant magnet Fe3GeTe2.  The 

presently developed method could give thermodynamic properties of any magnets in 

an automatic way and could be adopted to carry on the spin dynamics in the future. We 

expect that our method may find wide use in the study of magnetism. 
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