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Motivated by recent experimental realizations of exotic phases of matter on programmable quantum simula-
tors, we carry out a comprehensive theoretical study of quantum phase transitions in a Rydberg atom array on
a square lattice, with both open and periodic boundary conditions. In the bulk, we identify several first-order
and continuous phase transitions by performing large-scale quantum Monte Carlo simulations and develop an
analytical understanding of the nature of these transitions using the framework of Landau-Ginzburg-Wilson the-
ory. Remarkably, we find that under open boundary conditions, the boundary itself undergoes a second-order
quantum phase transition, independent of the bulk. These results explain recent experimental observations and
provide important new insights into both the adiabatic state preparation of novel quantum phases and quantum
optimization using Rydberg atom array platforms.

I. INTRODUCTION

Rydberg atom arrays have recently emerged as a pow-
erful platform for programmable quantum simulation [1–5]
and quantum information processing [6–9]. Recent theoret-
ical [10–14] and experimental work on this system has al-
lowed for unprecedented new insights into a variety of quan-
tum phases characterized by complex density-wave [4, 15]
or topological [16–18] orders. Moreover, Rydberg simula-
tors allow for detailed studies of dynamics across quantum
phase transitions (QPTs) and other quantum critical phenom-
ena. Finally, they provide a natural many-body platform for
exploring quantum advantage in solving combinatorial opti-
mization problems [19, 20]. These advances motivate de-
tailed quantitative understanding of the QPTs between com-
plex phases in such systems, with realistic interactions and
geometries. In particular, on even the simplest square 2D ar-
rays, where a compendium of ordered phases was theoreti-
cally predicted [15]—and probed both by experiments [4] and
approximate numerics [21]—a thorough classification of the
associated QPTs is still lacking.

The many-body physics of Rydberg atom arrays can be un-
derstood as resulting from two competing processes. On one
hand, atoms in highly excited (Rydberg) states interact via
strong van der Waals interactions [22], preventing neighbor-
ing atoms from simultaneously occupying the excited state—
a mechanism known as the “Rydberg blockade” [23]. On the
other hand, a detuned laser field favors occupation of the Ry-
dberg state, enticing the system to maximize the number of
excited atoms [24]. This competition leads to a rich phase
diagram [Fig. 1(a)]. On a square lattice, when the block-
ade radius is comparable to the lattice spacing, the double
occupancy of neighboring sites is highly suppressed, lead-
ing to a “checkerboard” pattern of excited atoms [Fig. 1(b)].
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Upon increasing the blockade radius further, more compli-
cated symmetry-breaking phases (namely, the “striated” and
the “star”) emerge [15]. The transitions between these or-
dered phases (and to the disordered phase) can, in principle,
be either continuous or first-order. Crucially, the nature of
these phase transitions dictates the efficacy of experimentally
preparing the corresponding states via quasi-adiabatic dynam-
ics in large systems. Therefore, in order to utilize Rydberg
atom arrays to probe different phases of matter or prepare the
ground states of Hamiltonians encoding combinatorial opti-
mization problems [19], it is essential to establish a quantita-
tive understanding of the quantum critical points.

In this work, we employ both numerical and analytical
methods to investigate the nature of these QPTs in large sys-
tems with realistic, long-range interactions. First, using large-
scale Quantum Monte Carlo (QMC) simulations [25], we con-
struct the phase diagram [Fig. 1(a)] and identify the nature of
five distinct QPTs between the phases. This is possible only
because QMC can reach system sizes large enough for a care-
ful finite-size scaling analysis under periodic boundary condi-
tions (PBC) with realistic long-range interactions, which are
computationally difficult to realize in tensor-network-based
methods [15]; addressing these challenges has stimulated a lot
of progress in the field of tensor-network simulation [21, 26].
Interestingly, we find that while the QPTs from the disordered
to the checkerboard phase and from the checkerboard to the
striated phase are continuous, the transitions from the disor-
dered to both the striated and the star phases are first-order.

Second, to understand the origin of the first-order tran-
sitions, we develop low-energy Landau-Ginzburg-Wilson
(LGW) theories describing the QPTs in the system. Our anal-
ysis reveals the emergence of fluctuation-induced first-order
transitions, arising from the inaccessibility of stable fixed
points in the renormalization group (RG) flow. Addition-
ally, we discover that systems with open boundary conditions
(OBC) can undergo boundary phase transitions [pink stars in
Fig. 1(a)] independently from the bulk. Intuitively, the bound-
ary transition is a consequence of the reduced connectivity
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near the boundary: fewer neighbors result in fewer blockade
constraints and reduced frustration, allowing for easier order-
ing.

The presence of first-order phase transitions has significant
ramifications for adiabatic state preparation in experiments:
since the spectral gap often becomes exponentially small in
the system size at a first-order transition point, it makes all adi-
abatic processes forbiddingly difficult. This is in stark contrast
to the successful experimental preparation of quantum phases
reported in Ref. 4. We find that this discrepancy is resolved by
the boundary phase transition: for intermediate system sizes,
the ordered boundary “seeds the bulk order and weakens the
first-order transition, effectively enabling experimental adia-
batic state preparation. We also show that the observed phase
diagram (specifically, the extent of the striated phase) is sig-
nificantly affected by the presence of a boundary.

The structure of this paper is as follows. First, we introduce
our model of the Rydberg system in Sec. II. Next, in Sec. III,
we numerically study the quantum phase transitions between
the various phases in a system with PBC, and in Sec. IV, we
present their unified field-theoretical description. Thereafter,
in Sec. V, we analyze the boundary ordering in a system with
OBC. Finally, we summarize our conclusions in Sec. VI.

II. MODEL

We consider an array of Rydberg atoms on a square lattice
interacting via the Hamiltonian

H = Ω
∑
i<j

(
Rb/Rij

)6
ninj −∆

∑
i

ni +
Ω

2

∑
i

σxi , (1)

where ni≡ (σzi + 1)/2 measures the Rydberg excitation den-
sity at site i, Rb is the so-called “blockade radius” [27] encap-
sulating the strength of the interactions,Rij is the distance be-
tween sites i and j, and σxi is the PauliX operator at site i rep-
resenting a transverse field. ∆ and Ω> 0 denote the detuning
from the Rydberg state and the Rabi frequency, respectively.
In practice, we adopt a finite cutoff for the interaction poten-
tial such that the interactions are set to 0 for Rij > R0. We
systematically investigate different values of R0 and choose
an optimal value, R0 = 4a (where a is the lattice spacing),
that maximizes the computational efficiency without signifi-
cantly affecting numerical results for given system sizes (the
role of the cutoff distance is elaborated on in Appendix C).

To characterize the phases and the transitions between
them, we focus on the corresponding order parameters, de-
fined by the symmetrized Fourier transform of the Ryd-
berg density as F (kx, ky)≡ [F̃ (kx, ky) + F̃ (ky, kx)] / 2 at
momentum (kx, ky) [4, 15] with

F̃ (kx, ky) =
1

Na

∑
j

nj exp [i(kx, ky) · (xj , yj)] , (2)

where Na is the total number of atoms. The checker-
board, striated, and star order parameters correspond to

(a) (b)

FIG. 1. (a) Quantum phase diagram: first- and second-order QPTs
are denoted by the circle and star markers, respectively. Purple stars
mark boundary transitions in systems with OBC. The shaded area
marks the region where the system lies in the disordered phase when
using PBC but exhibits a boundary-ordered phase with OBC. The
gray dashed lines indicate parameter ranges investigated in Figs. 2
and 4. (b) Schematic pictures of three distinct density-wave orders
corresponding to the star (orange), striated (green), and checkerboard
(blue) phases. Filled sites denote Rydberg excitations while gray
sites represent ground-state atoms.

F (π, π), F (0, π), and F (π, π/2), respectively. Additionally,
we compute the Binder ratio of each order parameter F as
U4(F )≡ (3−〈F 4〉 / 〈F 2〉2)/2 [28], which is system-size in-
dependent at the quantum critical point of a second-order tran-
sition. Another useful observable is the average Rydberg den-
sity n= (1/Na)

∑
i ni—this is a first derivative of the free

energy, so any sharp behavior of this quantity across a phase
boundary may signal a first-order transition.

III. NUMERICAL STUDY OF PHASE TRANSITIONS

We begin by numerically examining the QPTs between
the four phases in the considered phase diagram: disordered,
checkerboard, striated, and star [Fig. 1(a)]. The disordered
phase does not break any symmetries, while the checkerboard
and striated phases break Z2 and Z2×Z2 translational sym-
metries, respectively. The star phase breaks both the Z2 sym-
metry, and the C4 rotational symmetry.

For our numerical simulations, we adapt a QMC algorithm,
based on the continuous imaginary-time representation [29];
the algorithm is local in space but nonlocal in the imaginary-
time direction [25]. We found that, for our system, this QMC
method performs better than the conventional stochastic series
expansion algorithm with cluster updates [30]. Our full QMC
approach is detailed in Appendix A.

First, we study the transition from the disordered to the
checkerboard phase. To this end, we calculate [Fig. 2(a)]
the order parameter F (π, π) and its Binder ratio across a
range of detunings at a fixed value of the blockade radius
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FIG. 2. Phase transitions between the disordered, checkerboard,
and striated phases. Markers correspond to sizes L= 8 (circle), 12
(triangle), 16 (star) with increasing color intensity. The order pa-
rameter of the checkerboard (striated) phase across the disordered–
checkerboard (checkerboard–striated) boundary shows a second-
order QPT in panel a (b), with its universal collapse presented in the
inset. (c, d) The transition between the disordered and striated phases
shows distinct signatures of a first-order transition: sharp jumps in
the order parameter (c), and the Rydberg density (d) with a double-
peaked distribution of QMC measurements at the transition.

Rb = 1.2 [gray line in Fig. 1(a)]. We observe a smooth behav-
ior of the Rydberg density n and notice the Binder ratio cross-
ing at a single point for multiple system sizes Na =L×L;
L= {8, 12, 16}. In Fig. 2(a) and hereafter, increasing system
sizes are denoted by circles (L= 8), triangles (L= 12), and
stars (L= 16). To confirm the second-order nature of this tran-
sition, we attempt a universal scaling collapse of the order pa-
rameter near the critical point according to F =L−β/νf((∆−
∆c)L

1/ν)—where ν and β are the correlation length and
magnetization critical exponents, respectively—while simul-
taneously scaling the temperature as T ∼ 1/L, in accordance
with the z= 1 dynamical critical exponent of the underlying
CFT [31]. We obtain good data collapse [Fig. 2(a); inset]
and extract the exponents ν≈ 0.632, β≈ 0.29, consistent with
the (2 + 1)D Ising universality class [32]. A detailed sum-
mary of the exponent-extraction procedure is presented in Ap-
pendix B.

Now, we turn our attention to the transition between
the checkerboard and the striated phase. Even though the
two phases break different symmetries, the latter effectively
breaks a second Z2 symmetry on top of the one already bro-
ken by the former. Therefore, a second-order transition is still
generically allowed. Indeed, on tuning our system across the
phase boundary at a constant detuning ∆/Ω = 2.6, we observe
a smooth behavior of the Rydberg density, and the order pa-
rameter collapses under universal scaling with the exponents
ν≈ 0.612, β≈ 0.314 [see Fig. 2(b)], again consistent with the
(2 + 1)D Ising universality class.

Next, we investigate the transition from the disordered

(a) (b)

FIG. 3. Transition between the disordered and star phases. (a)–(b)
Both the order parameter and the Rydberg density converge to sharp
step functions for increasing system sizes. (b) Double-peaked dis-
tribution of density measurements at the phase boundary indicates a
first-order transition.

to the striated phase, keeping the blockade radius fixed at
Rb = 1.45. In Fig. 2(c,d), we show the order parameter
F (0, π) and the Rydberg density n across this boundary. Both
observables feature a sharp jump at the critical point, which
converges towards a step function for larger system sizes, indi-
cating a potential first-order transition. To further corroborate
this claim, we plot a histogram of Rydberg densities obtained
during the QMC sampling, from multiple random seeds, at
the transition point. This shows a clear double-peaked dis-
tribution, conveying a coexistence of the two phases near the
transition. These features, together with the lack of universal
scaling, strongly suggest that this is indeed a first-order QPT.

Finally, we simulate the transition from the disordered
phase into the star phase at Rb = 1.7. In Fig. 3, we see a be-
havior similar to the transition into the striated phase: both the
order parameter and the Rydberg density seem to converge to-
wards a sharp step-like function. We again plot the histogram
of the density sampling [Fig. 3(b); inset] and observe a clear
double-peaked distribution, reflecting the first-order nature of
the transition.

The star and striated phases break different symmetries;
thus, in the absence of any exotic mechanisms such as decon-
fined quantum criticality [33], the QPT between them must
be first-order. We study this transition numerically and find
that our QMC algorithm exhibits diverging equilibration times
near the phase boundary, indicating the coexistence of two in-
compatible symmetry-breaking patterns. We employ a seed-
ing procedure where the simulation first equilibrates deep
within one of the phases and is then slowly driven towards
the transition point. This method results in a convergence to
a sharp jump indicating the first-order transition, as expected.
Further details on extracting the phase boundary are presented
in Appendix D.

In summary, two of the three possible transitions between
the disordered, checkerboard, and striated phases prove to be
second-order while the third is seen to be first-order. The star
phase is connected to the neighboring phases considered here
solely through first-order QPTs. To understand the origins of
these differences, we now analyze the different QPTs using
the framework of LGW theory.
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IV. FIELD-THEORETIC DESCRIPTION

Having identified the locations and orders of the various
quantum phase transitions from numerical simulations, we
now turn to their theoretical descriptions. More specifically,
we construct effective LGW theories [34] to describe the na-
ture of the phase transitions observed in the square-lattice Ry-
dberg atom arrays. Here, we present the main results while
the detailed analysis is summarized in Appendix E.

Focusing on the long-wavelength and low-energy physics,
the key tenet of LGW theory is the “soft-spin” approxima-
tion [31], which promotes the discrete local density ni at each
site i to a coarse-grained continuous density field, ρ(r), that
can be expanded in the basis set of the real-space eigenfunc-
tions of the N lowest-energy modes as

ρ(r) = Re

(
N∑
n=1

ψn eikn·r

)
, (3)

where ψn ∈C is the order parameter corresponding to the
n-th mode. The momentum-space positions of these soft
modes can be identified from the peaks in the Fourier spec-
tra of the real-space density-wave profiles. The Landau func-
tional is then given by all homogeneous quartic polynomi-
als in the amplitudes ψn which are invariant under the sym-
metry transformations of the underlying square lattice [35–
38]. In this spirit, the Rydberg density in or around the stri-
ated phase can be expanded in terms of three real fields Ψ1,
Ψ2, and Φ as ρ(r) = Ψ1 ei (π,0)·r + Ψ2 ei (0,π)·r + Φ ei (π,π)·r;
note that this set already includes the (π, π) Fourier peak of
the checkerboard phase as well. The symmetry properties of
the order parameters show that Φ∼Ψ1Ψ2 and the interplay
between the three bears interesting consequences for the Lan-
dau theory. Up to quartic order, the most general effective
Hamiltonian is

HLGW =

∫
dDx

[
2∑
i=1

(∂µΨi)
2

+ (∂µΦ)
2

+ r
(
Ψ2

1 + Ψ2
2

)
+ sΦ2 + gΨ1Ψ2Φ1 + u1

(
Ψ2

1 + Ψ2
2

)2
+ u2Φ4 + vΨ2

1 Ψ2
2 + wΦ2

(
Ψ2

1 + Ψ2
2

) ]
, (4)

where x denotes a D= 2 + 1-dimensional spacetime coordi-
nate, and we have suppressed the explicit dependence of the
Ψ and Φ fields on the continuum position r. We have also
rescaled all the field variables so as to make the coefficients
of the gradient terms equal to unity. The parameters r and
s tune the system across the various phase transitions. The
cubic coupling g is allowed by all the symmetries and plays
an essential role in establishing the important features of the
phase diagram.

A mean-field analysis of HLGW leads to the phase diagram
in Fig. 4, yielding (i) the trivial disordered phase, where
no lattice symmetry is broken and 〈Φ〉= 〈Ψi〉= 0, (ii) the
checkerboard phase, where only the Φ field is condensed, i.e.,

Striated

Checkerboard

Disordered

h�i 6= 0

h ii 6= 0
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FIG. 4. Mean-field phase diagram of the low-energy Landau the-
ory in Eq. (4), illustrating the disordered, checkerboard, and striated
phases as well as the fields condensed in each. The black and red
lines represent second-order and first-order QPTs, respectively. The
black dots mark the two tricritical points T1 and T2. The numerical
minimization was performed taking g=−u1 = v=−1, u2 = 0.75,
and w= 0.5 in Eq. (4).

〈Φ〉 6= 0, 〈Ψi〉= 0, and (iii) the striated phase, where both the
order parameters are nonzero, so 〈Φ〉 6= 0, 〈Ψi〉 6= 0. Although
there can be a second-order QPT between any two of these
three phases, the presence of the cubic term in Eq. (4) implies
the existence of a line of first-order transitions close to the ori-
gin r= s= 0 [39–41]. This line terminates in two tricritical
points (labeled T1 and T2 in Fig. 4), at which the coefficients
of both the quadratic and quartic terms of the effective theory
vanish; the theory is then controlled by its sextic term [not
shown in Eq. (4)].

Let us now address the role of the fluctuations neglected in
the mean-field calculation so far by considering a more care-
ful RG analysis. For the purpose of describing the QPT from
the disordered to the striated phase, the most general Hamilto-
nian density consistent with square-lattice symmetries can be
written as

1

2

2∑
i=1

{(
∂µΨi

)2
+ rΨ2

i

}
+

1

4!

2∑
i,j=1

(
u0 + v0δij

)
Ψ2
iΨ

2
j .

This theory is known to have four RG fixed points (FPs) [42,
43], but in D= 3, only the O(2)-symmetric FP describes the
generic critical behavior of the system. However, there is an
extended region in the (u0, v0) parameter plane, defined by
the wedge {(u0, v0) | −v0/2<u0< 0}, from which the FP is
inaccessible, thus rendering the transition first-order [44].

Therefore, there are two possible mechanisms which could
lead to the first-order transition between the disordered and
striated phases observed numerically. Firstly, we could have
a scenario where the transition to the star phase occurs before
the point T1 (Fig. 4) can be reached, ensuring that the en-
tire line of transitions between the disordered and the striated
phase remains first-order. Alternatively, if the parameters of
our theory place us in the abovementioned swath of (u0, v0)
space, one could have a fluctuation-induced first-order transi-
tion due to the inaccessibility of the relevant FP.
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On the other hand, the Z2 symmetry-breaking on going
from the checkerboard to the striated phase is described by
the standard Φ4 field theory, where, for D< 4, the physics of
the critical point is given by the celebrated Wilson-Fisher FP
[45–47]. Therefore, any second-order QPT between these two
phases must be in the universality class of the (2 + 1)D Ising
model.

Having detailed the LGW theory of QPTs in the lower part
of the phase diagram, we now turn to the star phase. The QPT
from the disordered to the star phase involves four real fields
and is described by a three-dimensional O(4)-symmetric vec-
tor model with anisotropic perturbations [48]. The effective
Hamiltonian, consistent with all symmetries, is (up to quartic
order)

Hφ =

∫
dDx

[
2∑
i,a

1

2

{
(∂µφa,i)

2 + rφ2
a,i

}
+

2∑
ij,ab

1

4!

(
u0 + v0δij + w0δijδab

)
φ2
a,iφ

2
b,j

]
, (5)

where the coefficients u0,v0,w0 must satisfy

u0 > 0 and

{
− (u0 + v0) <

w0

2
< −v0, for w0 > 0

− (u0 + v0) < w0 < −v0, for w0 < 0
(6)

to ensure the stability of the theory and the appropriate con-
densation of fields in the star phase. Within the framework
of the ε expansion, this so-called tetragonal theory has eight
FPs [49–51]. However, a careful analysis shows that there are
only three possible stable FPs [52]: the cubic one in the v0 = 0
plane as well as its symmetric counterpart, and the XY FP
with u0 =w0 = 0. The cubic FP, which is stable in the v0 = 0
subspace, is unstable with respect to the quartic interaction
associated with the coupling v0; similar considerations apply
to the other cubic FP which is stable in the v0 + (3/2)w0 = 0
plane [53]. The XY FP is stable on the u0 = 0 plane and while
its behavior in the full parameter space has been a subject of
much debate [54–58], recent six-loop fixed-dimension expan-
sion calculations [52] have confirmed its global stability [in-
cluding on the w0 = 0 plane in Fig. 10(c)]. Thus, systems
described by the tetragonal Hamiltonian are generically ex-
pected to demonstrate XY critical behavior.

Crucially, the XY FP is rendered inaccessible from the al-
lowed region in the parameter space of our effective theo-
ries given by Eq. (6) as shown in Appendix E. Therefore, the
QPT between the disordered and star phases is a fluctuation-
induced first-order transition.

V. BOUNDARY CRITICALITY

The notion of a QPT is formally defined in the thermody-
namic limit. In practice though, one always considers a fi-
nite system, in which case the boundaries may have impor-
tant effects on the critical behavior [59]. Concentrating on the

(a) (b)Theory

Experiment

FIG. 5. Boundary phase transition and its implications for experi-
ments, (a) Comparison of the striated order parameter (color map)
obtained from our QMC simulation with OBC against that of the ex-
periment in Ref. 4, showing good agreement. The boundary orders
first (lower ∆/Ω, pink stars) and strongly influences the extent of
the striated phase, which is extended to a wider range of parameters
compared to the bulk behavior on a torus. Orange and green dots
denote phase transitions in a system with PBC [Fig. 1]. (b) Binder
ratio of the boundary order parameter across the transition marked in
gray in (a). The insets show the boundary ordering (upper left) and
universal collapse with 1D exponents (lower right).

disordered–striated transition in an array endowed with OBC,
here, we address this issue in the context of the experimentally
realizable Rydberg phase diagram.

Remarkably, we notice that the boundary itself undergoes a
second-order QPT before the bulk in the thermodynamic limit
[top panel of Fig. 5(a)]. Intuitively, atoms at the boundary
have fewer neighbours (and interactions), so it is easier for
them to order. For a finite-size system, this surface order shifts
the onset of bulk ordering towards smaller ∆/Ω because the
boundary “seeds” the interior of the system. Such an onset of
bulk order in the presence of established boundary order de-
fines an extraordinary boundary universality class [60]. Fur-
thermore, since the Z2 ordering at the boundary is compatible
with the checkerboard and striated phases—but not with the
star—the striated phase is significantly expanded, relative to a
system with PBC, at the cost of the shrunken star phase.

Next, we determine the critical exponents of the bound-
ary transition by calculating the boundary order parameter
FB ≡ [F̃B(π, π) + F̃B(π, π)]/2 with

F̃B(kx, ky) ≡ 1

NB

∑
j∈Boundary

nj exp [i(kx, ky) · (xj , yj)] , (7)

NB being the number of atoms along the boundary. In
Fig. 5(b), we present the Binder ratio of FB while the inset
illustrates its universal collapse with ν= 1.004(8), consistent
with a (1 + 1)D Ising transition. Signatures of this boundary
ordering have been also obtained from experimental data us-
ing machine learning in a complementary work [61].

The ordering of the boundary has direct implications for
quasi-adiabatic state preparation across a critical point. Ac-
cording to the Kibble-Zurek [2, 62–66] mechanism, the scal-
ing of the density of defects in the resultant phase after a
quench is governed by the universal static critical exponents
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of the QPT. Since (1 + 1)D and (2 + 1)D Ising universality
classes exhibit scaling behavior with different critical expo-
nents, the efficiency of adiabatic state preparation may depend
on the interplay between the boundary and the bulk. For ex-
ample, during dynamical preparation, the system could un-
dergo a cascade of boundary transitions propagating inwards,
effectively masking the bulk first-order transition.

Apart from understanding the existing experimental obser-
vations, an important open question is whether one can lever-
age the boundary ordering to facilitate improved preparation
of bulk-ordered states in larger systems. Detailed understand-
ing of these processes requires careful theoretical and exper-
imental studies of real-time quantum dynamics of large sys-
tems.

VI. DISCUSSION AND OUTLOOK

The results in this work demonstrate the emergence of both
first- and second-order QPTs in a square-lattice Rydberg ar-
ray with periodic boundary conditions and present their uni-
fied field-theoretic description. Furthermore, we identified the
crucial role of boundary ordering in systems with OBC, which
allows one to adiabatically access compatible phases that are
otherwise hidden behind a first-order transition line. Our find-
ings suggest that the boundary plays a major role in under-
standing experimental results.

These studies can be extended along several directions.
First, we note that at stronger interactions, other phases are
known to emerge for the system at hand [15]. The classifica-
tion and theoretical study of those orders, as well as different
lattice geometries [4, 16, 17] or interparticle interactions, is
an interesting direction for future work. Second, the applica-
tion of the phenomena discussed in this work to disordered
systems warrants a separate investigation. Understanding the
role of boundary ordering and quasi-adiabatic state prepara-
tion in these settings is a key factor in predicting practical per-
formance and potential quantum advantage of near-term quan-
tum simulators for optimization problems such as the Maxi-
mum Independent Set [67, 68].
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Appendix A: Quantum Monte Carlo simulation

Our algorithm is based on the work in Refs. 25 and 69; here,
we briefly summarize it for completeness. We found that, for
the Hamiltonian in Eq. (1) of the main text, this QMC method
performs better than the conventional stochastic series expan-
sion algorithm with cluster updates [30], which we attribute to
the presence of strong nearest-neighbor blockade interactions
that violate the Ising symmetry. Our QMC scheme operates
at a finite temperature T , and, in order to access properties
of the ground state, we work at sufficiently low temperatures,
e.g. T/Ω∼ 0.01 and 0.02.

We write our d-dimensional system’s Hamiltonian as Ĥ =
Ĥ0 + Ĥ1, with

H =
∑
i<j

Vij n̂in̂j −∆
∑
i

n̂i︸ ︷︷ ︸
Ĥ0

−Ω

2

∑
i

σ̂xi︸ ︷︷ ︸
Ĥ1

, (A1)

where Ĥ0 denotes the part diagonal in the z-basis and Ĥ1

is the off-diagonal term proportional to σ̂x. In the dis-
crete imaginary-time representation (with NI sites in the
imaginary-time direction), the partition function is

Z = Tr[e−βH ] = lim
NI→∞

∑
~α

NI−1∏
a=0

〈αa+1| e−τĤ0e−τĤ1 |αa〉 ,

(A2)
where ~α = α0, α1, ..., αNI

, αi is a state in the computational
(z) basis with αNI

= α0 due to the periodicity induced by the
trace, and τ = β/M is assumed to be very small such that
the above Suzuki-Trotter decomposition holds. The partition
function in Eq. (A2) can be recast as a partition function of a
(d+1)-dimensional classical model, with the index a labeling
the additional dimension:

Zcl =
∑
αcl

〈αcl|e−βHcl |αcl〉 , (A3)

where αcl are computational basis states ofNI×Na spins and

Hcl =

NI−1∑
a=0

(
N∑
i<j

Vij
NI

n̂a,in̂a,j −
∆

NI

N∑
i

n̂i

−
ln coth

(
β Ω
2NI

)
2β

N∑
i

σ̂za,iσ̂
z
a+1,i

)
, (A4)

where a labels the imaginary-time direction. This Hamilto-
nian is diagonal in the computational basis. In order to avoid
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errors stemming from the Suzuki-Trotter decomposition, one
has to use large values of M , which makes the simulation in-
efficient.

To amend this issue, Refs. 25 and 69 go to the limit of
NI → ∞ directly. This can be achieved by keeping track
of domain walls in the imaginary-time direction, rather than
individual spins. Assuming that there are reasonably many
clusters, this approach should reduce the computational com-
plexity by a large factor. Fortunately, cluster lengths obey the
Poisson distribution [70]; therefore, in each update step, we
can sample potential domain wall positions accordingly and
attempt to flip whole clusters using the usual importance sam-
pling. This scheme is therefore nonlocal in the imaginary-time
direction (cluster update) but local in space (local update).

We note that an independent work in Ref. 71 developed a
similar method, which is local in space and nonlocal in imag-
inary time, based on the Stochastic Series Expansion (SSE)
approach. In certain parameter regimes, Merali et al. [71] ob-
serve better performance using this “line method” compared
to the usual cluster updates for SSE approach.

Appendix B: Extraction of critical exponents

For second-order phase transitions, we assume a dynamical
critical exponent of z= 1 and thus scale the temperature with
the linear system size as T ∼ 1/L. We are interested in the ν
(correlation length) and β (magnetization) exponents, which
we will extract from the Binder ratio U4 and the order param-
eter F , respectively. To this end, near a critical point gc, we
consider a universal scaling form of the Binder ratio as

U4 = f1[(g − gc)L1/ν ]

=

K∑
k=0

ak(g − gc)kLk/ν +O
(

(g − gc)K+1
)
, (B1)

where g is the coupling constant being varied (in our case, Rb
or ∆), and f1 is some universal function near the critical point.
In practice, we fit the universal function to a polynomial in the
distance to the critical coupling value (g−gc) to theKth order
with coefficients ak. If the fitting procedure is stable (i.e.,
there is universal scaling), it should be possible to truncate the
expansion at a reasonably small K when close enough to the
critical point. This is visible in the relatively small extracted
values of ak for larger k. We set K = 4 in this work and
found it to be sufficient.

Similarly, we assume the universal form of the order pa-
rameter:

F = L−β/νf2[(g − gc)L1/ν ]

=

K∑
k=0

bk(g − gc)kL(k−β)/ν +O
(

(g − gc)K+1
)
. (B2)

To extract critical exponents, we calculate the order parameter
and its Binder ratio close to the critical point for different sys-
tem sizes. Then, we fit the data to the ansatz of Eq. (B1) to ob-
tain ν and subsequently use that value to fit β from Eq. (B2).

Note that the error estimates in Table I are results of the fit-
ting procedure and do not include systematic (e.g., finite-size)
errors. We attribute the discrepancy between the obtained ex-
ponents and those expected for the (2+1)D Ising universality
class to such finite-size effects. Moreover, these effects seem
to be more pronounced at the checkerboard–striated transi-
tion as seen in Fig. 6(d), where the Binder ratios’ crossing
points for increasing system sizes drift significantly, compared
to Fig. 6(b).

Appendix C: Cutoff dependence of the phase diagram

The interaction that we use to study Eq. (1) of the
main text is truncated at a finite distance: V (R) =
Ω
(
R6
b/|R|6

)
Θ(R0− |R|), where Θ(x) is the Heaviside step

function with Θ(0) = 1. In this work, we assumed R0 = 4,
in units where we set the lattice spacing to unity (a = 1).
This means that a single atom can interact with up to 48 other
atoms. In Fig. 7, we present various order parameters across
transitions to the star and striated phases with different inter-
action cutoffsR0 ∈ {2, 3, 4, 5} for a 16×16 lattice with PBC.
We observe that settingR0 > 3 is important for recovering the
detailed features of our phase diagram. For instance, taking
R0 = 2 favors the star phase, since the intra-unit-cell interac-
tions in the star ordering are omitted; this accounts for the re-
duced (enhanced) extent of the striated (star) phase in Ref. 15
compared to our current findings. We also note that R0 = 3
is not sufficient to capture the full long-tail phase diagram for
the star phase [see Fig. 7(a,b)]. Noticeably, with increasing
cutoff distance, the phase boundaries in Fig. 7 shift towards
larger detunings and converge forR0 ≥ 4. In Fig. 7(b), we see
that including even longer-ranged tails than those assumed in
this work, i.e., R0 = 5, leads to a sharper (stronger) first-order
transition to the star phase.

Appendix D: Seeding procedure for the striated–star transition

Since the star and striated phases break different symme-
tries, within the LGW paradigm, we expect the transition be-
tween them to be first-order. We find that our QMC algorithm
struggles to converge properly near this star–striated transi-
tion. We attribute this to the local-in-space nature of our QMC
update method, wherein it is necessary to reorder the whole
lattice to maintain ergodicity, which is very difficult when two
phases coexist.

In order to estimate the location of the transition, we per-
form a “phase seeding procedure”. First, we equilibrate a
QMC realization deep within one of the phases (e.g., striated),
which prepares the initial “seed” for that particular phase.
Second, we change the blockade radius inside the simulation
to the desired value and then perform a normal QMC proce-
dure (equilibration together with sampling) using the previ-
ously obtained seed instead of a completely random one. This
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Fitting of the order parameter F (k)

Transition Lmin β a0 a1 × 103 a2 × 103 a3 × 103 a4 × 103

Disordered↔ checkerboard 12 0.291(1) 0.309(1) 67.9(3) 5.6(1) −0.96(2) −0.035(3)
Checkerboard↔ striated 12 0.314(1) 0.225(1) 27.4(1) 20.3(5) −3.8(8) −2.7(8)

Fitting of the Binder ratio U4

Transition Lmin gc ν b0 b1 × 103 b2 × 103 b3 × 103 b4 × 103

Disordered↔ checkerboard 12 1.0959(1) 0.632(5) 0.7048(9) 122(4) −9.6(6) -2.5(2) 0.34(5)
Checkerboard↔ striated 12 1.38000(1) 0.612(6) 0.591(1) 740(34) 5(21) −673(82) 054(157)

TABLE I. Explicit values of parameters obtained for the fitting ansätze in Eqs. (B1) and (B2). These values correspond to the data shown in
Fig. 6. The data for system size L = 8 exhibits strong finite-size effects, so we use system sizes 12, 16, 20 for extracting the exponents.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. Extraction of critical exponents. System sizes are (in increasing color intensity) 8× 8, 12× 12, 16× 16, and 20× 20. (a–b) The order
parameter and the Binder ratio for the transition to the checkerboard phase. (c–d) The order parameter and the Binder ratio for the transition to
the striated phase from the checkerboard phase. (e–h) Corresponding curves in the top row exhibiting data collapse with the extracted critical
exponents.

favors the phase corresponding to the seed. Finally, we repeat
this procedure starting from the other phase.

In Fig. 8(a), we present the effect of seeding on the behav-
ior of the order parameters; each order parameter is seeded
from its corresponding phase. We estimate the transition point
as the midpoint between the peaks of the two order parame-
ters. Upon decreasing the temperature, the effect of the seed-
ing procedure becomes more pronounced, as the system is
progressively more frozen in its initial (seeded) configuration,
and the gap between the peaks becomes narrower. In Fig. 8(b),
we show results for different system sizes at the lowest tem-
perature considered (T = 0.002) as well as our estimate for
the transition point (grey area). We note that this position does
not vary much with the temperature. This approach to estimat-
ing the transition point is heuristic, so we assign a rough error
to the position of the critical point defined by the distance be-
tween the peaks at the lowest temperature (width of the shaded
area).

Appendix E: Details of the LGW theories

In order to systematically address fluctuation corrections, it
is useful to regard the relevant Landau theory not as the free
energy functional but rather as the Hamiltonian of a classical
statistical mechanics problem in which the degrees of freedom
are represented by the field(s) [31]. Landau theory would then
simply follow by making the saddle-point approximation to
the functional integral for the partition function. Here, we
adopt this approach from the very beginning.

The elements of the space group of the square lattice in-
clude single-site translations along the x (Tx) and y (Ty) axes,
reflections about the x (Rx) and y (Ry) axes, and fourfold ro-
tations around the out-of-plane z axis (C4). To write down the
effective Hamiltonian, such as that in Eq. (4) of the main text,
we need to determine how the low-energy eigenmodes ψn
transforms under these operations. This, in turn, follows from
the transformation properties of the eigenvectors exp(ikn ·r),
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Effect of truncating interactions at different distances R0 for a system of size 16× 16. (a,d) Transition to the star phase at Rb = 1.62.
The slight discrepancy between R0 = 4 and R0 = 5 suggests that the transition can be even sharper at R0 = 5, at this value of the blockade
radius. (b,e) Transitions at Rb = 1.45. For R0 = 2, the transition is to the star phase, while for R0 ∈ {3, 4, 5}, one obtains a striated phase.
(c,f) Transition from the checkerboard to the striated phase for a fixed Ω/∆ = 2.3. Taking R0 = 5 slightly stabilizes the star phase but does
not resolve the difficulty of simulating the interface between these two phases.

introduced in Eq. (3) of the main text, as

Ôρ(r) = Re

[∑
n

ψn eikn·(Ôr)

]
≡ Re

[∑
n

(
Ôψ
)
n

eikn·r

]
.

We outline these symmetry transformations individually for
each of the phases in the following.

1. Checkerboard and striated phases

The minimal set of momenta {kn} required to describe
the density-wave ordering ρ(r) in the striated phase is
{(π, 0), (0, π), (π, π)}. The magnetization in or around these
phases can thus be expressed in terms of three real fields Ψ1,
Ψ2, and Φ as

ρ(r) = Ψ1 ei (π,0)·r + Ψ2 ei (0,π)·r + Φ ei (π,π)·r. (E1)

In the basis (Ψ1,Ψ2), the matrix representations of the
symmetry transformations are:

Tx = −σ3, Ty = σ3, Rx = Ry = 1, C4 = σ1, (E2)

where σ denotes the usual 2 × 2 Pauli matrices. The field Φ
transforms trivially under all symmetries except translations
(Tx, Ty), which act as Φ→−Φ. The Landau functional is
given by all homogeneous polynomials that are invariant un-
der the group generated by these transformations and, up to
quartic order, corresponds to Eq. (4) of the main text. With-
out loss of generality, we consider g < 0 here. Furthermore,

we need v < 0 to ensure that both Ψ1 and Ψ2 condense in
the ordered (striated) phase. The stability of the theory also
requires u1>−v/4> 0, u2> 0, and u2 (4u1 + v)>w2 (as-
suming w < 0).

a. Mean-field theory for the tricritical points

Neglecting spatial fluctuations, let us first analyze Eq. (4)
in mean-field theory. The results of such an analysis are pre-
sented in the phase diagram of Fig. 4 in the main text, which
illustrates the checkerboard, striated, and star phases. As in-
dicated in Fig. 4, there can be a second-order phase transition
between any two of these three phases. From a conventional
Landau theory analysis, we find that the second-order phase
boundary between the disordered phase and the checkerboard
phase is at s= 0, while the line demarcating the disordered
phase from the striated is at r= 0. Finally, the second-order
transition from the checkerboard to the striated is at

r =
1

2

(
−g
√
−s
2u2

+
sw

u2

)
. (E3)

Although these three second-order lines would appear to meet
at r= s= 0, as noted by Park and Sachdev [39] this is pre-
empted by a line of first-order transitions close to the origin.
The origin of this feature can be seen by integrating out the
Φ fluctuations to derive an effective action for the Ψ. Do-
ing so always induces an effective quartic term Ψ2

1Ψ2
2 with a

negative coefficient ∼−g2/|s|. Hence, for sufficiently small
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(a)

(b)

(c)

(d)

FIG. 8. Seeding procedure for the interface between striated and star phases. Our QMC algorithm struggles in this regime. To estimate
the phase boundary, we resort to phase seeding from both sides. (a,b) Effect of the seeding procedure and temperature change on the phase
boundary at L = 12. (c,d) Scaling with the system size at T = 0.002. The gray region denotes our estimate of the location of the transition
point.

|s|, the net coefficient of Ψ2
1Ψ2

2 always becomes negative, thus
driving the transitions involving the onset of nonzero Ψi first-
order. This line of first-order transitions terminates in two
tricritical points (labeled T1 and T2 in Fig. 4), at which the
coefficients of both the quadratic and quartic terms of the ef-
fective theory vanish; the theory is then controlled by its sex-
tic term [not shown in Eq. (4)]. The point T1 is located at
r= 0, s= g2/(16u1 + 4v) whereas the coordinates of T2 can
be found by solving for s in the equation

g2

s
− 4g w

√
2

−s u2

+ 8

(
4u+ v − w2

u2

)
= 0 (E4)

and then determining r as given by Eq. (E3) for this value of
s. On going across either of these two tricritical points, the
change in the sign of the quartic term is responsible for the
nature of the transition changing from first to second-order.

Next, we address the role of quantum fluctuations.

b. Disordered to checkerboard

The transition from the disordered to the checkerboard
phase is characterized by the onset of a nonzero order param-
eter, namely, the staggered magnetization or, equivalently, the
amplitude of the (π, π) Fourier mode. Expanding in powers

and gradients of this order parameter, we obtain the Hamilto-
nian

HΦ =

∫
dDx

[
1

2

{(
∂µΦ

)2
+ rΦ2

}
+
u0

4!
Φ4

]
, (E5)

where Φ, as before, is a real, one-component field. The Hamil-
tonian is invariant under Φ→−Φ and thus possesses a Z2

(Ising) symmetry. Analyzing the renormalization-group (RG)
flow of this theory, one finds that it has a Guassian fixed point
(FP) at r=u0 = 0; however, the Gaussian FP is stable to-
wards u0 perturbations only for D > 4. More relevantly, the
RG flow has another FP at nonzero values of r and u0, which
is the celebrated Wilson-Fisher FP [45–47] located at

r∗ = −ε
6

+O(ε2); u∗0 =
2ε

3S4
+O(ε2), (E6)

where ε ≡ 4−D, and the phase space factor Sd =
2/[Γ(d/2)(4π)d/2] denotes the surface area of a sphere in d
dimensions. For D < 4, the physics of the critical point is
described by the field theory of the Wilson-Fisher FP, and the
transition from the disordered to the checkerboard phase in
the Rydberg system is in the universality class of the (2+1)D
Ising model.
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c. Disordered to striated

The cubic term in Eq. (4) of the main text implies that if
two of the fields (Ψ1,Ψ2,Φ) are condensed, then so must the
third [41]. In the striated phase, the Fourier transform of the
Rydberg excitation density |n(k)| thus exhibits peaks not only
at (π, 0) and (0, π) but also at (π, π) = (π, 0) + (0, π). For the
purpose of describing the phase transition from the disordered
to the striated phase, therefore, it suffices to focus on the first
two momenta alone. In other words, given two real fields Ψ1

and Ψ2,

ρ(r) = Ψ1 ei (π,0)·r + Ψ2 ei (0,π)·r (E7)

correctly describes the Z2×Z2 symmetry-breaking pattern of
the striated phase. Using the matrix representations of the
transformations in Eq. (E2), the most general Hamiltonian
consistent with square-lattice symmetries can be written as

HΨ =

∫
dDx

[
1

2

N∑
i=1

{(
∂µΨi

)2
+ rΨ2

i

}
+

1

4!

N∑
i,j=1

(
u0 + v0δij

)
Ψ2
iΨ

2
j

]
, (E8)

where N = 2. The cubic-symmetric quartic term
∑
i Ψ4

i

breaks the O(N ) invariance of the model down to a resid-
ual discrete D4 symmetry. The relevance of the anisotropic
perturbations can be directly understood by classifying them
using irreducible representations of the O(N) internal group,
and computing the RG dimensions of their associated cou-
plings [48]. While the coupling constants r,u0, and v0 can be
varied by tuning the parameters of the microscopic Rydberg
Hamiltonian, the stability of the theory requires the positivity
conditions

u0 + v0 > 0 and Nu0 + v0 > 0 (E9)

to be satisfied. Rewriting the quartic term as [(u0 + v0)(Ψ2
1 +

Ψ2
2)2 − 2 v0Ψ2

1Ψ2
2]/4!, it follows that we also need v0 > 0 to

ensure that both Ψ1,2 condense in the ordered phase.
The theory defined by the Hamiltonian (E8) has been ex-

tensively studied over the past few decades and is known to
have four FPs [42, 43]:

• The trivial Gaussian one at u0 = v0 = 0.

• The Ising FP with u0, v0 6= 0. At this FP, the Hamilto-
nian (E8) corresponds to that of N Ising systems cou-
pled by the O(N )-symmetric interaction.

• The O(N)-symmetric FP with u0 6= 0, v0 = 0.

• The cubic FP with u0 6= 0, v0 6= 0.

Both the Gaussian and Ising FPs are unstable for any number
of components N . For sufficiently small N <Nc, the O(N )-
symmetric FP is stable while the cubic one is unstable (this

Gaussian

Ising

Cubic

FIG. 9. RG flow of the theory (E8) in the (u0, v0) coupling plane
for D= 3, N = 2<Nc. The blue dot represents the stable O(N)-
symmetric FPs whereas the other three unstable FPs are marked
in red. Owing to the positivity (E9) and condensation conditions,
the parameters of our theory are always constrained to lie in the
(green/yellow) region to the right of v0 =−2u0 (dashed line) in the
upper-half plane. The yellow wedge marks the region from which
the stable FP is inaccessible. Figure adapted from Ref. 52.

designation is reversed for N >Nc) [52]. Importantly, for
D = 3,Nc has been shown to be less than 3 using perturbative
expansions [72–74] and numerical conformal bootstrap [75].
Hence, in our case, with D = 3, N = 2, the O(N )-symmetric
FP describes the generic critical behavior of the system and
the resultant RG flow is sketched in Fig. 9.

In the upper-half plane, the only FP is the Ising one which
is unstable. If v0> 0 (as required for the simultaneous con-
densation of Ψ1,2) and u0> 0, at long distances, the theory
would therefore flow to the O(N )-symmetric FP. The transi-
tion would be second-order, governed by this stable FP, and
one would expect the emergence of an O(2) symmetry at the
critical point [76]. The cubic term is a “dangerously” irrel-
evant operator and generates correction to scaling in the or-
dered phase [52]. However, even though the RG flow has a
stable FP, there is a region in the (u0, v0) plane, defined by
the wedge Ω = {(u0, v0) | −v0/2<u0< 0}, from which the
FP is inaccessible [44]. If u0 were to the left of the separatrix
running from the Gaussian to the Ising FP, the flow could not
reach the O(N ) FP as the separatrix marks the boundary of
the domain of attraction of the stable FP [77]. Outside the at-
traction domain of the FPs, the flow goes away towards more
negative values of u0 and/or v0, eventually reaching the region
where the quartic interaction no longer satisfies the stability
condition: these RG trajectories should be related to first-
order phase transitions [52]. This result is to be contrasted
with the mean-field prediction of a continuous transition in
the entire stability wedge defined by Eq. (E9).
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(a) (b) (c)

Gaussian

Ising

XY

Cubic

Ising

Gaussian

Cubic

Gaussian XY

Tetragonal

FIG. 10. Schematic RG flow of the tetragonal theory, described by the LGW Hamiltonian (E16) with M = 2, N > 1, in the (a) u0 = 0, (b)
v0 = 0, and (c) w0 = 0 planes. In the v0 = 0 subspace, the stable FP is the cubic one whereas on the other two planes, the XY FP is stable. As
before, all the stable (unstable) FPs are marked in blue (red). Figure adapted from Ref. 52.

d. Checkerboard to striated

The broken symmetry in the striated phase is Z2×Z2'D2

(which is isomorphic to the Klein 4-group). By itself, the
checkerboard phase already breaks a Z2 symmetry. The resid-
ual Z2 symmetry that is further broken on going from the
checkerboard to the striated phase is generated by {1, Td},
where Td≡TxTy denotes unit translations along the diago-
nals (T 2

d = 1). Note that both the checkerboard and striated
phases preserve fourfold-rotational symmetry, so the original
D4 symmetry of the Hamiltonian (E8) is broken down to its
subgroup C4.

The striated phase can be distinguished from the checker-
board by defining the order parameter

m ≡
∣∣∣∣∑

i

{
(−1)row(i) + (−1)col(i)

}
〈ni〉

∣∣∣∣, (E10)

which measures the differential occupation of sites along the
diagonals. Now one can write down a Landau functional in
powers and derivatives of the order parameter as usual and the
resultant effective Hamiltonian is given by

Hm =

∫
dDx

[
1

2

{(
∂µm

)2
+ rm2

}
+
u0

4!
m4

]
, (E11)

which is the same as the Φ4 field theory studied above in
Eq. (E5). The Z2-symmetry-breaking transition from the
checkerboard to the striated phase is thus also in the Ising uni-
versality class controlled by the Wilson-Fisher FP.

2. The star phase

To derive the LGW theory for the quantum phase transi-
tion from the disordered to the star phase, we begin by not-
ing that the Fourier maxima in the star phase are at (π, 0),

(0, π), (π/2, π), and (π, π/2). However, recognizing that
(π, 0) = 2 (π/2, π)—and similarly for (0, π)—we can write
the magnetization as simply

ρ(r) = Re
(

Ψ1 ei (π/2,π)·r + Ψ2 ei (π,π/2)·r
)
, (E12)

with Ψ1, Ψ2 ∈C, and the other wavevectors are described
by harmonics Ψ2

1,2 of the order parameters. Using the ba-
sis (Ψ1,Ψ2,Ψ

∗
1,Ψ

∗
2), the symmetry operations can be repre-

sented by the following matrices:

Tx =


i 0 0 0
0 −1 0 0
0 0 −i 0
0 0 0 −1

 , Ty =


−1 0 0 0

0 i 0 0

0 0 −1 0

0 0 0 −i

 ,

Rx =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 , Ry =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 ,

C4 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 . (E13)

These five matrices generate a subgroup of O(4) and the effec-
tive Hamiltonian composed of all polynomials invariant under
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this group (up to quartic order) is

Hs =

∫
dDx

[
1

2

2∑
i=1

{∣∣∂µΨi

∣∣2 + r |Ψi|2
}

+

2∑
i=1

[
z1 |Ψi|4 + z3

{
Ψ4
i + (Ψ∗i )

4
} ]

+ z2 |Ψ1|2|Ψ2|2
]
. (E14)

For stability of the theory, the coefficients zi must obey the
positivity conditions

z1 − 2|z3| > 0 and 2z1 + z2 − 4|z3| > 0. (E15)

We further require z2− 2 (z1− 2 |z3|)> 0 to ensure that only
one of Ψ1,2 condenses at a time, as observed in the star phase.

This model is equivalent to the so-called tetragonal the-
ory which is the M = 2 version of the general three-coupling
LGW Hamiltonian

Hφ =

∫
dDx

[∑
i,a

1

2

{
(∂µφa,i)

2 + rφ2
a,i

}
+
∑
ij,ab

1

4!

(
u0 + v0δij + w0δijδab

)
φ2
a,iφ

2
b,j

]
, (E16)

where a, b= 1, ...M and i, j= 1, ...N ; for our purposes,
N = 2. For these parameters (M,N = 2) it corresponds to
Eq. (5) in the main text. The theory (E16) is, of course,
constrained to lie within the region of parameter space where
Eq. (E15) as well as the abovementioned condition for the mu-
tually exclusive condensation of Ψi are both satisfied. The
mapping between the two sets of coefficients is given by
u0 = 12 z2, v0 = 12 (2z1−z2−12z3), w0 = 192 z3, which im-
plies that the allowed region in (u0, v0, w0) space is defined
by Eq. (6) in the main text (see Fig. 11).

Focusing onM = 2, while keepingN (> 1) general, it is in-
structive to consider certain limits of the Hamiltonian (E16).
For u0 = 0, the model reduces to N decoupled cubic models
with two-component spins, while for v0 = 0, it describes a cu-
bic model with 2N -component spins. In the case w0 = 0, the
tetragonal Hamiltonian is equivalent to N coupled XY mod-
els [43, 78] (also known as the “MN model” [79]). These
limits, and their combinations, are useful in understanding the
different FPs of the theory. Within the framework of the ε ex-
pansion, the tetragonal model has eight FPs [49–51], which
are labeled as follows:

• Gaussian: u0 = v0 = w0 = 0,

• Ising: u0 = v0 = 0; w0 6= 0,

• Heisenberg [O(2N)-symmetric]: u0 6= 0; v0 = w0 =
0,

• XY [O(2)-symmetric]: u0 = w0 = 0; v0 6= 0,

FIG. 11. Allowed region in parameter space of the tetragonal theory
(E16), as defined by Eq. (6) for w0> 0 (green) and w0< 0 (blue).
The two planes v0 = 0 and v0 + (3/2)w0 = 0 (on which the cubic
FPs are stable) are shaded in pink. The blue dot represents the glob-
ally stable XY FP; its v0 coordinate is greatly exaggerated here for
the sake of visual clarity.

• Tetragonal: u0 6= 0; v0 6= 0; w0 = 0, and

• Cubic: u0 6= 0; v0 = 0; w0 6= 0.

One thus obtains six FPs. Additionally, the tetragonal Hamil-
tonian is symmetric under the transformation [80](

φ1,i, φ2,i

)
→ 1√

2

(
φ1,i + φ2,i, φ1,i − φ2,i

)
,

(u0, v0, w0)→
(
u0, v0 +

3

2
w0,−w0

)
. (E17)

The two remaining fixed points are obtained by applying the
transformation (E17) to the Ising and cubic FPs listed above,
bringing the total to eight. The RG flow of the theory along
three different planes (corresponding to one of the quartic cou-
plings being zero) is shown in Fig. 10. As described in the
main text, the generic critical behavior of the tetragonal the-
ory is described by the XY FP irrespective of N .

Crucially, even though the XY FP is globally stable, it
is shielded from our allowed region (6) by the v0 = 0 and
v0 + (3/2)w0 = 0 planes (see Fig. 11). We can now extend the
arguments of Kerszberg and Mukamel [44] outlined above to
our three-dimensional parameter space. Suppose our initial
conditions place the microscopic theory in a regime where
w0>−(2/3)v0> 0 (rightmost green region of Fig. 11). All
points in this region are separated from the XY FP by the
v0 = 0 plane. On this plane, we know that the cubic FP is
stable but its stability matrix possesses a negative eigenvalue
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in full parameter space [53]. Hence, given these initial condi-
tions, the RG flow would take one away from the v0 = 0 plane,
and accordingly, the stable XY FP. Using the analogous prop-
erties of the v0 + (3/2)w0 = 0 plane, we can generalize this
argument to all possible initial conditions shown in Fig. 11.
As a result, we can conclude that the stable XY FP is inac-
cessible starting from our allowed region of parameter space,
rendering the transitions from the disordered to the star phase
first-order.

Lastly, let us mention that besides the eight FPs referenced

above, the tetragonal theory (E16)—restricted to the w0 = 0
plane—is believed to have another stable FP in the region
v0< 0, u0> 0, the presence of which is not directly pre-
dicted by the ε-expansion framework: this is the O(2)×O(2)-
symmetric chiral FP [81]. While ε-expansion [82] and fixed-
dimension [83] calculations disagree on the existence of a sta-
ble FP corresponding to this chiral universality class forN = 2
in D= 3, we note that within the RG approach, fluctuation-
induced first-order transitions are always still possible for sys-
tems lying outside the attraction domain of the chiral FP if it
exists [84]. Moreover, it is presently unclear whether this chi-
ral FP is stable in the enlarged tetragonal theory with w0 6= 0.
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