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The non-interacting magnon gas description in ferromagnets breaks down at finite magnon den-
sity where momentum-conserving collisions between magnons become important. Here we present a
hydrodynamic description of spin systems with global SU(2) symmetry in the ferromagnetic phase.
We identify a key signature of the collision-dominated hydrodynamic regime—a magnon sound
mode—which governs dynamics at low frequencies. The magnon sound mode is an excitation of
the longitudinal spin component with frequencies below the spin wave continuum in gapped ferro-
magnets and can be detected with recently-introduced spin qubit magnetometers. We also show
that, in the presence of exchange interactions with SU(2) symmetry, the ferromagnet hosts an usual
hydrodynamic regime that lacks Galilean symmetry. We show that our results are relevant to ferro-
magnetic insulators in a finite energy/temperature window such that dipolar and magnon-phonon
interactions are negligible, as well as in recent experiments in cold atomic gases.

I. INTRODUCTION

The presence of symmetries and conservation laws can
affect the universal dynamics of interacting quantum sys-
tems in dramatic ways. One example is the recently ob-
served hydrodynamic regime in graphene where, in a wide
range of temperatures, fast momentum-conserving colli-
sions lead to viscous electron transport1–6. This unusual
electron transport behavior, also proposed in a variety of
other quantum systems7–16, differs from the more con-
ventional ballistic and diffusive regimes. The giant leap
in our understanding of quantum transport that resulted
from the study of hydrodynamics in graphene, combined
with the advances in material synthesis and quantum
metrology, motivates us to raise two new questions: (i)
are there other available experimental platforms to probe
new hydrodynamic regimes in quantum materials? (ii)
can additional symmetries give rise to qualitatively dis-
tinct transport features?

We address these two questions by showing that (i)
Heisenberg ferromagnets host an unusual hydrodynamic
regime in a wide range of temperatures and frequencies
when SU(2) symmetry is present, and (ii) we propose
an experimental protocol to detect hydrodynamic modes
using spin qubit magnetometers17,18. As we will see, the
hydrodynamic regime is unusual because of the lack of
Galilean symmetry, signaling the presence of a special
reference frame in the system.

At low temperatures, the long wavelength excitations
in ferromagnets (magnons) propagate ballistically given
the weak magnon-magnon interaction which renders re-
laxation processes inefficient. However, as temperature
increases and the thermal magnon population occupies
larger momentum states, momentum conserving colli-
sions give rise to a relaxation length ` which steeply de-
creases with temperature T and magnon density n19:

` =
1

nad−1

(
J

T

) d+1
2

. (1)

Here a is the lattice spacing, J is the exchange coupling,
and d ≥ 2 is the dimension (see Appendix A). For an in-
termediate temperature range such that Umklapp scat-
tering can be neglected (T � J), but large enough such
that ` � L for the characteristic length L of the sys-
tem, hydrodynamic behavior emerges. For instance, for
moderately small occupation numbers (nad ∼ 0.1) and
temperature below the Curie temperature (T/J ∼ 0.2),
` ∼ 50 nm is much smaller than a typical sample length
L ∼ 10µm (here we used a = 0.5 nm and d = 2).

A key signature of momentum-conserving collisions is
the existence of a gapless sound mode, even when the spin
wave continuum is gapped by a Zeeman field. As shown
in Fig.1, the sound mode is manifested as an excitation of
the longitudinal spin correlator, 〈ŜzŜz〉, where Ŝz is re-

lated to the magnon density n via 〈Ŝz〉 = S(1−na2), and
is analogous to a second sound in a superfluid20–22. As a
result, spin fluctuation measurements can provide clear-
cut signatures of the sound mode, as shown below. We
distinguish magnon hydrodynamics from hydrodynamics
in electron fluids where, rather than sound modes, the
system hosts plasmon modes; this qualitatively distinct
behavior arises because longitudinal charge fluctuations
are mediated by long-ranged Coulomb interactions23. We
also distinguish the sound mode from the previously stud-
ied ‘magnon BEC’24–27 in which the physics is primarily
governed by the dynamics of the ferromagnetic order pa-
rameter.

One unique feature of magnon hydrodynamics is that
the SU(2) symmetry constrains the collisions between
quasiparticles, giving rise to a momentum dependent
magnon-magnon interaction which vanishes at k =
0 [see Eq.(5)]. This feature bears important conse-
quences. First, Galilean symmetry is intrinsically bro-
ken at lenghtscales, and differs from usual hydrodynam-
ics in lattice systems where Galilean symmetry is broken
only at energy scales comparable to the single-particle
bandwidth (i.e., when deviations from quadratic disper-
sion are sizable). While Galilean symmetry can also be
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FIG. 1. Spectral function χ(q, ω) = χ+−(q, ω) + χ−+(q, ω) +
4χzz(q, ω) exhibiting single magnon excitations at the Zeeman
energy ω = ∆, induced by a finite 〈S−S+〉, and a linearly
dispersing sound mode at low frequencies induced by magnon
density fluctuations, 〈ŜzŜz〉. The sound mode is damped
above frequencies ω∗ by viscous forces.

broken in planar ferromagnets in the presence of spin
textures28–31, Galilean symmetry is broken with or with-
out spin textures in isotropic ferromagnets. Second, van-
ishingly small scattering matrix elements suppress col-
lisions between magnons and the magnon condensate
that arises due to symmetry breaking. Such suppre-
sion justifies why the dispersion of magnons—the Gold-
stone modes of the ferromagnet—remain quadratic in
the symmetry-broken phase, contrary to U(1)-symmetry
breaking where interactions between quasiparticles and
the condensate renormalize the quasiparticle dispersion
and where a ‘two-fluid’ description is necessary.

Previous works on hydrodynamics in ferromagnets as-
sume momentum relaxation due to Umklapp scatter-
ing (T ≈ J) or disorder, as first described by Halperin
and Hohenberg32. Such momentum-relaxing effects give
rise to diffusive particle and energy transport. Al-
though a few authors20–22 made the case for momentum-
conserving hydrodynamic behavior in a magnon gas,
there is little experimental evidence of this regime to
date.33 Arguably, the energy scales (∼meV) and wavevec-
tors (>∼ 1/a) accessible by neutron scattering, the main
probe of ferromagnets at the time, were too large to ac-
cess the low frequency, long-wavelength regime in which
hydrodynamic sound modes live. In addition, the Hamil-
tonian of realistic materials has terms that break magnon
number and momentum conservation, such as dipolar in-
teractions and magnon-phonon interactions, and, as a
result, it is unclear whether such regime can exist in re-
alistic materials.

We argue that recent experiments34–39 have opened
new pathways to observe and study hydrodynamic be-
havior in spin systems. First, ultraclean ferromagnetic
materials, such as yttrium iron garnet (YIG), allow bal-
listic propagation of magnons in macroscopic scales with-
out scattering by impurities and phonons. Independent
control of temperature and chemical potential is possi-
ble via a combination of heating and driving and, there-

fore, enables us to explore all possible regimes from
non-interacting magnon gases to interacting magnon flu-
ids. In addition, magnetic spectroscopy with spin qubits
allows to access spin fluctuations at the energy and
lengthscales relevant for hydrodynamics. Besides spin
waves34,35, such probes have been used to image sin-
gle spins40, domain walls41, and to study electron trans-
port in metals42. The have also been proposed to ac-
cess the hydrodynamic regime in graphene43 and one-
dimensional systems44, to study magnon consensation in
ferromagnets45, and to diagnose ground states in frus-
trated magnets46. In addition, recent experiment in iso-
lated cold atomic gases36–39 have now access to long-time
relaxation dynamics of spin systems. Such platforms
have exquisite tunability of the global symmetries and
dimensionality, and are sufficiently well isolated from the
environment such that magnon number and energy re-
laxing processes can be neglected.

II. MICROSCOPIC MODEL

We consider a Heisenberg ferromagnet in the presence
of a Zeeman field and a small exchange anisotropy ε:

Ĥ = −J
∑
〈jj′〉

(
Ŝj · Ŝj′ + εŜzj · Ŝzj′

)
+ ∆

∑
j

Ŝzj . (2)

Here j labels the lattice site,
∑
〈jj′〉 denotes summation

over nearest neighbors, and we take periodic boundary
conditions in each spatial direction. We assume that the
spin system has N lattice sites on a d dimensional cubical
lattice, each containing a spin S degree of freedom which
satisfies the commutation relations [Ŝzj , Ŝ

±
j′ ] = ±δjj′ Ŝ±j

and [Ŝ+
j , Ŝ

−
j′ ] = 2δjj′ Ŝ

z
j , with Ŝ±j = Ŝxj ± iŜ

y
j the raising

and lowering spin operators. The Zeeman term plays
an essential role experimentally because it gaps the spin
wave continuum and, for large ∆, it separates the magnon
continuum from the gapless sound mode.

With the objective of deriving an effective model de-
scribing the low energy manifold of Ĥ, we recall that
one magnon states |k〉 = Ŝ+

k |F〉, with |F〉 = | ↓↓ . . . ↓
〉 denoting the ferromagnetic ground state and Ŝ+

k =
1√
N

∑
j e
−ik·rj Ŝ+

j , are exact eigenstates of Ĥ with en-

ergies

εk = ∆ + JS[φ0(1 + ε)− φk], φk =
∑
τ∈NN

eik·τ . (3)

Two magnon states |k,p〉 = 1
2S Ŝ

+
k Ŝ

+
p |F〉, however, are

not eigenstates of Ĥ19,47,48. Indeed, it is straightforward
to show that

Ĥ|k,p〉 = (εk + εp)|k,p〉+
1

N

∑
q

gk,p,q|k + q,p− q〉,

gk,p,q = −J (ε− φq + φq−p + φq+k − φk+q−p) ,
(4)
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such that one magnon states are coupled via momentum-
conserving collision gk,p,q. More generally, an N -magnon

state Ĥ|N〉 = Ĥ
[

1
(2S)N/2

∏N
i Ŝ

+
ki

]
|F 〉 can also be de-

composed into a diagonal component comprised of in-
dividual spin wave energies and an off-diagonal compo-
nent containg all possible combinations of two-body col-
lisions. When the incoming magnons are close to the
bottom of the band, the collision term is approximately
gk,p,q ≈ −Ja2(ε + k · p). Importantly, whereas col-
lisions between quasiparticles are hardcore in the easy
axis/plane ferromagnet, collisions are soft under SU(2)
symmetry (ε = 0). We focus on the latter regime (for
a discussion on the easy plane ferromagnet with broken
U(1) symmetry, see Ref.[ 49]). We also note that ε = 0
case is suitable for hydrodynamics in YIG if T is larger
than dipolar energies50, which is typically the case.

An effective description of the interacting magnon fluid
which captures all the features of the parent SU(2) sym-
metric Hamiltonian in Eq. (2) is given by

Ĥ =

∫
x

∂αψ̂
†
x∂αψ̂x

2m0
+
Ja2

4

(
ψ̂†xψ̂

†
x∂αψ̂x∂αψ̂x + h.c.

)
,

(5)

where m0 = 1/2SJa2 is the magnon mass and ψ̂ is
a bosonic operator defined after a Holstein-Primakoff

transformation (Ŝ−x ≈
√

2Sψ̂x and Ŝ+
x ≈

√
2Sψ̂†x), and

summation over repeated indices is assumed. Equation
(5) is valid in the dilute limit nad � S and small tem-
perature T � J such that only small momentum states
are occupied.

III. MAGNON HYDRODYNAMICS WITHOUT
GALILEAN SYMMETRY.

The conserved quantities in Eq.(5) are N̂ =
∫
x
n̂x =∫

x
ψ̂†xψ̂x, P̂α =

∫
x
p̂α,x = −i

2

∫
x
ψ̂†x∂αψ̂x − h.c., and Ĥ.

Although P̂α is not strictly conserved in the lattice model
(2), it becomes conserved in the long-wavelength effec-
tive theory after neglecting Umklapp scattering. We
use the local equilibrium approximation to describe the
density matrix as ρ̂ =

∏
x ρ̂x, where space is coarse-

gained into regions of size `. The local density matrix

is ρ̂x = exp
(
−Ĥ/T − uαP̂α − µN̂

)
x

, with (T, uα, µ)x

the position and time-dependent thermodynamic poten-
tials. One important aspect of Eq.(5) is that the particle

current operator, defined as ∂αĴα = −i[Ĥ, n̂x], is not

equal to P̂α; instead, Ĵα takes the form Ĵα = P̂α/m0 +
iJa2

2 (ψ̂†xψ̂
†
xψ̂x∂αψ̂x−h.c.) and gives rise to Galilean sym-

metry breaking. As such, a variety of interesting ef-
fects emerge, including velocity-dependent transport co-
efficients, anomalous viscous terms, and anisotropic dis-
persion of hydrodynamic fluctuations, to name a few.

To make analytical progress, we compute expectation
values using a Gaussian approximation of the distribution
function ρx which can be formally implemented by using

Ĥ/T ≈
∑
k

k2

2mT ψ̂
†
kψ̂k, with m the renormalized magnon

mass. As such, any N -point correlation functions can be
expressed as products of two point correlation functions.
Because corrections to the bare mass are small, δm =
m − m0 ∼ O(na2T/J) � 1, below we will use m and
m0 interchangeably. The expectation value of conserved
quantities (〈N̂〉x = n, 〈P̂α〉x = npα, 〈Ĥ〉x = nε) are
given by:

n =
mT

2π
g1(z), pα = muα, θ =

Tg2(z)

g1(z)
, (6)

where the thermal energy θ is related to energy den-

sity through ε = θ + (1−na2/4S)p2

2m , and where we as-

sumed a two-dimensional system. In Eq.(6), z = e−µ/T

is the fugacity, and gq(z) is the Bose integral, gq(z) =
1

Γ(q)

∫∞
0

dyyq−1

ey/z−1 [Γ(q): Gamma function].

The particle current Jα, the momentum current Παβ =

〈Π̂αβ〉, and the energy current Qα = 〈Q̂α〉, are given by

Jα = nvα,
Παβ = npαvβ + Pαβ ,
Qα = nεvα + Pαβvβ + qα,

(7)

see details in Appendix B. Here Pαβ = (nθ− γnp2

2m )δαβ +

P̃αβ is the pressure tensor, with P̃αβ the dissipative (vis-

cous) component, and qα is the heat current (both P̃αβ
and qα will be defined explicitly below). The main con-
sequence of Galilean symmetry breaking in our work
is that conserved quantities flow with a drift velocity
vα = 〈Ĵα〉/n which is different from the thermodynamic
potential uα:

vα = (1− γ)uα, γ =
na2

S
. (8)

The continuity equations for each of the conserved
charges lead to the hydrodynamic equations:

ṅ+ ∂α(nvα) = 0,

ṗα + vβ∂βpα = − 1

n
∂βPαβ ,

θ̇ + vα∂αθ = − 1

n
∂αqα −

1

n
Pαβ∂αvβ − γ

p2

2m
∂αvα,

(9)

which resemble usual hydrodynamic equations for a clas-
sical fluid with the caveat that convective terms contain
vα rather than uα. We recall that the ‘single fluid’ equa-
tions (9) do not include dynamics of the condensate due
to the zero coupling with k = 0 modes in the SU(2) sym-
metric Hamiltonian.

IV. DISSIPATIVE EFFECTS

We incorporate dissipation effects phenomenologically
using the relaxation time approximation, see Appendix
C. This approximation allows us to relate the non-
equilibrium magnon distribution to gradients in ηj =
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(n, uα, θ), i.e. nk = n̄k+τk
∑
j(∂n̄k/∂ηj)(∂t+vk ·∇r)ηj ,

where τk is a momentum-dependent relaxation time (see

details in Supplement). As a result, P̃αβ and qα can

be written P̃αβ = ν (∂αuβ + ∂βuα − δαβ∂γuγ), and qα =
κn∂αn + κθ∂αθ. For a two-dimensional magnon gas
with quadratic dispersion and collision rate of the form
1/τk ∝ k2, we find that, within the relaxation time ap-
proximation, dissipation is dominated by viscous effects

with scaling ν ∼ J2

T . While we will keep track of κn and
κθ in our equations of motion, we set κn = κθ = 0 in the
numerics.

V. HYDRODYNAMIC MODES

The sound mode originates from the longitudinal spin
fluctuations and is manifested in the retarded correlator

χzz(q, ω) = −i
∫ ∞

0

dteiωt
∑
τ

e−iq·τ 〈[Ŝzi (t), Ŝzi+τ (0)]〉.

(10)
This is equivalent to computing density fluctuation be-
cause Ŝzi = −S(1 − n̂i). With this objective in mind,
we first linearize Eq.(9) around the equilibrium values,
n(r, t) = n̄+δn(r, t), θ(r, t) = θ̄+δθ(r, t), and vα(r, t) =
δvα(r, t), and go to momentum space:

A

 δn
δv‖
δθ

 =

 0
iF‖/m

0

 ,

A =

 ω −n̄q 0
−θ̄q/mn̄ ω/(1− γ) + iνq2/n̄ −q/m
−iκnq2/n̄ −θ̄q ω − iκθq2/n̄

 .

(11)
The coupling between δn, δv‖ and δθ gives rise to two
propagating modes and one diffusive mode. The trans-
verse momentum component, δu⊥, which does not cou-
ple to δn, gives rise to an extra diffusive mode, (ω +
iνq2/n̄)δv⊥ = iF⊥/m. Here we included in our equa-
tions a fluctuating parallel (transverse) force F‖ (F⊥).
Close to thermal equilibrium, the density-density corre-
lation function can be obtained from Eq.(11) using the
fluctuation-dissipation theorem:

χzz(q, ω) =
JS2(n̄qa2)2

ω2/(1− γ)− ζ(q, ω)θ̄q2/m+ iνωq2/n̄
,

(12)

where ζ(q, ω) = 1 + ω−iκnq2/θ̄
ω+iκθq2/n̄

≈ 2 at the intermedi-

ate/large frequency range of interest. In this regime,
the response function exhibits a linearly dispersing sound
mode ω = vsq, with vs = a

√
2(1− γ)Jθ, see Fig.1.

VI. DETECTION OF THE SOUND MODE

We consider a spin-1/2 qubit with an intrinsic level
splitting ω placed a distance d above the thin magnetic

insulator. The combined dynamics of the qubit and
ferromagnet is governed by the Hamiltonian Ĥtotal =
Ĥ + Ĥc + Ĥq, where Ĥq is the spin qubit Hamiltonian

Ĥq = 1
2ωσz with polarizing field assumed to be aligned

in the z direction. The term Ĥc is the qubit-ferromagnet
coupling induced by dipole-dipole interactions:

Ĥc =
µ2

B

2
σ̂ · B̂, B̂ =

1

4π

∑
j

[
Ŝj
r3
j

− 3(Ŝj · rj)rj
r5
j

]
,

(13)
where rj = (xj , yj ,−d) is the relative position between
the i-th spin in the 2D lattice and probe. The relax-
ation time of the spin qubit can be obtained from Fermi

Golden’s rule 1/T1 =
µ2
B

2

∫∞
−∞ dteiωt〈{B̂−(t), B̂+(0)}〉,

where {, } denotes anticommutation (see Appendix D).
Replacing Eq.(13) into 1/T1 and using the fluctuation-
dissipation theorem, the relaxation time can be expressed
in terms of spin correlation functions:

1

T1
= coth

( ω
2T

) µ2
B

2a2

∫
d2q

(2π)2
e−2|q|d|q|2

[
χ′′−+(q, ω)

+χ′′+−(q, ω) + 4χ′′zz(q, ω)
]
,

(14)
where we denote χ′′αβ = −Im[χαβ ], and χR

αβ(q, ω) =

−i
∫∞

0
dt〈[Ŝα−q(t), Ŝβq (0)]〉. Figure 1 shows the integrand

of Eq.(14), and Fig.2 shows the spin relaxation time as
a function of ω induced by longitudinal and transverse
spin fluctuations (we assumed a constant magnon popu-
lation n̄ and T ). The correlators χ±∓(q, ω) are related to
single-magnon production/absorption, which we assume
to be given by χ−1

+−(q, ω) = ω − ωq + iΣ′′(q, ω), where

Σ′′(q, ω) ∼ Tω
J (qa)2 (valid for z ∼ 1 and ω � T ) is

the imaginary part of the self-energy computed from the
bubble diagram, see inset of Fig.2 and details in the Ap-
pendix E. We also note that, in Fig.2, we normalize 1/T1

with coth(ω/2T ) to capture the spectral contribution of
spin fluctuations rather than its amplitude. Figure 2 is
the main result of this work, and shows a clear fingerprint
of the sound mode within the gap of the ferromagnet.

VII. DIPOLAR INTERACTIONS

Contrary to classical and electron fluids where par-
ticles cannot be created or annhiliated, conservations
laws are not as robust in a magnon fluid and, therefore,
should be subject to scrutiny. Dipolar interactions lead
to magnon decay via three-magnon processes, particu-
larly in thin layers with a canted ferromagnetic order
parameter. Assuming a magnon distribution with z < 1,
we estimate the typical magnon decay time induced by a

dipolar term Ĥd = gd
2

∑
jj′

[
Ŝj ·Ŝj′
r3
jj′
− 3(Ŝj ·rjj′ )(Ŝj′ ·rjj′ )

r5
jj′

]
,

with gd = µ2
B/4π. As shown in the Appendix F, this gives

values on the ballpark 1
n̄
dn̄
dt ∼

g2d
J (z2 − z3) ∼ MHz, sev-

eral orders of magnitude smaller than the typical GHz
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FIG. 2. Relaxation time [normalized by sinh(ω/2T )] of a spin
qubit located a distance d from the 2D ferromagnet. Besides
the characteristically large relaxation rate induced by spin
relaxation due to emission of spin waves at energy ∆, the
relaxation rate exhibits a peak below the ferromagentic gap
induced by emission of sound modes with velocity vs. Param-
eters used: na2 = 0.03, T/J = 0.2, ∆/J = 0.1, a = 0.3 nm,
and d = 20 nm.

frequencies that typical spin-qubit magnetometers can
access. As a result, sound modes are expected to be well
defined excitations in a wide range of frequencies, from
MHz to several GHz.

VIII. CONCLUSION

Our model and theoretical predictions, which are rel-
evant to ongoing experiments using spin qubit magne-
tometers on ferromagnetic insulators and in cold atomic
gases, provide distinct signatures of hydrodynamic be-
havior in spin systems. Although the sound mode is its
most distinctive feature, the strong momentum depen-
dence of the magnon-magnon interaction induced by the
SU(2) symmetry suggests that ferromagnets can also host
anomalous transport not achievable in classical and elec-
tron fluids.
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Appendix A: Relaxation time due to exchange
coupling

To estimate the relaxation time induced by the ex-
change interaction, we consider a magnon fluid at ther-
modynamic equilibrium and zero drift velocity, n̄k =
1/(z−1eεk/T − 1). Let us a assume that, at t = 0, a
non-equilibrium distribution is formed with a bump at
wavevector k, i.e. np = n̄p + δnkδk,p. The relaxation
time for such a distribution is given by

1

τk
=

(Ja2)2

N2

∑
pq

(k · p)22πδ(εk + εp − εk+q − εp−q)

× [n̄p(1 + n̄k+q)(1 + n̄p−q)− (1 + n̄p)n̄k+qn̄p−q] .
(A1)

The relaxation time can be expressed as 1
τk

=
γk(z)
16π

T 2(ka)2

J after factoring out the k vector dependence
out of the integral, normalizing energies with T , and mo-
menta with

√
2mT . The dimensionless prefactor γk(z)

is plotted in Fig.3, exhibits a weak dependence on k,
and scales approximately as ∝ z. Rather than keep-
ing this unimportant k dependence of γk, we define
an average γ of all k vectors and z values, γ(z)/z =∫ 1

0
dz/z

∫
d2k̃/(2π)2γk(z), which yields γ(z) ≈ cz, with

c ∼ O(1).

In thermal equilibrium, the typical relaxation rate for

thermal magnons is given by 1/τ̄ ∼ T 2(na2)
J . The re-

laxation length of thermal magnons is given by ` = v̄τ̄ ,
where v̄2 = 1

2πmn

∫∞
0
dkk3n̄k = 2mTg2(z)/g1(z) is the

thermal velocity, and results in Eq.(1) of the main text.

Appendix B: Derivation of hydrodynamic equations

In this section we derive the current operators associ-
ated with the conserved quantites of the effective Hamil-

0 0.2 0.4 0.6 0.8 1
0

1

2

3

0 1 2 3 4 5
2

3

4

FIG. 3. (a) γk(z) plotted for different values |k|/mvth = 0, 1, 5
(increasing darkness). Indicated with dashed line is the linear
γk(z) = z/8π obtained from the classical Boltzmann equa-
tion. (b) γk(z) exhibits a weak dependence on k, as shown
for z = 1. At most, γk(z) varies by a factor of ∼ 2.5 as k is
varied. In our calculations, we take the average of γk over k
space.
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tonian

Ĥ =

∫
x

∂αψ̂
†
x∂αψ̂x
2m

+g
(
ψ̂†xψ̂

†
x∂αψ̂x∂αψ̂x + h.c.

)
, (B1)

which was derived in the main text. Here we defined
g = Ja2/4 for compactness of notation. We recall
that the Hamiltonian (B1) has three conserved quanti-

ties: particle number N̂ =
∫
x
n̂x =

∫
x
ψ̂†xψ̂x, momen-

tum P̂α =
∫
x
p̂α,x = −i

2

∫
x
ψ̂†x∂αψ̂x − h.c., and energy

Ĥ =
∫
x
ε̂x. We proceed to derive the currents associated

with each of the conserved quantities.

1. Current operators

The current operators can be derived from the conti-
nuity relation that ensures charge conservation: ∂tn̂x =
−∂αĴα = i[Ĥ, n̂x] for particle number, ∂tp̂α,x =

−∂αΠ̂α,β = i[Ĥ, pβ,x] for momentum, and ∂tε̂x =

−∂αQ̂α = i[Ĥ, ε̂x] for energy. Computing the commu-

tator of Ĥ with each of the local operators gives rise to
the currents:

Ĵα =
−i
2m

[
ψ̂†x∂αψ̂x − h.c.

]
+ 2ig

[
ψ̂†xψ̂

†
x∂αψ̂xψ̂x − h.c.

]
,

Π̂αβ =
1

2m

[
∂αψ̂

†
x∂βψ̂x + h.c.

]
+ g

[
(ψ̂x∂γψ̂x)2δαβ + 2ψ̂†xψ̂

†
x∂αψ̂x∂βψ̂x + h.c.

]
,

Q̂α =
−i
4m

[
∂βψ̂

†
x∂α∂βψ̂x − h.c.

]
− ig

m

[
ψ̂†xψ̂

†
x∂βψ̂x∂α∂βψ̂x + ψ̂†xψ̂

†
x∂αψ̂x∂

2
βψ̂x − ∂αψ̂†xψ̂†x∂βψ̂x∂βψ̂x − h.c.

]
.

(B2)

2. Currents within the gaussian approximation

We compute the expectation value of the currents
using the local equilibrium approximation which allows
us to coarse-grain real space in regions of size ` in
which the system is effectively thermalized. We also
employ the gaussian approximation to represent the

density matrix in the subregion region x as ρ̂x =

exp
(
−
∑
k

k2

2mT ψ
†
kψk − uαP̂α − µN̂

)
, where we use the

bare mass m rather than the renormalized mass for sim-
plicity. The gaussian approximation enables us to com-
pute four-point correlation functions in terms of two-
point correlations function. In particular, the expecta-
tion value of the currents is given by

n = 〈1〉 Jα =
〈kα〉
m
− 8g〈1〉〈kα〉,

Pα = 〈kα〉, Παβ =
〈kαkβ〉
m

− 4g〈kγ〉〈kγ〉δαβ − 8g〈kα〉〈kβ〉,

ε =
〈kβkβ〉

2m
− 4g〈kβ〉〈kβ〉, Qα =

〈kαkβkβ〉
2m2

− 8g〈kβ〉
〈kαkβ〉
m

− 4g〈kα〉
〈kβkβ〉
m

,

(B3)

where we used the short-hand notations 〈A〉 =∫
dk

(2π)2Aknk, and nk is the Bose distribution function

with chemical potential µ, drift velocity uα, and temper-
ature T . It is straight-forward to compute the expec-
tation values, which are given by: 〈1〉 = mTg1(z)/2π,

〈kα〉 = nmuα, 〈kαkβ〉 = mnuαuβ + 〈k̃αk̃β〉, 〈kαkβkβ〉 =

〈k̃αk̃β k̃β〉+muα〈k̃β k̃β〉+ 2muβ〈k̃αk̃β〉+m3nu2uα (here
gν(z) is the bose integral defined in the main text,

k̃α = kα − muα, and we used d = 2). The term

〈k̃αk̃β〉 = Pαβ = nθδαβ +P ′αβ is the pressure tensor with

P ′αβ the dissipative component, and 〈k̃αk̃β k̃β〉 = qα is

the heat current. Both P ′αβ and qα are estimated below.

Replacing the expectation values into Eq.(B3) results in
the charges and currents:

n, Jα = nvα,

pα = muα, Παβ = Pαβ + npαvβ ,

ε =
dθ

2
+
pαvβ

2
, Qα = qα + nεvα + Pαβvβ .

(B4)

The continuity equations ∂n + ∂αJα = 0, ∂t(npα) +
∂βΠαβ = 0, and ∂t(nε) + ∂αQα = 0 give rise to the
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hydrodynamic equations (9) in the main text.

Appendix C: Estimating transport coefficients from
the relaxation time approximation

To compute the leading order corrections to Pαβ and
qα, we need to determine δnk induced by gradients in n,
uα, and θ. With this objective in mind, we linearize the

Boltzmann kinetic equation

(∂t + vk,α∂α + Fα∂kα) n̄k = I(n̄k + δnk). (C1)

Here we assumed that δnk � nk, such that the lead-
ing order contributions on the left-hand is given by the
derivatives (both space and time) of n̄k. The right-hand
side is already leading order in δnk because I(n̄k) = 0.

We begin the analysis by considering the left-hand side
of Eq.(C1). We recall that n̄k(n, uα, θ) is the local distri-
bution function which depends implicitly on n, uα and
θ. As such, computing the time and spatial derivatives
of n̄k leads to

[∂t + vk,α∂α] n̄k = [ṅ+ vk,α∂αn] ∂nn̄k
∣∣
θ,uα

+
[
θ̇ + vk,α∂αθ

]
∂θn̄k

∣∣
n,uα

+ [u̇α + vk,β∂βuα] ∂uα n̄k
∣∣
n,θ
, (C2)

where ∂n̄k/∂x|y,z denotes the derivative of n̄k with respect to x, leaving y and z constant. In Eq.(C2), we replace

the time derivatives ṅ, u̇α, and θ̇ by the hydrodynamic equations (9) of the main text in the local equilibrium
approximation, and compute transport coefficients to leading order in na2 an in d = 2. i.e. using Pαβ = δαβnθ/m
and qα = 0. This results in

[∂t + vk,α∂α + Fα∂kα ] n̄k =
[
δαβ∂nn̄k

∣∣
θ,uα

+
m

n
∂nPαβ∂θk n̄k

]
ṽk,β∂αn+

[
δαβ∂θn̄k

∣∣
n,uα

+
m

n
∂θPαβ∂θk n̄k

]
ṽk,β∂αθ

−
[
δαβn∂nn̄k

∣∣
θ,uα

+
m

n
Pαβ∂θn̄k

∣∣
n,uα

+mṽk,αṽk,β∂θk n̄k

]
∂αuβ ,

(C3)
where we used the identities ∂n̄k/∂uα|n,θ = −[∂n̄k/∂θk]mṽk,α and Fα∂kα n̄k = Fα[∂n̄k/∂θk]ṽk,α. The terms in
brackets in Eq.(C3) are thermodynamic functions that depend on the local values of (T, z, wα) and are given by

[∂t + vk,α∂α + Fα∂kα ] n̄k =

[
2π

mT

(
hn(z) + h̃n(z)

θk
T

)
ṽk,α∂αn+

2π

T

(
hθ(z) + h̃θ(z)

θk
T

)
ṽk,α∂αθ

+

(
δαβ

θk
T
− mvk,αvk,β

T

)
∂αuβ

]
n̄k(n̄k + 1),

(C4)

where the dimensionless coefficients hn,θ(z) and h̃n,θ(z) are

hn(z) =
zg2

2 − (1− z)g2g
2
1

zg2g2
1 − (1− z)g4

1/2
, h̃n(z) =

[
1

g1
+

zg2

g2
1(1− z)− 2zg2

]
,

hθ(z) =
zg2

2 − (1− z)g2g
2
1

zg2g2
1 − (1− z)g4

1/2
, h̃θ(z) =

[
1

g1
+

zg2

g2
1(1− z)− 2zg2

]
.

(C5)

Let us now focus on the right-hand side of Eq.(C1).
There are many schemes to calculate I[n̄k + δnk]. The
simplest approach is to use the relaxation time approx-
imation. In this approximation, the collision integral is
written as I[n̄k+ δnk] ≈ −δnk/τk, where τk is defined in
Eq.(A1). Importantly, we keep the explicit dependence
on magnon wavevector. We note that 1/τk was calcu-
lated using uα = 0, but its value remains valid so long as
uα <∼

√
T/m [corrections to 1/τk due to finite drift ve-

locity are O(u2
α)]. As a result, δnk becomes proportional

to gradients in n, θ, and uα:

δnk =τk

[
2π

mT

(
hn(z) + h̃n(z)

θk
T

)
ṽk,α∂αn+

2π

T

(
hθ(z) + h̃θ(z)

θk
T

)
ṽk,α∂αθ

+

(
δαβ

θk
T
− mvk,αvk,β

T

)
∂αuβ

]
n̄k(n̄k + 1).

(C6)
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Using nk = n̄k + δnk and integrating over k leads to

Pαβ =
nθ

m
δαβ + ν (∂αuβ + ∂βuα)− νδαβ∂γuγ ,

qα = κn∂αn+ κθ∂αθ,
(C7)

where only linear terms on ∂αn, ∂αθ, and ∂αuβ were
considered (i.e., gradients of thermodynamic quantities
are small). For a two-dimensional magnon gas with
quadratic dispersion and collision rate of the form 1/τk ∝
k2 (i.e., only considering exchange coupling), the relax-
ation time yields that dissipation is dominated by viscos-

ity ν(T, z) ∼ J2

T , while κn = κθ are second order effects
(in powers of T/J) compared to ν. κn and κθ are domi-
nated by deviations to quadratic dispersion and/or finite
scattering at low scattering, e.g. dipolar interactions.

Appendix D: Measurement of magnon sound modes

We consider a spin-1/2 qubit with an intrinsic level
splitting ω placed a distance d above the magnetic insu-
lator. The dynamics of the qubit and the ferromagnet
is governed by the Hamiltonian Ĥtotal = Ĥ + Ĥc + Ĥq.
Here HF is the Hamiltonian of the ferromagnet, see main
text. The term Ĥq is the qubit Hamiltonian given by

Ĥq = 1
2ωnq·σ, where nq is the intrinsic polarizing field of

the spin probe. For instance, in the case of NV centers in
diamond, nq is the axis of the NV defect in the diamond

lattice. Finally, the term Ĥc is the qubit-ferromagnet
coupling, given by

Hc =
µ2

B

2
σ̂ · B̂, B̂ =

1

4π

∑
j

[
Ŝj
r3
j

− 3(Ŝj · rj)rj
r5
j

]
,

(D1)
where B is the magnetic field at the position of the probe
induced by dipolar interactions with the 2D ferromagnet,
and rj = (xj , yj ,−d) is the relative position between the
i-th spin in the 2D lattice and probe.

In thermal equilibrium, the 2D ferromagnet is de-
scribed by the density matrix ρF =

∑
n e
−εn/kBT |n〉〈n|,

where |n〉 are the eigenstates of the ferromagnet. The
absorption rate, 1/T1,abs, and emission rate, 1/T1,em, is
obtained from Fermi Golden’s rule using the initial state
|i〉 = |−〉 ⊗ ρF and |i〉 = |+〉 ⊗ ρF, respectively:

1/Tabs,em = 2π
∑
nm

ρnB
±
nmB

∓
mnδ(ω ± εmn). (D2)

Here Bαnm denotes 〈n|B̂α|m〉, and εmn is the energy dif-
ference between states m and n, εmn = εm− εn. The re-
laxation rate is defined as 1/T1 = 1

2 [1/Tabs + Tem]. More
compactly, 1/T1 can be expressed as

1

T1
=
µ2

B

2

∫ ∞
−∞

dteiωt〈{B̂−(t), B̂+(0)}〉. (D3)

For computation it is more convenient to express 1/T1 in
terms of retarded correlation functions. In this direction,
the fluctuation-dissipation theorem reads∫ ∞
−∞

dteiωt〈{B̂−(t), B̂+(0)}〉 = coth
( ω

2T

)
Im
[
χR
B−B+(ω)

]
,

(D4)

where χR
B−B+(ω) = −i

∫∞
0
dt〈[B̂−(t), B̂+(0)]〉 is the re-

tarded correlation function.
Finally, 1/T1 can be expressed in terms of spin-spin

correlation functions. Expressing Ŝατ =
∑
k
eik·τ√
N
Ŝαk in

momentum space and inserting into Eq.(D1), we can ex-

press B̂α in terms of S±k and Szk. Without loss of gener-

ality, we assume k = (k, 0). For B̂x, we find

B̂xk =
∑
j

eikxj

[(
1

r3
j

−
3x2

j

r5
j

)
Sxk −

3xjyj
r5
j

Syk +
3xjd

r5
j

Szk

]
.

(D5)
Using the continuum approximation to approximate∑
j →

1
a2

∫
d2x, the first term on the right-hand side

of Eq.(D5) is

∑
j

eikxj

(
1

r3
j

−
3x2

j

r5
j

)
→ 1

a2

∫∫
dxdy eikx

(
1

r3
− 3x2

r5

)

=
2

a2

∫
dxeikx

d2 − x2

(d2 + x2)2

=
2

da2

∫
dξei(kd)ξ 1− ξ2

(1 + ξ2)2
.

(D6)
In the last step, we can use the residue theorem to express∫∞
−∞ dξei(kd)ξ 1−ξ2

(1+ξ2)2 as
∮
dzei(kd)z 1−z2

(1+z2)2 = π(kd)e−kd,

where for kd > 0 we use a contour of integration in the
upper-half complex plane. As a result, we obtain∑

j

eikxj

(
1

r3
j

−
3x2

j

r5
j

)
≈ ke−kd

2a2
, (D7)

exact in the continuum limit. For the second term on
the right-hand side of Eq.(D5), we find

∑
j e
ikxj xjyj

r5j
=

0. Finally, for the third term in the right-hand side of
Eq.(D5), we find

3
∑
j

eikxj
xjd

r5
j

≈ 3ikd

a2

∫∫
dx dy

x2

r5
=

ik

2a2
. (D8)

Repeating the same procedure for B̂y and B̂z, and
generalizing our results for a generic k = (kx, ky), we

obtain B̂α = 1√
N

∑
kB

α
k , with B̂xk

B̂yk
B̂zk

 =
e−|k|z

2a2

 k2
x/|k| kxky/|k| ikx

kxky/|k| k2
y/|k| iky

ikx iky −|k|

 Ŝxk
Ŝyk
Ŝzk

 .

(D9)
The B±k = Bxk ± iB

y
k terms can be written as a function

of S±k and Szk such that Eq.(D9) can be recasted as
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 B̂+
k

B̂−k
B̂zk

 =
e−|k|z

2a2

 |k|/2 (kx + iky)2/2|k| ikx − ky
(kx − iky)2/2|k| |k|/2 ikx + ky

(ikx + ky)/2 (ikx − ky)/2 −|k|


 Ŝ+

k

Ŝ−k
Ŝzk

 . (D10)

Using Eq.(D10) in Eq.(D3), the spin qubit relaxation time is given by

1

T1
= coth

( ω
2T

) µ2
B

2a2

∫
d2k

(2π)2
e−2|k|d|k|2

[
χR
−+(k, ω) + χR

+−(k, ω) + 4χR
zz(k, ω)

]
, (D11)

where we denote χR
αβ(k, ω) = −i

∫∞
0
dt〈[Ŝα−k(t), Ŝβk(0)]〉.

Appendix E: Transverse spin fluctuations

The spectral weight of the correlator χ+−(k, ω) =

−i
∫∞

0
dteiωt〈[Ŝ−−k, S

+
k (0)]〉 is concentrated at the

magnon frequency ωk = ∆ + εk and is associated
to the production of a single magnon. Off-resonant
processes, however, give rise to a finite contribution
to χ−+(k, ω) below the magnon gap, see Fig.4(a). As
such, we estimate the contribution of such processes
in the noise spectrum and show that they give a small
contribution to χ+− compare to that of the sound mode.

With this objective in mind, we calculate the leading
order contribution of the imaginary part of the magnon
self-energy Σ(k, ω), and approximate the correlation
function as

χ+−(k, ω) =
1

ω − ωk + iΣ′′(k, ω)
, (E1)

where energy shifts to the single magnon dispersion are
neglected. From the effective interaction in Eq.(5) of the
main text, this is given by the second order process de-
picted in Fig.4(b). In terms of Matsubara frequencies, it
can be written as

Σ(k, ω) = −J2a4
∑
pq

∑
iω′niω

′′
n

(k · p)2 1

(iω′n − ωp)(iωn + iω′′n − ωk+q)(iω′n − iω′′n − ωp−q)
. (E2)

The retarded correlator is obtained by analytical continuatio iωn → ω + iε and taking the imaginary part of the
resulting expression:

Σ′′(k, ω) = J2a4
∑
pq

(k · p)2δ(ω −∆ + εp − εk+q − εp−q)(np − ñp)(1 + nk+q + np−q), (E3)

where we denote ñp = n(εp + ω). A similar analysis
follows for the correlator χ+−(ω) ≈ δ(ω + ωk). Dimen-
sional analysis in the limit ω � T yields Σ′′ scaling as
Σ(q, ω) = Tω

J (qa)2.

Appendix F: Effect of dipolar interactions

Dipolar interactions, which can be sizable in a two-
dimensional ferromagnet, introduce a variety of effects
that need to be carefully taken into account, namely, it
modifies the collision term by adding hard-core repulsion,
and induce magnon leakage via three body interactions.

We incorporate dipolar interactions via the term

Ĥd =
µ2

B

4π

1

2

∑
jj′

[
Ŝj · Ŝj′
r3
jj′

− 3
(Ŝj · rjj′)(Ŝj′ · rjj′)

r5
jj′

]
,

(F1)
where µB is the Bohr magneton, and rjj′ is the relative
distance between spins j and j′. It is important to con-
sider the combined effect of the Zeeman term,

Ĥz = ∆
∑
i

Ŝzi , (F2)

and dipolar interactions. In particular, in the presence
of a Zeeman field, it is convenient to pick a quantization
axis which is canted from the 2D plane r = (x, y, 0),

Ŝzj → cos θŜzj − sin θŜxj ,

Ŝxj → cos θŜxj + sin θŜzj ,

Ŝyj → Ŝyj ,

(F3)

where θ will be conveniently chosen below. Inserting
Eq. (F3) into Eq. (F1), we find
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FIG. 4. (a) In addition to the sound mode, off-resonant processes can also give a finite contribution to χ−+ below the magnon
gap. (b) Sunrise diagram contributing to the magnon self-energy of χ−+.

Ĥd =
µ2

B

8π

∑
jτ

1

τ3

[
Ŝxj Ŝ

x
j+τ

(
1− 3 cos2 θ

τ2
x

τ2

)
+ Ŝyj Ŝ

y
j+τ

(
1− 3

τ2
y

τ2

)
+ Ŝzj Ŝ

z
j+τ

(
1− 3 sin2 θ

τ2
x

τ2

)

−6 sin θ cos θ
τ2
x

τ2
Ŝxj Ŝ

z
j+τ − 6 cos θ

τxτy
τ2

Ŝxj Ŝ
y
j+τ − 6 sin θ

τxτy
τ2

Ŝzj Ŝ
y
j+τ

]
,

(F4)

where τ denotes relative positions between spins on a two-dimensional square lattice (not restricted to nearest neigh-
bors). After rearranging terms, we find

Ĥd =
3µ2

B

8π

∑
jτ

1

τ3

[(
Ŝj · Ŝj+τ

)(1

3
− τ2

x

τ2

)
+ sin2 θ

τ2
x

τ2
Ŝxj Ŝ

x
j+τ + cos2 θ

τ2
x

τ2
Ŝzj Ŝ

z
j+τ −

τ2
y − τ2

x

τ5
Ŝyj Ŝ

y
j+τ

−2 sin θ cos θ
τ2
x

τ2
Ŝxj Ŝ

z
j+τ − 2 cos θ

τxτy
τ2

Ŝxj Ŝ
y
j+τ − 2 sin θ

τxτy
τ2

Ŝzj Ŝ
y
j+τ

]
.

(F5)

Note that the first term on the right-hand side can be incorporated into the definition of J with a small anisotropy
in the x direction which we will neglect. For convenience, we define Ĥd = Ĥzz + Ĥxz + Ĥxx + Ĥyy + Ĥxy + Ĥyz, with

Ĥzz = εd cos2 θ
a3

πS2

∑
jτ

τ2
x

τ5
Ŝzj Ŝ

z
j+τ , Ĥxx = εd sin2 θ

a3

πS2

∑
jτ

τ2
x

τ5
Ŝxj Ŝ

x
j+τ , Ĥxz = −2εd sin θ cos θ

a3

πS2

∑
jτ

τxτy
τ5

Ŝxj Ŝ
z
j+τ ,

Ĥyy = εd
a3

πS2

∑
jτ

τ2
y − τ2

x

τ5
Ŝyj Ŝ

y
j+τ , Ĥxy = −2εd cos θ

a3

πS2

∑
jτ

τxτy
τ5

Ŝxj Ŝ
y
j+τ , Ĥyz = −2εd sin θ

a3

πS2

∑
jτ

τxτy
τ5

Ŝyj Ŝ
z
j+τ ,

(F6)
where we defined the dipolar energy as

εd =
3S2µ2

B

4a3
. (F7)

The Zeeman splitting term in the rotated frame is given Ĥz = Ĥx + Ĥz, with

Ĥx = ∆ cos θ
∑
j

Ŝxj , Ĥz = −∆ sin θ
∑
j

Ŝzj . (F8)

Focusing on Ĥzz first, we define Ŝzj = −S(1− n̂j), which leads to

Ĥzz = εd cos2 θ
a3

π

∑
jτ

τ2
x

τ5
(1− 2n̂j + n̂j n̂j+τ ) = εd cos2 θ

NS − 2
∑
j

n̂j +
a3

π

∑
jτ

τ2
x

τ5
n̂j n̂j+τ

 , (F9)

and where, in the last step, we used

∑
τ

e−ik·τ
τ2
x

τ5
=

π

a3
+O(q2). (F10)
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Similarly, for Ĥxz we find

Ĥxz = 2εd sin θ cos θ
a3

πS

∑
jτ

τ2
x

τ5
Ŝxj (1− n̂j+τ ) =

2εd sin θ cos θ

S

∑
j

Ŝxj −
a3

π

∑
jτ

τ2
x

τ5
Ŝxj n̂j+τ

 . (F11)

Turning to Ĥxx and using Ŝxj = (Ŝ+
j + Ŝ−j )/2, we find

Ĥxx =
εd sin2 θ

4

a3

πS2

∑
jτ

τ2
x

τ5

(
Ŝ+
j Ŝ

+
j+τ + Ŝ−j Ŝ

−
j+τ + 2Ŝ+

j Ŝ
−
j+τ

)
=
εd sin2 θ

4S2

∑
k

(
Ŝ+
−kŜ

+
k + Ŝ−−kŜ

−
k + 2Ŝ+

−kŜ
−
k

)
, (F12)

where, in the last step, we used Eq.(F10). The term Ĥxx introduces coherent creation/destruction of two magnons.

The term Ĥxy also introduces similar two-magnon processes such as those in Ĥxx,

Ĥxy = −εd cos θ

2i

a3

πS2

∑
jτ

τxτy
|τ |5

(
Ŝ+
j Ŝ

+
j+τ − Ŝ

−
j Ŝ
−
j+τ

)
= −2εd cos θ

iπS2

∑
k

kxky
a

(
Ŝ+
−kŜ

+
k − Ŝ

−
−kŜ

−
k

)
, (F13)

but the matrix elements of Ĥxy are O(q2) smaller than those corresponding to Ĥxx [in the last step of Eq.(F13), we

used
∑
τ e

ik·τ τxτy
τ5 =

4kxky
a +O(k4)]. As a result, we neglect Ĥxy. Finally, for Ĥyz, we find

Ĥyz = −2εd sin θ
a3

πS

∑
jτ

τxτy
τ5

Ŝyj (1− nj+τ ) = −2εd sin θ
a3

πS

∑
jτ

τxτy
τ5

Ŝyj −
∑
jτ

τxτy
τ5

Ŝyj n̂j+τ


= 6εd sin θ

a3

πS

∑
jτ

τxτy
τ5

Ŝyj n̂j+τ ,

(F14)

where the first term in the third equality is zero because
∑
τ τxτy/τ

5 = 0, thus giving only a cubic term. The cubic

term, however, has matrix elements O(q2) smaller than those corresponing to Ĥxz because of the factors τxτy. As a

result, we neglect the matrix elements introduced by Ĥyz when compared to those in Ĥxz.

The Zeeman splitting term Ĥx and the dipolar term Ĥxz both generate terms which are linear in Ŝxi . In particular,

Ĥx + Ĥxz = −∆ sin θ
∑
j

Ŝxj +
2εd sin θ cos θ

S

∑
j

Ŝxj −
2εd sin θ cos θ

S

∑
jτ

τ2
x

τ5
Ŝxj n̂j+τ . (F15)

As a result, we conveniently define θ such that the linear term is cancelled. This leads to

cos θ =
S∆

2εd
, 0 ≤ S∆ ≤ 2εd,

θ = 0, S∆ > 2εd.
(F16)

Therefore, in this case, the terms

Ĥx + Ĥxz = −2εd sin θ cos θ

S

∑
jτ

τ2
x

τ5
Ŝxj n̂j+τ , (F17)

lead to a cubic interaction term after a Holstein-Primakoff transformation.
In the same spirit, combining Ĥz from Zeeman splitting and Ĥzz from dipolar interaction, we find

Ĥz + Ĥzz =
(
∆S cos θ − 2εd cos2 θ

)∑
j

n̂j + εd cos2 θ
a3

π

∑
jτ

τ2
x

τ5
n̂j n̂j+τ . (F18)

As a result, the combination of Hz and Hzz gives rise to a magnon gap induced by Zeeman splitting and dipolar
interactions, and a quartic interaction induced by dipolar interactions.
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1. Effective Hamiltonian

To cast the dipolar Hamiltonian into a long-wavelength, effective Hamiltonian, we use the Holstein-Primakoff
transformation to leading order, which results in

∑
jτ

τ2
x

τ5
n̂j n̂j+τ =

∑
jτ

τ2
x

τ5
â†j â
†
j+τ âj+τ âj =

∑
kpq

(∑
τ

e−iq·τ
τ2
x

τ5

)
â†k+qâ

†
p−qâpâk ≈

π

a3

∑
kpq

â†k+qâ
†
p−qâpâk. (F19)

In the last step, we used Eq.(F10). In addition, for Eq.(F17), we use

∑
jτ

τ2
x

τ5
Ŝxj n̂j+τ =

√
S

2

∑
jτ

τ2
x

τ5

(
â†j â
†
j+τ âj+τ + â†j+τ âj+τ âj

)
=

√
S

2N

∑
kpτ

τ2
x

τ5

[
e−p·τ â†pâ

†
kâk+p + e−ik·pâ†k+pâpâk

]
≈
√

S

2N

π

a3

∑
kp

(
â†pâ
†
kâk+p + â†k+pâpâk

)
.

(F20)
Putting everything together, we find that, at long wavelength, the dipolar and Zeeman Hamiltonian can be effectively
written as

Ĥd + Ĥz ≈
∑
k

[
∆â†kâk + λ2

(
âkâ−k + â†kâ

†
−k

)]
− λ3√

N

∑
kp

(
â†pâ
†
kâk+p + â†k+pâpâk

)
+
λ4

N

∑
kpq

a†p+qâ
†
k−qâpâk,

∆̃ =
(
∆S cos θ − 2εd cos2 θ

)
+
εd sin2 θ

S
, λ2 =

εd sin2 θ

2S
, λ3 = εd

√
2/S sin θ cos θ, λ4 = εd cos2 θ.

(F21)

2. Bogoliubov transformation

For small Zeeman fields, the canting angle lies in
the range 0 < θ ≤ π/2, and λ2,3 are finite. The
quadratic part of the Heisenberg Hamiltonian combined
with Eq.(F21),

Ĥ2 =
∑
k

[
(∆ + εk)â†kâk + λ2(âkâ−k + â†kâ

†
−k)
]
,

(F22)
can be diagonalized using a Bogoliubov transformation:

âk = skβ̂k + tkγ̂
†
−k, â−k = skβ̂k + tkγ̂

†
−k, (F23)

where sk and tk are k-dependent real numbers. It is
straightforward to show that

sk = coshϕk, tk = sinhϕk, (F24)

diagonalizes Ĥ2,

Ĥ2 =
∑
k

Ek

[
β†kβk + γ†kγk

]
, Ek =

√
(εk + ∆)2 − λ2

2,

(F25)
where ϕk is the solution of

sinh 2ϕk = − λ2

2Ek
. (F26)

Several comments are in order. First, we note that the
magnon dispersion is quadratic, with or without dipolar

interactions. In particular, in the presence of dipolar in-
teractions, there will be a small correction to the magnon
mass at low energies on the order of O(εd/J), and which
we will neglect (quadratic dispersion greatly simplifies
the hydrodynamic description, as will be discussed be-
low). Second, we are mainly interested on the hydro-
dynamic behavior at large T such that magnon-magnon
collisions become important. In the regime εd � T � J ,
most magnons will typically have large kinetic energies
εk such that corrections due to the Bogoliubov transfor-
mation are negligible.

For sufficiently large Zeeman fields, when ∆ ≥ εd and
θ = 0, then the coupling terms verigy λ2,3 = 0. In this

case, the quadratic part of ĤJ + Ĥd + Ĥz is already di-

agonal in the (âk, a
†
k) basis and there is no need for a

Bogoliubov transformation.

3. Magnon leakage

Three magnon processes in Eq.(F21) do not preserve
particle number. This means that the distribution func-
tion n̄k = [z−1eεk/T − 1]−1 is a quasi-equilibrium distri-
bution if 0 < z < 1, and invalidates our hydrodynamic
theory for frequencies below the leakage rate. The total
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magnon leakage rate can be calculated from

dn

dt
= − λ

2
3

N2

∑
kp

2πδ(εk + εp + ∆− εk+p)

[n̄kn̄p(1 + n̄k+p)− (1 + n̄k)(1 + n̄p)n̄k+p] .
(F27)

Here we note that three magnon processes are not neces-
sarily suppressed by energy and momenta conservation.
For instance, if the incoming magnon states have mo-
menta that verifies k ·p = m∆, then energy and momen-
tum is conserved after the collision. For concreteness, let
us assume that uα �

√
T/m, which leads to

dn

dt
= −γleak(z2 − z3)

4π

Tλ2
3

J2a2
, (F28)

where we normalized k̃ = k/k̄ and the value of γleak(z)
can be shown numerically to be γleak ∼ O(1). From here
we can define the leakage rate

1

τleak
=

1

n

dn

dt
=
γleakλ

2
3

2J
(z2 − z3). (F29)

Using J ∼ 1000 K, λ3 ∼ 1 K, and z ≈ 0.9, we obtain
1/τleak ∼ 5 MHz. As such, magnon number can be as-
sumed to be a good conserved quantity for ω � 1 MHz.

1 I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Phys.
Rev. B 92, 165433 (2015).

2 D. A. Bandurin, I. Torre, R. K. Kumar, M. Ben Shalom,
A. Tomadin, A. Principi, G. H. Auton, E. Khestanova,
K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko,
A. K. Geim, and M. Polini, Science 351, 1055 (2016).

3 J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim,
A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe,
T. A. Ohki, and K. C. Fong, Science 351, 1058 (2016).

4 L. Levitov and G. Falkovich, Nature Physics 12, 672
(2016).

5 H. Guo, E. Ilseven, G. Falkovich, and L. S. Levitov, Pro-
ceedings of the National Academy of Sciences 114, 3068
(2017).

6 R. Krishna Kumar, D. A. Bandurin, F. M. D. Pel-
legrino, Y. Cao, A. Principi, H. Guo, G. Auton,
M. Ben Shalom, L. A. Ponomarenko, G. Falkovich,
K. Watanabe, T. Taniguchi, I. Grigorieva, L. S. Levitov,
M. Polini, and A. Geim, Nature Physics 13, 1182 (2017).

7 R. A. Davison, L. V. Delacrétaz, B. Goutéraux, and S. A.
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