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Inelastic neutron scattering measurements were performed with a time-of-flight chopper spec-
trometer to obtain phonons in all parts of the Brillouin zone of a single crystal of cuprite, Cu2O.
We reduced the experimental data to phonon dispersions in the high symmetry directions, and
changes between 10 K and 300 K are reported. This work shows ab initio quasiharmonic (QH)
and anharmonic (AH) calculations of phonon dispersions. We performed all AH calculations with
a temperature-dependent effective potential method. Both QH and AH calculations account for
the small negative thermal expansion of cuprite at low temperatures. However, the measured
temperature-dependent phonon behavior was predicted more accurately with the AH calculations
than the QH. Nevertheless, at 300 K, the cubic anharmonicity used in the present work did not
entirely account for the experimental phonon dispersions in cuprite.

I. INTRODUCTION

Cuprite, Cu2O, (Fig. 1) is one of the first known semi-
conductors [1, 2]. It has applications in photovoltaics
[3, 4], nanoelectronics [5], thermoelectrics [6], spintron-
ics [7], and catalysis [8, 9]. Cuprite has small coefficient
of thermal expansion that is negative at low tempera-
tures but becomes positive above 300 K. The coefficient
of volumetric thermal expansion, β = 1

V
∂V
∂T (V is volume

and T is temperature), is explained with thermodynam-
ics from a balance between the internal energy, U , and
the entropy, S. At finite temperatures, the primary con-

FIG. 1. Unit cell of Cu2O. Copper (Cu) atoms are shown
in blue and oxygen (O) atoms in red. There is a linear ar-
rangement of O-Cu-O as the 3z2− r2 orbitals of copper make
chemical bonds with the sp3 orbitals of oxygen [10].
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tributions to U and S are the elastic energy (Uel) and the
vibrational entropy of phonons (Svib). Using this approx-
imation, the total free energy, F = Uel − TSvib, is min-
imized when reductions in the phonon frequencies with
volume (and temperature) cause a larger Svib. These
changes counteract the energy penalty from Uel during
thermal expansion.

Spectroscopies to study phonons include inelastic neu-
tron, inelastic X-ray, and Raman methods. All of these
methods have been used to study phonons in cuprite
[11–30]. Inelastic neutron scattering (INS) experiments
with triple-axis spectrometers measure energy spectra of
phonons at single points in crystal momentum, ~q. Ther-
mophysical properties such as thermal expansion and the
temperature dependence of elastic constants depend on
the phonon frequencies at all ~q-points in the first Bril-
louin zone. New methods of INS on single crystals at
pulsed neutron sources can provide such detailed infor-
mation [31, 32]. Measurements of all phonons in a crys-
tal allow testing or microscopic models of thermophysical
properties.

The free energy Fvib in the anharmonic (AH) theory
used here is

Fvib(V, T ) = U0(V, T ) +
∑
~q,s

[
~ω~q,s(V, T )

2

+ kBT ln

(
1− e−

~ω~q,s(V,T )

kBT

)]
,

(1)

where the phonon frequencies, ω~q,s (s is a branch index),
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depend on both V and T . An explicit dependence on
T is essential for AH models. The quasiharmonic (QH)
vibrational Helmholtz free energy contribution, Fvib, de-
pends explicitly on V , and effects of T are only through
thermal expansion, ω~q,s(V (T )), rather than ω~q,s(V, T ) for
AH theory. Phonons in materials can be modeled or in-
terpreted with QH or AH theories [33].

The present study identifies the microscopic physics
of the individual phonon modes that contribute to the
macroscopic thermal expansion. We do this by calculat-
ing individual phonon contributions to Fvib with both
QH and AH theory and comparing the thermal trends
of the calculated phonons to new phonon measurements
by INS on cuprite at 10 K and 300 K. The net volume
change of cuprite from thermal expansion between 10 K
and 300 K is small, so QH calculations predict phonon
shifts that are nearly zero. On the other hand, experi-
ment and AH calculations give thermal shifts and broad-
ening phonons, especially optical modes. However, we
expect the low-frequency acoustic modes to be more per-
tinent to the NTE at low temperatures. We found small
but measurable changes in the acoustic phonons between
10 K and 300 K. Closer examination shows that QH the-
ory predicts changes in both magnitude and sign of the
thermal shifts of the lowest acoustic branch at different
~q. On the other hand, AH theory and experiment show
that this entire branch undergoes a thermal shift that is
nearly the same at all ~q.

II. EXPERIMENT

A. Powder

INS measurements were performed first on a 20 g pow-
der of Cu2O with the time of flight (TOF) Wide Angular-
Range Chopper Spectrometer (ARCS) [31] at the Spalla-
tion Neutron Source (SNS) at Oak Ridge National Lab-
oratory (ORNL) [34]. The incident energy was 120 meV,
and sample temperatures were 5 K and 300 K. Using
the software packages Mantid and Multiphonon, we re-
duced the data to phonon density of states (DOS) curves
[35, 36]. The reduction included subtractions of an empty
aluminum can background and a multiphonon correction.

B. Single Crystal

Further INS measurements used ARCS to perform
measurements on a single-crystal of cuprite. The [100]
oriented single crystal was grown at the Joint Center for
Artificial Photosynthesis at Caltech in an optical furnace
with the float zone method [37] with 99.999% Cu rods
from Alfa Aesar. The crystal was a cylinder of 50 mm in
height and 7 mm in diameter, suspended in a platinum
holder for all measurements. See Supplemental Mate-
rial at [URL will be inserted by the production group]
for images of the crystal and mount (see, also, references

[38–44] therein).
For 10 K measurements, the crystal was in an alu-

minum canister within a closed-cycle helium refrigerator.
TOF neutron spectra were acquired at 152 individual an-
gles of the crystal in increments of 0.5°, about the vertical
axis. For 300 K measurements, we mounted the crystal
in a low-background electrical resistance vacuum furnace
[45]. Measurements at 300 K used 201 angles in incre-
ments of 0.5°. The incident energy for all single-crystal
measurements was 110 meV. An oscillating radial colli-
mator suppressed multiple scattering and background.

To reduce the single crystal data to obtain the four-

dimensional S ( ~Q,ε), we used Mantid. An additional
analysis assessed the data statistics and alignment. Fol-
lowing crystal symmetry, we folded the data from high
~Q into the irreducible wedge in the first Brillouin zone.
An averaged multiphonon scattering correction was sub-
tracted from the data, and spectral weights were thermal
factor corrected. The results of our analysis appear in
Fig. 2 with further details of data post-processing avail-
able in the Supplemental.

III. COMPUTATION

The Vienna Ab Initio Simulation Package (VASP) was
used for all ab initio DFT calculations [46–49] with plane
wave basis sets, projector augmented wave (PAW) pseu-
dopotentials [50] and the SCAN meta-GGA exchange
correlation functional [51]. All calculations used 3×3×3
supercells containing 162 atoms, a 2×2×2 k-grid, and a
kinetic energy cutoff of 600 eV. The supercell configura-
tions for calculations were generated with the stochas-
tic Temperature Dependent Effective Potential (sTDEP)
method or PHONOPY [52]. For further details on calcu-
lation parameters see Supplemental.

We found the equilibrium volume for each temperature
by minimizing the Helmholtz free energy, which included
electronic and phononic contributions, for five volumes
(±1.5%, ±3.0%, and the 0 K equilibrium volume) with
respect to volume. For each volume, we performed QH
calculations with PHONOPY. All QH calculations used
the finite displacement method. AH calculations used the
sTDEP package [53–55]. Finally, we fit the Helmholtz
free energy to the Birch-Murnaghan equation of state.
The minimum of this function provided the equilibrium
volume at the temperature of interest.

Anharmonic effects on lattice parameter and on
phonons are accounted for in U0(T, V ) and ω~q,s(T, V ).
The expression for U0(T, V ) in our AH thermal expan-
sion calculations is:

U0(V, T ) =

〈
UBO(V, T )− 1

2

∑
ij

∑
αβ

Φαβij u
α
i u

β
j

〉
(2)

where UBO(T, V ) is the Born-Oppenheimer potential en-

ergy from sampling the surface and Φαβij are forces that
are matched between the actual system and with our
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FIG. 2. Phonon dispersions along high symmetry directions measured by INS at a) 10 K and b) 300 K. Phonon dispersions
calculated by sTDEP at c) 10 K and d) 300 K.

model Hamiltonian. The uαi and uβj are Cartesian com- ponents of the displacements of atoms i and j. Account-
ing for third-order terms for phonon self-energies

U0(V, T ) =

〈
UBO(V, T )− 1

2!

∑
ij

∑
αβ

Φαβij u
α
i u

β
j −

1

3!

∑
ijk

∑
αβγ

Φαβγijk u
α
i u

β
j u

γ
k

〉
. (3)

After obtaining the lattice parameter, we calculated the
phonon dispersions and self-energy at that volume.

Previous studies of lattice dynamics and the NTE of
cuprite used the QH approximation. In QH theory, each
phonon mode s with corresponding angular frequency
ω~q,s depends directly on the volume through the mode

Grüneisen parameter, γ~q,s, at a given wavevector ~q,

γ~q,s(V ) = − V

ω~q,s(V )

∂ω~q,s(V )

∂V
. (4)

Equation 4 predicts thermal shifts of individual phonon
frequencies. An average γ, where each γ~q,s, is weighted
by the contribution of phonon s to the heat capacity,
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predicts the macroscopic thermal expansion. Average
phonon frequencies decrease for positive values of γ as
volume increases. This decrease in ω~q,s contributes posi-
tively to the vibrational entropy, Svib, and lowers the QH
vibrational Helmholtz free energy, FQH.

For AH computations, where third-order force con-
stants are available [56], the mode Grüneisen parameters
for a mode with frequency ω~q,s is:

γ~q,s(V, T ) = − V

6ω~q,s(V, T )2

∑
ijkαβγ

εiα†~q,s ε
jβ
~q,s√

mimj
rγkΦαβγijk e

~q·~rj .

(5)

Here Φαβγijk is the cubic anharmonicity tensor with Carte-
sian indices α, β, γ. ε is the polarization eigenvector,

and atomic position and mass are designed by ~r and m,
respectively. Equation 5 offers an advantage over Eq. 4
because it is not divergent when the thermal expansion is
zero, so the mode Grüneisen parameters were calculated
using Eq. 5. All calculations were performed in sTDEP
using the third order force constants.

The calculated phonon self-energy gives phonon spec-
tra with thermal shifts and finite linewidths. Calcula-
tions of this include terms to the third power of atom
displacements (cubic anharmonicity) [57, 58]. We per-
formed AH calculations of the self-energy with sTDEP.
By solving a dynamical matrix, we obtained phonon fre-
quencies. For a given third-order force constant, Φss′s′′ ,
we calculated and adjusted the phonon self-energy with
the real ∆ and imaginary Γ corrections to the phonon
self-energy. The imaginary correction is:

Γ~q~q
′~q′′

ss′s′′ (V, T ) =
~π
16

∑
ss′s′′

∣∣∣Φ~q~q′~q′′
ss′s′′

∣∣∣2 (n~q′,s′ + n~q′′,s′′ + 1)× δ (Ω− ω~q′,s′ − ω~q′′,s′′) (6)

+
(
n~q′,s′ − n ~q′′,s′′

) [
δ
(

Ω− ω~q′,s′ + ω ~q′′,s′′
)
− δ

(
Ω + ω~q′,s′ − ω ~q′′,s′′

)]
(7)

where ~Ω is a probing energy, ω2
~q,s are the eigenvalues of the dynamical matrix, and n are the occupancy factors.

The three-phonon matrix component can be written as:

Φ~q~q
′~q′′

ss′s′′ =
∑
ijk

∑
αβγ

εiαs ε
jβ
s′ ε

kγ
s′′√

mimjmk
√
ω~q,sω~q′,s′ω~q′′,s′′

Φαβγijk e
i(~q·~ri+~q′·~rj+~q′′· ~rk) (8)

where the primes help identify the three-phonon interac-
tions. Remaining indices are defined after Eq. 5.

The real part of the phonon self-energy correction is
obtained from the Kramers-Kronig transform:

∆~q,s(Ω~q,s) =
1

π

∫
Γ(ω~q,s)

ω~q,s − Ω
dω~q,s (9)

Large deviations of ∆~q,s(Ω~q,s) from a Lorentzian func-
tions suggest a high degree of anharmonicity.

In the QH approximation, Eq. 1 reduces to:

FQH
vib (V, T ) = U0(V ) (10)

+
∑
~q,s

[
~ω~q,s(V )

2
+ kBT ln

(
1− e−

~ω~q,s(V )

kBT

)]
.

In the QH approximation, phonon frequencies and
ground state energy do not have explicit temperature de-
pendence, but V = V (T ) with thermal expansion.

IV. RESULTS

Figure 2 shows phonon spectra from INS measure-
ments and AH calculations projected on the high-
symmetry crystallographic directions. Figures 2a,b)
shows the folded experimental data from the single crys-
tal at 10 and 300 K, respectively, and Figs. 2c,d) show
the corresponding AH sTDEP calculations. The main
features and energies of the calculated and measured in-
tensities agree. Both calculated and measured data show
softening of the high-energy optical modes. However,
the calculated softening of these modes is larger than the
experimental results. Below 45 meV, small changes in
the calculated and measured dispersions follow the same
thermal trends.

Figure 3b) shows the phonon partial DOS curves for
Cu-atoms and O-atoms in cuprite, calculated by sTDEP.
The O-atoms dominate the spectral weight in the high-
energy modes between 65 and 80 meV, and Cu-atoms
dominate below 45 meV. Their sum agrees with the ex-
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FIG. 3. a) Phonon DOS from INS measurements on pow-
dered cuprite. b) Phonon partial DOS from sTDEP calcula-
tions using second order terms at 10 K and 300 K. Solid curves
are Cu-atoms, dashed are O-atoms.

perimental spectra from INS measurements shown in Fig.
3a), without neutron-weight corrections.

Figure 4 compares experimental cuts taken at sin-
gle ~q-points along high symmetry paths to cuts calcu-
lated with sTDEP and to energies from PHONOPY.
The AH sTDEP results show thermal shifts, but the QH
PHONOPY calculations display no discernible changes
with the temperature on the scale of Fig. 4. Grüneisen
parameters from sTDEP with Eq. 5 are shown in Figs.
5a, c) at different temperatures. These Grüneisen param-
eters are in good agreement with prior QH calculations
and experimental results [59]. The plots are color-coded,
so the Grüneisen parameters for each mode correspond
to the same color mode in the dispersions in Fig. 5
b,d. Many of the low-energy dispersions have negative
Grüneisen parameters, including the low-energy trans-
verse acoustic (TA) modes that are useful for explaining
the negative thermal expansion in QH theory. The high-
energy optical modes have positive Grüneisen parame-
ters, but these are similar to the Grüneisen parameters
of other phonon branches. Modes with similar Grüneisen
parameters are predicted by QH theory to have simi-

lar thermal shifts. The real and imaginary parts of the

phonon self-energy at the point ~Q = (0.25, 0.25, 0.00)
appear in Fig. 6, colored in correspondence with their
phonon branches in Fig. 5. Significant deviations from
the harmonic self-energy for the optical modes with ener-
gies above 70 meV, show that these modes are more AH
than the other modes. There are also substantial AH ef-
fects from cubic anharmonicity for the lower energy opti-
cal modes around 40 meV. Comparing the partial density
of states to the self-energies shows that the displacements
of oxygen atoms dominate these AH modes.

Figure 7 shows the percentage change in lattice param-
eter of cuprite versus temperature, referenced to a nomi-
nal 0 K. Panel a) compares the sTDEP lattice parameter
to experimental results, and panel b) compares it to our
QH calculations and other QH calculations in the litera-
ture. Both QH and AH calculations below 250 K repro-
duce the measured negative thermal expansion. However,
the thermal expansion coefficient in this region is small,
no larger than –2.4×10−6/K, and is zero near 250 K.

V. DISCUSSION

The AH sTDEP calculations better predict the mea-
sured effect of temperature on cuprite phonons than by
QH PHONOPY calculations, as seen in the energy cuts
of Fig. 4. For cuprite, Grüneisen parameters from
sTDEP and QH calculations are essentially the same [59].
In the QH approximation, phonon shifts follow the ~q-
dependence of the Grüneisen parameters shown in Fig.
5, which is not the thermal trend of the phonon branches.
There are two key differences. First, the phonon frequen-
cies depend solely on volume in QH theory, so it predicts
a negligible difference between calculated dispersions at
10 K and 300 K. While the thermal shifts are small, they
are measurable and larger than predicted by QH calcula-
tions. A second problem appears in Fig. 5. For the low
TA branch at the X point, the Grüneisen parameter is –4,
whereas it is approximately +5 at the R point. However,
the entire low TA branch in the experimental results (and
sTDEP) in Fig. 2 shifts upwards in energy with temper-
ature between 10 K and 300 K as shown in Fig. 4. There
are no observable differences in the behavior at the X-
point or R-point. The Grüneisen parameters for the low-
energy optical branches also change signs at different ~q,
but the branches from sTDEP have simple behavior. For
the modes below 11 meV shifts up with temperature, and
for those above 11 meV shifts down with temperature.

Previous studies of cuprite showed the success of QH
theory for predicting thermal expansion [59, 61–64], and
some studies included results on phonon dynamics [61,
62, 65]. We find similar success with the QH theory for
thermal expansion and find similar success with the AH
theory. These results seem similar to a previous study
on the thermal expansion of silicon, another small NTE
material, which showed that AH effects dominate over
QH effects for thermal phonon shifts at low temperatures
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FIG. 4. Energy spectra at three values of ~Q at 10 K (blue) and 300 K (red). a) Energy cut at X-point for experimental
(top panel), AH calculations (lower panel), and QH calculation (lower panel, black lines) at labeled temperatures. b) Energy
cut at M-point. c) Energy cut at the halfway point between the high symmetry points X and M. The color specifies the
experimental and AH data temperature. Both temperatures of the QH data are denoted by black at the bottom because there
is no discernible change of QH phonons between 10 K and 300 K.

[32, 66].
The thermal expansion from Eq. 1 depends only on

the temperature dependence of U through the electronic
energy, and the temperature dependence of S through
the phonon frequencies, dω~q,s/dT . With anharmonicity,
ω~q,s depends independently on both T and V . In quasi-
harmonicity, we assume ω~q,s(V (T )) so all effects from T
originate solely with ∆V = βTV . The QH approxima-
tion gives generally good results for thermal expansion,
as shown in Fig. 7, even though it does not reliably pre-
dict the dω~q,s/dT (for many phonons, the dω~q,s/dT in
the QH approximation has the wrong sign). With its
prediction of tiny shifts in phonon frequencies between
10 K and 300 K, it is difficult to pinpoint why the QH
approximation might successfully predict the thermal ex-
pansion. Perhaps its success originates from a fortuitous
cancellation of errors.

Three-phonon processes are subject to kinematic con-
straints. The energy constraint requires pairs of lower
energy phonons to add their energy to create a higher-
energy phonon. This process alters the self energies, and
Fig. 6 shows peaks at some energies where the self-energy
corrections are significant. For example, at 10 K, most
of the 3-phonon processes involve down-conversion and
dominate the high energy optical modes at 300 K (the

self-energy corrections above 40 meV are similar at 10
and 300 K). Figure 6 shows that other self-energy correc-
tions are becoming larger at 300 K than 10 K. Examina-
tion of the self-energy corrections and the phonon partial
DOS curves of Fig. 3 shows a large cubic anharmonicity
of the O-atoms optical modes. Modest cubic anharmonic-
ity is from acoustic modes dominated by copper atoms.

Below 50 meV, the calculated broadening of phonon
dispersions is not as large as the experimental phonon
dispersions in Fig. 2. A previous study attributed some
of the thermal behavior of cuprite to quartic anharmonic-
ity [64]. Quartic AH contributions can account for fur-
ther shifts of phonon energies. However, it does not ac-
count for phonon lineshapes. This limitation exists be-
cause the loop diagram for the quartic term does not
have an imaginary part. Higher-order anharmonic pro-
cesses may be needed to account for the measured ther-
mal broadening and shifts of phonons in cuprite, so it
seems challenging for perturbation theory to predict the
thermal shifts of phonons in cuprite at higher tempera-
tures.
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FIG. 5. Mode Grüneisen parameters for dispersions, shaded to match their corresponding dispersions at a) 10 K and c) 300 K.
Phonon dispersions from quadratic terms in sTDEP calculations at b) 10 K and d) 300 K colored to correspond with their
matching mode Grüneisen parameters.

VI. CONCLUSION

INS with a pulsed neutron source and an area de-
tector with a large solid angle was used to measure all
phonons in a single-crystal of cuprite at 10 K and 300 K.
We directly compared phonons from QH calculations, AH
calculations and experiments The AH theory better de-
scribed the temperature-depend phonon trends than the
QH theory. The temperature dependencies of the low-
energy transverse acoustic and high-energy optical modes
did not follow the experimental change in volume pre-
dicted by QH theory (which was nearly zero in QH the-
ory since the volumes at 10 K and 300 K are nearly the
same). However, calculations with AH theory predicted
these shifts better than QH theory. The small negative
thermal expansion in cuprite is calculated successfully
with both QH and AH models. However, thermal expan-
sion is an average over numerous phonon contributions to
the Gibbs free energy. So thermal expansion may not be

the best criterion for revealing the underlying thermody-
namics of cuprite. The calculated AH self-energy did not
capture the full thermal broadening of the measured op-
tical modes. For cuprite, details of the measured phonon
dispersions may require higher-order anharmonicity than
used here.
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FIG. 6. The imaginary part (Γ) of the phonon self-energy at a) 10 K in blue and c) 300 K shown in red. Different shades of
red and blue correspond to individual modes designated by Figs. 5b, d) for the real part (∆) of the phonon self-energy. Data

are for ~Q = (0.25, 025, 0.0).
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FIG. 7. Percentage change with temperature of lattice pa-
rameter of cuprite from experiment and computation. a) Ex-
perimental results [28–30, 60] are shown as colored markers,
compared to AH result from minimized free energies using
sTDEP. b) Calculated percentage change of lattice parameter
versus temperature. QH results are colored line and markers
[59, 61], compared to sTDEP results shown with black circles.
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