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A major open topic in cuprates is the interplay between the lattice and electronic dynamics and the im-
portance of their coupling to the mechanism of high-temperature superconductivity (HTSC). As evidenced by
Extended X-ray Absorption Fine Structure experiments (EXAFS), anharmonic structural effects are correlated
with the charge dynamics and the transition to a superconducting phase in different HTSC compounds. Here
we describe how structural anharmonic effects can be coupled to electronic and lattice dynamics in cuprate sys-
tems by performing the exact diagonalization of a prototype anharmonic many-body Hamiltonian on a relevant
6−atom cluster and show that the EXAFS results can be understood as a Kuramoto synchronization transition
between coupled internal quantum tunneling of polarons associated with the two-site distribution of the copper-
apical-oxygen (Cu−Oap) pair in the dynamic structure. The transition is driven by the anharmonicity of the
lattice vibrations and promotes the pumping of charge, initially stored at the apical oxygen reservoirs, into the
copper-oxide plane. Simultaneously, a finite projection of the internal quantum tunneling polaron extends to the
copper-planar-oxygen (Cu−Opl) pair. All these findings allow an interpretation based on an effective quan-
tum mechanical triple-well potential associated with the oxygen sites of the 6-atom cluster, which accurately
represents the phase synchronization of apical oxygens and lattice-assisted charge transfer to the CuO2 plane.

I. INTRODUCTION

A noted characteristic of cuprates is anomalies in their
phonon spectra in a range below 100 meV. Often with distinct,
unusual O-isotope dependence, these have been observed in
infrared (IR) [1–3], Raman [4], neutron scattering [5], pho-
toemission [6–9], and resonant inelastic x-ray spectroscopies
[10–12]. In such a complex, disordered material, the descrip-
tions of the electron-lattice coupling provided by the unusual
behaviors of the peak energies and shapes are insufficient to
assist in the development of microscopic models of the super-
conductivity and other properties of interest. Insofar as the
vibrations of the atoms that produce the spectra are defined
by the potentials between the atoms, a more direct measure of
these anharmonic potentials is found in a real space conjugate
to the phonon spectra, namely a snapshot of the atom positions
over a large volume of the lattice revealed in the pair distribu-
tions. Since these distributions are determined by the under-
lying pair potentials, not only the presence but also the type
and extent of anharmonicity are visualized in the pair distribu-
tion functions of the dynamic structure factor, S(Q,E). This
quantity is easily intuited in liquids, where the positions of
atoms in rapid transit between quasi-stable relative locations
are identified in the van Hove function derived from inelastic
scattering data [13]. It also occurs in solids in the analogous
movements of atoms between locations of similar energies,
subject to the constraint that their paths must avoid collisions
with the other atoms at their more fixed locations in the solid.

One of the many unusual characteristics of cuprates is the
two-site copper-oxygen distributions that are constituents of
their dynamic structure. Inelastic neutron scattering measure-

ments identified these shortly after the initial discovery of high
temperature superconductivity [14, 15]. However, Extended
X-ray Absorption Fine Structure (EXAFS) spectroscopy has
been the predominant source of these observations because
of the relative ease of its measurement of the instantaneous
structure factor, S(q, t = 0) [16, 17], with a precision that
matches the deviations of S(Q,E) from the static structure
factor, S(Q,E = 0). These two-site distributions indicative
of anharmonic, double well potentials were initially observed
in the apical Cu−Oap pairs [18–24], then in the planar oxy-
gen (Opl) of the CuO2 planes in other cuprates [25–32]. This
has been followed by reports of similar behavior in supercon-
ducting bismuthates [33, 34] and even pnictides [35]. Their
observed fluctuations at and through the transitions demon-
strated their coupling and even their contribution [36] to the
superconductivity. More recently, experiments on overdoped
superconducting cuprates have revealed the coupling of the
highly disordered Cu-Sr pair, and massive changes in the dy-
namic structure of Cu-O pairs at the superconducting transi-
tion of Sr2CuO3.3 [37]. It is likely that this critical aspect
of two-site distributions is a unifying element of high tem-
perature superconductivity and an indication of strong, non-
adiabatic, complex electron-phonon/lattice coupling.

We describe below how the two-site distributions can origi-
nate as features of small polarons caused by the doping and
mixed-valence character of the materials. Small polarons
are defined as a charge inhomogeneity around a central atom
and the accompanying local lattice distortion as the neighbor-
ing atoms shift their positions to accommodate the different
charge. One of their central features is their thermally acti-
vated or quantum center of mass tunneling through the lattice.
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Figure 1. Relevant structures. a) The YBa2Cu3O7/YSr2Cu3O7

crystal structure shows the features of multilayered cuprates with
higher Tc’s: two, conducting CuO2 planes (blue Cu(2) and magenta
Opl atoms) bridged by the intervening Y (grey), the charge reservoir
consisting in this class of materials of Cu-O chains (turqoise Cu(1)
and orange O), and the dielectric layer composed of the Oap (red)
and Sr (green). b) The original three atom IQTP derived from the
two-site Cu(1)−Oap distribution found in YBa2Cu3O7 showing
its oscillations between its two configurations denoted by the loca-
tion of the extra hole (+δ) and expanded Cu-O distance [17]. c)
The atoms circled in black in (a) form the six atom cluster used
here. Its excess charge and displacement tunnel between the two
Cu(2)−Oap pairs through the Opl charge-transfer-bridge. d) For
the three-atom cluster the potential energy corresponds to a double-
well structure [21]. e) For the 6-atom cluster, the potential energy
corresponds to a triple-well structure.

The two-site distribution would occur as a subset of small po-
larons when the highest occupied states of the system have
significant oxygen 2p density. In this case, instead of the hole
being confined to the central metal, a fraction of it will reside
on one of its neighboring oxygen atoms. This would be ex-
pected to result in a second oxygen position at a somewhat
longer distance, giving the two-site distribution without per-
turbing the crystal structure. In the typical transition metal
oxide where the metal has equivalent oxygen nearest neigh-
bors, these oxygen ions could exchange the charge and bond
length among themselves by temperature-independent quan-
tum tunneling. While this process does shift the site where
they reside, in contrast to the small polaron that roams through
the lattice, the locations of these modified oxygen atoms are
constrained to the nearest neighbor shell of the metal asso-
ciated with the excess charge. The crucial point is that this
process occurs within the parent polaron, constituting inter-
nal dynamics in contrast to the lattice dynamics of the parent.
When this tunneling frequency is higher compared to the hop-
ping frequency of the parent polaron what we term an Internal
Quantum Tunneling Polaron (IQTP) is obtained.

In our earlier work on this IQTP problem we used exact di-
agonalization calculations for a minimal, three-atom, O-Cu-O
cluster with an excess hole (Fig. 1b) [16, 21–23, 38] to con-
firm the experimental signature of IQTPs via the difference
between the crystallographic, static structure and probes of
the dynamic structure that exhibit the two-site distributions.
These results validated both the experimental results and the
application of such calculations for incorporating local quan-

tum tunneling dynamics. We noted that dynamical contribu-
tions were also added in calculations of fluctuating stripes in
the CuO2 planes [39] and in charge flux among the apical
cation, apical anion, and the in-plane CuO4 unit [40].

However, these reports do not address the full anharmonic-
ity and its connection with the double-well potential in the
IQTPs. We do so here via two expansions of the original
three-atom calculations. Since the most common moiety is not
the linear, O-Cu-O cluster found only in single layer cuprates,
but is a Cu surrounded by the Opl atoms with a single Oap

(Fig. 1a), we incorporate the requisite two Oap atoms by in-
cluding two, neighboring Cu−Oap pairs. Adding the Opl

atom that bridges them incorporates the CuO2 planes. Fi-
nally, attending to the finding of the anharmonicity of the
Sr2+ alkaline earth dication [41] and its coupling to the su-
perconductivity [37, 42], we include this link to the apical
oxygen sites that completes the dielectric layer (Fig. 1c).
This six-atom cluster derived from the combined structures of
YSr2Cu3O7+δ , YSr2Cu2.75Mo0.25O7.54, and YBa2Cu3O8

now contains most of the functionality of the cuprates and en-
ables our elucidation of the couplings between them. Our cal-
culations show that, under certain conditions, the addition of
the planar site, Opl, and a soft, molecular Oap − Sr−Oap

mode causes the double well potential of the Oap positions in
the three-atom cluster (Fig. 1d) to enlarge to a triple well that
now involves the Opl (Fig. 1e), where the depth of the middle
well is controlled by the Sr-related anharmonicity.

Our six-atom cluster has been evaluated from four differ-
ent perspectives. First, we exactly diagonalized the associ-
ated quantum many-body Hamiltonian incorporating these ad-
ditional structural ingredients. We find that the anharmonic-
ity related to the unusual dynamical structure observed in the
EXAFS spectrum of Sr/Ba-based cuprates [41, 42] is due to
its vicinity to a first order synchronization transition of the
IQTPs correlated with the two-site Cu(2)−Oap pair distri-
bution. Second is the realization that an advantageous ap-
proach to what is now effectively a system of oscillators is
adapting the Kuramoto treatment of networks [43], which has
not previously been attempted in a crystal because of the com-
plex network of couplings through the multiplicity of phonons
and because it is an application to a quantum system. In or-
der to provide physical meaning to such a first order transi-
tion, we mapped the combined, linearised Heisenberg’s equa-
tions of motion for the anharmonically coupled phonons to a
mean field Kuramoto equation describing the synchronization
of IQTPs within the cluster. The mapping includes both the
IQTP anharmonic coupling as well as temperature/dissipation
(through thermal disorder) and yields a first order synchro-
nization transition to the anti-phase motions of the two IQTPs.
Surprisingly, we find that in the synchronized phase charge is
pumped from the apical positions into the conducting CuO2

plane while, simultaneously, a Sr-related, triatomic molecular
vibration develops a finite projection also in the copper oxide
plane. This is a novel planar IQTP, associated with Cu−Opl

deformations. Third, we have confirmed the numerical results
by performing a multimodal, nonlinear Bogoliubov transfor-
mation and demonstrated a polaronic degree of freedom asso-
ciated with the coupling between excess charge in the plane
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and a new, anharmonicity-related, lattice vibration. Finally,
we have observed that all of our theoretical and numerical
results can be summarized in terms of an effective quantum
mechanical triple-potential-well model (Fig. 1e). This repre-
sents an anharmonic structural adiabatic passage (ASAP) pro-
moting anti-phase IQTP synchronization and internal charge
transfer.

The paper is organized as follows: In Sec. II we describe
the here proposed extension of the three-atom into the six-
atom cluster and the numerical methodology used to diago-
nalize its Hamiltonian. In Sec. III the numerical results are
presented and discussed within the approach of the Kuramoto
model for synchronization of the IQTP’s, we present the non-
linear multimodal Bogoliubov transformation and the triple-
well interpretation. Finally, Sec. IV is devoted to the conclu-
sions.

II. EXACT DIAGONALIZATION

We started by performing the exact diagonalization for the
extended 6-atom cluster shown in Fig. 1c). As discussed pre-
viously, the cluster was carefuly chosen to include two im-
portant structural ingredients: (i) a Cu−Opl − Cu charge
transfer bridge, associated with a nearby, planar oxygen (Opl)
atom, promoting the transfer of the extra hole and longer
Cu−Oap distance between the two lateral Cu−Oap IQTPs
through the CuO2 plane; and (ii) a Oap − Sr−Oap triatomic
molecule, associated with a nearby Sr atom, promoting the an-
harmonic coupling, referred to as K, between the apical oxy-
gens locations of the two lateral Cu−Oap IQTPs through the
non-charge transfer Sr atom. Notice that while the transfer in-
cluded in (i) favours charge delocalization, the formation of a
tri-atomic molecule, included in (ii), favours the locking of the
phases of vibration above a critical anharmonicity Kc. As a
result of the above rich structure, it is natural to expect that, as
anharmonicity is fine tuned accross the cluster, regimes where
the excess charge becomes delocalized and vibrations become
synchronized are not only to be expected, but, as we are about
to show, remarkably interconnected. This process ultimately
provides meaning to the anharmonicity-related data observed
in EXAFS as discussed previously.

The intricate interplay between lattice and charge degrees
of freedom described above can be captured by the following
Hamiltonian H = Hel +Hph +Hel−ph +HSr composed of
four terms

Hel =
∑
i

εini + t
∑
〈ij〉σ

c†iσcjσ + h.c.+ U
∑
i

ni↑ni↓, (1)

Hph = ~ωb†LbL + ~ωb†RbR, (2)

Hel−ph = λnL

(
b†L + bL

)
+ λnR

(
b†R + bR

)
, (3)

HSr = ~ΩSrβ
†β +K

(
β†bLbR + βb†Lb

†
R

)
. (4)

In the electronic part Eq. (1), c†i,σ , ci,σ are the
usual creation and annihilation operators for holes with
spin projection σ, with i = 1, . . . , 5 representing the
Oap − Cu−Opl − Cu−Oap charger transfer sites, respec-
tively, ni =

∑
σ c
†
i,σci,σ is the number occupation operator

for holes at sites i, where n1 = nL and n5 = nR, with on-site
energies εi, t is the spin-preserving, nearest-neighbour hop-
ping amplitude, and U the on-site Coulomb repulsion to pre-
vent double occupancy. The site energies were chosen so that
out of a total of three holes, as considered in this work, two
of them will always be favoured at the two Cu atomic posi-
tions, while only a single, remaining excess hole minimizes
the total energy by moving among the oxygen atoms while
avoiding the two copper atomic positions. The phonon part
Eq. (2) consists of the two harmonic infrared oscillators, of
identical normal frequencies ω whose creation and annihila-
tion operators b†L, bL, and b†R, bR represent the two possible
lateral Cu−Oap positions, to the left (L) and to the right (R),
in the cluster. The electron-phonon interaction term Eq. (3)
describes the local coupling between the hole degrees of free-
dom to the lattice displacements, controlled by the coupling
constant λ. This type of local electron-phonon coupling (Hol-
stein model) is chosen due to its simplicity compared to non-
local couplings (Su-Schrieffer-Heeger model) and because the
same physical picture underlies the formation of a single po-
laron in the two cases [44]. The novelty here is Eq. (4),
which was designed to provide the cluster with a nontrivial,
Oap − Sr−Oap triatomic molecule structure, motivated by
the coupling of the anharmonicity of the neighboring Sr to the
behavior of Oap atoms and the superconductivity. To describe
the normal modes of vibration of the triatomic molecule we
have introduced creation (annihilation) operators β† (β) for
a moderately stiff harmonic molecular phonon of normal fre-
quency, ΩSr = 2ω, as required by energy conservation. As
we can see from Eq. (4) the new interaction term between the
molecular phonons and the rest of the cluster is indeed anhar-
monic, in the form of a three-phonon coupling, and controlled
by an anharmonic coupling, K. This interaction term can be
interpreted as a molecule formation term, and K as a chem-
ical potential that controls processes in which left and right
phonons are destroyed to form a molecular mode, β†bLbR ,
as well as a destruction of a molecular vibration to produce
left and right independent oscillations, βb†Lb

†
R. As such, one

would naturally expect that a molecule formation interaction
would work towards promoting the locking of phases for the
Oap vibrations, or equivalently, the synchronization of Ku-
ramoto oscillators. For this reason the anharmonic coupling,
K, will be referred to as the Kuramoto coupling.

The exact diagonalization of the full Hamiltonian, for the
ground and excited states, was perfomed using a basis of
wavefunctions given by

|Ψ〉 =
∑
i,γ,β,δ

αiγβδ |ni〉 |nγ〉 |nβ〉 |nδ〉 , (5)

corresponding to a nel × nL× nR × nSr dimensional Hilbert
space. For the electronic states |ni〉 we first considered all
possible spin-up and spin-down configurations at the five
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Figure 2. a) The ground state energy of the 6-atom cluster Hamiltonian as a function of reduced anharmonicity, K/Kc, for the non-adiabatic,
intermediate λ coupling regime where lateral polarons are already formed –ground state (black), 10th excited state (green), 20th excited state
(red), 40th excited state (blue). b) The electronic occupations for left/right Oap (black/blue squares/crosses) as well as for the central Opl

(red circles), as a function of reduced anharmonicity, K/Kc of the ground state. c) The phonon occupations for left/right sites (black/blue
square/cross) as well as for the central oxygen site (red circles), as a function of reduced K/Kc anharmonicity, of the ground state. Insets: as
we increase anharmonicity, the central electronic (b) and phonon (c) occupations surpasses the lateral ones.

charge transfer sites and a total of three holes added to the
cluster. However, as discussed above, since only a single (ex-
cess) hole is found over the five charge transfer sites while
the other two are favoured at the copper sites, our elec-
tronic subspace was limited to nel = 28 states. The bosonic
|nγ〉|nβ〉|nδ〉 states represents the phonon degrees of freedom
for the left and right apical positions and for the Sr-related
triatomic molecule, respectively. These states were written
in a bosonic occupation number representation for a total of
nL = nR = nSr = 5, justified by continuosly enlarging the
phonon Hilbert subspace, through a systematic increase of the
number of phonon modes until convergence.

For the numerical parameters in the Hamiltonian (1)-(4) we
used [23] ε1,3,5 = −ε2,4 = 0.5 eV , favouring holes at the
Cu atoms, t = 1.0 eV , and U = 7.0 eV . For the electron-
phonon coupling, we set λ = 0.3 eV , inside the non-adiabatic
regime for polaron formation [45] and we have chosen the
stiff, triatomic molecule frequency, ΩSr = 0.12 eV , to be
precisely twice the value of ω = 0.06 eV , as required by
energy conservation.

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 2 we summarize the results obtained from our nu-
merical, exact diagonalization studies. Figure 2a) shows the
ground and three representative excited states energies as a
function of the reduced coupling, K/Kc. For the ground state
(black line − first from bottom up) one observes a clear kink
at K/Kc = 1 while for all higher excited states (green, red,
and blue lines − second, third and fourth from bottom up)
there is no clear kink, although a decrease in energy is ev-
ident even for K < Kc. We can see that for the higher
excited states, the definition of a critical coupling is not as
clearer as for the ground state because of level avoiding be-

havior. Since higher excited states will play a significant role
only when T 6= 0, we restrict to the behavior of the ground
state across the synchronization transition. Figure 2b) shows
the electronic occupations at the left (black squares), central
(red circles), and right (blue crosses) sites, also as a function
of the reduced coupling, K/Kc, for the ground state. At the
critical coupling, Kc, we have found a delocalization transi-
tion of the excess hole, as anticipated. In fact, while prior
to the transition the hole wave function had weight only at
either the left or right apical oxygen atoms, indicating forma-
tion of localized polarons, aboveKc the electronic occupation
for the central (planar) oxygen atom begins to increase mono-
tonically while both the left and right occupations decrease.
Indeed, when K � Kc, the central occupation is greater
than the apical ones. The abrupt discontinuity demonstrates
that the phase transition is first order and this behavior indi-
cates the formation of a split-polaron. Finally, Fig. 2c) shows
the occupations of Sr-related, molecular phonons at the left
(black squares), right (blue crosses), and central (red circles)
positions within the cluster. When K crosses Kc, all phonon
modes related to the triatomic molecule become active, which
is expected from the apical oxygens’ phase locking driven by
the synchronization. But remarkably, as shown in the inset,
the increase of anharmonicity drives the central projection of
molecular phonons to be greater than the lateral ones.

The numerical results reveal three important features as-
sociated with the Hamiltonian (1)-(4) as anharmonicity, en-
coded in the Kuramoto parameter K, is varied, Fig. 3: (i)
as shown in section III-A, it produces a first order synchro-
nization phase transition associated with the anharmonicity-
related, triatomic molecular locking or synchronization of the
phases of vibration corresponding to the two Oap locations
or Cu−Oap distances when the Kuramoto coupling K is in-
creased, evidenced by the evolution of the Kuramoto order
parameter, r, with anharmonicity (Fig. 3a); (ii) a non-linear
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Figure 3. a): The solution to Kuramoto’s order parameter equation (7) as a function of the reduced coupling in the ground state, showing a
first order synchronization phase transition. b): Displacement < u >=

√
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behavior for the displacement 〈u〉 related to the apical oxy-
gens, which is quantitatively in agreement with the experi-
mental deviations found in the two-site distributions associ-
ated with the Cu−Oap pairs [46] (Fig. 3b). Before the
transition, there is a stable |〈u〉| ≈ 0.08 Å position, since
λ is strong enough to form localized, frozen polarons, and al-
though a dynamical shift occurs after the synchronization (a
signature of the non-linear behavior), there’s still agreement
with EXAFS measurements of the distance in the Cu−Oap

pair [45]; (iii) it generates a polaronic tunneling frequency,
~ωT = E1 − E0 that is the difference in energy from the first
to the ground state [22], that evolves nontrivially with K (Fig.
3c). There is a jump at the critical coupling, indicating the
value of the anharmonicity beyond which the initially frozen
polarons become an IQTP, allowing quantum tunnel internally
between the two lateral positions in the cluster. In order to ad-
dress each one of these issues, we proceed by applying three
different techniques.

A. The first order synchronization phase transition

Collective behavior and its spontaneous emergence in net-
works of coupled oscillators is a common characteristic in
many systems across science and perhaps the simplest model
that describes the synchronization phenomena is the Ku-
ramoto model [47]. Its application ranges from classical sys-
tems in physics [48] and biology [49] to quantum physical
systems [50–52]. The Kuramoto model is based on two prop-
erties: the node oscillators are coupled via a superfluid den-
sity Kij and there are white, quenched, δ or thermal, kBT ,
noises that are present due to the environment the networks
are embedded in. Synchronization can be achieved whenever
the couplings predominate over the noises. The synchroniza-
tion process is described by a complex order parameter, reiψ ,
where the real part r sets the character of the synchronization:
r = 0 for the unsynchronized phase, 0 < r < 1 for partial

and r = 1 for full synchronization (see Fig. 3a)). The phase
ψ in the imaginary part of the order parameter sets the overall
phase that the oscillators achieve when synchronized.

As demonstrated in Appendix A, the set of coupled equa-
tions of motion for the vibrational degrees of freedom ob-
tained from the Hamiltonian (1)-(4) can be conveniently
rewritten, within a mean field approximation [52, 53], as a sin-
gle, first–order differential equation for the phases of the lat-
eral oscillators, θi, in which temperature effects can be added
by introducing a white thermal noise, ζi(t), thus providing, in
terms of the Kuramoto’s complex order parameter reiψ

θ̇i = ωi +Kr2 sin [θi(t) + ψ] + ξi(t), (6)

such that 〈ζi(t)〉 = 0 and 〈ζi(t)ζj(t′)〉 = 2γkBTδijδ(t− t′),
where γ is a damping constant. The solution to such first order
equations yields

r =

√
1− Kc(δ, T )

rK
, (7)

unveiling the connection between the Kuramoto order param-
eter and the anharmonicity introduced in the cluster. It also
shows the first order nature of the synchronization transition
that occurs at Kc(δ, T ), a critical coupling (see Eq. A10) that
is determined both by the temperature T as well as a quenched
spread δ that relates to disorder. In summary, the process
of increasing anharmonicity induces the localized polaronic
phase (K < Kc) to evolve into a phase of synchronized in-
ternal tunneling polarons, since ~ωT 6= 0 for K > Kc (Fig.
3c)), changing dynamically the otherwise stable position of
the Cu−Oap pairs (Fig. 3 b)).

B. The formation of a planar IQTP

The exact diagonalization results show that not only the
total Sr-phonon occupation jumps at Kc but also, most
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interestingly, an unexpected Sr-phonon central occupation,
nβ(C), appears above the first order anti-phase synchroniza-
tion transition. This observation motivated us to break down
the Oap − Sr−Oap triatomic molecule term of the original
Hamiltonian (4) as

HSr =
∑
r

~ΩSrβ
†
rβr +K

∑
r

(
β†rbLbR + βrb

†
Lb
†
R

)
, (8)

where βr, β†r are now to be understood as the projection of
the triatomic molecular vibration at the relevant sites of the
cluster, namely r = L,C,R.

In order to diagonalize the Hamiltonian and connect the nu-
merical results showing the appeareance of an excess charge,
together with phonon projections in the central, planar site of
the cluster, which leads to the formation of a planar IQTP,
we introduce a non-linear, multimodal Bogoliubov transfor-
mation for the lateral phonons as

bL =
∑
r

(
u∗L,rβrBr + vL,rβ

†
rB
†
r

)
, r = R,C (9)

bR =
∑
r

(
uR,rβ

†
rB
†
r + v∗R,rβrBr

)
, r = L,C (10)

together with the complex conjugate b†L and b†R. We em-
phasize that by transforming the Hamiltonian from the lat-
eral phonon operators to the new bosonic Br modes, we are
searching for the limit where the charge and phonon projec-
tions at the central site (r = C) are interacting. This is
achieved by taking the limit of strong anharmonicity K �
Kc, as suggested by the numerical results in the insets of Fig.
2b) and Fig. 2c). Therefore, after applying the Bogoliubov
transformation procedure in this limit (see Appendix B), the
total diagonal phonon Hamiltonian in terms of new Bogoli-
ubov phonons can be written as

H ′d = ~F (K)B†CBC , (11)

and anharmonicity-dependent, novel, central phonon modes
are present, whose natural frequencies ~F (K) are given by

~F (K) =
~ω
Aγ

[ω(1 + 2nβ(C))− γ]

+
K
√
nβ(C)

Aγ

√
ω2 − γ2(1 + 2nβ(C)). (12)

where nβ(C) is the occupation of Sr-related triatomic molec-
ular phonons projected on the central site (red circles in Fig.
2c)), ~γ =

√
(~ω)2 −K2nβ(C) and A = 1 + nβ(C) +

nB(C). We have found that, before synchronization, K <
Kc, ~F (K) = 0 because nβ(C) = 0, thus these new phonon
modes are only present in the limit of strong anharmonicity
K � Kc. The multimodal, nonlinear Bogoliubov trans-
formation needs also to be applied to the original electron-
phonon coupling, which together with equation (11), gives
rise to the new transformed Hamiltonian, that can be written
as

H ′Sr = ~F (K)B†CBC + λ′nap

(
BC +B†C

)
, (13)

where nap is to be understood as the electronic occupation at
the apical positions and the new excess-hole-central-phonon
coupling is given by

λ′ =
2λ
√
nβ(C)

√
2Aγ

(√
ω + γ +

√
ω − γ

)
. (14)

This is a striking result and demonstrates that after the syn-
chronization of the left and right Oap vibrations, the transi-
tion to a synchronized IQTP’s phase, with the pumping of
charge and phonon projection to the CuO2 plane, promotes
the formation of an IQTP in the central, planar site, as sug-
gested by the numerical results. Therefore, our analysis has
demonstrated that a planar IQTP arises from the synchroniza-
tion transition, providing theoretical support to the observa-
tion of IQTPs in the planar oxygen (Opl) of the CuO2 planes
in some compounds [25–32], and even in other HTSC materi-
als [33–35].

The electron-phonon part, H ′el−ph, of the transformed
Hamiltonian, second term in Eq. (13), can also be written in a
way to show the explicit interaction between the central elec-
tronic occupation and the new phonon modes present at the
same site. Since only one excess hole is added to the system,
the constraint nL + nR + nC = 1, or even 2nap + nC = 1,
is valid, thus nap = (1 − nC)/2. Therefore, the Bogoliubov
analysis supports the interpretation of the triple-well structure
arising after the IQTPs synchronize, which we explore in the
next section.

C. The triple-well

The triple-well structure can now be elucidated. Before
synchronization,K < Kc, we have nβ(C) = 0 and nel(C) =
0, thus the system contains two decoupled harmonic vibra-
tions localized at each possible L,R positions, composing a
double-well structure (see Fig. 4a)). The potential depth and
width are large and the symmetric and anti-symmetric compo-
nents of the lateral ground state wave function are degenerate,
while a central excited state is too energetic to support tunnel-
ing. In this case the single excess hole in the cluster is found
either at the (L) or (R) apical oxygen atoms. Once the sys-
tem is prepared at the (L) position, for example, it remains at
that position even after time evolves, as shown explicitly in
Fig. 4b). This results from the absence of a tunneling fre-
quency for K < Kc as shown in Fig. 3c). The ground state
wave function coefficients given in Fig. 4c) shows the polaron
localization as finite occupation appears only at the lateral po-
sitions, and zero electronic occupation at the central position,
for K < Kc.

After synchronization, K > Kc, however, we have
nβ(C) 6= 0 and nel(C) 6= 0. The central site of the sys-
tem is now active, and whenK � Kc a new harmonic central
phonon mode is present, composing a three-well structure as
shown in Fig. 4d). The symmetric and anti-symmetric so-
lutions of the wave function become non-degenerate and the
central well on the planar oxygen site in the synchronized
phase substantially lowers the energy of the excited state,
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Figure 4. a) For K < Kc, the potential (black) depth, the symmetric (blue) and anti-symmetric (orange) components of the lateral ground
state wave function and a central excited state (green). b) The absence of tunneling of the polarons in this scenario is demonstrated by its
fixed position over time. c) Ground state wave function coefficients for the unsynchronized, localized polarons phase. d) for K > Kc, the
triple-well potential (black), the symmetric (blue) and anti-symmetric (orange) solutions of the wave function and the excited state (green).
e) Due to the ASAP, the IQTP is now observed to tunnel from left to right through the center as time evolves. f) Ground state wave function
coefficients for the synchronized IQTPs phase. The states in c) and f) are represented in the electronic occupation representation for the three
holes in the five charge transfer sites.

forming an anharmonic structural adiabatic passage that pro-
motes tunneling between left and right IQTPs. This results in
the nonzero tunneling frequency of the synchronized phase.
In this case the single excess hole in the cluster can be found
at all (L), (R) and (C) oxygen atoms. If the system is pre-
pared at the (L) position the existence of a finite tunneling
frequency shows that the wave function evolves with time and
the excess hole becomes delocalized. This is depicted in Fig.
4e). The ground state wave function coefficients given in Fig.
4f) shows finite but decreasing occupations at the lateral po-
sitions, and nonzero, increasing electronic occupation at the
central position, for K > Kc. Small but finite occupation of
the excess hole also occurs on the two Cu sites, demonstrating
delocalization throughout the entire cluster.

IV. CONCLUSION

Our exact diagonalization calculations of the original 3-
atom O-Cu-O cluster produced significant but limited results
on experimental signatures of IQTPs [16, 17, 21]. In this
work, we have expanded the cluster to 6 atoms to incorpo-
rate the essential functionalities of the layered cuprate struc-
tures: a pair of Cu−Oap IQTPs, their Opl bridge that adds
the CuO2 conducting planes, and their divalent alkaline earth
cation (Sr) that, with the Oap atoms, completes the atoms of
the dielectric layer. This extension allows a much more de-

tailed investigation of the local interplay between the lattice
and electronic degrees of freedom in the cuprates and related
compounds. A novel and crucial element in these calcula-
tions is the anharmonic, three-phonon coupling in the cluster
Hamiltonian whose character and coupling to the supercon-
ductivity has been identified by EXAFS measurements on sev-
eral compounds [37, 42, 46]. The most notable result reported
in this work, that should generalize beyond cuprates to related
systems, is the transition to a synchronized phase whose bro-
ken symmetry is found in the dynamic structure. This occurs
at a critical anharmonic coupling, Kc, the Kuramoto coupling
between the two IQTPs. Pertinent to the electron-lattice cou-
pling and possible associated superconductivity mechanism in
this spontaneous heterostructure, is that in the synchronized
phase a fraction of the excess charge that was originally local-
ized as small polarons frozen on the Oap is transferred to the
Opl of the CuO2 planes that are the locations of the supercon-
ductivity in the oxide-cuprates. A second relevant behavior
of the synchronized phase is the projection from the triatomic
Oap − Sr−Oap molecule of phonon modes throughout the
cluster. These are controlled by the new phonon (β) in the
anharmonic term of the Hamiltonian. The displacements of
the Oap atoms from their static positions to form the two-site
distribution, 〈u〉, quantitatively reproduce the 0.12−0.2Å sep-
arations found by EXAFS [46]. This agreement with experi-
ments supports our calculations.

Furthermore, here the Kuramoto model was applied by
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mapping the Heisenberg equations of motion for each oscil-
lator in the Oap position to a system of coupled oscillators.
By doing so we could describe the transition at Kc as an anti-
phase synchronization transition for the phases of each lateral
oscillator. For K > Kc, the otherwise localized polarons,
or independent vibrations, became dynamically active in the
form of synchronized IQTPs due to the presence of the stiff
molecular vibration brought by the Sr atom in the cluster that
connects the two Cu−Oap pairs. Moreover, a non-linear Bo-
goliubov transformation was applied to the Hamiltonian in a
way that, in the limit of strong anharmonicity, K � Kc, new
phonon modes are present in the planar site. In combination
with excess charge pumped into the Opl of the CuO2 plane in
the synchronized IQTP phase, a new electron-phonon, thus a
polaronic, degree of freedom occurs in the plane that can be
interpreted as a planar IQTP [25–32]. Together, these theoret-
ical findings points to the triple-well potential interpretation,
where the appearance of a finite tunneling frequency in the
synchronized phase originates in the pumping of charge from
Oap onto the Opl site. This lowers the energy of this site and
enables the excess charge to quantum tunnel across the cluster,
resulting in the internal quantum tunneling polaron dynamics
of the system.

Despite the limitations inherent to the small 6-atom cluster,
we emphasize that the additional components of this larger
cluster and especially the anharmonicity introduced by the Sr
atom [41, 42] are crucial to understanding the dynamics of lat-
tice and charge degrees of freedom in this system. This points
towards the need to understand how anharmonic phonons can
influence important characteristics of different systems [54–
56], now including cuprates. In this work, we have added
a new interpretation of the dynamics related to the collec-
tive motion of atoms in the lattice based on the Kuramoto
model for synchronization. These results motivate further in-
vestigation of the connection between synchronized IQTPs
described as Kuramoto oscillators and anharmonic phonons
and its role in the charge-lattice dynamics of cuprates, includ-
ing superconducting properties and the role of Coulomb re-
pulsion, as for example when considering two holes added
in an IQTP or the patterning of finite densities of coupled
IQTPs [57]. We note that EXAFS measurements of cuprates
in which Co, Mn, and Ni were substituted for a fraction of the
Cu in the CuO2 planes demonstrated that the Cu-O IQTPs are
not only coupled to but in fact play a direct role in HTSC
[36]. Recent reports on highly overdoped superconducting
cuprates prepared by high pressure oxygen (HPO) methods
have provided exceptions to many of what have been consid-
ered common unifying behaviors of cuprate superconductiv-
ity, namely: in Sr2CuO3.3, copper oxide planes as CuO1.5 in-
stead of CuO2 [37]; continued retention of or increases in Tc
throughout their 50 − 115 K transition temperatures through
excess Cu charge values even beyond 0.6, which far exceed
the 0.27 limit of the dome in the conventional phase diagram
[46]; a reversal of the correlation between longer Cu−Oap

distances and higher Tc, oblate Cu geometry and inversion
of the Cu 3dz2−r2 and 3dx2−y2 energies in Ba2CuO3.2 [58],
and a structural transformation concomitant with the super-
conducting transition [59]. Insofar as a universal factor is the

presence of IQTPs coupled to the superconductivity, our find-
ings on IQTPs signatures in the dynamic structure may play a
key role in developing the still unresolved HTSC pairing and
condensation mechanism.
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Appendix A: Kuramoto’s synchronization transition

We start by providing meaning to the first order transition.
To this end, we shall make use of a mean field approxima-
tion to treat the anharmonic three-phonon term in Eq. (4).
For convenience, first we rescale the anharmonic coupling
K → K/N , where N represents the number of different os-
cillators (phonons) at each of the two kinds of oscillator com-
munities: left (L) and right (R) oscillators. Second, since all
oscillators are bosons we introduce a mean field approxima-
tion in terms of which the triatomic molecular phonon popula-
tion can be written as 〈β†β〉 = |R|2 = 〈β†〉〈β〉 = R∗R 6= 0,
where R plays the role of a complex order parameter. Now,
the Heisenberg’s equations of motion derived from Hamilto-
nian (1)-(4) for i = L,R phonons read

i
dbi
dt

= ωi

(
bi −

λni
~ω

)
+
KR

N~
b†j ,

−idb
†
i

dt
= ωi

(
b†i −

λni
~ω

)
+
KR∗

N~
bj . (A1)

So far, this is a set of coupled operatorial differential equa-
tions. Let us take the quantum mechanical expectation value
at both sides of the above equations, and recall that phonon
coherent states are eigenstates of the annihilation operator
bi,j |zi,j〉 = zi,j |zi,j〉. We then drop all constant terms that
simply provide an overall shift of the equilibrium position and
write the complex numbers zi,j = z0e

−iθi,j(t), where we have
made the assumption that the amplitudes of the phonons L
and R are equal, z0, and only their phases change. Finally we
introduce Kuramoto’s complex order parameter, R = reiψ ,
where r is the real part of R and ψ is an arbitrary phase. Fur-
thermore, we choose R = −ir, as purely imaginary, so that
after combining the two equations in (A1) we arrive at

dθi(t)

dt
= ωi +

∑
j=L,R

Kr

N~
sin [θi(t) + θj(t)] . (A2)
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We recognize the dynamical problem in (A2) as a Kuramoto’s
differential equation for anti-phase synchronization θi →
−θj . The mean field version of the above equation is obtained
as usual, by introducing the order parameter [43] reiψ =

1/N
∑N
j=1 e

iθj . Here the real part r plays the role of the co-
herence amplitude for a population of N phase oscillators and
ψ indicates the coherence phase. Kuramoto’s mean field equa-
tion can then finally be written as

θ̇i(t) = ωi +Kr2 sin [θi(t) + ψ] , (A3)

where from now on we set ~ = 1. According to equation
(A3), phase locking occurs for θi → −ψ, and as such the
anti-phase synchronization favoured by equation (A2) implies
θj → ψ. Now, since we have chosen before ψ = −π/2 (such
that R = reiψ = −ir) we end up with θi + θj = 0 and
θi − θj = −π, which reflects the anti-phase synchronization
transition.

Once we established the anti-phase character of the syn-
chronization transition, we now show its first order nature.
For that, the mean field analysis initiated above for the Ku-
ramoto model needs to be supplemented by a self consistency
equation [43] such as

1 = Kr

∫ π
2

−π2
cos2 θg

(
Kr2 sin θ

)
dθ, (A4)

where g(ω) is a symmetric Lorentzian distribution of frequen-
cies with quenched spread δ given by

g(ω) =
1

π

δ

ω2 + δ2
. (A5)

Solving the self consistent equation, one finds for the order
parameter

r =

√
1− Kc(δ)

Kr
, (A6)

where Kc(δ) = 2δ is the critical coupling in terms of a
quenched spread δ.

Finally, since we would like also to incorporate thermal ef-
fects to the synchronization transition, we recall that temper-
ature effects can be added to the problem by introducing a
thermal noise

θ̇i(t) = ωi +Kr2 sin [θi(t) + ψ] + ξi(t), (A7)

such that 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = 2γkBTδijδ(t− t′),
where γ is a damping constant. In this case, the oscillator
probability density ρmust satisfy the nonlinear Fokker-Planck
equation [43]

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂(vρ)

∂θ
,

v = ω +Kr2 sin [θi(t) + ψ] , (A8)

where v is the drift velocity and with D(Ω) = γkBTΩ is a
diffusion coefficient. The solution to these coupled equations
yields

r =

√
1− Kc(δ, T )

Kr
, (A9)

and we see that the only difference to equation (A6) is in the
critical coupling, which now reads

2

Kc(δ, T )
=

∫ +∞

−∞
dΩ

g(D(Ω) + ω)

Ω2 + 1
. (A10)

One important conclusion is that by mapping the Heisenberg
equations of motion of each lateral phonon community con-
trolled by bL and bR into a Kuramoto equation of phase oscil-
lators, we are able to connect the Kuramoto order parameter r
with the anharmonicity introduced in the cluster, K, that con-
trols the exchange of independent vibrations and locked, tri-
atomic molecular vibrations related to the presence of the Sr
atom in the dielectric layer. The collective behavior of IQTPs
is caused by the synchronization of the phonon communities
present in the Cu−Oap pairs. Furthermore, the overall ef-
fect of temperature (dissipation through thermal noise) is to
increase the critical coupling Kc of the ground state, making
it harder for the oscillators to synchronize. The temperature
increases the spread in the Lorenztian probability distribution
for the oscillators and this leads to an increase of the criti-
cal anharmonicity for synchronization. Also, temperature in-
troduced in connection to dissipation enhances decoherence,
which leads to an increase of the critical coupling for synchro-
nization. Elevating the temperature does not alter the charac-
ter of the synchronization transition, it remains first order.

Appendix B: The nonlinear multimodal Bogoliubov
transformation

The correlated, anharmonic phonon Hamiltonian (1)-(4) of
the main text can be diagonalized by means of a multimodal,
nonlinear Bogoliubov transformation. To this end we intro-
duce new phonons Br,B†r that connect to the original ones
through

bL =
∑
r

(
u∗L,rβrBr + vL,rβ

†
rB
†
r

)
, r = R,C (B1)

bR =
∑
r

(
uR,rβ

†
rB
†
r + v∗R,rβrBr

)
, r = L,C (B2)

It is important to emphasize that, while the original bL,bR
phonons are restricted to the L,R sites only, here r is allowed
to run over the other positions: R,C for the left phonons and
L,C for the right ones. This is what provides the transforma-
tion with a multimodal character. The nonlinear aspect results
from the presence of quadratic terms such as βrBr.

Unitarity of the Bogoliubov transformation guarantees that
the original commutation relations are preserved. We started
with L and R phonons only, satisfying the commutation rela-
tions [

br, b
†
r′

]
= δr,r′ , r, r′ = L,R (B3)

Let us consider the simpler case where r = r′, in which
case [br, b

†
r] = 1, and impose the bosonic commutation rela-

tions [
Br, B

†
r′

]
= δr,r′ , (B4)[

βr, β
†
r′

]
= δr,r′ , (B5)
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and expectation values of all phonon operators

nβ (r) =
〈
β†rβr

〉
, (B6)

nB (r) =
〈
B†rBr

〉
. (B7)

Using bL and b†L, for example, the unitarity of the transforma-
tion reduces to a sum rule[
bL, b

†
L

]
=
∑
r

(
|uL,r|2 − |vL,r|2

)
(1 + nB(r) + nβ(r)) = 1.

with a similar result for the right phonons, taking L → R.
After performing the Bogoliubov transformation, substitut-
ing equations (B1) and (B2) in the Hamiltonian, one has to
eliminate the nonlinear, anharmonic interaction by setting to
zero the equation for the off-diagonal Bogoliubov coefficients.
Since we are interested in studying what happens in the cen-
tral, planar site of the cluster, after the synchronization tran-
sition, we restrict the transformation to the coefficients ur,C
and vr,C , neglecting contributions coming from combinations
of left/right coefficients, such as uL,L or vR,L, for example.
Therefore, the equation we have to eliminate from the off-
diagonal elements takes the form∑
r=L,R

~ωurCvrC +
K

2

√
nβ(C) (urCu−r,C + vrCv−r,C) = 0.

At this point, a few approximations are in order. First, we
use that v−r,C = v∗r,C and the same for the other Bogoliubov
coefficients. From the numerical results of the exact diagonal-
ization, we know that the Sr-phonon occupation in the central
position becomes greater than the lateral ones, thus we shall
restrict our subsequent analysis to the strong anharmonicity
case, K � Kc, and approximate〈

β†rβ
†
r′

〉
≈
〈
β†r
〉 〈
β†r′
〉

=
√
nβ(C)

√
nβ(C)δr,Cδr′,C ,

which is basically the same approximation we have already
used when discussing Kuramoto’s mean field equation. Using
these approximations, we are left with∑

r

[
~ωur,Cvr,C +

K

2

√
nβ(C)

(
|vr,C |2 + |ur,C |2

)]
= 0.

Solving for the expression inside square brackets we obtain
the Bogoliubov coefficients

ur,C =
1√
A

(
ω + γ

2γ

)1/2

,

vr,C =
1√
A

(
ω − γ

2γ

)1/2

, (B8)

where ~γ =
√

(~ω)2 −K2nβ(C) and A = 1 + nβ(C) +
nB(C). We see that in this limit the coefficients are actually
indepedent of r, enabling us to use only uC and vC . Now we
are ready to write down the total diagonal phonon Hamilto-
nian in terms of the new Bogoliubov phonons by substitution
of the transformation inside the diagonal, harmonic term of

the Hamiltonian in Eq. (2) and retaining only the central con-
tributions. This yields

H ′d = ~F (K)B†CBC , (B9)

where the natural frequencies ~F are given by the expression

~F (K) =
~ω
Aγ

[ω(1 + 2nβ(C))− γ]

+
K
√
nβ(C)

Aγ

√
ω2 − γ2(1 + 2nβ(C)). (B10)

We can see that, before synchronization, K < Kc, ~F =
0, because nβ(C) = 0, which is expected when compared
with the numerical results shown in the main text, i.e., the
new phonons are only present after the central site becomes
activated by the synchronization of the IQTPs. We have to
also consider the effect of the Bogoliubov transformation in
the original electron-phonon coupling of the Hamiltonian in
(Eq. 3). In terms of the new phonon operators we have for
bL + b†L, as an example{∑

r

(
u∗L,rβrBr + vL,rβ

†
rB
†
r

)
+
∑
r

(
uL,rβ

†
rB
†
r + v∗L,rβrBr

)}
,

where by performing the same procedure we used for the di-
agonal, harmonic terms b†LbL and b†RbR, we write the trans-
formed electron-phonon Hamiltonian as

H
′

el−ph = 2λnap

√
nβ(C) (uC + vC)

(
BC +B†C

)
,

where we used the numerical result from Fig. 2b) that
nel(L) = nel(R) for all K to simplify the notation to nap,
the electronic occupation in the apical positions of the cluster.
Finally, in terms of the Bogoliubov coefficients and together
with diagonal part (B9), the newly transformed Hamiltonian
with a novel central electron-phonon coupling is written as
H ′ = H ′d +H

′

el−ph

H ′ = ~F (K)B†CBC + λ′nap

(
BC +B†C

)
,

where the new coupling depends on the central Sr-phonon re-
lated occupation nβ(C) as

λ′ =
2λ
√
nβ(C)

√
2Aγ

(√
ω + γ +

√
ω − γ

)
. (B11)

To summarize, by separating the Oap − Sr−Oap triatomic
molecule and using a nonlinear, multi-modal Bogoliubov
transformation, we started with two oscillator communities
associated with bL, b

†
L and bR, b

†
R phonon modes, but we

ended up with three oscillator communities, with the addition
of the modes associated withBC , B

†
C . This introduces a novel

central phonon, located in the plane and related to the planar
oxygen oscillations, together with the original left and right
oscillations of the apical oxygens. Furthermore, those novel
planar vibrational modes couple to the electronic degrees of
freedom with a renormalized electron-phonon coupling given
by equation (B11), which gives rise to a new IQTP mode, now
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located in the copper oxide plane. To see how exactly the new
phonon, BC , couples to the central oxygen atom, Opl, let us
recall that within our 6-atom cluster one has a single excess
hole for all oxygen atoms

2nap + nC = 1→ nap =
1− nC

2
, (B12)

where nC is the electronic occupation of the planar Opl at
the center of the cluster. So, after applying the non-linear
Bogoliubov transformation we rewrite the central contribu-

tion of the electron-phonon transformed Hamiltonian in a way
that the new phonon BC couples to the central oxygen atom,
via its occupation, after the synchronization transition, when
nβ(C) > 0. Therefore, after a multimodal, non-linear Bo-
goliubov transformation, not only a newly phonon mode, as-
sociated to the planar oxygen displacements, appears, but it
also couples to the excess charge pumped to the central site,
giving rise to an extension of the IQTP’s to the plane and al-
lowing the description of the problem to be summarized in the
triple-well potential interpretation.
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