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We propose a new drag phenomenon, an interband magnon drag, and report on interaction effects
and multiband effects in magnon transport of ferrimagnetic insulators. We study a spin-Seebeck
coefficient Sy, a magnon conductivity om, and a magnon thermal conductivity xm, of interacting
magnons for a minimal model of ferrimagnetic insulators using a 1/S expansion of the Holstein-
Primakoff method, the linear-response theory, and a method of Green’s functions. We show that the
interband magnon drag enhances o, and reduces km, whereas its total effects on Sy, are small. This
drag results from the interband momentum transfer induced by the magnon-magnon interactions.
We also show that the higher-energy band magnons contribute to Sm, om, and km even for the
temperatures smaller than the energy difference between two bands.

I. INTRODUCTION

Magnon transport is the key to understanding spin-
tronics and spin-caloritronics phenomena of magnetic in-
sulators’ 3. For example, a magnon spin current is vital
for the spin Seebeck effect®* 7. Magnon transport is im-
portant also for other relevant phenomena® '3.

There are two key issues about magnon transport in
ferrimagnetic insulators. One is about multiband effects.
Yttrium iron garnet (YIG) is a ferrimagnetic insulator
used in various spintronics or spin-caloritronics phenom-
ena' 812, Tts magnons have been often approximated
as those of a ferromagnet. However, a study using its
realistic model'* showed that not only the lowest-energy
band magnons, which could be approximated as those of
a ferromagnet, but also the second-lowest-energy band
magnons should be considered except for sufficiently low
temperatures. Since the experiments using YIG are per-
formed typically at room temperature! 3891512 it ig
necessary to clarify the effects of the higher-energy band
magnons on the magnon transport. The other is about
interaction effects. The magnon-magnon interactions are
usually neglected. However, their effects may be drastic
in a ferrimagnet because they can induce the interband
momentum transfer, which is expected to cause an in-
terband magnon drag by analogy with various drag phe-
nomena'® 4% Nevertheless, it remains unclear how the
magnon-magnon interactions affect the magnon trans-
port.

In this paper we provide the first step towards resolving
the above issues and propose a new drag phenomenon,
the interband magnon drag. We derive three transport
coefficients of interacting magnons for a two-sublattice
ferrimagnet and numerically evaluate their temperature
dependences. We show that the interband magnon drag
enhances a magnon conductivity and reduces a magnon
thermal conductivity, whereas its total effects on a spin-
Seebeck coefficient are small. We also show that the
higher-energy band magnons contribute to these trans-
port coefficients even for the temperatures lower than
the energy splitting of two bands.

FIG. 1. Our ferrimagnetic insulator. The up or down arrows
represent the spins on the A or B sublattice, respectively. The
x, y, and z axes are also shown.

II. MODEL

Our ferrimagnetic insulator is described by

N/2 N/2

H=27Y"8-8-hY Si-h> S: (1)
(i.9) i=1 i=1

where the first term is the Heisenberg exchange interac-
tion between nearest-neighbor spins, and the others are
the Zeeman energy of a weak magnetic field (|h| < J).
(The ground-state magnetization is aligned parallel to
the magnetic field.) We have disregarded the dipolar in-
teraction and the magnetic anisotropy, which are usually
much smaller than J'4*!. For concreteness, we consider
a two-sublattice ferrimagnet on the body-centered cubic
lattice (Fig. 1); ¢’s and j’s in Eq. (1) are site indices
of the A and B sublattice, respectively. There are N/2
sites per sublattice. Our model can be regarded as a
minimal model of ferrimagnetic insulators because a fer-
rimagnetic state, the spin alignments of which are given
by S; =400 S4) for all i’s and S; =*(0 0 — Sp) for all
7’s, is stabilized for J > 0 with the weak magnetic field.
We set i =1, kg = 1, and a = 1, where a is the lattice
constant.

To describe magnons of our ferrimagnetic insulator,
we rewrite Eq. (1) by using the Holstein-Primakoff
method*?. By applying the Holstein-Primakoff transfor-



mation*®*° to Eq. (1) and using a 1/S expansion?3:44:46

and the Fourier transformation of magnon operators, we
can write Eq. (1) in the form
H = Hkg + Hint- (2)

Here Hykg represents the kinetic energy of magnons,

= (1 ) (1) o

q
where €4 = 2JoSB + h, EAB( ) = 2\/SASBJq, €EBB =
2JoSa — h, and Jq = 8J cos q; cos q2y cos 4= 2 ; Hing repre-
sents the leading terms of magnon-magnon interactions,
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We can also express Hixg as a two-band Hamiltonian by
using the Bogoliubov transformation®34°:

Hyp = lea(q)afioq + €5(q)BqBY), (5)

q
where e.(q) = h + Jo(Sp — Sa) + Aeq,
eslgg = —h + Jo(Sa — Sp) + Ae¢q, and
Acq = \JJ3(5a+S5)2 — 454852 For Su > Sp

we have €,(q) < €3(q). Note that the Bogoliubov trans-
formation is given by aq = (Ug)aatg + (Ug)apf} and
b; = (Uq)Battqg + (Uq)BBﬁJ;v where (Ug)aa = (Uq)p =
coshfq, (Ug)ap = (Ug) Ba = —sinh g, and these hyper-
bolic functions satisfy cosh20, = [Jo(Sa + SB)]/Aeq
and sinh 20, = (24/S4SpJq)/Aeq. Then, by using the
Bogoliubov transformation, we can decompose Hj,; into
the intraband and the interband components?”. Because
of these properties, our model is a minimal model to
study the two key issues explained above.

IIT. DERIVATIONS OF TRANSPORT
COEFFICIENTS

We consider three transport coefficients: a spin-
Seebeck coefficient Sy,, a magnon conductivity oy, and
a magnon thermal conductivity ;. They are given by
Sm = ng, Om — L117 and RKm — LQQ, where L#n7S are
defined as

Js = L1 Es + Li2 (_¥>’ (6)
Jjo =LaEs+ Lzz( VTT) (7)

Here js and jg are magnon spin and heat, respectively,
current densities, Fg is a non-thermal external field, and

VT is a temperature gradient. (Note that one of the
possible choices of Eg is a magnetic-field gradient?s.)
Lo; = L5 holds owing to the Onsager reciprocal the-
orem. It should be noted that although k,, is generally
given by Ky, = Lo — LQL'—III'Q, our definition Ky, = Lao is
sufficient to describe the thermal magnon transport at
low temperatures at which the magnon picture is valid
because the Los gives the leading temperature depen-
dence. Since a magnon chemical potential is zero in equi-
librium, jgo = jg, where jg is a magnon energy current
density. Hereafter we focus on the magnon transport
with Eg or (—=VT/T) applied along the z axis.

We express L,,;,’s in terms of the correlation functions

using the linear-response theory?34954 First, Ly is
given by
oR —aR (0
Lip = lim 12(‘*’)' 12( ), (8)
w—0 1w

where &%, (w) = ®15(iQ, — w +14d) (§ = 0+),

Tfl
Bia(i€) = [ dre LT T, (0)

and Q,, = 27Tn (n > 0). Here T is the time-ordering
operator®, and J% and J§ are spin and energy, respec-
tively, current operators. They are obtained from the

continuity equations® 57 (see Appendix A); the results
are
Z Z Ull/ xq[/ (10)
q LI'=A,B
= Z Z e (q lwa’ (11)
q LI'=A,B
where v]},(q) = (1 — &, )aEA—B(Q), Tqa = aq, Tqp = bl

x e x
ebp(q) = —€44(q) = ean <q>g#<q>, and €% 5(q) =

e54(q) = L(ean — epp)24ld (10)
and (11) we have omitted the corrections due to Hins
because they may be negligible?>. Then we can obtain
L1y by replacing JE in ®12(i€2,) by JE, and Loy by re-
placing J&(7) in ®12(i€2y,) by J5 (7). Thus the derivation
of Lis is enough in obtaining L,,’s. In addition, since
we can derive Ljs in a similar way to the derivations of
electron transport coefficients?3:33:50:54:58 " we explain its
main points below. (Note that the Bose-Einstein con-
densation of magnons is absent in our situation.)

By substituting Eqgs. (10) and (11) into Eq. (9) and
performing some calculations (for the details see Ap-
pendix B), we obtain

. In deriving Egs.

Ly =LY + L, (12)

First, LY,, the noninteracting Lio, is given by (see Ap-
pendix B)

1
Lh=—5> >

q vyv'=a,p

(@I (@), (13)



where vy, (q) = Zz,p:A,B Vi (@) (Ug)iw (Ug)irvs
elz/u/ (q) =

Zl,l':A,B e (@)(Uq)i(Uq)rrr, and
D < On(2) R R
I, (q) = dzTImGV (g,2)ImG,;(q,2). (14)

Here n(z) = (e*/T —=1)7!, GR(q,2) = [z — ealq) +i7] 7},

Gi(q,2) = —[z+€s(q) + i7]™', and v is the magnon
damping. Next, L},, the leading correction due to the

first-order perturbation of Hiy, is given by (see Appendix
B)

L/12 2N2 Z Z 1/11/2 1/31/4 (qI)VV1V2V3V4 (qv ql)
qq v1V2,V3,V4
< I, (@) I (@) + IS (@) IS, ('), (15)
where
1@ = [ denamicHa )6 a2 (19)

Virvovsva (@, 4") = 4Jq—q' Z (U. )lm (Uq)fu2 (Uq’)iug (Uq’)lwu
and [ is B or A for | = A or B, respectively. Then we
obtain

Lin = LYy + Ly, Lao = Lo, + Liy, (17)
where LY, L}, LY,, and L), are obtained by replacing
el (q) in Eq. (13) by —v,.(q), €f,,,(q") in Eq. (15) by

—vl . (@), v, (q ) in Eq. (13) by —e},,(q), and v}, ,,(q)
in Eq. (15) by —ey,,(q), respectively.

Since we suppose that the magnon lifetime 7 = (2)~!
is long enough to regard magnons as quasiparticles, we
rewrite Egs. (13) and (15) by taking the limit 7 — oo.
First, Eq. (13) reduces to

LYy ~ LYy, + L12ﬁa (18)

where

oL Z o7 5n[€u((I)] '
12IJ VIJ 861/(‘])

(The detailed derivation is described in Appendix C.)
This expression is consistent with that obtained in the
Boltzmann theory with the relaxation-time approxima-
tion®.  Equation (18) shows that LY, ~ LY, at
sufficiently low temperatures for Sy, > Sp owing to

agi"‘(g’))] > an[eﬁ((q) Similarly, we obtain

(19)

LY ~ LY, + Lllﬁv L3y ~ Ly + L225a (20)
where LY,, and LY,, are obtained by replacing €%, (q) in
Eq. (19) by —vy, (q) and by replacing vy, (q) by —e7, (q),

respectively. Then, as we show in Appendix C, Eq. (15)
reduces to

L/12 ~ L/12 intra + L12 interl + L12 inter2» (21)

where L5 ;1. i the correction due to the intraband in-
teractions,

/ R 2 /
12-intra = L12 intra-a T L12-intra-g> (22)
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dey(q)  Oen(q) '
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and Lo i ier1 @0d Lo 4er0 are the corrections due to the
interband interactions,
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AV /
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Sy N2 Z ’Uaﬁ TVozBUV(q q )
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Here the V., 1,050, (q, q@')’s are given by
Vuvuv(qv q/) = Vaaﬁﬁ(qa q/) = Vﬁﬁaa(qa q/)
= 2J4_q sinh 20,4 sinh 20, (28)
Vuuaﬂ (Q7 ql) = VOZBUV(an Q)
= — 2J4_q sinh 204 cosh 204 (29)

Equation (24) shows that the interband components
of the magnon-magnon interactions cause the energy-
current-drag correction and the spin-current-drag cor-
rection, which are, in the case for S4 > Sp, the first
and the second term, respectively, of Eq. (24). Further-
more, Eqs. (26) and (27) show that other interband com-
ponents cause the energy-current-drag corrections L, ’s
and the spin-current-drag corrections Lg,’s. Since these
interband components cause the interband momentum
transfer, Lo itor; and Lo iers are the corrections due
to the interband magnon drag. The similar corrections
are obtained for L}, and Lb,:

/ /
Lll ~ Lll intra + L 11-interl + Lll inter2»

i !
Ly ~ Lo ingra + Lo intert + Loz inter2s



/ / s
where L7 e a0d Lo i are the corrections due to
the intraband interactions,

L/ - Llll intra-o + Llll intra-3» (32)

11-intra
Liitcintras =373 Z U (@05, (@) Vv (2. 4')
/
aziizin” 83522%”7 9
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Loy intra =7z Z el (@el, (@) Viuw(a.q)
O ()] Ol (') )

dey(q)  Oe(q') '

/ / / /
and Lll—intcﬂ? Lll—intcr2’ L22—intcr1’ and L22—intcr2 are the
corrections due to the interband interactions,
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de,(q) ca(q’) +es(q')
As well as LIlZ—intcrl and L/12—intcr27 LIll—intcrl’ Llll—intcr27

Lis intorts and Lo ;oo are the interband magnon drag
corrections.

L/22—intcr2—u = )TVVVO&ﬁ (q q )

IV. NUMERICAL RESULTS

We numerically evaluate Sy, am, and k. We set J =

, h =0.02J, and (Sa,Sp) = (3, ) Sa:Sp=3:2is
cons1stent with a ratio of FeT to Fe® sites in the unit cell
of YIG*!. The reason why (54, Sg) = (2, 1) is considered
is that the transition temperature derived in a mean-field
approximation in this case with J = 3 meV at h = 0
li.e., Tc = (16/3)JSa(Sp + 1) ~ 557 K] is close to the
Curie temperature of YIG, T¢. To perform the momen-
tum summations numerically, we divide the first Brillouin

zone into a N,-point mesh and set N, = 243(= N/2) (for
more details, see Appendix D). The temperature range
is chosen to be 0 < T < 10J(~ 0.6T;) because a previ-
ous study®® showed that the magnon theory in which the
magnon-magnon interactions are considered in the first-
order perturbation theory can reproduce the perpendicu-
lar spin susceptibility of MnF5 up to about 0.67x, where
Tn is the Néel temperature. For simplicity, we deter-
mine 7 by 77! = y9 + T + T2, where 7o = 1072J,

1 = 107%, and 72 = 1073, (The results shown below
remain qualitatively unchanged at h = 0.08J and 0.16J,
as shown in Appendix E.)

We begin with the temperature dependence of Sy,.
Figure 2(a) shows that in the range of 0 < T" < 2J
Ly =~ LY,, holds, whereas for T > 3J the contribu-
tion from LY, 5 is non-negligible. For example, at T' = 6.J

we have L{,/L{,, ~ 0.7. This result indicates that the
higher-energy band magnons contribute to Sy, even for
T < [ep(q) — €a(q)] = 7.96J. This may be surprising
because their contributions are believed to be negligi-
ble at such temperatures. Then, Fig. 2(a) shows that
the magnitude of Sy, is enhanced by the intraband cor-
— LY,], whereas it is reduced by
the interband corrections L}, .. .[= L% — L{%] and
Liyiion|= L% + Lty — L] (TABLE I). Among these
corrections, Lo . gives the largest contribution. (As
we will see below, this contrasts with the result of L
or Loo, for which the largest contribution comes from
LY inter2 OF Lo o0, Tespectively.) The reason why
the interband magnon drag corrections L, iio and
L5 inter1 are small is that the energy-current-drag con-
tributions and spin-current-drag contributions [e.g., Lf,,
and L, in Eq. (25)] are opposite in sign and are nearly
cancelled out. Figure 2(a) also shows LYy + L}y ~ LY.
These results suggest that the total effects of the inter-
band magnon drag on Sy, are small.

We turn to oy, and k. Their temperature depen-
dences are shown in Figs. 2(b) and 2(c). First, we
see the [-band magnons contribute to L1y for T > 4J
and to Loo for T > 3J. This result is similar to
that of L1 and indicates that the multiband effects
are significant also for o, and kp. The largest ef-
fects on Los are due to the property that e, (g) in-
cludes €,(q) [more precisely, e2,(q) = vZ_(q)ea(q) and
egs(@) = —v5s(q)es(g)]. Then, Figs. 2(b) and 2(c)
show that oy, is enhanced by Liiintras Liiinterss and
LY inter1» and that sy, is enhanced by Lbo ;... and re-
duced by Lby i iere and Lo ;1 (TABLE I). [Note that

rection LI12—intra [: ng)

b a
L,/un—intra = LLW) - L,LOMW L,Iun—intcr2 = Li”? - LLW)? and
L inters = Lpy + Ly — L) ] In contrast to L}, the

largest contr1but10ns to L}, and Lf, come from L ;om0
and L22 inter2>» respectlvely Since Lll inter2» Lll interl>
Lo interas and Lho o o are the interband magnon drag
corrections, the above results suggest that the interband
magnon drag enhances o, and reduces k. This implies
that the interband magnon drag could be used to enhance
the spin current and to reduce the energy current. Since
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FIG. 2. The temperature dependences of (a) Sm(= L12), (b) om(= L11), and (c) £m(= La2) for (Sa, Sp) = (2,1) at h = 0.02.J.
LE?’I) and LS;) are deﬁned as L;El%) = L?“I + L;Ln-intra and LS;) = L?H] + L/’,M]—intra + L;,Ln—intcr27 respectively‘ NOte that L?M] -
LYa + L% and L}, = Ll intea + Liintert + Lim-intera- For Sm, the Ly5 is non-negligible for 7' > 3.J and the largest term
of the drag terms is Lo jntra, which enhances |Sw|. For om, the L?m is non-negligible for 7" > 4.J and the largest term of the

drag terms is L iytera, Which enhances oy,. For kp, the ng is non-negligible for 7" > 3J and the largest term of the drag
terms is Lo inera, Which reduces xm. The effects of the other drag terms are summarized in TABLE 1.

TABLE I. The effects of the drag terms on Li2(= Sw), L11(= om), and Laa(= Kkm). |L12| is enhanced by L’ ... and reduced
by Lisinter-1 and Lis inter-o. L11 is enhanced by Li1ingra, Lii-inter-1, and Liq_inter-2. Loz is enhanced by L ine and reduced

/ /
by Laointer-1 and Lo inger-2-

Transport coefficient Intra term Inter-1 term Inter-2 term
|L12] Enhanced Reduced Reduced
L1 Enhanced Enhanced Enhanced
Loo Enhanced Reduced Reduced

this drag results from the interband momentum transfer
induced by the magnon-magnon interactions, its effects
could be controlled by changing the band splitting energy
considerably via external fields. (Such control is mean-
ingful if and only if the magnon picture remains valid.)
Note that for ferrimagnetic insulators the effects of the
weak magnetic field on the band splitting energy are neg-
ligible because this energy for h = 0 is of the order of J.
(The actual analysis about the possibility of controlling
the interband magnon drag is a future problem.)

V. DISCUSSIONS

We discuss the validity of our theory. Since Hiy
could be treated as perturbation except near T, we be-
lieve our theory is appropriate for describing the magnon
transport for T' < T¢. It may be suitable to treat the
magnon-magnon interactions in the Holstein-Primakoff
method because the unphysical processes that can ap-
pear in a S = 1/2 ferromagnet®! are absent in our case.
Then the effects of the magnon-phonon interactions may
not change the results qualitatively. First, since the
interaction-induced magnon polaron occurs only at sev-
eral values of h%2, its effect can be avoided. Another effect
is to cause the temperature dependence of 79354 and it
could be approximately considered as the temperature-
dependent 7. Although the phonon-drag contributions

might change Sy2', experimental results®® suggest that
such contributions are small or negligible.

We make a short comment about the relation between
our theory and the Boltzmann theory. Our theory is
based on a method of Green’s functions, which can de-
scribe the effects of the damping and the vertex correc-
tions appropriately. In principle, these effects can be
described also in the Boltzmann theory if the collision
integral is treated appropriately®®. However, in many
analyses using the Boltzmann theory, the collison inte-
gral is evaluated in the relaxation-time approximation,
in which the vertex corrections are completely omitted.
Since our interband magnon drag comes from the ver-
tex corrections due to the first-order perturbation of the
quartic terms, the similar result might be obtained also
in the Boltzmann theory if the interband components of
the collision integral are treated appropriately.

We remark on the implications of our results. First,
our interband magnon drag is distinct from a magnon
drag in metals. For the latter, magnons drag an elec-
tron charge current via the second-order perturbation
of a sd-type exchange interaction®. Second, the inter-
band magnon drag is possible in various ferrimagnetic
insulators and other magnetic systems, such as anti-
ferromagnets?”°6:66 and spiral magnets®™%7. Note that
the possible ferrimagnetic insulators include not only
YIG, but also some spinel ferrites, such as CoFesO4 and
NiFe,0,4%%:%9.  Third, our theory can be extended to



phonons and photons. Thus it may be useful for study-
ing transport phenomena of various interacting bosons.
Fourth, our results will stimulate further studies of YIG.
For example, the reduction in |Sy,| due to the multiband
effect could improve the differences between the voltages
observed in the spin-Seebeck effect and obtained in the
Boltzmann theory of the ferromagnet®® at high temper-
atures because the voltage is proportional to Sy,.

VI. CONCLUSION

We have studied S, om, and kK, of interacting
magnons in the minimal model of ferrimagnetic insu-
lators. We derived them by using the linear-response
theory and treating the magnon-magnon interactions as
perturbation. We showed that some interband compo-
nents of the magnon-magnon interactions give the cor-
rections to these transport coefficients. These corrections
are due to the interband magnon drag, which is distinct
from the magnon drag in metals. Then we numerically
calculated the temperature dependences of Sy, oy, and
km for (Sa,Sp) = (2,1) and h = 0.02J. We showed
that the total effects of the interband magnon drag on
S become small, whereas it enhances o, and reduces
km- The latter result may suggest that the interband
magnon drag could be used to enhance the spin current
and reduce the energy current. For Sp,, the interband
corrections become small because they lead to the energy-
current-drag contributions and spin-current-drag contri-
butions, which are opposite in sign and are nearly can-
celled out. We also showed that the contributions from
the higher-energy band magnons to Sy, om, and sy, are
non-negligible even for the temperatures lower than the
band splitting. This result indicates the importance of
the multiband effects.
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Appendix A: Derivations of Egs. (10) and (11)

We explain the details of the derivations of Jg and
J%, Egs. (10) and (11). As described in the main text,
they are obtained from the continuity equations. Such a
derivation is explained, for example, in Ref. 55.

We begin with the derivation of J§. (Note that the fol-
lowing derivation, which is applicable to collinear mag-
nets, can be extended to noncollinear magnets.) We sup-
pose that the z component of a spin angular momentum,

. .
SZ,, satisfies

dSZ (S) 70

—m V. (A1)

where j,(ns ) is a spin current operator at site m. Using

this equation, we have
(S Rusi) = - ZRmv 5
" _ ZJ(S) _

Here [ is A or B when the sum ), = takes over sites on
the A or the B sublattice, respectively. In deriving the
second equal in Eq. (A2) we have omitted the surface
contributions. Jg is given by the x component of Jg,
where

(A2)

Js=J +J§). (A3)
Combining Eq. (A2) with the Heisenberg equation of
motion, we obtain

J1% =03 R, [H,5%], (A4)

where H is the Hamiltonian of the system considered.
Then, since we focus on the magnon system described
by H = Hkg + Hint, where Hxg and Hi, are given in
the main text, and treat Hj, as perturbation, we replace
H in Eq. (A4) by Hkg and S7, in Eq. (A4) either by
Sa— ajnam forl = A or by —Sp —|—bjnbm forl = B; as a
result, we obtain

JA _ZZZR"”L 137 m]
_ZZZR,” 0., —Sp + bl bm],

(i,5) m

(A5)

(A6)

where Hxp = 32 ; hY; and hY; = (2JSp + 8 jh)ala; +

(2JS4—08; ;h)bib;+2.J/SaSp(albl+a;b;). Note that the
replacement of H by Hxg may be suitable because the
corrections due to Hiy are next-leading terms; and that
the replacement of S7, by S4 — ajnam or by —Sp+ binbm
corresponds to the Holstein-Primakoff transformation of
the ferrimagnet. After some algebra, we can write Eqs.
(A5) and (A6) as follows:

Y = —i2J\/5455 > Ri(aib; — albl),
(i,3)
5) = i2J\/ SASB Z Rj(aibj — aibj)
(4,9

(A7)

(A8)

Combining these equations with Eq. (A3), we have

Js =—i2J\/SaSp Y (R — R;)(aib; — alb}).
(i)

(A9)



Then, by using the Fourier coefficients of the magnon
operators,

2 ) 2 .
=\ 2o aae ™ b =[5 Db, (A10)
q q

we can rewrite Eq. (A9) as follows:

aJ,
Js = —2J/S4Sp Z 6—;(aqbq +albh)
_ Z aEAB
e (Ri=Rj) = 8] cos & cos L cos &

where Jg = J 37 - L,
eap(q) = 2J\/SASBJq, TgA = aq, and Tqp = bq. Note
that z is the number of nearest-neighbor sites (z = 8).
The 2 component of Eq. (A11) gives Eq. (10).

In a similar way we can obtain the expression of J§.
(The following derivation is similar to that for an anti-
ferromagnet®.) First, we suppose that the Hamiltonian
at site m, h,,, satisfies

B:qu + A:EqB) (A11)

dhm,

) =0
dt +v J’” ’

(A12)

where jf,;E ) is an energy current operator at site m. Be-

cause of this relation, the energy current operator Jz can
be determined from

Jp=J8 + I3, (A13)
where Jl(E) is given by
JE = Z Ry [P, ] (A14)

the sum ) take over sites on the A or the B sublattice,
and the sum ) take over sites on sublattice I. Then, to
calculate the commutator in Eq. (A14), we consider the
contributions only from Hkpg and neglect the corrections

due to Hiyg, as in the derivation of Jl(S). As a result, hy,
for m € A is given by

ho .\ = (2SpzJ + h)a
(A15)

and that for m € B is given by

K 5 = (2842 — h)bl by, +\/SASBZJW (aibm + albl). [Eq

(A16)

Here m € A or B means that m is on the A or B sublat-
tice, respectively, and J;; = J;; = J for nearest-neighbor
sites ¢ and j. Note that ZN/2 hY 4 ZN/2 h)p = Hgg. In
our definition, the energy current operator includes the

am—l—\/SASBZJmJ (amb; +al bT)

conribution from the Zeeman energy [see Eq. (Al4)-
(A16)]. Combining Egs. (A15) and (A16) with Egs.
(A13) and (A14), we have

mAv nA +ZZR

JE—ZZR

+ZZR’1 hmA7 nB +ZZR’1 mB’h ]

va h?zB]

(A17)

Then we can calculate the commutators in Eq. (A17) by
using the commutation relations of the magnon opera-
tors and the identities [AB,C] = A[B,C] + [A, C]B and

[A, BC] = [A, B]C 4+ B[A, CJ; the results are
[hmA7 nA] SASB Z Jm]Jn] (a Ay, — ajnan), (A18)
J
(W hog] = SaSe Z Jim Jin (bl — b1 ), (A19)
(s hnp] = SaSs Z TinTm (b;bh, = bub})
j
+[2J2(Sa — Sp) — 2h]\/SaSE Jmn
X (@b — al bl)
+ 5458 Z Janni(ajam - ainai), (AQO)
[h’mBa ] SASB Z Jmn']ng (b b - bjbjn)

J
+ [—QJZ(SA — SB) + Qh]\/ SaSBJnm
X (anbm — a;flbin)
+ SASpB Z Jnmei(aLai — ajan). (A21)

By substituting these equations into Eq. (A17) and per-
forming some calculations, we obtain

J5 =20 Y (R — Run)SaSpJnjJjmalam

m,n,j
-2 Z (Rn - Rm)SASBanszbann
+i Y (Rn— Rp)[2J2(Sa — Sp) — 2h]/SaSp
X Jn (@mbn, — al bl). (A22)
As in the derivation of Jg, we can rewrite Eq. (A22)

by using the Fourier coeflicients of the magnon operators
. (A10)]; as a result, we have

aJ,

Jo=-Y 2\/SASBJq2\/SASB(9—q(a:rIaq — bgb})
q
oJ T
— [Jo(Sa — SB) — h|24/SaSB Bq( abq +ab)
(A23)



Since eaa = 2JoSB+h, egp =2J9Sa—h, and eap(q) =
2V/S4SBJq, we can write Eq. (A23) as follows:

Jg = —ZEAB(Q)M(GLCMJ

— bb})
q aq

1 0
+Z— €AA — 633)%‘;(1)

= § § ell’ lqu’

q LI'=AB

(agbq + a};b};)

(A24)

)3EAB(Q)

where eaa(q) = —epp(q) = —eanlq and

eas(q) = epalq) = 3(ean — fBB)aEAB( ),
(A24) for the x component is Eq. (11).

Equation

Appendix B: Derivations of Egs. (13) and (15)

We derive Egs. (13) and (15). As described in the
main text, their derivations can be done in a simi-
lar way to the derivations of electron transport coeffi-
cients?3:50:54:58: the transport coefficients can be derived
by using a method of Green’s functions®'. We first de-
rive L{,, the noninteracting Li2, and then derive L7,,
the leading correction to Lis due to the first-order per-
turbation of Hiyg.

First, we derive LY,, Eq. (13). Substituting Eqs. (10)
and (11) into Eq. (9), we have

e OV

q.q' 11,l2,13,14=A,B
71
« / dre™ T (Toaly (7)aqn, (T)al,, 2q0.)

-y ¥

q,q9’ l1,l2,l3,l4=A,B

x G§1[Zl3l4(q5q/;ZQn)5 (Bl)

‘1)12 ZQ ’Ulzllz (q)ei,h; (q/)

Uzwlzz ((I)efgu (ql)

where €, = 27Tn with n > 0. (Note that the n and
m used in this section are different from those used in
Appendix A.) Equation (B1) provides a starting point
to derive LY, and L{,. To derive L{,, we calculate

Z(Silm (g, 4q’;i,) in the absence of Hiy by using Wick’s

theorem®!; the result is

11 . .
Gl(1l2l3l4 (q. q’;iQ n) 5q7q/TZ Giy15(q, 1% + i)
X Gl4l1 (q, iQm)v (B2)

where G/ (q, iQ,,) is the magnon Green’s function in the

sublattice basis with €, = 27T'm and an integer m,

1
Gu(q,im) = —/ dTGZQmT<TT$ql(7’)x:ru/>- (B3)
0

Then the magnon operators in the sublattice basis, x4
and z! l, are connected with those in the band basis, x4,

and zf

4v» through the Bogoliubov transformation,

Tql = Z (Uq)luxquu (B4)

v=a,l

where zg0 = g, Tqs = ﬁ};, (Uq)aa = (Uq)Bp = coshéby,
and (Uq)ap = (Ug)Ba = —sinhfy; as described in the
main text, these hyperbolic functions satisfy cosh 204 =
Jol5450) and sinh 20, = 25529 Thus Gur(q, i)
is related to the magnon Green’s function in the band
basis, G, (q,iQ,):

Gu(q,im) = > (U (Ug)inGu(q, i),  (BS)
v=a,B
where
Go(q,i0 )—; Gslq, i )——;
A = O —ealq)’ T T T, Fea(q)
(B6)

Combining Eq. (B5) with Egs. (B2) and (B1), we have

P12 (i€2n) :__Z dow (@)

q vy'=a,p

x T Z Gu (q, iQner)Gv/ (Qa ZQm)

1 .
=32 O @, @G, (i),

q v'=a,B
(B7)
where
@)= > v, @Ug)w (Ug)iw, (B8)
l1,ls=A,B
@=L @UuUgiw.  (BY)
l3,l4=A,B

Then we can rewrite GU )(q, i€,) in Eq. (B7) as follows:

2%

d

c 2mi
+T[Gu (q7 iQ71)Gu/ (q, 0) + Gu (q7 O)Gu/ (q7 77:Qn)]a
(B10)

where n(z) is the Bose distribution function, n(z) =
(e*/T —1)~', and C is one of the contours shown in Fig.
3. Using Egs. (B10) and (B6), we obtain



(a) z  ® z © @ 1z
€a(q) —es(q) €a(q) —¢5(q)
N, N . TSGR R
\_ ____________ ES____./ ;______________6;_;51_)___/ __j_ei(_qi____—__’;./ E’____\/;STT_’T/

FIG. 3. The contours used for the integrations in (a) G,gi)(qJQnL (b) Gg;)(qJQnL (c) Ggi)(qJQnL and (d) Gg;)(qJQn).
The horizontal dashed lines correspond to Imz = —€,,.

W@ i) = [ ) {GE @+ 10)(G (0.2) — G a.2)] + [Ga ) - G @, ]G (a2 — i90) . (B1)

where G®(q, 2) is the retarded magnon Green’s function,

1

R _ -
Ga(qu)_ Z+€ﬁ(q)+l’}/,

, Gi(q,2) = — (B12)

z—€alq) +iv

G4 (q, 2) is the advanced one, and 7 is the magnon damping. By combining Eq. (B11) with Eq. (B7) and performing
the analytic continuation €2, — w + id with § = 0+, we have

> dz
R
O (w) = P12(iQn — w +i6) = Zq: Z_: ) () /_OO o2
x {GR(a.2 +w)GH (a,2) - G (@, 2)] + [GR(a,2) — G (g 2)]G(a, 2 — ) }.
(B13)
By using G(z +w) = G(z) + waG(z) + O(w?) and performing the partial integration, we obtain
R \_ @R
L% = lim @ (w) ‘1’12(0)
w—0
dZ 3”( ) [ AR R A A A
> Z @) | =GR (a.2) — 26 (a. )G (a.2) + G (a.2) G (a.2)|
q v'=a,p -
1 - - dz On(z
:N Z Z Uv’v(q)euv’ (q)/ T 8(2 )I GR(Q7 )ImGIF}’ (q7 Z) (B14)
q v'=a,B o0

In deriving this equation we have used the symmetry relations v¥ (g) = v*,(q) and €%, (q) = ¢*,,(q). Equation
(B14) is Eq. (13).

Next, we derive L},, Eq. (15). By using Eq. (B1), we can write the correction due to the first-order perturbation
of Hi as follows:

-1 -1
ADq5(i2,) NZ Z vfll2(q)efgl4(q')/0 drelQ"T/O d7'1<T7-{E;rIl1(7’)qu2(T)IL/lSIq/l4Hint(T1)>. (B15)

q,q’ l1,l2,l3,l4=A,B

[Note that Hi,; has been defined in Eq. (4).] By using Wick’s theorem®', we can calculate
<T7.332;ll(7')33ql2 (T)J:L,l3:z:q/l4Hint(7'1)>; the result is

1
<T qul( )quz (T)lellgqul4Hint(Tl)> == N Z Visisizis (q7 ql)Glsll (q7 71— 7) Gl (q7 T= Tl)
ls,le,l7,ls=A,B

x Gy, (q',71)Glis(d's —m1), (B16)
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where Gy (g, 7) =T, e~ mT Gy (q,i1n),

(5 7)7
4dg o Is=1lg=11g=1; =1),
q—q
/ 2Jg\/ 24 (s =1s = B,lz = 1,ls = 1),
Vistetrta (@ 4') = 2Jq §—§ (s =11l =11; =ls = B), (B17)
2g\ /82 (=16 = Alr = 1,lg = 1),
2.J4 §—§ (Is = Llg = 1,17y = Ig = A),

and [ = B or A for | = A or B, respectively. Then, by substituting Eq. (B16) into Eq. (B15) and carrying out the
integrations, we obtain

Ad15(i2y,) 2 Z Z of 1, (@)et 1, (@) WVisiginis (@, 9)T? Z Gis51,(q,10) Gla16(q, 1 4m)
q,q" l1,l2,+ ls=A,B m,m/’
X Gl7l3 (q/, iQn+m/)Gl4lg (q/, iQm/)- (Blg)

Furthermore, we can rewrite this equation by using the Bogoliubov transformation [i.e., Eq. (B4)]; the result is

A(1)12(7/Q N2 Z Z U;fl Vo (q)ezzfg |2 (q/)Vm Vov3ly4 (q q )AGVlllVQ V3 1/4( q, q/; ZQn)u (Blg)
q.q' v1,v2,v3,va=a,f
where
Virvavsvs (Q7 ql) = Z Visisizls (Q7 ql)(Uq)lsul (Uq)lal’z (Uq’)l71/3 (Uq’)l8V47 (B20)
I5,l6,l7,ls=A,B
AGV1111/21/'§U4( q, q/§ Q) = T? Z Gy, (‘L iQm)Guz (‘L iQpym) G, (qlv iQnym )Gy (qlv Q). (B21)
Since v} ., (q) and ¢}, (q") are odd functions in term of ¢, and ¢, respectively, and G (q,€2,,)’s are even functions,

the finite terms of V1,040, (¢, ¢') in Eq. (B19), i.e., the terms which are finite even after carrying out »°, ./, come
only from Vappa(q,q') = Veaanr(q,q’') = 4Jq—¢ [Eq. (B17)]; because of this property, we can replace Eq. (B20) by

VV1V2V%V4 q, q Z 4‘]‘1 q lVl (UQ)ZU2(U‘1/)[I/3(U‘1/)ZV4' (B22)
I=A,B

Then, as in G )(q, i€,) [Eq. (B10)], we can replace the sums in Eq. (B21) by the corresponding integrals:

1274

d &
AGV111122V2V4 (q7 q/; ZQ”) = [/ _Zn(z)Gm (qa Z)sz (q, z+ ZQn)+A} [/ —n( /)Gu3 (q’, 2+ iQn)GV4 (q/7 Z’)+A/}
C 271, o 271
= G0 (q,i2,)G0), (q', i), (B23)

Where A == T[qu (qa O)Guz (qa ZQn)+Gu| (Q7 _iQn)Gug (qa 0)]7 A/ = T[Gug (qla ZQn)Gu4 (qla 0)+Gu3 (qla O)Gu4 (q/7 _ZQn)]v
and C or C’ is one of the contours shown in Fig. 3. By substituting Eq. (B11) into Eq. (B23) and performing the
analytic continuation i€, — w + 0 (6 = 04), we have

1 T T
= - m Z Z vu1u2 (q)ev;;m (q/)vm Vo3l (Qa q/)

q,q9' v1,v2,v3,v4=0,f3

< [ amne {165 02 - G (@68 .5 + ) + G (0.2~ (G (0.9 - G (a2

211

<[ SE G + G — G (0 ]+ (G0 — G (a6 (a2 — )} (820

o 27i
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Then, by performing the calculations similar to the derivation of Eq. (B14), we obtain

w—0 )

ww
1 xT xT
=maE Y 2 U (@ (@)W (4.6 | FLL (@FG), (@) + B (@F, (a)]. - (B25)

q,q9' v1,v2,v3,va=a,f3

where

F@ =3 [ 2 6Ma 216k a2 + Gha )G a.2) — 262 (@ 2)G .2)]

vv oo 82
=2 / dzag—(z)ImGB(q,z)ImGB(q,z), (B26)
o z
F) = [ ) [650 )G 0 #) - G G )
— 92 / d2'n(2") {Rer(q’,z’)Ime},(q’,z’)+ImG?(q’,z’)ReGE(q’,z’)] (B27)

A combination of Egs. (B26), (B27), and (B25) gives Eq. (15).
[

Appendix C: Derivations of Egs. (18), (19), Combining these equations with Eq. (13), we have
(21)—(27)

We explain the details of the derivations of Eqgs. (18),
(19), (21)—(27). These equations are obtained by deriving
the expressions of LY, and L/, in the limit 7 — oo, where
7 = (27)~! is the magnon lifetime.

First, we derive Eqgs. (18) and (19). Using Eq. (B12), L9 ~ Lyq + Ly, (C6)
we have onlen(q)]
1 nle,(q
L%, = < > b (e, (@) — . (C7)
I R — _ Y 12v N 122 1272 B .
mG, (g, z) @ (C1) p, €, (q)
g
ImG?(q, z) = (C2)

[z + es(@))? + 2

Since 7 — oo corresponds to v — 0, we can express

1. (q) [i.e., Eq. (14)] in this limit as follows:
10 (q) ~ onlea(q)] /OO 3 72 These are Egs. (18) and (19).
o Oea(q) J-oo {lz—€al@)]® +97}?
— 1 8”[604(‘1)] (03)
2y Oea(q) Next, we derive Eqs. (21)—(27). Since L}, is given by
0 7w Onles(q)] c4 E% (15), the remaining task is to derive the expression of
5ﬁ(Q) ~ ﬂiaeﬁ(q) (C4) Il(w,) (@) in the limit 7 — co. By performing the similar

calculations to the derivations of Egs. (C3)—(C5), we
103(9) = Tso(a) ~ 0. (G5 obtain
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/OO dzn(z)ReGR(q, 2)ImGR(q, 2) = —v /jo dzn(z){[z _Zea_(;)oigq—?— _
e [T g 211 1 7 9nlea(q)]
= 7/,Ood )5:4 2[z—ea(q)]2+72} 2 Denlq) | (C8)
= R o 7 s z—¢€a(q) o nl=es(a)]
| aentemeGta amGR ez = [ den(o) o o e~ e A
(C9)
= T 2+ esla)  nleala)
| dentemeata amGE @) = [ deno) o S ey~ re s (10
/ dzn(z)ReGjj (q, )ImGg(q,z) = —7/_ dzn(z){[z +Z€;Eq€ﬁg‘1}— e
e [T e 211 1 . _Tonles(a)]
== | o) 5 A (c1)
I
By combining these equations with Eq. (16), we can  and
express (1 ,) in the limit 7 oo as follows:
Y IVV ( ) thel ' - fu L/12—inter2 = Z (L;EU_'—L/SV)? (019)
v=a,f3
IéIOIL) (q) ~ 6;[6@((%)], (012) L;’BV = % Z]USV(q)ezﬁ(q/)Vuvaﬁ(qa q/)T
o onle(a)] onfe, ()] nlealq')] = nl=es(q")]
Ios' (@) ~ —m =5 ) o ) ole) @) d) (C20)
1% (g) = 17(q) ~ w"[ﬁi‘g)—jj;(jlﬁ)(‘lﬂ. (C14) L&, =~ gvzﬁ<q>eiu<q’>vaﬁw<q, q)r

nlea(q)] — n—¢p(q)] Inle,(q')]
e@rol @) Y
Substituting these equations and Egs. (C3)—(C5) into

Eq. (15), we obtain In Eq. (C18), 7 = § or « for v = « or f3, respectively.
Equations (C15)—(C21) are Eqgs. (21)—(27).
Ly~ L + L, + Lo intors C15
12 12-intra 12-interl 12-inter2 ( ) Appendix D: Remark on the numerical calculation
where To calculate L?m and L;m numerically, we perform the

momentum summations using a Ng-point mesh of the
first Brillouin zone. Since the sublattice of our ferrimag-
netic insulator is described by a set of primitive vectors,

/12—intra = Z L12 intra-v> (016) a; = t(l 00), az = t(O 10), and a3 = t(o 0 1), the prim-
itive vectors for the reciprocal lattice are by = (27 0 0),

v=a,f
b = (0 27 0), and by = *(0 0 27). Thus, in the periodic
ig_intra_y = - N2 Z vy, (q)er, (qI)TVVIJVIJ(q7 q') boundary condition, momentum q is written in the form
7 m, m m
onle, onle,(q' =—b —p —b D1

861,() de(q’')

.. _ { Y Voo (a0, @ where 0 < m, < N, 0 < my, < Ny, and 0 < m, <
12-interl Z N2 Z Ui (@)€5 (a.4') N, with N,N,N, = N, = N/2. As a result, the first

P 6 Brillouin zone is divided into the (N, N,N.)-point mesh.
X nle,(q)] n[ef,(q )l }, (C18) In the numerical calculation we set N, = N, = N, = 24
dev(q)  Oen(q') (ie., N, = 24%).

v=a,p




Appendix E: Numerical results at h = 0.08J and 0.16J

We present the additional results of the numerical cal-

culations, the temperature dependences of Sy, oy, and
km at h = 0.08J and 0.16J. They are shown in Figs.
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18
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20

21

22

A(a)-4(f).

13

Comparing these figures with Fig. 2, we see

the results obtained at h = 0.08J and 0.16J are similar
to those obtained at h = 0.02J. Namely, the properties
obtained at h = 0.02J remain qualitatively unchanged
for other values of h.
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