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We numerically study both the avalanche instability and many-body resonances in strongly-
disordered spin chains exhibiting many-body localization (MBL). Finite-size systems behave MBL
within the MBL regimes, which we divide into the asymptotic MBL phase, and the finite-size MBL
regime; the latter regime is, however, thermal in the limit of large systems and long times. In both
Floquet and Hamiltonian models, we identify some “landmarks” within the MBL regimes. Our
first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by
measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our
estimates indicate that the actual MBL-to-thermal phase transition occurs much deeper in the MBL
regimes than has been suggested by most previous studies. Our other landmarks involve system-
wide many-body resonances: We find that the effective matrix elements producing eigenstates with
system-wide many-body resonances are enormously broadly distributed. This broad distribution
means that the onset of such resonances in typical samples occurs quite deep in the MBL regimes,
and the first such resonances typically involve rare pairs of eigenstates that are farther apart in en-
ergy than the minimum gap. Thus we find that the resonance properties define two landmarks that
divide the MBL regimes of finite-size systems into three subregimes: (i) at strongest randomness,
typical samples do not have any eigenstates that are involved in system-wide many-body resonances;
(ii) there is a substantial intermediate subregime where typical samples do have such resonances,
but the pair of eigenstates with the minimum spectral gap does not, so that the size of the minimum
gap agrees with expectations from Poisson statistics; and (iii) in the weaker randomness subregime,
the minimum gap is larger than predicted by Poisson level statistics because it is involved in a many-
body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all
but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL
in most respects. Based on our estimates of the location of the avalanche instability, it might be that
the MBL phase is only part of subregime (i), and the other subregimes are entirely in the thermal
phase, even though they look localized in most respects, so are in the finite-size MBL regime.

I. INTRODUCTION

Many-body localized (MBL) systems fail to reach ther-
mal equilibrium under their own dynamics, and have
been a subject of intense interest over the last decade [1–
7]. They display a form of emergent integrability, char-
acterized by the presence of an extensive set of local
integrals of motion (“l-bits”) [8, 9]. The phenomenol-
ogy of l-bits explains many distinctive features of the
MBL phase, including its unusual slow dynamics [10–
14], and the possibility for novel forms of “localization
protected” order in individual highly excited many-body
eigenstates [15–19]. The phase transition between an
MBL and a thermal phase is a new class of dynami-
cal phase transition, a complete understanding of which
has thus far proved to be notoriously elusive: analytical
treatments are mainly tractable only under phenomeno-
logical frameworks [20–28] and numerical simulations are
restricted to very small system sizes that do not ex-
hibit the asymptotic physics of large systems [4, 10, 29–
33]. Thus an interesting complementary approach to the
transition has been to try to understand mechanisms
by which MBL can be destabilized under certain con-
ditions, and to then build numerical evidence for such

mechanisms, and develop corresponding phenomenolog-
ical models to capture the large-scale consequences of
those mechanisms. This has been exhibited by a body
of work that proposed “avalanches” seeded by rare Grif-
fiths regions as a mechanism for destabilizing MBL in
disordered systems [34, 35], attempted to numerically
observe certain features of avalanches in minimal toy
models [36–38], and determined the consequences of an
avalanche-driven transition in phenomenological renor-
malization group (RG) treatments [24, 26, 28]. There
have also recently been experiments investigating isolated
avalanches in cold atomic systems [39].

In this paper, we make a distinction between the MBL
phase, which is the part of the phase diagram where the
system remains MBL in the limits of an infinite system
and infinite time, and the finite-size MBL regime, which
is the part of the phase diagram for an accessible finite-
size system (and/or finite time scale) where this size sys-
tem behaves MBL in most respects, although larger sys-
tems do thermalize. When we say “MBL regimes” (plu-
ral) this means both the MBL phase and the finite-size
MBL regime.

Our work advances our understanding of both (i) the
phase transition out of the MBL phase, and (ii) the prop-
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MBL regimes

FIG. 1. Sketch of the MBL phase diagram. Top: In the
infinite size limit, the transition out of the MBL phase is be-
lieved to occur due to an instability towards the formation of
thermalizing avalanches. The disorder strength at which this
occurs marks the L = ∞ limit of one of our “landmarks”,
denoted Lavch. Bottom: At accessible finite system sizes
L and/or finite times t, we observe the significantly larger
MBL regimes. The finite-L crossover in the mean spectral
gap ratio 〈r〉 from random matrix to Poisson statistics is one
convenient landmark, denoted Lr, marking the crossover from
thermal behavior into the MBL regimes; 〈r〉 probes the level
repulsion between all neighboring energy levels. The MBL
regimes contain a few additional landmarks that probe the
behavior of rare many-body resonances in eigenstates. At
strong disorder exceeding a threshold marked by Lswr, there
are no system-wide resonances (swr) in any of the eigenstates
of typical samples. For weaker disorder, a small number of
eigenstates display system-wide resonances, but the minimum
gap (mg) in the spectrum is non-resonant and shows negligi-
ble level repulsion. The level repulsion in the minimum gap
appears at even weaker disorder within the MBL regime, at
a landmark denoted by Lmg. Any of these finite-system land-
marks that occur in the finite-size MBL regime will drift to-
wards the true transition as L and t are taken to infinity, and
some might drift past the transition and end up within the
asymptotic MBL phase.

erties of many-body resonances in the MBL regimes. On
(i), we present a qualitatively new way of estimating a
bound on the boundary of the MBL phase defined by
the avalanche instability. This defines the first of three
“landmarks” that we estimate within the MBL regimes
in this paper. Despite much work on avalanches, the
theory has only started to be integrated with numerical
simulations of microscopic systems in order to produce an
estimate of where the avalanche instability occurs [40], so
our work, along with subsequent work by Sels [41], ad-
vances the state of the art in this direction. Our bound
on the avalanche instability is at significantly larger dis-
order strengths than previous finite-size estimates of the
MBL transition [42–44]. On (ii), we identify two addi-
tional system-size-dependent landmarks within the MBL
regimes pertaining to the onset and nature of rare, long-
range resonances in many-body eigenstates. Our esti-
mates for all three landmarks are well into the MBL
regimes, but it may be the case that the latter two land-

marks (pertaining to resonances) are, for all system sizes,
not within the MBL phase. See Fig. 1 for a schematic
representation of the various landmarks and the distinc-
tion between the MBL phase and regimes.

Our investigations are focused on regimes that were
previously thought to be rather “deep” in the MBL
phase. We believe that, by doing so, we are beginning to
try to remedy a methodological error that has been made
by much of the MBL research community, the majority
of the present authors included. This error was to fo-
cus so strongly on the MBL phase transition before more
thoroughly studying the MBL phase itself. The MBL
phase, and more generally Anderson localized phases, are
gapless critical phases, with slow dynamics due to reso-
nances and near-resonances, as emphasized early on by
Mott [13, 14, 45, 46].

The thorough study of the MBL phase appears to have
been delayed partially because the description of that
phase in terms of l-bits [8, 9] superficially seemed rather
simple and complete, and explained many features of the
phase. But that is incorrect, since those descriptions
did not fully address the nontrivial dynamical proper-
ties of resonances and avalanches in the MBL phase. And
since the existence of the MBL phase is a dynamical phe-
nomenon, a description that neglects important aspects
of its dynamics is certainly incomplete. One conclusion
of the present work is that the full l-bit description must
include a lot of detailed structure that has generally been
ignored in previous work. Any many-l-bit process, and
how it can be driven by any local operator, is a prop-
erty of the l-bits. Thus all the structure of all many-
body processes that can flip any number of l-bits must
be properly encoded in the details of the definitions of
the l-bits and the l-bit Hamiltonian; previous work gen-
erally assumed the couplings in the l-bit Hamiltonian are
essentially random, ignoring any such detailed structure
and thus neglecting the strong many-body resonances.
In this paper we begin to explore some aspects of this
many-body structure. We are not suggesting that the
l-bit description of the MBL phase fails, only that such
a description needs to capture many fine details of the
system in order to be dynamically correct.

We also note that recently there have been a number of
papers expressing various levels of skepticism about the
stability of the MBL phase in the limits of large systems
and very long times [47–53], and a number of challenges
to those conclusions [54–58]. While our results do not
support (nor directly contradict) any of these arguments
for or against the existence of the MBL phase, our work
was, in part, motivated by these works, which certainly
have demonstrated that our understanding of the MBL
regimes, transition, and crossovers is still rather incom-
plete.

Our finding that the MBL phase transition actually
occurs very deep in the MBL regimes, and far from the
numerically-accessible crossover between the finite-size
MBL regime and thermalization, reinforces the idea [59]
that the physics of this crossover is likely quite differ-
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ent from that of the ultimate phase transition. This
suggests that this crossover should probably be studied
as a distinct phenomenon from the MBL phase transi-
tion. For example, this crossover occurs quite generally
in MBL systems in higher dimensions and with longer-
range interactions, while the MBL phase transition is
suppressed due to the avalanche instability in those other
cases [34]. Another related point is that the arguments
against many-body mobility edges [60] apply only to the
MBL phase transition, and not to this finite-size MBL
regime to thermal crossover, which very clearly shows
apparent mobility edges in numerics [31].

The rest of the paper is organized as follows. In Sec. II
we elaborate on the various landmarks mentioned ear-
lier, that we study in depth later on. We summarize the
avalanche argument and explain our strategy for locat-
ing where this instability destabilizes the MBL phase.
We also explain how we think about many-body reso-
nances in this work, and provide an overview of how we
detect them. In Sec. III we detail the concrete spin-1/2
models we use as the basis of our calculations: one is
a new Floquet random-circuit MBL model in 1D with
no extensive conserved quantities, while the other is the
Hamiltonian “standard model” of MBL, the random-field
Heisenberg chain. We also include details of how we
couple each system to a model infinite bath at one end,
which we use to numerically bound the avalanche insta-
bility. In Sec. IV we begin our study by investigating
our first landmark, where the avalanche instability desta-
bilizes the MBL phase, using the dynamics of our spin
models coupled to infinite baths at one end. Before es-
timating the other two landmarks, in Sec. V we develop
a method for “undoing” the level repulsion between two
eigenstates, thereby obtaining an estimate of a matrix el-
ement responsible for producing many-body resonances
in eigenstates. Equipped with this tool, in Sec. VI we
study the properties of isolated spin chains in order to un-
derstand the two remaining landmarks pertaining to rare,
long-range, many-body resonances. Finally, we summa-
rize and discuss our findings.

II. LANDMARKS IN THE MBL REGIMES

In this section we elaborate on the ideas and necessary
background related to the three landmarks we study in
this work.

A. Avalanche instability

One of the more accepted theories of what drives
the asymptotic MBL phase transition in systems with
quenched randomness and short-range interactions is the
so-called “avalanche instability” [34]. It proposes that,
at weak enough disorder, small locally thermal rare re-
gions make MBL unstable by seeding an avalanche of er-
godic regions that drives the system to thermalize. In the

avalanche theory, the rate at which a naturally occurring
thermal bubble thermalizes its localized surroundings is
what determines how much the bubble grows. This can
be understood concretely by thinking of a spin chain with
random local fields. In an infinite sample there are (ar-
bitrarily long) rare regions where, just by chance, the
random fields are small and the system locally thermal-
izes. This results in a finite local bath that then tends
to thermalize the nearby typical localized regions. The
spins that are at a distance of ` spins away from this rare
region are, if the avalanche does reach them, typically
thermalized at a rate ∼ k−`, where k is a number that
increases as one goes deeper in to the MBL phase. Once
the avalanches due to this thermal region have proceeded
to distance ` in both directions, then it has thermalized
a total of N + 2` spins, where N is the (pre-avalanche)
number of spins in the thermal rare region. Thus the
many-body level spacing of this now-enlarged thermal-
ized region is ∼ 2−(N+2`). As long as this level spacing
is smaller than the spin’s thermalization rate, then the
spin does see the thermal region as a reservoir with an
effectively continuous spectrum and does get entangled
with it. The avalanche will stop (` will stop growing)
when these two energies become equal so the spin can
“see” that the spectrum of the thermal region is really
discrete, namely when k−` ∼ 2−(N+2`). For k < 4 this
never happens, so the avalanche does not stop and the
full system slowly thermalizes. Thus, by this mechanism,
the phase transition out of the MBL phase happens at
k = 4, yielding a critical thermalization rate that scales
as 4−`. A similar scenario has been numerically veri-
fied in a minimal toy model comprising a thermal bubble
(modeled by a random matrix) interacting with a chain
of decoupled localized spins (model l-bits) [36].

One of our goals in this work is to numerically study
the avalanche instability in more realistic microscopic
models of MBL, in which the emergent l-bits interact
and are not known a priori. Interactions between l-bits
means that a given spin some distance from the ther-
mal bubble can couple to the bubble via many distinct
processes, which makes it challenging to extract a sin-
gle thermalization rate for the spin. In this work, we
present a new approach to this challenge of computing
a thermalization rate in a realistic MBL system. There
is no simple answer that we are aware of in the case of
isolated systems, however when a finite system is cou-
pled at one end to an infinite bath, and hence viewed as
an open system with dynamics described by a (Lindblad
or Floquet) superoperator, the thermalization rate can
be seen as the inverse of the time scale on which the sys-
tem reaches the (unique and always thermal) equilibrium
steady state. The closest eigenmode to the steady state
of the superoperator encodes this time scale. Hence, the
superoperator eigenmodes provide a direct way to esti-
mate thermalization time scales for MBL systems. Note
that this open system calculation models only one of the
two avalanches that are spreading in both directions from
a large locally thermalizing rare region within the bulk
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of a nominally infinite system. The assumption is that
these two avalanches do not directly affect each other, ex-
cept through their effect on the thermal bubble’s many-
body density of states. In Sec. IV we show that as the
parameters of a finite MBL system coupled to an infi-
nite bath at its end are varied, there is a point at which
the thermalization time scale crosses through a ∼ 4−L

scaling (k = 4); we interpret this as a finite-size esti-
mate of the avalanche instability driven MBL transition
in the corresponding isolated system. We assume that
the avalanche instability is what asymptotically drives
the transition out of the MBL phase of a disordered sys-
tem. Hence, we expect this landmark measuring the on-
set of the avalanche instability to be a better estimate of
the true MBL transition in the limit of large L. This is
how we define the landmark denoted by Lavch.

A closed-system approach to this problem was pro-
posed in Ref. [40], which used a Wegner-Wilson flow
method to extract l-bits and compute spatial decay rates
of various correlation functions. However, to our knowl-
edge, none of the closed-system correlation functions ex-
amined in Ref. [40] are directly related to the relaxation
rate of a distant spin due to a bath or thermal bubble,
which is the quantity that is needed to make an estimate
of the avalanche instability.

B. Appearance of system-wide resonances

Further landmarks (Lswr and Lmg) within the MBL
regimes are related to rare many-body resonances. We
should therefore provide some clarification on how we use
the term “many-body resonance”, which has been used
variously to describe many physical scenarios ranging
from resonances between thermal blocks in phenomeno-
logical RGs to isolated “Mott-like” resonances in many-
body eigenstates [21, 22, 61–63]. In the present work, an
eigenstate of the dynamics is “many-body resonant” if it
is a superposition of localized states that differ substan-
tially in extensively many local regions, and the range of
the resonance is the distance over which these local dif-
ferences occur. A dynamical implication of this is that if
the system is initialized in one of those localized states, it
will tunnel to the other(s) under the dynamics. A “many-
body resonance” refers to a set of states that are related
by this definition, for example, eigenstates that are all
superpositions of the same set of localized states. The
importance of these resonances has been discussed in var-
ious contexts, including the dynamical a.c. response of
MBL systems [46] and theories of finite-size crossovers be-
tween MBL and thermalizing systems [32, 33, 59, 61, 64].

In this work, we study system-wide many-body res-
onances rather deep in the MBL regimes, where these
resonances are rare and each such resonance typically in-
volves only two eigenstates. We examine the properties
of these resonant eigenstates from two perspectives:

From the first perspective, the structure of entangle-
ment in the eigenstates of the dynamics is a direct probe

of many-body resonances, as is level repulsion in the spec-
trum. We find that even deep in the MBL regimes, there
is still residual level repulsion to be understood, includ-
ing rare strongly repulsive pairs (resonances) in an oth-
erwise Poisson-like spectrum. One way to pick out a rare
system-wide resonance in an MBL system is to find the
eigenstate with the most quantum mutual information
between its end spins. A significant amount (compared
to one bit) of quantum mutual information between end
spins is an indicator that this eigenstate is participating
in a two-state (or few-state) system-wide many-body res-
onance, and this has resulted in it being a Schrödinger
cat-like state [65]. Indeed this is one of the measures we
use in order to identify rare, isolated system-wide many-
body resonances in eigenstates in the MBL regimes. This
identifies a system-size dependent landmark Lswr that
separates the MBL regimes into: a stronger-randomness
regime where typical samples have no such resonances
and the probability that a sample has such a resonance
is decreasing with increasing L, and a weaker-randomness
regime where the number of such resonances per sample
increases (exponentially) with increasing L.

We find another landmark Lmg by examining the
amount of level repulsion present in the minimum gap
(mg), i.e., between the two eigenvalues of the dynamics
that are nearest to each other. Poisson statistics pre-
dicts that the smallest gap in the Floquet spectrum of a
sample is on average 2π/4L (2L times smaller than the
average gap between all adjacent eigenvalues), and hence
comparing the smallest gap to this prediction reveals a
landmark at which the minimum gap begins to typically
undergo significant level repulsion.

We note that the minimum gap bears additional the-
oretical relevance, as assumptions on its scaling are a
building block in the proof for the stability of MBL [66,
67], and our analysis confirms that the assumption of
“limited level attraction” is indeed comfortably valid for
the system sizes we can test.

From the second perspective, the entanglement in,
and level repulsion between, eigenstates is a result of
off-diagonal matrix elements of the Floquet operator or
Hamiltonian that couples states that are more local-
ized than the eigenstates, and that differ extensively.
Thus appropriate off-diagonal matrix elements can also
be studied in order to learn about many-body resonances
in MBL systems. If we are able to “undo” some of the
entanglement and level repulsion by rotating away from
the basis of eigenstates back towards a less entangled ba-
sis (closer to the computational basis), then off-diagonal
matrix elements of the Floquet operator or Hamiltonian
in that new basis can be considered to be the source
of the level repulsion—as these off-diagonal matrix ele-
ments get rotated away, the energies get pushed apart
and the states get more entangled. Thus these matrix el-
ements characterize the underlying resonance. In Sec. V
we develop a useful tool in this spirit that allows us to
associate an off-diagonal matrix element that character-
izes the strength of the level repulsion between any two
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eigenstates. When the two eigenstates are both cat-like
superpositions of two more localized states, we are able to
retrieve a matrix element that is larger than or compara-
ble to the corresponding gap. When the two eigenstates
are not resonant, then the matrix element is very small in
comparison to the gap. This resonance criterion is similar
to the criterion introduced in Ref. [68], but here we use a
different approach to determine the relevant matrix ele-
ment. Using this procedure for characterizing resonances
with these matrix elements, we are able to estimate Lswr

and Lmg in a second, independent way.
After characterizing the MBL regimes with these ma-

trix elements, the picture that emerges is as follows:
The distribution of matrix elements is broad on a log
scale, and the typical (or median) matrix element be-

tween eigenstates scales as ∼ k−Lt , where kt > 2 is a
number that increases (without limit) as we go deeper
(to stronger randomness) into the MBL regimes. Note
that we do find that the apparent kt is L-dependent for
the sample sizes that we can study numerically. Ex-
tremely deep in the MBL regimes, kt is large enough
that there are typically no system-wide resonances in the
many-body spectrum. At weaker disorder, marked by
the threshold Lswr, a vanishing fraction of eigenstates
begin to be involved in system-wide resonances. These
isolated resonances involve atypically large matrix ele-
ments in the tails of the distributions. However, as long
as kt > 4, the typical matrix element is small compared to
the expected minimum gap in the spectrum (∼ 4−L) and
level repulsion of that minimum gap is still typically neg-
ligible. In other words, in this intermedate regime there
are eigenstates with rare system-wide many-body reso-
nances because of atypically large matrix elements, even
though the minimum gap is also typically not involved
in a resonance. At even weaker-randomness within the
finite-size MBL regime where kt < 4, the minimum gap
is involved in a resonance and decreases with L more
slowly than predicted by Poisson level statistics. This
distinction allows us to define the landmark Lmg, where
kt = 4 and the minimum gap changes from Poissonian to
non-Poissonian.

C. Summary of landmarks

For later reference, here is a list of our “landmarks”,
the symbols with which they are represented (see also
Fig. 1), and how they are estimated with finite-L data:

• Lavch: This is where the avalanche instability desta-
bilizes the MBL phase. We estimate it by where the
thermalization rate in our open systems is scaling
with L as ∼ 4−L.

• Lswr: This is where the number of system-wide
many-body resonances per sample changes from
asymptotically zero at large L to a number that
instead grows with increasing L. We estimate it by

where the number of such resonances per sample is
not changing with L.

• Lmg: This is where the minimum spectral gap in
a sample begins/ceases to behave as expected in a
Poisson spectrum with no level repulsion. We esti-
mate it by where the mean minimum gap is scaling
with L as ∼ 4−L.

• Lr: This is the “conventional” boundary of the
MBL regimes marked by the finite-size crossing of
the mean level spacing ratio 〈r〉.

In the above list we have also included the reference
point Lr for convenience, since we will need to refer to
this point too; the three new landmarks within the MBL
regimes that we study are the first three on this list.

Note that since we are only able to access small sys-
tem sizes, we will treat these estimated landmarks as
L-dependent quantities. Of course their asymptotic lo-
cations as L → ∞ are of great interest, but we are not
in the asymptotic regime, so we assert that estimates at
accessible L are still meaningful and help us to better
understand the finite-size MBL regimes and potentially
the MBL phase.

One notable feature of our results is that all of these
landmarks exhibit similar strong finite-size effects for the
size ranges we can study. This suggests that the strong
finite-size effects in the level statistics that have been
widely studied may not be due to physics that is spe-
cial to that thermal-to-finite-size-MBL crossover, but the
same physics may also be producing strong finite-size ef-
fects much deeper in the MBL regimes. At this point
there does not seem to be any concrete and plausible
theoretical understanding of these finite-size effects, so
we have no guidance in how to extrapolate our estimates
of these landmarks to the limit of infinite systems. How-
ever, since they all move monotonically to stronger ran-
domness with increasing system size, our numerical esti-
mates should be reliable lower bounds on the randomness
that these landmarks go to in the large-system limit.

Now that we have laid out the main ideas of this work,
in the next section we present the models we use in later
sections to elaborate on these ideas.

III. MODELS

We consider two models of MBL in this work: one is
a time-periodic (Floquet) quantum circuit that we intro-
duce, similar to circuits considered in Refs. [69, 70], and
the other is the standard random-field Heisenberg (XXX)
Hamiltonian model [10, 29, 31]. We include the Hamilto-
nian model to ensure all of our conclusions are consistent
across the Floquet and Hamiltonian cases, and to make
contact with previous work, but we believe our Floquet
model is advantageous in several respects that we detail
in Sec. III A. Both models govern the unitary dynamics
of a one-dimensional system of L qubits (sites). While in
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the Hamiltonian model both the total energy and total
Z magnetization are conserved, the Floquet model has
no conservation laws. Both of these models are designed
such that in the limit of strong disorder the eigenstates
of the dynamics are Fock states of the Pauli Z opera-
tors on the L sites. We also refer to this basis as the
computational basis.

In addition, we extend the unitary models by coupling
each to an infinite quantum bath at the left end of the
system in order to study the avalanche instability. This
is achieved in the case of the Hamiltonian model by in-
troducing a complete operator basis of three nontrivial
Lindblad jump operators on the first site. This bath re-
laxes both of the conserved quantities, and corresponds
to infinite temperature and zero field. For our Floquet
circuit we use a Floquet superoperator with a generic dis-
sipative action on the first site. MBL systems are unsta-
ble when coupled to an infinite thermal bath [37, 71–73].
But the dependence of the rate of thermalization of the
farthest spin on the system length L in this setting indi-
cates whether or not an infinite MBL system is stable to
avalanches initiated by a large but finite bath. So here
we are particularly interested in the rate at which the
system thermalizes due to the infinite bath, and focus
on the decay rates of the slowest decay mode, given by
the eigenvalue of the superoperators closest to the steady
state eigenvalue σ = 1 in the Floquet case, and λ = 0 in
the Lindblad case. Throughout this paper we use open
boundary conditions in order to access the largest range
of distances within the systems.

A. Floquet random circuit

We introduce a one-dimensional, time periodic, ran-
dom unitary circuit which can exhibit MBL. The model
consists of two types of random unitary gates: one-site
gates di, and two-site gates ui coupling site i and i + 1.
Tuning the strength of the two-site gates drives the model
through a MBL transition [69].

The one site gates di are generated by sampling, for
each site i, a 2× 2 random matrix from the circular uni-
tary ensemble (CUE) and then diagonalizing it. This
means that for each realization of the circuit we choose
the computational Z basis to be the eigenstates of all
of the di. The distribution from which we sample the
two-site gates is invariant under this choice, so this is a
matter of convenience.

The two site gates ui act on site i and i + 1 and are
obtained from

ui = exp

(
i

α
Mi

)
∈ C4×4, (1)

where 1/α controls the interaction strength (α is the rel-
ative disorder strength), and Mi ∈ C4×4 is a random ma-
trix sampled from the Gaussian unitary ensemble (GUE).
From these building blocks, we create the Floquet uni-
tary by first applying a layer of all of the one-site gates

given by Ud = d1 ⊗ d2 ⊗ · · · ⊗ dL, and then applying the
two-site gates in an order given by a random permutation
π ∈ SL−1:

Uu =

L−1∏
i=1

mat(uπ(i)), (2)

where mat(ui) = 12i−1⊗ui⊗12L−i−1 is the matrix repre-
sentation of the gate ui in the full Hilbert space. There
is no gate connecting site 1 and site L, since we use open
boundary conditions. The resulting random circuit is
then exemplified by

U = UuUd =

u1

u2

u3

u4

u5

u6

d1 d2 d3 d4 d5 d6 d7

. (3)

The random permutation of gates removes the intrinsic
difference in even and odd system sizes present in brick-
work circuits and is convenient to treat even and odd
system sizes on the same footing.

We use this Floquet model because we think it has
enough advantages over the standard Hamiltonian model
of Section III B to justify its introduction. This circuit
model is designed to be free of any conservation laws.
This means that we do not have to consider how the
physics of conserved quantities like energy or particle
number interacts with the physics of MBL. It also means
we can treat every eigenstate of the dynamics on equal
footing and study statistics over eigenstates as a function
of solely the disorder strength, without also having to re-
solve their dependence on any conserved quantities. In
our quantum circuit we use gates drawn from isotropic
distributions of random matrices, so we also avoid choos-
ing a special basis, which is an attractive property when
studying universal aspects of quantum dynamics [74, 75].
As mentioned above, for each realization we do align our
computational basis for each site with the eigenstates of
the corresponding single-site gate, but the two-site gates
are still drawn from a distribution without a special di-
rection even after this alignment.

We also note that the locality of this quantum circuit
implies that the computational cost of applying it to a
state is O(L2L). Thus while the Floquet unitary does not
have a sparse matrix representation, it can be applied one
gate at a time, and so it is compatible with algorithms
that rely on matrix-free matrix-vector products like ge-
ometric sum filtering [76], which we use to access large
system sizes.
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FIG. 2. Mean level spacing ratio 〈r〉 as a function of disor-
der. The finite-size crossings drift to larger disorder as L is
increased. For the largest L the crossings are at α ∼= 5.9 for
the Floquet model (left) and at W ∼= 3.1 for the Hamiltonian
model (right). Error bars are 68% bootstrap confidence in-
tervals here and in all other figures, but are too small to see
here. The Floquet model does not have time-reversal invari-
ance and has CUE level statistics in its thermal phase, while
the Hamiltonian model does have time-reversal invariance and
hence GOE statistics, thus the difference in the thermal values
of 〈r〉CUE ≈ 0.5996 vs. 〈r〉GOE ≈ 0.5307 [77].

B. Hamiltonian

We also carry out our study on the standard random-
field Heisenberg model. The Hamiltonian of this model
is

H =
1

4

L−1∑
i=1

~σi · ~σi+1 +
1

2

L∑
i=1

hiZi, (4)

where ~σi = (Xi, Yi, Zi), hi are independent samples of
a uniform random variable on [−W,W ], and W is the
parameter that tunes the disorder strength. The total
magnetization M =

∑
i Zi is conserved so we restrict

ourselves to the sector M = 0 for even L when we study
isolated systems.

C. Model characterization

In order to get oriented with our new Floquet model
and compare it to the more familiar Hamiltonian model,
in Fig. 2 we show a common diagnostic that has been ex-
tensively studied in the context of MBL: the mean level
spacing ratio 〈r〉 [4]. This is a dimensionless quantity
which measures the average level repulsion in the spec-
trum, and the location of the finite-size crossing in this
quantity marks the crossover between the thermal regime
and the finite-size MBL regime, which we denote by Lr.

As we will argue below, for the sizes accessible to nu-
merics, this crossover is not a good estimate of where the
thermal-to-MBL phase transition is in the limit of large
L. Instead, the lower-bound on the location of the phase

transition, that we estimate by testing for stability to
avalanches, is at a much larger disorder strength than Lr
for accessible L. Since we argue that this feature in 〈r〉 is
not a relevant estimate of the MBL phase transition but
instead is a measure of the finite-size MBL to thermal
crossover, we could just as reasonably have used, say, the
midpoints of the changes in 〈r〉 from its random matrix
theory (RMT) value to its Poisson value instead of the
crossings. But, to keep more contact with previous work,
for now we will stick with using the crossings to define
this landmark.

The mean level spacing ratio is computed by averaging
rn = min(δn, δn−1)/max(δn, δn−1) over eigenstates and
realizations, where δn is the magnitude of the spectral
gap between (ordered) eigenvalues n and n + 1. For the
Floquet model, eigenvalues are naturally ordered on the
unit circle by increasing phase. For system sizes L ≤ 14,
we use all eigenvalues of U obtained using exact diago-
nalization, and a number of disorder realizations which
varies in the range 104−4·104. For L ≥ 16, we use the 50
eigenvalues closest to 1, calculated using geometric sum
filtering [76] for 3000− 6000 realizations. For the Hamil-
tonian model we average over the middle fifth of states in
the spectrum and 8000− 64, 000 disorder realizations for
L ≤ 16 . For larger sizes, we take advantage of the sparse-
ness of H and use shift-invert diagonalization [31, 78] to
obtain the central 50 eigenvalues for 500− 8000 disorder
realizations. We exclude eigenvalues further away from
the center of the spectrum to avoid the most significant
effects of the energy dependence of the eigenstates.

D. Floquet random circuit coupled to an infinite
bath

Our unitary Floquet model is described by the Floquet
operator U . It corresponds to the action of the unitary
superoperator SU [ρ] = UρU†. We now formally extend
the spin chain by one extra spin on site 0, in contact with
the first site i = 1. This spin acts as the rightmost spin
of a coupled bath. In each cycle, we reset the state of this
spin to a 2×2 featureless density matrix 1

21. The coupling
to the rest of the chain is given by u0 = exp(iM0/α),
sampled from the same distribution as the other two-site
gates. Tracing out the bath spin 0 at the end of the
cycle, the action of the superoperator can be expressed
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diagrammatically as

S[ρ] = ρ

U

U†

1
21

u0

u†0

= ρ

U

U†

D . (5)

In the last step, we have introduced the tensor D, given
by:

2D
j1,j
′
1

i1,i′1
=

∑
i0,j0,i′0,j

′
0

u
(i0,i1),(i

′
0,i
′
1)

0 u†0
(j′0,j

′
1),(j0,j1)

δi0,j0δi′0,j′0 .

(6)
This Floquet superoperator S (Eq. 5) describes the

stroboscopic dynamics of the density matrix of the sys-
tem:

ρ(t+ 1) = S[ρ(t)] = S[S[ρ(t− 1)]] = St+1[ρ(t = 0)]. (7)

S is represented by a subunitary matrix in operator
space, i.e., its spectrum {σn} is contained inside the com-
plex unit disk, |σn| ≤ 1, (cf. Fig. 3). While one eigen-
value σ0 = 1 exists, it corresponds to the steady state
R0 = 1

Z 1, since S[R0] = R0, as can be seen from Eq. 5
due to the unitarity of U and u0.

We can use the left and right eigenmatrices Li, Ri of

S with SRi = σiRi, LiS = σiLi and Tr(L†iRj) = δij to
calculate the time evolution of any initial state ρ(t = 0):

ρ(t) = R0 + σt1c1R1 +
∑
k>2

σtkckRk, (8)

with ck = Tr(Lkρ(t = 0)). Here, we order the eigenvalues
σi by their modulus, |σi| ≥ |σj | if j ≥ i, such that σ0 =
1 corresponds to the steady state R0 = 1

Z 1, and σ1 is
the eigenvalue with the second largest modulus, and thus
represents the slowest relaxation rate 1/τ = − ln |σ1| in
the system. The corresponding mode R1 decays as

σt1 = exp(t ln |σ1|), (9)

and therefore τ = −1/ ln |σ1| is the longest timescale in
the system. In an MBL system, this timescale is deter-
mined by the couplings between the bath and the far-
thest l-bit at the other end of the chain. We calculate
the spectral gap using (dense) shift-invert diagonaliza-
tion of the superoperator S, targeting eigenvalues closest
to 1 (euclidian distance in the complex plane), and we
have checked that this captures the slowest decay rate.
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Im
[σ
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XXX Lindblad W = 5.2

FIG. 3. Example spectra of the two superoperators for L = 5
spins. Left: Floquet superoperator with α = 3.33. The
spectrum (blue) is strictly contained inside the unit circle
(gray). The slowest mode (red) is the eigenvalue with the
largest modulus less than 1. Right: Liouvillian of the ran-
dom field Heisenberg model coupled to a bath. The spectrum
lies in the complex left half plane with nonpositive real parts.
The slowest mode (red) is the eigenvalue whose real part is
negative and is closest to zero.

E. Hamiltonian coupled to an infinite bath

In order to study thermalization rates in the Hamilto-
nian model we introduce a coupling to an infinite bath
to the spin located at the left edge of the chain. The
dynamics of this system is described by the master equa-
tion:

dρ(t)

dt
= L[ρ], (10)

L[ρ] = −i[H, ρ] +
∑
µν

Kµν

(
LµρL

†
ν −

1

2
{L†νLµ, ρ}

)
,(11)

where the Lindblad operators Lµ = (X1, Y1, Z1) are the
Pauli operators acting on the left-most spin. The Lind-
blad coupling breaks the U(1) symmetry of the XXX
Hamiltonian so all magnetization sectors are mixed and
the full operator Hilbert space dimension is 4L. The
eigenvalues D of the Kosakowski matrix K are sampled
from a uniform distribution and normalized such that
TrD = 2. From D, we obtain the Kosakowski matrix
K = U†DU where U is a random matrix from the cir-
cular unitary ensemble (CUE), similarly to the sampling
in Ref. [79]. As in the Floquet case in Sec. III D, the
solution of Eq. (10) is obtained from the eigenmodes of
the Lindblad superoperator:

ρ(t) = R0 + eλ1tc1R1 +
∑
k>2

eλktckRk, (12)

where Rk are the right eigenmatrices of L, and ck =
Tr(Lkρ(t = 0)) are the overlaps of the initial state with
the left eigenmatrices of L. Left and right eigenmatrices
are orthogonal to each other such that Tr(LiRj) = δij .
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The eigenvalue λ0 = 0 corresponds to the steady state
R0 = 1

Z 1, and the eigenvalue λ1 with the second largest
real part Re(λ1) < 0 represents the slowest decay mode
in the system. We identify τ = −1/Re(λ1) as the time
scale on which the entire system, including the farthest
l-bit, reaches the steady state. As in the Floquet case,
we use shift-invert diagonalization to obtain the slowest
decay rate of the system, exploiting the fact that L is a
sparse matrix.

F. Weak bath-coupling limit of the Floquet circuit

In work following our first manuscript version of this
paper [80], Sels showed that the limit of weak coupling
to the infinite bath is sufficient for studying the slowest
rate of thermalization, and allows the numerical calcu-
lations to reach larger system size L [41]. We therefore
introduce versions of our open Floquet and Hamiltonian
models (described in Secs. III D and III E) in this weak
coupling limit. This allows us to extend our analysis of
the landmark Lavch to larger system sizes and disorder
than what was done in our initial version.

In Eq. 5 the “ancilla qubit”, which acts as the right-
most spin of the bath, is in a maximally mixed state. The
leftmost spin of the chain is coupled through all channels
with this bath spin, so the dissipation is maximal. In or-
der to be able to tune the level of dissipation, we replace
the D superoperator by:

D[ρ] =
ρ

1 + 3γ
+

γ

1 + 3γ

∑
µ

EµρE
†
µ, (13)

where Eµ = (X1, Y1, Z1) are Krauss operators on the first
spin and γ is the parameter that tunes the dissipation
strength. The limit γ → 0 recovers unitary dynamics,
whilst γ →∞ is the maximal dissipation limit similar to
the D gate shown in Eq. 6, with the difference being that
dissipation is now homogeneous on all allowed channels.
Eq. 13 allows us to study the weak coupling limit (γ � 1)
of the Floquet dissipative circuit in a controlled manner.
We continue to denote the Floquet superoperator for one
period of evolution by S[ρ] = D[UρU†].

In the unitary limit γ = 0, the eigenvalues and eigenop-
erators of the superoperator S are products of eigenvalues
and eigenstates of the Floquet unitary: σnm = ei(θn−θm)

and ρnm = |n〉〈m|, where U |n〉 = eiθn |n〉. Thus there
are 2L degenerate operators with unit eigenvalue, corre-
sponding to n = m. In the limit of nonzero but small γ,
the dissipation acts as perturbation of the unitary evo-
lution, allowing a perturbative treatment in the basis of
eigenstates |n〉〈n|. In this subspace, the matrix elements
of the Floquet superoperator are

Snm = 〈m|D [|n〉〈n|] |m〉

=
δnm

1 + 3γ
+

γ

1 + 3γ

∑
µ

〈m|Eµ|n〉〈n|E†µ|m〉. (14)

By diagonalizing this matrix we obtain a perturbative
estimate of the slowest mode and associated rate of ther-
malization in the dissipative Floquet dynamics. Note
that in this perturbative treatment, we build and di-
agonalize a matrix of linear size 2L, not 4L as is done
when working nonperturbatively. We have set γ = 0.001
throughout the entire text when dealing with perturba-
tive dissipation. There are additional issues related to
numerical precision explained in detail in Appendix C.

G. Weak bath-coupling limit of the Hamiltonian

Again, in order to simplify the study of the thermal-
ization rate of a spin chain coupled to an infinite bath
at one end, in the bath-coupled Hamiltonian system the
weak coupling limit is considered, similar to what was
done in Sels’ follow up to our original work [41].

In the dissipationless limit (Lindblad superoperator
with Kosakowski matrix set to zero) the eigenvalues of
the Lindbladian are λ = i(En − Em) with the set of
eigenoperators ρ = |n〉〈m|, where |n〉 are the eigenstates
of the Hamiltonian and En their corresponding eigenval-
ues. There are 2L zero eigenvalues and the rest fall on the
imaginary axis and come in conjugate pairs. When the
dissipation is perturbative, the slowest mode is well ap-
proximated within the degenerate subspace of operators
|n〉〈n| [41]. Starting from Eq. 11, the Kosakowski matrix
is now diagonal, Kµν = γδµν with γ = 0.001, and the
jump operators remain the same. The matrix elements
of the Linbladian in the degenerate sector read

Lnm = 〈m|L
[
|n〉〈n|

]
|m〉

= γ
∑
µ

[
〈m|L†µ|n〉〈n|Lµ|m〉 − δnm〈m|L†µLµ|n〉

]
= −3γδnm + γ

∑
µ

|〈m|Lµ|n〉|2. (15)

Similar to the Floquet case, the perturbative approxi-
mation reduces the problem of finding the slowest mode
to diagonalizing a dense matrix of size 2L × 2L, rather
than diagonalizing the full 4L × 4L superoperator ma-
trix. Choosing a diagonal Kosakowski matrix ensures
that the resulting matrix Lnm is Hermitian. We checked
that relaxing that condition does not change the quali-
tative behavior of the slowest mode. Constructing Lnm
requires all Hamiltonian eigenstates in all magnetization
sectors, and the diagonalization of each sector is carried
out separately. The numerical bottleneck is diagonaliz-
ing the dense Lindbladian matrix of size 2L. Another
issue is the insufficiency of double precision arithmetic,
which is the case for large L and strong disorder in both
Hamiltonian and Floquet models. This issue is further
addressed in Appendix C.
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IV. OPEN SYSTEM RESULTS

We begin the discussion of our results by considering
the avalanche instability of MBL chains using the two
dissipative models introduced in Secs. III D and III E.

As outlined before, we focus on the spectral gap of the
superoperators S and L describing MBL chains coupled
to an infinite bath at one end, since it encodes the slowest
decay rate 1/τ towards the steady state. The coupling to
an infinite bath ensures that the system evolves towards
an infinite temperature steady state ρ0 = 1

Z 1 throughout
the entire phase diagram, i.e., for any strength of disor-
der. We interpret the slowest decay rate as the thermal-
ization rate of the chain, and how this quantity scales
with L determines if the associated isolated chain is un-
stable to avalanches or not. Exemplary spectra of the
two superoperators are shown in Fig. 3, illustrating that
the spectrum of the Floquet superoperator S is contained
inside the unit disk, while the spectrum of the Liouvil-
lian L resides in the left half plane of the complex plane,
since all components not in the steady state vanish at
long times. The eigenvalue of S (L) with the second
largest modulus (real part) σ1 (λ1) encodes the slowest
timescale τ of decay to the steady state ρ0 corresponding
to σ0 = 1 (λ0 = 0).

A. Slowest decay rate in the presence of an infinite
bath

In Fig. 4 we analyze the scaling, with system size L,
of the typical slowest decay rate 1/τ as a function of the
strength of disorder (α in the Floquet case and W in the
Hamiltonian model). At small disorder, deep in the ther-
mal phase, the slowest rate of decay scales as a power of
L, and is determined by the speed of information scram-
bling in the Floquet case (1/τ ∝ L−1), and by hydrody-
namic modes in the Hamiltonian case (1/τ ∝ L−2). On
the other hand, in the MBL phase, the typical decay rate
towards the thermal steady state is exponentially small in
L, ∝ k−L. As explained in Sec. II A, the avalanche insta-
bility occurs if the slowest decay rate scales with L more
slowly than 1/τ ∝ 4−L. Thus the product of the typi-
cal decay rate and the scaling factor 4L of the avalanche
instability increases with L in the thermal phase and de-
creases with L in the MBL phase. Fig. 4 shows this
change of behavior as a function of the disorder parame-
ter α (W ) in the open Floquet (Hamiltonian) model.

Ideally one would perform a scaling collapse of these
curves to estimate the location of the avalanche-driven
phase transition. However, the appropriate form of the
scaling function one should use is not clear; recent RG
approaches predict a two-parameter scaling theory sim-
ilar in some respects to Kosterlitz-Thouless scaling, but
we know that the small system sizes accessible to nu-
merics are far from the scaling regime controlled by the
asymptotic fixed point. Therefore, we simply identify the
location of the finite-size crossing of the curves in Fig. 4,
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FIG. 4. Typical slowest decay rate as a function of disorder
strength. The curves are the (scaled) median of the distri-
bution of 1/τ over realizations for the Floquet and Lindblad
super-operators. The crossings occur when the scaling of the
decay rates with system size is 1/τ ∝ 4−L and thus indicate
the location of Lavch. Smaller sizes L < 7 are calculated us-
ing full diagonalization, bigger sizes are computed using shift-
invert diagonalization with target eigenvalue λ = 0 (Lindblad)
and σ = 1 (Floquet). For the open Floquet system, we used
at least 20000, 20000, 10000, 4000, 1000, 500 disorder realiza-
tions for L = 3, 4, 5, 6, 7, 8 respectively. For the Lindblad op-
erator, we collected 5000, 10000, 10000, 8000, 9000, 8000, 1000
disorder realizations for L = 3, 4, 5, 6, 7, 8, 9. Error bars are
68% bootstrap confidence intervals.

for the largest systems we can access, as a lower bound on
Lavch in the limit of L→∞, assuming a monotonic drift
with L. Strikingly, even at the small system sizes accessi-
ble to our open system calculations, Lavch occurs at much
stronger disorder strengths compared to the reference Lr
shown in Fig. 2: roughly at α > 13 in the Floquet case,
and W > 7 in the open Hamiltonian model.

In order to access larger system sizes we study the weak
bath-coupling limit that allows a perturbative treatment
(see Sec. III F and III G for more details). The results
are presented in Fig. 5. We look at the 80th percentile,
as was done in Ref. [41], rather than the median (50th

percentile) because it helps to mitigate issues with nu-
merical precision present at stronger disorders and larger
system sizes (further discussion of the numerical issue is
found in Appendix C). In the Floquet model the typical
rate 1/τ decays faster than 4−L at accessible L only for
α = 33.33 and α = 50, while the curves at smaller α even-
tually scale slower than 4−L at the largest system sizes
that we have data for. In the Lindblad model, the decay
rate scales slower than 4−L at disorders W = 14.0, 15.0
and the largest L, and faster only at W = 20.0, with
disorders W = 16.0, 17.0, 18.0 showing plateaus (within
error bars) that indicate an effective critical region for the
present system sizes. Based on this perturbative analysis,
the landmark Lavch is pushed even farther away from the
standard landmark Lr, roughly at α > 25 and W > 18
for the Floquet and Lindblad model respectively. The re-
sulting wide range of disorder in between these two land-
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FIG. 5. Typical decay rate as a function of system size com-
puted using perturbation theory in the weak bath-coupling
limit. The curves are the (scaled) 80th percentile of the dis-
tribution of 1/τ over realizations for the Floquet and Lindblad
super-operators. System sizes are L = 5− 12 and L = 5− 14
for Floquet and Lindblad set ups, respectively. At least 5000
disorder realizations were used for each set of parameters ex-
cept for those computed using quadruple precision and L = 14
(Lindblad) or L = 12 (Floquet), for which 1500-2000 realiza-
tions were used. Error bars are 68% bootstrap confidence
intervals.

marks is thus part of the finite-size MBL regime of the
thermal phase that we are exploring in these finite-size
systems.

B. Distributions of the slowest decay rates

The distribution of the slowest decay rates of the Flo-
quet superoperator are shown in Fig. 6 (cf. Appendix A
for data for the Lindblad superoperator) and are approx-
imately log-normal. The variance of the logarithm of the
rate is consistent with being L-independent at the larger
values of L. The peaks of the distributions scale with
the system size, and the decrease of the mode of the dis-
tribution for larger system sizes L at large disorder α is
reflected in the decrease of the median of the distribution
shown in Fig. 4.

V. UNDOING MANY-BODY RESONANCES

Before moving on to study many-body resonances in
eigenstates in the MBL regime in Sec. VI, in this section
we introduce a tool for studying such resonances. It will
allow us to associate an off-diagonal matrix element, to
any two eigenstates, that is responsible for the level repul-
sion (however strong or weak) between those two levels,
and some of the entanglement in those eigenstates.

Many-body resonances between configurations of local
degrees of freedom manifest themselves as entanglement
in the eigenstates of the dynamics. This entanglement
arises during a basis rotation from a localized basis, in
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FIG. 6. Distributions over realizations of the slowest decay
rate 1/τ of the Floquet super-operator for disorder strengths
α = 3.33, 6.25, 12.5, 25.0. This is part of the data shown in
Fig. 4.

which states are dynamically connected by off-diagonal
matrix elements of the Floquet unitary (or Hamiltonian),
to a basis of entangled eigenstates, which are not dy-
namically connected. This idea is realized explicitly in
Wegner-Wilson flows [81], but that is not what we do be-
low. Instead, we consider a hypothetical flow, which at
its end arrives at the eigenstates of the dynamics. We are
essentially interested in the very last steps of this flow,
which rotate away the last off diagonal elements of U (or
H). Depending on the location along this hypothetical
flow, resonances can be indicated by entanglement in the
set of states that is flowing, or by nonzero off-diagonal
matrix elements that couple the states. This description
is qualitative, and in this section we aim to introduce
a quantitative procedure for moving between these two
views in a controlled setting.

We want the ability to “undo” some of the entangle-
ment associated with many-body resonances that exists
in the basis of eigenstates, and transform to a different,
more localized basis in order to study the underlying ma-
trix elements that are responsible for that entanglement,
“rewinding” the hypothetical flow by the last steps. It
is unclear to us how to do this meaningfully when there
are many states involved, so in this section we describe
a method for doing this transformation explicitly with
two states treated in isolation. In other words, we de-
velop a procedure for transforming any two eigenstates
into two more-localized states that they are superposi-
tions of. Then, since those two more-localized states are
not eigenstates, they do have a nonzero off-diagonal ma-
trix element that connects them in the dynamics, and we
study these matrix elements in Sec. VI.

Consider two eigenstates of the dynamics, |α〉 and |β〉.
These can be eigenstates of a Floquet operator or a
Hamiltonian, but in this section we will consider a Flo-
quet system for concreteness. We want to find the two
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FIG. 7. The Bloch sphere representing the 2D subspace
spanned by two eigenstates, and the rotation to the corre-
sponding two demixed states. A Bloch sphere can be defined
using any two orthogonal states. Here we associate the poles
to the two eigenstates |α〉 and |β〉, and the points that repre-
sent the demixed states |a〉 and |b〉 are rotated away from the
poles at polar and azimuthal angles θ and φ. Note that or-
thogonal states in the 2D subspace represented by this Bloch
sphere are antipodal on the surface of the sphere.

states

|a〉 = cos

(
θ

2

)
|α〉+ eiφ sin

(
θ

2

)
|β〉 (16)

|b〉 = −e−iφ sin

(
θ

2

)
|α〉+ cos

(
θ

2

)
|β〉 (17)

that are the orthogonal superpositions of |α〉 and |β〉 that
are as localized as possible. We refer to |a〉 and |b〉 as the
“demixed” states. The rotation from the two eigenstates
to the more localized, demixed states is parametrized
by two angles, θ ∈ [0, π] and φ ∈ [0, 2π], on a Bloch
sphere whose poles are defined by the two eigenstates
(see Fig. 7). We emphasize that a Bloch sphere can be
constructed from any two orthogonal states, and here we
are defining the two eigenstates to be at the poles, while
the demixed states are rotated away from the poles.

As mentioned earlier, we can imagine the demixing
procedure as a reverse renormalization group flow in this
two-dimensional (2D) subspace that starts at the eigen-
states and moves towards the localized Z basis states as
much as possible, ending at the demixed states. During
this process the Floquet unitary matrix, when expressed
in the 2D basis {|a〉, |b〉}, goes from being diagonal when
θ = 0 to having a nonzero off-diagonal matrix element
Uab (and its conjugate) which couples the states |a〉 and
|b〉 under the dynamics. Note that the matrix elements
of the Floquet unitary between the demixed states and
any other eigenstate outside of this 2D subspace are still
zero, so only one isolated nonzero off-diagonal matrix el-
ement is generated by rotating two of the eigenstates into
a superposition. In the case that the two eigenstates are
a well-isolated, strong, two-state resonance, |a〉 and |b〉

will both have an O(1) overlap with both |α〉 and |β〉,
i.e., θ will be comparable to π/2 in Eqs. 16 and 17.

In practice, the way we find an appropriate rotation is
to maximize

f(θ, φ) =

L∑
i=1

ZααZaa + ZββZbb (18)

over the angles θ and φ, where i runs over sites, we have
suppressed the site index i on the Pauli Z operators,
and Zψϕ is the matrix element 〈ψ|Zi|ϕ〉. We have cho-
sen to maximize this particular function because it ap-
proximates the sum of squared Z magnetizations over all

sites and both demixed states, F (θ, φ) =
∑L
i=1 Z

2
aa+Z2

bb,
which is maximized by the computational basis states,
and because the maximum of f can be found analyti-
cally given data on the matrix elements of Zi in the basis
of eigenstates. In considering the approximation of sub-
stituting f for F we should consider what we need out of
this approximation. As we will see later, the distribution
of matrix elements |Uab| over pairs of states is very broad
on a log scale (see Fig. 9), and this implies the distribu-
tion of θ is also broad (see Eq. 26). So, as long as we can
determine θ accurately on a log scale, that is sufficient for
our study (φ is not of much importance). Indeed when
the maximum of F is at θ � 1, the maximum of f will
approximate this very well, and when the maximum of
F is at θ ∼ 1, then all we need is that the maximum of
f is at θ ∼ 1 too, and this is indeed the case.

The maximum of f occurs when

cosφ =
ΓR√

Γ2
R + Γ2

I

(19)

sinφ = − ΓI√
Γ2
R + Γ2

I

(20)

cos θ =

√
Γ2
D

Γ2
D + 4Γ2

R + 4Γ2
I

(21)

sin θ =

√
4Γ2

R + 4Γ2
I

Γ2
D + 4Γ2

R + 4Γ2
I

, (22)

where the real constants ΓD, ΓR, and ΓI are written in
terms of matrix elements of Zi as

ΓD =

L∑
i=1

(Zαα − Zββ)2 (23)

ΓR + iΓI =

L∑
i=1

Zαβ(Zαα − Zββ). (24)

Note that the optimal rotation is always in the upper half
of the Bloch sphere (see Fig. 7) because of the way we
have associated |a〉 to |α〉 and |b〉 to |β〉 in Eq. 18.

Now that we know how to “undo” a two-state reso-
nance, we can compute the Floquet unitary matrix ele-
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ments in the 2D basis of demixed states:(
Uaa Uab
Uba Ubb

)
= W †

(
Uαα 0

0 Uββ

)
W,

W =

(
cos(θ/2) −e−iφ sin(θ/2)

eiφ sin(θ/2) cos(θ/2)

)
. (25)

Three relevant quantities are the size of the off-diagonal
matrix element |Uab|, the adjusted gap between the diag-
onal matrix elements |Uaa − Ubb|, and their ratio G [68].
It follows from Eq. 25 that

|Uab| =
1

2
|Uαα − Uββ | sin θ, (26)

|Uaa − Ubb| = |Uαα − Uββ | cos θ, (27)

G =
|Uab|

|Uaa − Ubb|
=

tan θ

2
, (28)

where |Uαα−Uββ | is the size of the spectral gap between
the eigenstates |α〉 and |β〉, and the cosine and sine of
θ are given by Eqs. 21 and 22. These quantities char-
acterize the dynamical resonance in this 2D subspace.
Note that Eqs. 26 and 27 correctly express that as θ is
increased from 0 to its final value, the repulsion between
the diagonal matrix elements Uaa and Ubb is decreased at
the cost of generating an off-diagonal matrix element Uab
that couples the two states. This is what we mean by
“undoing” a resonance and “demixing” the eigenstates
into their constituent localized states. The eigenstates
are, by definition, not coupled by the dynamics. But
they are a result of mixing states that are coupled by the
dynamics, and this is our way of quantifying that idea to
some extent.

Note that we are simply looking at the same opera-
tor (the Floquet operator) in two different bases in or-
der to identify resonances, and this is different than tun-
ing the disorder parameter and detecting Landau-Zener-
like avoided crossings in the spectrum, as was done in
Ref. [64]. However, there is a direct connection to what
was considered in Ref. [64] that we will now discuss: Let’s
imagine that we initialize a realization of our Floquet
circuit at αi = ∞, then tune α down to a finite value
αf <∞ that we want to consider, as was done by Villa-
longa and Clark. Along the way, the eigenvalues of the
Floquet unitary would develop some amount of (poten-
tially very weak) all-to-all level repulsion, and they would
traverse some noticeable avoided level crossings where
strong many-body resonances develop. We are simply
choosing to extract information about any amount of
level repulsion and resonance between any given pair of
states by examining the properties of the two states at
αf , rather than examining the history of the levels from
αi to αf . In this way, we can study both very weak “inter-
actions” between eigenstates, as well as strong (resonant)
ones, using the same rather simple approach presented in
this section.

The method we have introduced in this section is sen-
sitive to the existence of two-state resonances, and any-
thing weaker than that, so it works best at strong dis-
order where many-state resonances do not dominate the

FIG. 8. Demixing of two neighboring Floquet eigenstates.
Z magnetizations are shown for two neighboring eigenstates
(light blue and red) of one realization of the Floquet model
and the corresponding two demixed states (dark blue and
red). The pair of neighboring eigenstates is chosen such that
it is the one with the most significant rotation angle θ on
the Bloch sphere (see Eq. 16), while also requiring that the
resonance spans the system. Top: Floquet model at α =
12. In a strongly localized system we find a rare two-state
resonance and are able to undo the resonance by demixing the
eigenstates into highly magnetized states. Bottom: Floquet
model at α = 1. In the thermal phase resonances involve
many states, and so a pair of eigenstates in isolation are not
able to be successfully demixed into highly magnetized states.

spectrum. In Fig. 8 we show the Z magnetizations of
two eigenstates and their corresponding demixed states
in both the MBL and thermal regimes of the Floquet
model. In the top panel of Fig. 8 the two eigenstates are
chosen to be the two neighboring states in the spectrum
of a strongly-localized system with the largest angle of
rotation θ (maximum G), while also requiring that the
resonance spans the system. We see that the demixing
procedure indeed finds superpositions of the two eigen-
states that are much more magnetized than the initial
eigenstates. This example demonstrates the case of a
well-isolated, rare, two-state resonance in the spectrum
of a strongly-localized system. Meanwhile, in the bottom
of Fig. 8 we do the same thing, but for a system that is
well into the thermal phase. In that case the eigenstates
have small initial magnetizations because they are ther-
mal, and an attempt to find a strongly magnetized su-
perposition of two neighboring eigenstates does not make
much progress because the eigenstates are highly entan-
gled and involved in many-state resonances.

Finally, in Fig. 9 we show distributions, over pairs of
states and realizations, of the off-diagonal matrix ele-
ments |Uab| and |Hab| for various system sizes and at
values of the tuning parameters α = 10 and W = 6. Here
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FIG. 9. Distributions of matrix elements for end-to-end pro-
cesses in the MBL regime. These distributions are collected
over such pairs of adjacent eigenstates (see main text), and ex-
tracted via the method detailed in Sec. V. Left: The Floquet
circuit model. The data was collected from 104, 104, 1.5× 103

realizations at α = 10 and L = 8, 10, 12, respectively. Right:
The Hamiltonian model. The data was collected from 104 re-
alizations at W = 6 and L = 10, 12, 14. See Appendix B for a
discussion of numerical errors in finite-precision arithmetic.

we are restricting to pairs of eigenstates that are adjacent
in the spectrum of U or H, and for which Zaa and Zbb
have opposite signs on both end sites, in order to select
for pairs of states that could be a system-wide resonance
(like the pair shown in the top panel of Fig. 8). The pur-
pose of showing these distributions is to emphasize their
extreme broadness, which is growing with L. The distri-
bution of off-diagonal matrix elements is much broader
than the distribution of gaps, and so rare resonances are
primarily caused by the tail to large off-diagonal matrix
elements shown in this figure.

VI. CLOSED SYSTEM RESULTS

In this section we study the two landmarks Lswr and
Lmg. As a reminder, these landmarks divide the MBL
regime into three subregimes: Between Lr and Lmg there
are rare long-range resonances, and the minimum gap
does exhibit level repulsion, but the typical eigenstate is
well localized and thus 〈r〉 u 0.39 is near the Poisson
value. Next, between Lmg and Lswr the minimum gap no
longer typically exhibits level repulsion, but due to the
heavy tail to large matrix elements (see Fig. 9) the num-
ber of system-wide resonances per sample increases with
increasing system size L. Finally, past Lswr there are no
system-wide resonances at all in a typical sample, and
the trend with increasing system size L is that samples
with such resonances become even more rare.

We use extreme values, over eigenstates, of measures
that indicate a many-body resonance to locate these two
landmarks. To this end, we use our scheme for undoing
two-state resonances (described in Sec. V) to understand
what is happening at these landmarks in terms of the
matrix elements associated with many-body resonances.

As before, we consider systems with open boundaries in
order to have the longest possible distance between sites,
and thus the strongest distinction between short-range
and system-wide resonances in small systems. This is
important because short-range resonances are certainly
part of the MBL phase itself, whereas long-range (range
∼ L) resonances are important for driving the system
towards thermalizing behavior.

A. System-wide resonances from long-range
entanglement measures

Our goal is to design measures that mark the disorder
strength at which we can start to expect that a typical
MBL system has at least one pair of eigenstates involved
in a many-body resonance that extends across the entire
system (Lswr). It is important to emphasize that we fo-
cus on system-wide resonances here because there is no
single point at which short-range resonances turn on, but
there is such a landmark for system-wide resonances, as
we demonstrate below. In Figs. 10 and 11 we show data
on four measures that are sensitive to system-wide reso-
nances, spanning both the Floquet circuit (left) and the
Hamiltonian (right) models.

First consider Fig. 10, which involves two entanglement
entropy-based measures of a given eigenstate, the mutual
information I1,L between the first and last site, and Smin,
the minimum entanglement entropy over all cuts that
separate the system into left and right parts. For each
eigenstate |n〉, the quantum mutual information

I1,L = S1 + SL − S1,L (29)

is defined by the entanglement entropies SA =
−Tr (ρA ln ρA) of a subsystem A, which is in this case
given by the first site {1}, the last site {L}, and the
combination of both {1, L}. The reduced density ma-
trix of the subsystem in eigenstate |n〉 is obtained by
tracing out the complement of A: ρA = TrA |n〉 〈n|.
The minimal entanglement entropy in an eigenstate |n〉
over all cuts which separate the system into a left half
A = {1, 2, . . . , `} and a right half A = {` + 1, . . . , L} is
then

Smin = min
`
S1,2,...,`. (30)

We then take the maximum, over eigenstates, of each of
these quantities in order to get maxn I

1,L and maxn Smin

for each realization, and finally what we plot is the me-
dian over realizations, denoted by med(·). The logic be-
hind both of these measures is to detect, in typical re-
alizations, rare many-body resonances that involve only
a few states that differ over the entire length of the sys-
tem [65]. The median is used in order to capture the
typical behavior, and to postpone the influence of finite
numerical precision to higher disorder.

The quantum mutual information between end sites
unambiguously picks up the small amount of system-wide
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FIG. 10. End-to-end resonances: Mutual information and the
maximum entanglement bottleneck. The finite-size crossings
are estimates of the location of Lswr, which we estimate to be
at α > 13 and W > 8.5 for L larger than we can access. The
dashed lines indicate the maximal value of ln 2. The Floquet
data is on the left and the Hamiltonian on the right. The
Floquet data makes use of the full spectrum. The number of
realizations used to compute statistics are 32×103 for L ≤ 10,
5 × 103 for L = 12, and 3.5 × 102 for L = 14. The Hamilto-
nian data is calculated from the center fifth of the spectrum
in the

∑
i Zi = 0 sector. The number of realizations used to

compute statistics are 64× 103 for L ∈ {10, 12}, 12× 103 for
L = 14, and 5 × 102 for L = 16. Top: The median over
realizations of the maximum over eigenstates of the quantum
mutual information between end sites I1,L. The median is
used in order to target typical realizations. We have dropped
data points at high α and W that are affected by finite nu-
merical precision. Bottom: The median over realizations of
the maximum over eigenstates of Smin, the minimum entan-
glement entropy over cuts.

entanglement in rare, system-wide, cat-like eigenstates
that are the result of system-wide, few-state resonances.
In the top row of Fig. 10, we see a clear crossing in the
maximum mutual information at strong disorder in both
models. This means that at strong disorder the end-to-
end mutual information vanishes for all eigenstates as
the system size (distance between ends) is increased. Be-
fore the crossing, at intermediate disorder, the median
of the maximal mutual information approaches its max-
imal value ln 2, revealing the existence of at least one
system-wide resonance in most samples. So this finite-
size crossing is an indicator of the location of Lswr. We
also note that there is another crossing of this mutual
information at much weaker disorder, and this must oc-
cur because in the thermal phase, the entanglement is
long-range and obeys a volume law, corresponding to a
small mutual information between end sites. This second
crossing simply indicates that our measure is tuned to be
sensitive to rare isolated resonant states in a spectrum of
otherwise localized states, and not to the full thermaliza-

tion of the system.
The maximal entanglement bottleneck, shown in the

bottom row of Fig. 10, is not so unambiguous because it
does not necessarily filter out short-range entanglement.
If there is an eigenstate whose minimal cut corresponds
to nearly one bit of entanglement entropy, this does not
necessarily mean that there is system-wide entanglement
in that state. However, it is true that if all states have
an entanglement entropy bottleneck that is much smaller
than one bit, then there are no states with significant
end-to-end entanglement. Thus this quantity is useful to
detect the absence of system-wide, few-state resonances
at strong disorder.

Crossings in both of the quantities in Fig. 10, for both
Floquet and Hamiltonian systems, estimate the land-
mark Lswr beyond which not even one system-wide many-
body resonance is indicated in the large-L limit of a typ-
ical sample. This is not to say that resonances do not
exist beyond this point, but it is to say that they do not
stretch across the whole system. As in all other measures,
the crossings drift towards increasing disorder strength
with increasing L. At larger L than we can access we
bound this landmark at α > 13 for the Floquet model
and W > 8.5 for the Hamiltonian, disorder strengths that
are substantially higher than the location of Lr (Fig. 2).

B. System-wide resonances from matrix elements

Next we move on to study resonances using the proce-
dure outlined in Sec. V for analyzing pairs of eigenstates.
We restrict our analysis in this section to considering only
pairs of neighboring eigenstates for convenience (to avoid
the O(4L) scaling of checking all pairs of eigenstates). We
expect that system-wide resonances restricted to neigh-
boring pairs of states “turn on” at approximately the
same disorder strength as system-wide resonances involv-
ing any pairs, and indeed our data below supports this.

For each pair of neighboring eigenstates (n, n + 1) we
compute the demixed states, |a〉 and |b〉, and extract
the associated off-diagonal matrix element of the Flo-
quet unitary |Uab| (Hamiltonian |Hab|), the adjusted gap
|Uaa − Ubb| (|Haa − Hbb|), and G, which is the ratio of
the two (see Sec. V for details). In order to consider
only potential system-wide resonances, we further filter
the pairs of states and keep only the ∼ 1/4 of pairs for
which both 〈Z1〉 and 〈ZL〉 have opposite signs in the two
demixed states; this is what we mean by “system-wide”
when talking about a pair of eigenstates in this section.
For example, the resonance shown in the top panel of
Fig. 8 is system-wide. In order to detect the onset of
system-wide resonances (in neighboring pairs of eigen-
states) we determine the largest G from each realization,
Gmax = maxnG, and plot the median over realizations in
the top row of Fig. 11. There we see that beyond a certain
level of disorder, the maximum G trends to lower values
with L, and thus we do not expect to find even one such
resonance in large systems at those disorders. This is
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in agreement with the entanglement entropy-based mea-
sures we studied above (note that those measures did not
have the restriction to neighboring pairs of eigenstates).

Now remember that for a given pair of states, G =
|Uab|/|Uaa − Ubb| (here we focus on the Floquet model).
We can define a criterion of two eigenstates being reso-
nant if G > 1, i.e., Uab > |Uaa−Ubb|. In MBL systems in
the regime of rare, isolated resonances in the spectrum,
we can approximate |Uaa−Ubb| as being distributed expo-
nentially (Poisson statistics) with a mean value of 2π/2L.
Then if we assume that the matrix element |Uab| is un-
correlated to the gap |Uaa−Ubb|, the expected total num-
ber of resonances (restricted to system-wide neighboring
pairs of states) in a realization is the sum over qualifying
pairs of eigenstates of the probability that the pair sat-
isfies the resonance condition. In the regime where the
probability of resonance per pair is small enough, this
number of resonances per realization is

nswr ≈
∑
pairs

∫ |Uab|

0

2L

2π
exp

(
−2L

2π
∆

)
d∆ (31)

≈ 4L

8π
〈|Uab|〉, (32)

where the mean 〈·〉 is taken over neighboring system-
wide pairs of states, of which there are approximately
2L/4. Thus the quantity 4L〈|Uab|〉 should also herald the
onset of O(1) system-wide resonances involving neighbor-
ing pairs of eigenstates, and the locations of the finite-
size crossings, that we show on the left of Fig. 12, serve
as additional estimates of Lswr (up to the assumptions
of this section). Note that a factor of 4L appears several
times in this work following distinct lines of reasoning,
so this 4L is not the same as the 4L that enters in the
avalanche argument discussed in Sec. II A. This reasoning
and quantity does not translate well to the Hamiltonian
case because of the nonuniform density of states, so we
do not show data for this quantity for the Hamiltonian
model, as we have done with the other measures. The
finite-size crossings in Figs. 11 and the left of Fig. 12 agree
well with those identified above in Fig. 10, so we conclude
that system-wide resonances involving neighboring pairs
of eigenstates onset at a similar point as system-wide res-
onances between any pair, and we have further evidence
for the landmark Lswr.

As an extension of these ideas, on the right of Fig. 12
we set the target number of system-wide, resonant, neigh-
boring pairs of states to ∼ 2L, instead of ∼ 1, and thus
plot 2L〈|Uab|〉 vs. α. This means that the finite-size
crossing occurs when the probability of a system-wide
resonance in any given eigenstate is finite (does not van-
ish with L), and hence a finite fraction of eigenstates
are typically involved in resonances. The location of this
crossing lines up nicely with estimates of Lr, the bound-
ary of the MBL regime.
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FIG. 11. Typical maximum end-to-end G ratio. The cross-
ings are estimates of Lswr. med(·) denotes the median. The
median is used to target typical realizations, and the maxi-
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“system-wide” (differ in the signs of their magnetizations on
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FIG. 12. Typical mean end-to-end matrix element |Uab|,
scaled by 4L (left) and 2L (right), for different system sizes L
as a function of α for the Floquet circuit. The crossings are
estimates of Lswr (left) and Lr (right). The median is taken
over realizations and the mean is taken over system-wide pairs
of neighboring eigenstates. As explained in the main text, the
reason we scale by 4L on the left is to make a quantity that
is proportional to the number of resonant system-wide pairs
of neighboring eigenstates in a realization. On the right we
scale the same data by 2L so that the finite-size crossing oc-
curs when the number of resonances is ∼ 2L, i.e., an O(1)
fraction of states.

C. Level repulsion of the minimum gap

In this subsection we focus on a different landmark,
Lmg, where the two closest levels in the spectrum start
to undergo significant level repulsion. We focus on the
Floquet system where the smallest gap for Poisson level
statistics can be obtained directly, because the density of
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states is known and independent of the eigenphase, but
the same ideas and results hold in the Hamiltonian case
too, with slight modifications.

When there is no level repulsion between eigenvalues
of the Floquet unitary, the probability distribution of the
size of gaps δ in the spectrum is Poisson distributed

p(δ) =
1

〈δ〉 exp

(
− δ

〈δ〉

)
, (33)

with mean 〈δ〉 = 2π/2L. Since there are D = 2L gaps
in the spectrum, the expected minimum gap is 〈δmin〉 =
2π/4L. A deviation from this expectation indicates level
repulsion of the smallest gap, which is caused by a many-
body resonance of any range (probably not exactly end-
to-end, but indeed involving extensively many degrees
of freedom in order to get two levels so close together).
In the top left panel of Fig. 13 we show the realization-
averaged minimum gap, scaled and shifted so that the
baseline value for randomly placed levels is 0. This shows
that there is a landmark Lmg beyond which the minimum
gap in the spectrum does not undergo level repulsion, and
thus those eigenstates do not share a resonance.

Assuming that for the minimum gap states, it is the
gap that is atypical, and not the matrix element of the
resonance in that 2D subspace, the matrix element should
be typical. Thus the minimum gap should exhibit level
repulsion when the typical matrix element decreases with
L slower than 4−L. In the bottom left of Fig. 13 we
show that indeed the location at which the typical value
of 4L|Uab|/2π (over neighboring pairs of states, but not
restricted to system wide pairs) has a crossing is in line
with Lmg.

On the right side of Fig. 13 we show similar measures
for the Hamiltonian system, however instead of the min-
imum gap, we use the minimum level spacing ratio in
order to divide out the effect of a nonuniform density
of states. The minimum level spacing ratio, rmin, scales
with the inverse of the number of states D when there
is no significant level repulsion. We see that, similar to
the Floquet model, there is a crossing of the minimum
level spacing ratio that indicates the disorder strength
at which level repulsion sets in for one of the smallest
gaps in the spectrum (relative to the density of states at
that energy), and this landmark is reproduced by exam-
ining when the typical matrix element between neighbor-
ing states scales like 1/D2 (bottom right).

The location of Lmg is drifting to α > 7.9 and W > 5.7.
At this landmark (coming from strong disorder) the near-
est levels in the spectrum begin to repel each other signifi-
cantly because the typical matrix element for many-body
resonances becomes large enough. By this point, atypi-
cally large matrix elements in the extremely broad dis-
tributions (see Fig. 9) have already caused many system-
wide resonances, but all of the resonances are still a van-
ishing fraction of the spectrum. On the way from Lmg

to Lr, more and more states—but still a vanishing (with
L) fraction—exhibit level repulsion, and the crossover to
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the typical matrix element. Floquet data is on the left and
Hamiltonian data is on the right, as in the above figures. The
crossings are estimates of Lmg, which we estimate to be at
α > 7.9 and W > 5.7 as L increases. Top: The average min-
imum gap (Floquet) and minimum gap ratio (Hamiltonian).
Data is scaled and shifted so that the value for a Poisson (un-
correlated) spectrum is 0 for both quantities. There is not
an important difference between average and typical values
for these quantities. Bottom: The log of the typical scaled
matrix element (restricted to neighboring pairs of states, but
not to system-wide pairs). D is the number of states in a
realization: 2L for Floquet and 1

5

(
L

L/2

)
for the Hamiltonian

model because we restrict to the
∑

i Zi = 0 sector and take
the middle fifth of eigenstates. As explained in the main text,
we scale the matrix elements by D2 because the minimum
gap is ∼ D−2. We have dropped data points at high α and
W that are affected by finite numerical precision.

the thermal regime is where finally the fraction of states
involved in resonances no longer vanishes with L.

We can analyze the minimal gaps in more detail by
considering the CDF P [minn(δn) < δ)] shown in Fig.
14. For the case of uncorrelated eigenvalues (Poisson
statistics), we expect the distribution

P [minn(δn) < δ)] = 1− exp

(
4Lδ

2π

)
, (34)

which we can compare to the numerical estimate of the
CDF. The distribution in Eq. (34) is represented by red
dashed lines in Fig. 14 and is the limiting curve for all
L and α, since residual level repulsion necessarily sup-
presses the probability to find small minimal gaps and
therefore shifts the distributions to the right. It is inter-
esting to confirm the trends already seen by the analy-
sis of the mean of these distributions: At large disorder
α & 10, we see that for large system sizes the uncor-
related distributions are reproduced, and the minimum
gap hence does not exhibit level repulsion. On the other
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strengths α for the Floquet unitary circuit. The dashed
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exp(4Lδ/(2π)) for the case of completely uncorrelated eigen-
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signals the development of level repulsion in the small gaps.

hand, at smaller disorder, we observe the opposite trend:
for larger system sizes the observed CDF departs more
strongly from the uncorrelated distribution due to level
repulsion, which first occurs for small gaps.

Our data is useful to numerically check the assump-
tion of limited level attraction in J. Imbrie’s proof of the
existence of MBL [66]. In the proof, the condition reads

P [minn(δn) < δ)] < δνCL. (35)

It is trivially fulfilled in the case of uncorrelated levels by
the CDF in Eq. (34) with ν = 1 and C = 4. Our results
in Fig. 14 show compellingly that the numerical data is
bounded by the Poisson CDF from above, and therefore
the assumption of limited level attraction is comfortably
fulfilled for all α. We note that the target of the original
proof was Hamiltonian systems, however we have consid-
ered a Floquet system here since, as discussed earlier, the
spectrum is simpler to work with in some respects.

VII. SUMMARY AND DISCUSSION

In this work we identified and estimated several land-
marks in the MBL regimes of finite-size MBL systems
(see Fig 15). The model systems we used are the conven-
tional random-field Heisenberg spin chain, and a Floquet
random unitary circuit that we introduced, which we ar-
gued has some simplifying advantages. In order to set
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FIG. 15. Summary of estimates of landmarks in the MBL
regime for the Floquet circuit. The L-dependent location of
a landmark, αc(L), is obtained via the condition Q(αc, L) =
Q(αc, L − δL), where Q is a relevant quantity whose finite-
size crossing indicates the landmark, and δL is the increment
by which the system size is increased for a series of data.
The landmarks shown are: 1) Lmg, where the minimal gap
switches from Poissonian to non-Poissonian. αc(L) is esti-
mated from the data shown in the top left of Fig. 13 with
δL = 2. 2) Lr, the crossover to the thermal regime, where all
states exhibit significant level repulsion. αc(L) was estimated
from data shown on the left of Fig. 2 with δL = 2. 3) Lswr,
the landmark that marks the edge of the deep-MBL subregime
where no system-wide resonances are present. αc(L) comes
from the crossings in the top left of Fig. 10 with δL = 2. 4)
Lavch, an estimate for the position of the avalanche instabil-
ity from the perturbative decay rate shown in Fig. 5, using
δL = 1.

reference points for these models, in Fig. 2 we showed
the mean level spacing ratio, which is commonly used to
mark the boundary of the finite-size MBL regime; that
reference landmark we have called Lr.

In addition, we defined “open” versions of these other-
wise closed spin chain models by coupling an infinite bath
to the left end spin. The open models give us a direct
handle on the avalanche instability via their superoper-
ator description. Based on the theory of avalanches, the
critical thermalization rate of a MBL spin chain of length
L coupled to an infinite bath at one end is ∼ 4−L. Identi-
fying the slowest decaying eigenmode of the open systems
as the rate of thermalization, we showed in Fig. 4 that in-
deed both open Floquet and Hamiltonian models have a
point at which their thermalization rate crosses through
the critical 4−L scaling. We then improved on this via
a perturbative approach first suggested by Sels [41] in a
follow up to the first version of this paper, which allowed
us to push the calculation to larger system sizes (Fig. 5).
In this way we were able to set down our first landmark
Lavch in the MBL regimes, which is a lower-bound esti-
mate of the boundary of the MBL phase. Strikingly, this
landmark was deep in the MBL regimes, suggesting that
the boundary of the MBL phase is at much stronger ran-
domness than indicated by studying the average proper-
ties of eigenstates/energy levels, such as 〈r〉, at accessible
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system sizes. It is also interesting to note that, for the
Hamiltonian model, our lower bound of the avalanche
threshold (W > 18) is beyond the upper bound on the
critical disorder strength proposed in Ref. [82], albeit for
a slightly different model.

Before moving on to study many-body resonances in
the closed spin chain models, in Sec. V we detailed a
new procedure for studying the effective couplings be-
tween pairs of eigenstates. The essential idea is, for any
chosen pair of eigenstates, to find the two most localized
superpositions of those two eigenstates, and then charac-
terize the couplings in that 2D subspace via the matrix
elements of the Floquet operator (or Hamiltonian) itself
in the basis of these more localized states. Being able to
study the resulting matrix elements allowed us to more
thoroughly understand the landmarks that involve many-
body resonances, which we identified first using other
basis-independent measures. This idea of “undoing” res-
onances may be useful in other settings where isolated
resonances show up.

The two resonance-related landmarks we found, Lswr

and Lmg, split the MBL regimes into three subregimes.
We detailed two ideas for entanglement entropy-based
quantities that can pick up on exceedingly rare cat-like
eigenstates that are involved in system-wide resonances
(swr), and indeed in Fig. 10 we showed that these worked
to identify and estimate Lswr. We then confirmed this
landmark using our procedure for undoing resonances
and generating the associated matrix elements. The re-
sults are contained in Figs. 11 and 12.

The final landmark we studied was Lmg, the point at
which the minimum gap (mg) changes from being Pois-
sonian to not. This is the result of the typical matrix
element that generates level repulsion between neighbor-
ing levels crossing through the scaling ∼ 4−L, which is
how the minimum gap of a Poisson spectrum scales with
L. This explanation was confirmed in Fig. 13.

Finally, we examined the distribution of minimum gaps
as we varied α in our Floquet model. In Fig. 14 we
show that the distribution is bounded by the uncorrelated
Poisson distribution. This is numerical confirmation, at
the accessible system sizes, of the modest assumption of
limited level attraction in the proof of MBL [66], albeit
for Floquet systems, which were not the original target
of the proof.

All of our landmarks exhibit a significant drift with
system size towards larger values of disorder, due to the
fundamental asymmetry between thermalization and lo-
calization. Fig. 15 displays a summary of the landmarks
and their drift with system size. It is important to note
that we cannot determine whether all of our landmarks
will converge as L→∞, or if any will end up in the MBL
phase. One interesting possibility is that one of, or both
of, Lswr and Lmg end up within the MBL phase, beyond
Lavch, and separate it into two or three pieces. For exam-
ple, there may be a deep part of the MBL phase where
typically not even a single one of the exponentially many
eigenstates has any significant system-wide entanglement

(compared to one bit), and then a more shallow part of
the phase that does typically host these still exceedingly
rare long-range resonances. Or, this may not be true, in
which case it would seem that the avalanche instability
would be the cause of all system-wide resonances in the
limit of large samples. Our data favor the latter scenario,
but we cannot rule out the former, which could occur if
the character of the finite-size effects changes qualita-
tively at larger L. In the future it will be interesting
to understand the connections between resonances and
avalanches more thoroughly.

Our work has raised many outstanding questions for
future inquiry. For example, the study of rare many-
body resonances in strongly localized nonrandom (ex:
quasiperiodic) MBL systems may be a new lens through
which to understand the differences between random and
nonrandom MBL systems [33]. Our method for analyz-
ing resonances in pairs of eigenstates has also opened up
the future possibility of building on this method to deal
with many eigenstates at once. Furthermore, we have not
yet fully understood the connection between the slowest
modes of the models coupled to thermal baths and the
detailed properties of the corresponding isolated systems,
and this may be a challenging and rewarding direction for
future work.

Soon after this paper was first posted, a related and
complementary work about many-body resonances by
Garratt, et al. appeared [83].
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Appendix A: Distribution of slowest decay rates of
the XXX Lindblad superoperator

In Fig. 16, we provide additional data for the distri-
butions of the slowest rate of the Lindblad superoperator
of the Hamiltonian model coupled to an infinite bath.
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FIG. 16. Distribution, over realizations, of the slowest rate
of thermalization in Lindblad dynamics for the open XXX
model. This is part of the data shown in Fig. 4

Appendix B: Small matrix elements and finite
numerical precision

In Fig. 9 we show the distributions of the off-diagonal
matrix elements obtained via our procedure for undoing
resonances in the 2D subspace spanned by two chosen
eigenstates. At strong disorder and large system size
there is a left tail to very small numerical values, and
these can be difficult to work with even for double pre-
cision (64-bit) floating point arithmetic. Small |Hab| are
the result of small Zαβ in Eq. 24. So, the source of these
issues is in the calculation of very small off-diagonal ma-
trix elements of Zi in the basis of eigenstates.

We have found that numerical errors can distort the
left tail of the distribution at numerical values of |Hab|
near to, or smaller than, the double precision floating
point resolution of 2−53. However, many statistics are
not sensitive to this tail to small matrix elements and
thus they are robust to some level of these errors. For
example, these distributions are broad enough that the
mean is dominated by the right tail to large values. The
median is also robust to errors in the left tail, as long as
those errors do not cause weight to be transferred from
the lower to the upper half of the distribution.

Appendix C: Numerical precision in the open setup

Numerical precision issues are also present in the open
setups (both Floquet and Hamiltonian) when the decay
rate distribution has significant support on values smaller

than 10−16. Unlike the case of matrix elements coming
from “undoing” many body resonances, distributions of
decay rate can lay in the region were numerical preci-
sion issues can not be ignored. This can be seen clearly
in Fig. 17, where the decay rate computed using double
and quadruple precision are put side by side. After look-
ing at the distribution of decay rates, it is evident that
the median of log10(1/τ) is totally changed by the insuf-
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FIG. 17. Left: Distribution of decay rate τ in the open Hamil-
tonian setup with L = 14 and W = 18 at weak coupling as
described in Sec. III G. Dashed (continues) lines in both pan-
els show the decay rate computed using quadruple (double)
precision. Right: 80th percentile of − log10 τ as function of
disorder W at fixed system sizes. In both plots 1000 disor-
der realizations are used for every set of parameters. At each
disorder realization the decay rate is computed twice, once us-
ing double precision and the other using quadruple precision.
Error bars are 68% bootstrap confidence interval

ficiency of double precision. However higher percentile of
the distribution are less affected by this issue because the
right tail will be at values larger than 10−16. That is why
we have chosen (inspired by [41]) to work with the 80th

percentile. Moreover, different percentiles have similar
system size scaling because the variance of distribution
is independent of system size (see Fig. 16 and 6). There-
fore the 80th percentile still carries enough information
for talking about “typical” behavior. Still at large dis-
order and available system sizes the decay rates are too
small for getting a trustworthy result out of double pre-
cision computations. For instance, in Fig. 17 it can be
seen that for L = 14 the 80th percentile of the decay rate
is smaller than 10−16 in the range W > 16. To overcome
this issue we have performed quadruple precision diago-
nalization of H and U as well as their respective super-
operators (see Sec. III G and III F) anytime the needed
percentile of the distribution is smaller than 10−15.
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