
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Band structures under non-Hermitian periodic potentials:
Connecting nearly-free and bi-orthogonal tight-binding

models
Ken Mochizuki and Tomoki Ozawa

Phys. Rev. B 105, 174108 — Published 19 May 2022
DOI: 10.1103/PhysRevB.105.174108

https://dx.doi.org/10.1103/PhysRevB.105.174108


Band structures under non-Hermitian periodic potentials:
Connecting nearly-free and bi-orthogonal tight-binding models

Ken Mochizuki1, 2 and Tomoki Ozawa1

1Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
2Nonequilibrium Quantum Statistical Mechanics RIKEN Hakubi Research Team,

RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-0198, Japan

We explore band structures of one-dimensional open systems described by periodic non-Hermitian
operators, based on continuum models and tight-binding models. We show that imaginary scalar
potentials do not open band gaps but instead lead to the formation of exceptional points as long as
the strength of the potential does not exceed a threshold value, which is contrast to closed systems
where real potentials open a gap with infinitesimally small strength. The imaginary vector potentials
hinder the separation of low energy bands because of the lifting of degeneracy in the free system.
In addition, we construct tight-binding models through bi-orthogonal Wannier functions based on
Bloch wavefunctions of the non-Hermitian operator and its Hermitian conjugate. We show that the
bi-orthogonal tight-binding model well reproduces the dispersion relations of the continuum model
when the complex scalar potential is sufficiently large.

I. INTRODUCTION

The behavior of spatially periodic systems are deter-
mined by band structures and corresponding Bloch func-
tions. Typically, bands are separated by gaps and os-
cillating modes with frequencies inside the gaps are pro-
hibited in the periodic media. There are roughly two
regimes; one is the nearly-free regime where the periodic
potential is weak and can be treated as a perturbation
to the free particle, and the other is the tight-binding
regime where band structures are well approximated by
lattice models based on localized basis functions. Closed
periodic systems described by Hermitian Hamiltonians
have been extensively studied and the behavior in both
regimes is well understood, such as how band gaps open
with weak periodic potentials and the relation between
continuum models and tight-binding models [1–4].

Meanwhile, in open systems effectively described by
non-Hermitian operators, intriguing phenomena which
have no counterpart in closed systems have been revealed
[5], such as PT symmetry breaking [6–34], novel topo-
logical phenomena [24, 31, 34–61], and the emergence of
exceptional points [29, 56, 58, 62–71], to name a few.
Regarding huge progress on non-Hermitian topological
phases made recently, which is a relatively new arena
compared to other realms, the majority of studies are
based on tight-binding models and continuum models
are rarely explored [72, 73]. In addition, the relation
between continuum models and tight-binding models in
open systems has not been well understood in compari-
son to closed systems.

In the present work, we explore band structures of
non-Hermitian continuum models in both nearly-free and
tight-binding regimes. In contrast to systems described
by Hermitian Hamiltonians where infinitesimally small
real potentials open gaps [1], we reveal that weak imagi-
nary scalar potentials in open systems do not open band
gaps but lead to the formation of exceptional points as
long as the strength of the potential is smaller than a

threshold value. We also show that imaginary vector po-
tentials hinder the separation of low-energy bands when
the scalar potential is weak, while they generate a dif-
ferent type of gaps referred to as point gaps [49] when
the scalar potential is strong, which is a unique feature
of open systems. Furthermore, we obtain bi-orthogonal
Wannier functions and construct tight-binding models
based on Bloch wavefunctions of the non-Hermitian op-
erator and its Hermitian conjugate. We show that the
dispersion relations of the continuum model with com-
plex scalar and/or vector potentials are well reproduced
by the bi-orthogonal tight-binding model when the scalar
potential is strong.

The rest of this paper is organized as follows. In Sec. II,
we present our setup, which is a one-dimensional system
with complex periodic scalar and vector potentials. In
Sec. III, we study the band structures in the nearly-free
regime with small potentials. We find several unique be-
haviors with no counterpart in closed Hermitian systems;
the emergence of exceptional points, the parameter de-
pendence of gap sizes, and ring-shaped band structures.
In Sec. IV, we explore the tight-binding regime where
the periodic potential is large, and construct lattice mod-
els which well reproduce the band structures of the con-
tinuum models. The construction of the tight-binding
models is carried out by obtaining Wannier functions
which are composed of bi-orthogonal Bloch functions of
the non-Hermitian operator and its Hermitian conjugate.
Section V is devoted to summary.

II. SETUP

We consider one-dimensional systems in the presence of
periodic complex scalar and vector potentials, described
by the wavefunction ψ(x, t), which is a function of posi-
tion x and time t, obeying the Schrödinger equation

i
∂

∂t
ψ(x, t) = Hxψ(x, t), (1)
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with the non-Hermitian operator

Hx =
1

2M

[
−i ∂
∂x
−A(x)

]2
+ V (x), (2)

which we refer to as the non-Hermitian Hamiltonian.
Here, M = M∗ is the mass, A(x) 6= A∗(x) is the vec-
tor potential, and V (x) 6= V ∗(x) is the scalar potential.
Note that, although we use terminologies in quantum
mechanics, Eq. (1) appears in various situations not re-
stricted to quantum systems. Physical meanings of the
wavefunction ψ(x, t) and the Hamiltonian Hx as well as
various terms inside Hx depend on the specific realiza-
tions of the non-Hermitian Schrödinger equation (1). For
instance, such a non-Hermitian Hamiltonian phenomeno-
logically describes the dynamics of electric fields inside
materials with complex refractive indices [7, 8, 73]. For
various other systems where non-Hermitian Hamiltonians
emerge, we refer to review papers such as Refs [5, 59, 74].
The complex vector and scalar potentials obey the same
periodicity with a period a:

A(x+ a) = A(x), V (x+ a) = V (x). (3)

We take the periodic boundary condition with a sys-
tem size of L = Na, where N is an integer. Through-
out this paper, we take a as the unit of length and
1/2Ma2 as the unit of complex energy, and we simply
set a = 1 and 1/2Ma2 = 1. In this paper, we ex-
plore the band structures of Hx under various strength
of the scalar and vector potentials. We first note that,
for the vector potential A(x), we only need to study
the case where A(x) is constant and purely imaginary.
This is because A(x) can be expanded in Fourier se-
ries as A(x) = A(x + 1) = A +

∑
l 6=0Al exp(i2πlx), and

the oscillating components other than the constant part
can be gauged away by the transformation of the wave-
function ψ(x) → ψ(x) exp

(
−i
∫ x
0

[A(x′)−A ]dx′
)
, and

the eigenenergies are invariant under the transformation.
Since a constant real vector potential just shifts the ori-
gin of the quasimomentum, we only need to consider a
constant imaginary vector potential, as long as we are
concerned with the energy band structure.

The Bloch theorem for wavefunctions in a periodic
potential holds also for non-Hermitian Hamiltonians.
Namely, the eigenvalues and eigenstates are labeled by
the band index n and a quasimomentum k = 2πm/L
with m = 1, 2, · · · , N , obeying the eigenvalue equation

Hxψ
n
k (x) = εn(k)ψnk (x), (4)

where the eigenstate can be written as

ψnk (x) = eikxunk (x), (5)

which we refer to as the Bloch state, and unk (x) obeys
the periodicity unk (x + 1) = unk (x). We note that since
the Hamiltonian is non-Hermitian, the eigenvalue εn(k)
is generally a complex-valued function. By defining Hk =
e−ikxHxe

ikx, the eigenvalue equation becomes

Hku
k
n(x) = εn(k)ukn(x). (6)

For convenience, we order bands n = 1, 2, 3, · · · in the
following manner. We define bands so that εn(k) is
a continuous function of k, and if bands do not con-
tain exceptional points, we first order them accord-
ing to the real parts and then order according to
imaginary parts. To be more precise, we first take
min (Re[εn(k)]) ≤ min (Re[εn+1(k)]), and if the mini-
mum of the real part of two (or more) bands are the
same, we take min (Im[εn(k)]) ≤ min (Im[εn+1(k)]). We
will define later how to order bands which are mixed with
exceptional points when discussing Fig. 1.

For the complex scalar potential V (x), we will mostly
consider a sinusoidal potential

V (x) = c sin(2πx) (7)

with complex c, unless otherwise stated. In Fig. 1, we
plot the energy eigenvalues for various values of purely
imaginary c with increasing |c| in the absence of the vec-
tor potential. We observe that the evolution of the band
structure as |c| increases is quite different from the text-
book example of a periodic Hermitian potential. We
will provide a quantitative understanding of the band
structure both in the nearly-free and the tight-binding
regimes.

Before proceeding to the next section, we briefly
describe how we can numerically calculate the band
structures such as those in Fig. 1. We note that
the method is the standard one often used for Her-
mitian Hamiltonians. Noticing that ukn(x) is periodic
with period 1, the eigenvalue equation, Eq. (6), can
be expanded in Fourier series. Expanding unk (x) and
V (x) as unk (x) =

∑
l u
n
l (k) exp(i2πlx) and V (x) =∑

l Vl exp(i2πlx), Eq. (6) becomes a matrix equation for
a given value of k∑

m

Hlm(k)unm(k) = εn(k)unl (k), (8)

whereHlm(k) = (k+2πm−A)2δlm+Vl−m. When V (x) =
c sin(2πx), only nonzero components of Vl are V−1 = ic/2
and V1 = −ic/2. By truncating the Fourier series includ-
ing an enough number of Fourier components, the matrix
equation can be numerically diagonalized to obtain the
eigenvalues and eigenvectors. Throughout the paper, we
take −40 ≤ l ≤ 40 for numerical calculations, with which
we have confirmed to obtain the convergence in the cal-
culation of the eigenvalues.

Recent studies on application of the band theory to
non-Hermitian continuous models have mostly focused
on the effect of the imaginary vector (gauge) poten-
tial and the resulting skin effects in continuous sys-
tems [72, 73], whereas our work is more intended to elu-
cidate the role of the imaginary scalar potential. There
have also been studies, in the context of PT -symmetric
optics, on the band structure of continuous models un-
der PT -symmetric potentials [7, 8, 10], whose analy-
sis is, in our terminology, restricted to the nearly-free
regime without a vector potential. In these earlier studies
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FIG. 1. Eigenvalues in the complex plane and dispersion relations with A = 0 and V (x) = c sin(2πx) (a) c = 0, (b) c = 5i,
(c) c = 20i, (d) c = 30i, and (e) c = 80i. Green lines are obtained from the continuum model by solving Eq. (6), and blue
dashed lines in the center and bottom rows of (c)-(e) represent dispersion relations of first and second bands obtained from the
bi-orthogonal tight-binding model discussed in Sec. IV. In the bottom of (b)-(e), only Im[ε1(k)] and Im[ε2(k)] are shown but
Im[ε3(k)] = 0 is not shown to avoid the figures becoming too crowded, while the third band is also shown in the top and center
figures of (b)-(d). In (d) and (e), Re[ε1(k)] and Re[ε2(k)] take the same value in the whole Brillouin zone.

on PT -symmetric optics, the emergence of exceptional
points has been discussed. In this paper we will give a
coherent description connecting the nearly-free and the
tight-binding regimes and qualitatively explain the emer-
gence of exceptional points from the viewpoint of the bi-
orthogonal tight-binding model.

III. NEARLY-FREE REGIME

We start from the nearly-free regime, where the
strength of the potential is relatively small, so that
V (x) can be regarded as a perturbation from a free case
V (x) = 0.

A. Without a vector potential

We first analyze the situation where c is purely imagi-
nary and there is no vector potential. The corresponding
band structures are given in Fig. 1. When there is no po-
tential, the first and the second bands touch at k = ±π,
and the second and the third bands touch at k = 0 as
shown in Fig. 1 (a), which is well known from the Hermi-
tian band theory. As we add a small imaginary potential
c 6= 0, we observe drastically different behaviors for the
band touching points at k = ±π and k = 0, as shown
in Fig. 1 (b). In this case, exceptional points appear,
and therefore we order first and second bands such that
Im[ε1(k)] ≤ Im[ε2(k)] (Re[ε1(k)] ≤ Re[ε2(k)]) is satisfied
in the region where the real (imaginary) parts of eigen-
values are degenerate. The real parts of ε1(k) and ε2(k)
around k = ±π form a degenerate line while the imag-
inary parts open a gap. There also appear exceptional
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points near k = ±π where the eigenvalues coalesce. On
the other hand, regarding the the degeneracy at k = 0 in
the absence of the potential, a real gap is opened and thus
ε2(k) and ε3(k) are separated, similar to what happens in
a Hermitian potential. We note that a similar exceptional
point structure has been found for a PT -symmetric sys-
tem in Ref. [7], where they employ a different form of a
scalar potential; we thus expect that such a formation of
exceptional points is a generic feature of systems under
non-Hermitian PT symmetric periodic potentials, and
the analysis below can also be applied to other forms of
potentials, mutatis mutandis, to describe the exceptional
points.

The behavior at k = ±π between the first and sec-
ond bands can be understood from a simple first-order
perturbation theory. Focusing on the band degeneracy
at k = π, the periodic parts for Bloch states of the first
and the second bands before adding the potential V (x)
are simply u1k(x) = 1 and u2k(x) = e−i2πx. Consider-
ing the perturbation theory taking u1k(x) and u2k(x) as
non-perturbative states is equivalent to considering only
l = 0 and l = −1 terms in the matrix equation Eq.(8) of
the Fourier-transformed eigenvalue equation. Therefore,
considering the potential V (x) = c sin(2πx) as a per-
turbation, the matrix elements of the Hamiltonian with
respect to u1k(x) and u2k(x) are(

H−1,−1 H−1,0
H0,−1 H0,0

)
=

(
(k − 2π)2 ic/2
−ic/2 k2

)
, (9)

The energy gap at k = π is then determined by the eigen-
values of the above matrix, which are π2±c/2. When c is
purely imaginary, the gap will thus be purely imaginary
as we numerically observe in Fig. 1 (b). As shown in Fig.
2 (a), the numerically obtained gap size

∆1 = ε2(π)− ε1(π) (10)

agrees well with the analytical result of the first-order
perturbation theory. Figure 1 (c) shows that the two ex-
ceptional points, which emerge from k = ±π, approach
toward k = 0 as |c| is increased. These exceptional
points collide at a threshold value |c|, which we find to
be around |c| ≈ 29, and the two bands are separated af-
ter the collision as shown in Fig. 1 (d). The behavior
explained above is unique to open systems described by
non-Hermitian Hamiltonians since real (Hermitian) peri-
odic potentials with infinitesimally weak strength sepa-
rate the bands in closed systems [1]. The strength for the
imaginary part of the complex potential adopted in Ref.
[7] is around c ≈ 20 in the terminology of our paper, and
thus the regime we explore in this paper is of relevance
to PT -symmetric optical systems.

The gap at k = 0 between the second and the third
bands behave differently. Non-perturbative states which
are degenerate at k = 0 are components with l = ±1
in Eq. (8). However, matrix elements of the periodic
potentials are all zero between these two states, V±2 = 0,
and thus we need to consider higher order terms. We
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FIG. 2. The gap sizes ∆1 and ∆2 as functions of the
strength of the scalar potential for A = 0. The potentials
are (a),(b) V (x) = c sin(2πx) with purely imaginary c and
(c) V (x) = b cos(2πx) + c sin(2πx) with b = 20 and purely
imaginary c. Solid (red and blue) lines show numerical re-
sults and dashed (green) lines correspond to the results from
the perturbation analysis, (a) ∆1 = c, (b) ∆2 = |c|2/8π2, and

(c) ∆1 =
√
±2b|δc|. In (c), red and blue lines correspond to

Re(∆1) and Im(∆1), respectively.

can include a higher order term by including also the
first band into the calculation. Thus considering l = −1,
0, 1 components, the matrix elements of the Hamiltonian
areH−1,−1 H−1,0 H−1,1
H0,−1 H0,0 H0,1

H1,−1 H1,0 H1,1

 =

(k − 2π)2 ic/2 0
−ic/2 k2 ic/2

0 −ic/2 (k + 2π)2

 .

(11)

The eigenvalues of this matrix at k = 0 are 4π2 and
1
2

(
4π2 ±

√
(4π2)2 + 2c2

)
≈ − c2

8π2 , 4π2 + c2

8π2 . Thus, the

size of the gap between the second and the third gap at
k = 0,

∆2 = ε3(0)− ε2(0), (12)

is −c2/8π2 which is a real number when c is purely imagi-
nary. In Fig. 2 (b), we plot the numerically obtained gap
size as well as the analytical expression from the pertur-
bation theory, and we find an almost perfect agreement.

In Fig. 3 (a), we show band structures when c has
both real and imaginary parts. In such a case, the gaps
also have real and imaginary parts, as we also see from
the perturbation results above, and the lowest two bands
do not touch anywhere in the Brillouin zone.

We note that the difference in the gap opening at k =
±π and k = 0 is not just the gap sizes being proportional
to c or c2. As we have already clarified, for the gap at
k = ±π, the exceptional points between the first and
second bands emerge, and there is no point or line gap
opening in the complex energy plane with imaginary c.
On the other hand, the gap at k = 0 does not lead to
exceptional points, and there is a line gap in the complex
plane, similar to the gap opening in the real (Hermitian)
periodic potentials.

One may notice that the imaginary parts of the dis-
persion relations are symmetric around Im[ε(k)] = 0 in
Fig. 1. This is a direct consequence of the PT sym-
metry of the Hamiltonian H∗−x = Hx where the purely
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FIG. 3. Eigenvalues in the complex plane and dispersion rela-
tions when A = 0 with V (x) = c sin(2πx) when (a) c = 5+20i
and (b) c = 20 + 80i. The green lines are calculated from the
continuous model, and the blue dashed lines are the results
from tight-binding approximation.

FIG. 4. The dispersion relation when A = 0 and V (x) =
b cos(2πx) + c sin(2πx) with b = 20 and c = 25i.

imaginary character of V (x) = c sin(2πx) plays a cru-
cial role here. In the eigenvalue equation of the n-
th band, Hxψ

n
k (x) = εn(k)ψnk (x), taking its complex

conjugation and transforming x → −x, one obtains
Hx[ψnk (−x)]∗ = ε∗n(k)[ψnk (−x)]∗ from the PT symme-
try. This relation shows that if there exists an eigen-
value εn(k) with nonzero imaginary part, its complex
conjugate ε∗n(k) should also be an eigenvalue. Thus, the
eigenvalues should appear either purely real or appear in
complex conjugate pairs, which explains the symmetry
around Im[ε(k)] = 0. We note, in particular, that when
the lowest two bands are separated, these two bands are
the complex conjugate pairs obeying ε1(k) = ε∗2(k).

While we focus mainly on the potential of the form
V (x) = c sin(2πx) in this paper, there are also many
other types of periodic potentials which have the peri-
odicity of x → x + 1. Covering general shapes of the
periodic potential is beyond the scope of the present pa-
per. However, before proceeding to add a vector po-
tential, we want to mention one specific case V (x) =
b cos(2πx)+c sin(2πx), where b is real and c is imaginary,
which shows a particularly noticeable feature related to
the non-Hermiticity of the periodic potential. When
ib = c, the scalar potential takes the form V (x) = bei2πx,
and therefore its Fourier component in the eigenvalue
equation (8) only has one nonzero component V1 = b.
The matrix Hk then takes the lower triangular form with
diagonal elements taking Hll = (k + 2πl)2. Therefore,
the eigenvalues are k2, properly folded in the Brillouin
zone, which is exactly the same as the eigenvalues in
the absence of the vector and scalar potentials. Even
though the eigenvalues for V (x) = 0 and V (x) = bei2πx

are the same, their responses to external perturbations
are very different. We consider adding δc sin(2πx) with
purely imaginary δc to the potential V (x). For b = 0,
V (x) = δc sin(2πx) is nothing but the situation treated
above and the imaginary gap δc opens at k = π be-
tween the first and the second band with the formation
of exceptional points. On the other hand, when we add
δc sin(2πx) to V (x) = bei2πx, the matrix elements of Hk

for the lowest two bands around k = π are(
H−1,−1 H−1,0
H0,−1 H0,0

)
=

(
(k − 2π)2 iδc/2
b− iδc/2 k2

)
. (13)

Note that when δc = 0, this truncated 2× 2 matrix is es-
sentially the Jordan normal form at k = π and therefore
k = π is an exceptional point. The energy eigenvalues at
k = π is then ε1,2(k = π) = π2 ±

√
(b− iδc/2)(iδc/2).

When |δc| is small, we thus obtain ε1,2(π) ≈ π2 ±
i
√
b|δc|/2 when Im(δc) > 0 and ε1,2(π) ≈ π2 ±

√
b|δc|/2

when Im(δc) < 0. Thus, depending on the sign of Im(c),
either real or imaginary gap opens, with a noticeable
square-root dependence of the gap size ∝

√
|δc|. In

Fig. 4, we plot the dispersion relation when δc = 5i. We
indeed observe that an imaginary gap opens at k = ±π,
and its size shows an expected square-root behavior as
shown in Fig. 2 (c). This square-root sensitivity to the
added perturbation is a characteristic feature of physics
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around exceptional points [64].

B. With a vector potential

When a constant imaginary vector potential A is
added, the dispersion in the absence of the scalar po-
tential V (x) becomes ε(k) = k2 + A2 − 2Ak, which
should be properly folded when the first Brillouin zone
is considered. While the real part of the energy is just
shifted by a constant amount, Re[ε(k)] = k2 − [Im(A)]2,
the imaginary part shows a linear dependence on k as
Im[ε(k)] = −2Im(A)k, which has an important conse-
quence on the gap opening when a scalar potential is
added.

Although we focus in this paper on the periodic bound-
ary condition, we note that, in the presence of an imag-
inary vector potential, the non-Hermitian skin effect oc-
curs under the open boundary condition, as discussed
in Refs. [72, 73]. When we analyze physical proper-
ties which are not affected by the boundary condition,
such as the dynamics of a wavepacket within a timescale
where it does not reach the edge of the system [75], the
analysis we give in this paper under the periodic bound-
ary condition is experimentally relevant. Upon studying
wavepacket dynamics, one needs to make sure to con-
struct wavepackets only from the lowest bands. If com-
ponents from higher bands enter, these components may
grow in time if they have large imaginary energy. In prac-
tical experiments, one needs to look for a right balance
between the evolution time and the growth of unwanted
components in the wavepacket.

In Fig. 5, we plot the energy dispersion in the presence
of A = i as we add a scalar potential V (x) = c sin(2πx)
with a purely imaginary c. The first noticeable feature of
adding an imaginary vector potential is that, in the ab-
sence of the scalar potential, the energy bands are not de-
generate at any point in the Brillouin zone. For example,
at k = ±π, the real parts of the energies are degenerate
between the first and the second bands, but their imagi-
nary parts are different, and thus the first and the second
bands are not degenerate in the complex plane. Because
of this absence of the band degeneracy, adding a small
periodic scalar potential does not lead to gap opening.
As one increases the strength of V (x), the degeneracy of
the real parts at k = ±π between the first and the second
bands and that at k = 0 between the second and the third
bands persist, while the imaginary part of the first band
approaches the imaginary parts of the second and third
bands at k = ±π and k = 0, as shown in Fig. 5 (b). At a
threshold value of |c|, the three bands become degenerate
in the complex plane, leading to the gap opening as in
Fig. 5 (c). The separated two bands form closed circles
in the complex plane, indicating the nontrivial point-gap
topology of these separated bands [42, 49].

IV. TIGHT-BINDING MODELS

As we have seen, when the strength of the periodic
potential is increased, the two lowest energy bands sepa-
rate. When the strength of the periodic potential is large
enough, we can describe the separated bands in terms of
the tight-binding approximation. As we shall see, unlike
the case of Hermitian periodic potentials where orthogo-
nal basis functions can be used for the tight-binding ba-
sis, the bi-orthogonal basis composed from Bloch wave-
functions of Hx and H†x should be utilized for the tight-
binding basis of a non-Hermitian Hamiltonian. We first
discuss how we can construct the bi-orthogonal tight-
binding basis, and then we apply the construction to our
Hamiltonian.

A. Definition of the bi-orthogonal basis

While eigenfunctions of Hermitian Hamiltonians with
different eigenvalues are orthogonal, eigenfunctions of
non-Hermitian Hamiltonians, such as Eq. (4), are gener-
ally not orthogonal,∫ L/2

−L/2
dx[ψn

′

k′ (x)]∗ψnk (x) 6= 0 (14)

even when k 6= k′ or n 6= n′. The Bloch wavefunctions
thus do not give rise to a set of orthonormal basis states.
Instead, it is useful to consider a bi-orthogonal basis set
[76] utilizing eigenfunctions of H†x, which is defined as an

operator satisfying the relation
∫ L/2
−L/2 dxφ

∗(x)Hxψ(x) =∫ L/2
−L/2 dx[H†xφ(x)]∗ψ(x) for any smooth functions with

the periodic boundary conditions φ(x + L) = φ(x) and
ψ(x + L) = ψ(x). It is easy to show that the explicit
form of H†x is

H†x =

(
−i ∂
∂x
−A∗

)2

+ V ∗(x). (15)

Since V ∗(x) is again periodic with x→ x+ 1, the Bloch
theorem also holds and thus the eigenstates of H†x can
again be labeled by the band index n and the quasi-
momentum k

H†xψ̃
n
k (x) = ε̃n(k)ψ̃nk (x). (16)

Since the set of eigenvalues of H†x are the complex conju-
gates of {εn(k)}, we take the band indices of ε̃n(k) such
that ε̃n(k) = ε∗n(k) is satisfied. We can easily show that

{ψ̃nk (x)} and {ψnk (x)} constitute the bi-orthogonal basis
set,

〈ψ̃n
′

k′ |ψnk 〉 =

∫ L/2

−L/2
dx[ψ̃n

′

k′ (x)]∗ψnk (x) = δnn′δkk′ , (17)

where we introduced the ’braket’ notation, such as
〈ψ̃nk | =

∫
dx 〈x| [ψ̃nk (x)]∗, |ψnk 〉 =

∫
dxψnk (x) |x〉, and
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FIG. 5. Eigenvalues in the complex plane and dispersion relations when A = i and V (x) = c sin(2πx) with (a) c = 0, (b)
c = 30i, (c) c = 40i, and (d) c = 80i. The green lines are calculated from the continuous model, and the blue dashed lines are
the results from tight-binding approximation.

〈x′|x〉 = δ(x − x′) where the range of the integral is
−L/2 ≤ x ≤ L/2. Using the bi-orthogonal Bloch eigen-
functions, we now proceed to define bi-orthogonal Wan-
nier functions.

For later convenience, we define Wannier functions in-
volving multiple bands n = 1, 2, · · · . When we want to
construct Wannier functions from the Bloch wavefunc-
tions ψnk (x) and ψ̃nk (x), we can generally mix these bands
using a unitary matrix U(k) to define the Wannier func-
tions by

wmn (x) =
1√
N

∑
k,n′

e−ikmUn′n(k)ψn
′

k (x), (18)

w̃mn (x) =
1√
N

∑
k,n′

e−ikmUn′n(k)ψ̃n
′

k (x), (19)

where the sum on n′ is over the bands with which we
want to construct Wannier functions. We assume that
exceptional points, where the number of eigenvectors re-
duce, appear only at most in discrete points in momen-
tum space, which is the case relevant in the analysis of

this paper. Generalization of the method to include sce-
narios where continuous exceptional lines can appear is
left for future works. The constructed Wannier functions
are bi-orthogonal,

〈w̃m
′

n′ |wmn 〉 = δnn′δmm′ . (20)

By appropriately choosing the unitary matrix U(k), these
Wannier functions can be spatially localized, as in the
Hermitian case. We label the unit cells so that w0

n(x)
and w̃0

n(x) are localized in 0-th unit cell. Then, since
wmn (x) = w0

n(x−m) and w̃mn (x) = w̃0
n(x−m), wmn (x) and

w̃mn (x) are localized in the m-th unit cell, and therefore
we can use the states wmn (x) and w̃mn (x) to represent
tight-binding basis states for sites within the m-th unit
cell. In the basis of the bi-orthogonal Wannier functions,
we can write down the tight-binding model corresponding
to our continuous Hamiltonian as

Ht =

n0∑
n,n′=1

N∑
m,m′=1

tm−m
′

nn′ |wmn 〉 〈w̃m
′

n′ | , (21)
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FIG. 6. Bloch wavefunctions at k = 0, ψn
k=0(x), under V (x) =

c sin(2πx) when (a) A = 0, c = 200i, (b) A = 0, c = 20 + 80i,
(c) A = 0, c = 40 + 80i, and (d) A = 1, c = 80i. Red
squares and blue asterisks respectively correspond to first and
second bands n = 1, 2. Green solid lines and black dashed
lines are imaginary parts and real parts (if nonzero) of V (x),
respectively.

where n0 is the number of bands which we include and
the matrix elements are

tm−m
′

nn′ = 〈w̃mn |H |wm
′

n′ 〉

=
1

N

∑
kl

εl(k)U†nl(k)Uln′(k)e−ik(m−m
′). (22)

The matrix elements with m − m′ = 0 represent intra-
cell hoppings and on-site energies, whereas m−m′ = ±1
represent hoppings between adjacent cells. The differ-
ence from Hermitian tight-binding models is that the
non-Hermitian tight-binding models obtained by the pro-
cedure elucidated above are based on not orthogonal but
bi-orthogonal Wannier functions {w̃mn (x)} and {wmn (x)}.

B. When V (x) = c sin(2πx) is purely imaginary

We first consider the situation where the periodic
scalar potential is V (x) = c sin(2πx) with purely imagi-
nary c and no vector potential is present, A = 0.

1. Large |c|: Wannier functions constructed from
individual bands

When |c| is large, as seen from Fig. 1 (d) and (e), the
lowest two bands are separated in the complex plane. We
first discuss that these two bands can be understood from
the tight-binding approximation using Wannier functions
constructed from each band separately.

We first plot the Bloch states ψnk=0(x) for the low-
est two bands n = 1, 2 with large |c| in Fig. 6 (a). We
observe that the Bloch state of the first band ψ1

k=0(x)
is localized at the minimum of the imaginary part of
the scalar potential Im[V (x)] whereas that of the second
band ψ2

k=0(x) is localized at the maximum of Im[V (x)].
We have confirmed that, with sufficiently large |c|, this
localization tendency holds for any value of k for the
lowest two bands. This observation leads us to expect
that the Wannier functions of the first and second bands
are localized at minima and maxima of Im[V (x)], respec-
tively. In fact, from each band, we can always construct
the Wannier function which is localized and symmetric
around a minimum or a maximum of Im[V (x)] by ap-
propriately choosing the phases of the Bloch states and
the unitary matrix U(k), as discussed in Appendix. A.
In Fig. 7 (a), we plot the Wannier functions for a large
|c| = 200, as described in Appendix. A, that is, with
U11(k) = eik/4, U22(k) = e−ik/4, U12(k) = U21(k) = 0,
and unl=0(k), which is the 0-th Fourier components of
unk (x) defined above Eq. (8), being real and positive.
From Fig. 7 (a), we can understand that the obtained
Wannier functions are indeed localized at the expected
positions. This localization at a minimum and a maxi-
mum of the potential is the origin of the appearance of
two lowest-energy bands. In the Hermitian case, we only
obtain Bloch states localized at the minima of the scalar
potential thus leading to the single lowest energy band.

Since the Wannier function of each band is constructed
only from the Bloch states of each band, the tight-binding
matrix elements for each band is given by

tm−m
′

nn =
1

N

∑
k

εn(k)e−ik(m−m
′) (23)

with no inter-band terms, tm−m
′

12 = 0. There are sim-
ple relations between the tight-binding matrix elements.
Since the energy eigenvalues of the lowest two bands
obey the relation ε1(k) = ε∗2(k) as noted above and
εn(k) = εn(−k) as proven in Appendix. A, the tight-
binding matrix elements satisfy

tm−m
′

11 = tm
′−m

11 = (tm−m
′

22 )∗ = (tm
′−m

22 )∗. (24)

We note that the same relation holds also when two
bands are mixed, but its proof is more involved as we dis-
cuss later. We consider the tight-binding approximation
which includes hoppings only up to nearest neighbors.
Then, making use of the above relation, the lowest two
bands are described by two complex parameters

t ≡ t111 = t−111 = (t122)∗ = (t−122 )∗, γ ≡ t011 = (t022)∗. (25)

The resulting tight-binding lattice model is two decou-
pled chains, one for the first band and the other for the
second band, as schematically depicted in Fig. 8 (a).
The corresponding dispersion relations with the tight-
bidning approximation are ε1(k) = γ + 2t cos(k) and
ε2(k) = ε∗1(k), which agree well with the numerically
obtained dispersion relations from the continuum model,
as described in Fig. 1 (e).
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FIG. 8. Schematic pictures which show the tight-binding lat-
tices corresponding to our model for various regimes. (a)
when two bands are separated and A = 0, (b) when two
bands are not separated and A = 0, and (c) when two bands
are separated and A 6= 0.

2. Intermediate values of |c|: Wannier functions
constructed by mixing two bands

We have seen that, in the limit of large |c|, the single-
band tight-binding approximation nicely describes the
lowest two bands. As the strength of the potential |c|
is weakened, we expect that there appear some hoppings
between the Wannier functions localized at minima and
a maxima of Im[V (x)], namely there appear couplings
between the two bands. Below we show that this ex-
pectation is indeed correct, and the development of band
structure of two lowest bands shown in Fig. 1(c)-(e), such
as the collision of exceptional points leading to the gap
opening, can be well reproduced by the two-band tight-
binding model. As we show below, we find that the cou-
plings between two bands are zero when the two bands

are separated in the complex plane; the couplings be-
tween the two bands appear only when two bands are
degenerate at some points in momentum space forming
exceptional points.

We first discuss how we obtain localized Wannier func-
tions when the two bands potentially mix, namely when
the unitary matrix U(k) can be a two-by-two matrix
with finite off-diagonal terms U12(k) 6= 0, U21(k) 6= 0.
To obtain a good tight-binding description, we need to
choose appropriate U(k) so that Wannier functions are
well localized at the expected positions. To this end,
we choose the construction of U(k) based on the trial
basis functions, utilizing the method which has been de-
veloped in the construction of multi-band Wannier func-
tions in Hermitian Hamiltonians [2–4]. Since we want
the constructed Wannier functions to approach the ones
obtained from individual bands in the large |c| limit, such
as the ones in Fig. 7 (a), we choose trial bi-orthogonal
functions {gn(x)} and {g̃n(x)} to be Wannier functions
constructed from individual bands in the large |c| case.
We note that these trial functions are localized with their
centers at a minimum or a maximum of Im[V (x)], where
we want the constructed Wannier functions to be local-
ized around. Based on these trial basis functions, we
choose the unitary matrix as

U(k) = D(k)[D†(k)D(k)]−
1
2 , Dnn′(k) = 〈ψ̃nk |gn′〉. (26)

Carrying out the singular value decomposition of D(k),

we see that D(k)[D†(k)D(k)]−
1
2 is a unitary matrix. We

note that this construction also has an advantage that
the resulting Wannier functions are independent of the
phases of Bloch wavefunctions we choose. Figure 7 (b)
shows Wannier functions when c = 20i with this con-
struction. The constructed Wannier functions for c = 20i
are more spread than the Wannier functions for c = 200i,
but they are still centered around the minimum and max-
imum of Im[V (x)]. From these Wannier functions, we can
construct the tight-binding model by truncating the long-
range hoppings. We first note that the values of hoppings

tm−m
′

nn′ are almost independent of the trial Wannier func-
tions as long as the trial Wannier functioons are calcu-
lated with sufficiently large |c| and thus {gn(x)} are well

localized; we find that the difference of |tm−m
′

nn′ | is only
around 1% when we choose {gn(x)} as Wannier functions
with c = 200i and 400i. When the Wannier functions
are constructed with the linear combinations of the low-
est two bands, there can be hoppings among Wannier
functions localized at the minimum and the maximum of
Im[V (x)]. The resulting tight-binding lattice model is a
one-dimensional triangular ladder, as schematically de-
picted in Fig. 8 (b), where blue and red sites correspond
to Wannier states localized at the minima and maxima
of Im[V (x)], respectively.

We can derive simple relations between hopping am-
plitudes utilizing symmetries present in the system. We
make use of the PT symmetry of the Hamiltonian,
H∗−x = Hx, which implies ε1(k) and ε2(k) are either
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both real or complex conjugate pairs, and also εn(k) =
εn(−k). The PT symmetry also implies g∗1(−x) = g2(x)
for the trial functions. These properties are shown in
Appendix. A. Using these properties, we can obtain

tm−m
′

11 = tm
′−m

11 = (tm−m
′

22 )∗ = (tm
′−m

22 )∗,

tm−m
′

12 = (tm
′−m

21 )∗
(27)

where the detailed derivation is given in Appendix. B.

The relation tm−m
′

12 = (tm
′−m

21 )∗ implies that the inter-
band couplings are Hermitian, while the intra-band cou-
plings are non-Hermitian in general. We note that these
relations are satisfied for general PT symmetric systems,
such as those where V (x) includes the cos(2πx) term
with a real coefficient. Furthermore, using the prop-
erty that our trial wavefunctions are symmetric around
x = ±1/2, gn[−x + (−1)n/2] = gn(x) originating from
H−x±1/4 = Hx, which are shown in Appendix. A, we can
obtain

tm−m
′

12 = tm
′−m+1

12 (28)

whose derivation is also given in Appendix. B.
Equation (27) indicates that the Hamiltonian of the

tight-binding model including the two lowest bands is

Ht(k) =

[
t1(k) t2(k)
t∗2(k) t∗1(k)

]
(29)

where t1(k) =
∑
m t

m
11e

ikm and t2(k) =
∑
m t

m
12e

ikm and
the summation should be truncated according to the de-
gree of approximation one wants. From Eq. (29), we
can understand that the tight-binding model also satis-
fies PT symmetry σxH

∗
t (k)σx = Ht(k) where σx is a

Pauli matrix.
When the first and second bands are separated we can

show tm−m
′

12 = 0, whose proof is given in Appendix B, and
thus the tight-binding model becomes two independent
chains described in Fig. 8 (a). The tight-binding model
constructed from trial functions thus becomes equivalent
to the tight-binding model constructed from individual
bands when the two bands are separated, and reduces to
the large |c| case discussed above. Figure 1 (d) and (e)
show the dispersion relations of the tight-binding model
when the lowest two bands are separated and thus the
corresponding tight-binding models are constructed from
individual bands.

When the lowest two bands are not separated and

thus tm−m
′

12 6= 0, the tight-binding Hamiltonian in the
momentum-space takes the following form

Ht(k) =

(
γ + 2t cos(k) t012(1 + eik)

(t012)∗(1 + e−ik) γ∗ + 2t∗ cos(k)

)
, (30)

where only hoppings described in the triangular ladder in
Fig. 8 (b) are included. The resulting dispersion relations
for bands n = 1, 2 become

εn(k) =(−1)n
√

2|t012|2[1 + cos(k)]− (Im[γ + 2t cos(k)])2

+ Re[γ + 2t cos(k)]. (31)
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FIG. 9. The ratio of hopping amplitudes as functions of the
strength of the potential when A = 0 and V (x) = c sin(2πx).
In (a), where c is imaginary, blue filled squares and purple
empty circles respectively correspond to |t211/t111| and |t012/t011|.
Three dashed lines show parameters used in Fig. 1 (c), (d),
and (e). In (b), where c is complex and Re(c) = d and Im(c) =
4d, blue squares and red circles respectively show |t211/t111| and
|t222/t122|, as functions of d. The left and right dashed lines
correspond to parameters in Fig. 3 (a) and (b).

Zeros of the first term determines the position of the
exceptional points in momentum space.

Blue dashed lines in Fig. 1 (c) show the dispersion
relations under the tight-binding approximation based
on the Wannier functions in Fig. 7 (b), from which we
can understand that the dispersion relation of the contin-
uum model is qualitatively well reproduced by the tight-
binding model. Our two-band tight-binding model cor-
rectly accounts for the evolution of the dispersion rela-
tion as |c| changes; when |c| is small and thus t012 6= 0, the
exceptional points appear, and as |c| increases, the excep-
tional points collide and the two bands separate. Further
increasing |c|, the dispersion relations of the continuum
model and the tight-binding model quantitatively agree,
as shown in Fig. 1 (e). The improved agreement of dis-
persion relations is due to the suppression of the long-
range hopping terms. Blue filled squares in Fig. 9 (a)
shows the ratio of the next-nearest to the nearest neigh-
bor hopping amplitudes, |t211/t111| = |t222/t122|, which be-
comes small as |c| is increased. In the range 20 ≤ |c| ≤ 30,
|t211/t111| exhibits a non-monotonic behavior, and it shows
a peak around a gap-opening value of |c|.

C. When V (x) = c sin(2πx) with complex c

Next, we consider the situation where the coefficient c
of the scalar potential V (x) = c sin(2πx) has both real
and imaginary parts. As we have seen, when c is purely
imaginary, the Wannier functions are localized at minima
and maxima of sin(2πx). On the other hand, when c
is real and positive, the Wannier functions are localized
only at the minima of sin(2πx). When c has both real
and imaginary parts, there is a competition between the
real and imaginary parts. In Fig. 6 (b) and (c), we plot
the Bloch functions of the lowest two bands at k = 0
for different values of Re(c). We observe that, below a
threshold value of Re(c), the Bloch states are localized
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both at minima and maxima of Im[V (x)] ∝ sin(2πx),
similar to the case of purely imaginary c. However, above
the threshold value, the Bloch states of the lowest two
bands both become localized only at minima and one of
the two Bloch states shows nodes at the minima. We can
understand the localization of two Bloch states in minima
of sin(2πx) from the limit of purely real c, where Wannier
functions of the lowest two bands become s and p orbitals
localized at the minima of sin(2πx); the nodal structure
of one of the two Bloch states is in accordance with what
we expect from the p-orbital Wannier function.

For constructing a tight-binding model to describe
the lowest two bands, we note that, as mentioned in
the nearly-free regime, exceptional points do not appear
when c has both real and imaginary parts. The lowest
two bands are thus separated in the complex plane. We
thus construct the tight-binding model from individual
bands, without mixing the two bands. In this case, the
tight-binding model becomes two independent chains as
shown in Fig. 8 (a) and hopping terms are symmetric
but non-Hermitian in general,

tm−m
′

nn = tm
′−m

nn , (32)

which can be shown from εn(−k) = εn(k) and Eq. (22)
with diagonal U(k). The dispersion relation from the
tight-binding model, truncating the hopping up to the
nearest neighbors, are plotted in comparison to the dis-
persion relation calculated from the continuum model
in Fig. 3. The agreement improves as |c| is increased.
When |c| is not large, as in Fig. 3 (a), the influence of
the higher bands is visible, showing the limitation of the
tight-binding approximation in this regime.

We have also estimated the ratio of the next-nearest-
neighbor to the nearest-neighbor hopping amplitudes as
a function of the strength of the potential, fixing the ratio
between the real and the imaginary parts Im(c)/Re(c) =
4. The result is plotted in Fig. 9 (b). As expected,
the next-nearest-neighbor hoppings become smaller as
the strength of the potential is increased, which results
in better agreement between the continuum model and
the tight-binding approximation. We also notice that
the next-nearest-neighbor hopping of the second band
decays slower than that of the first band. We attribute
this difference to the larger influence of higher bands to
the second band.

D. When the vector potential is present

When a vector potential A is present, as presented in
Fig. 5, the lowest two bands separate from the rest of
the energy spectrum above a threshold value of |c|, for
a purely imaginary scalar potential V (x) = c sin(2πx).
Unlike the case when A = 0, the lowest two bands do not
show mixing with exceptional points in momentum space.
We therefore construct the tight-binding model without
mixing the two bands, namely construct Wannier func-
tions from individual bands. In the presence of the vector

potential, the symmetric relation of Eq. (32) does not
hold any more because of εn(−k) 6= εn(k). In particu-

lar, the hoppings become asymmetric |tm−m′

nn | 6= |tm′−m
nn |

just as in the Hatano-Nelson model as schematically de-
scribed in Fig. 8 (c). Figure 5 (d) demonstrates that the
tight-binding models obtained with this protocol well re-
produce the dispersion relations of the continuum model
when the strength of the scalar potential |c| is large.

By adding a vector potential, we see the shift of the
peaks of the Bloch wavefunction ψnk (x), as shown in Fig.
6 (d). In principle, the corresponding Wannier func-
tions should be constructed to center around the shifted
peaks by choosing phases of the Bloch states appropri-
ately. However, as long as the tight-binding model is
constructed from individual bands with diagonal U(k),
as in Eq. (23), the choice of the phases do not alter the
hopping amplitudes and hence the resulting tight-binding
model.

V. SUMMARY

We have explored dispersion relations of continuum
models under non-Hermitian periodic potentials.

In the nearly-free regime where the strength of the
imaginary scalar potential is small, we have found that
lowest two bands do not separate but form exceptional
points. This behavior is unique to imaginary periodic po-
tentials because real periodic potentials open gaps with
infinitesimally small strength, which is a well known fact
in the ordinary Hermitian band theory [1]. In the pres-
ence of imaginary vector potentials, we found that the
band separation is hindered when the scalar potential is
small, and a different type of gap opens when the scalar
potential is larger.

When the scalar potential is strong, we can describe
the band structures of the continuum model by discrete
tight-binding models. The tight-binding models are con-
structed through not orthogonal but bi-orthogonal Wan-
nier functions based on bi-orthogonal Bloch wavefunc-
tions of the non-Hermitian Hamiltonian and its Hermi-
tian conjugate.

Traditionally, non-Hermitian physics has been devel-
oped in two opposite regimes; the nearly-free regime has
been studied in relation to PT -symmetric optics, whereas
tight-binding models have been largely employed when
topological structures of non-Hermitian models are dis-
cussed. Our work paves a way to connect these two
regimes and provide a uniform understanding of non-
Hermitian physics in a wide range of parameter spaces.
With tight-binding models, various analysis becomes
easier, such as the calculation of topological numbers
and the derivation of PT symmetry breaking thresh-
old. In this paper, we have focused on simplest types
of scalar and vector potentials, which serves as a first
step toward understanding rich phenomena of the non-
Hermitian band theory where tight-binding basis func-
tions are constructed from the bi-orthogonal basis. Ex-
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tending the work to more complicated periodic poten-
tials, such as including internal degrees of freedom or con-
sidering scalar potentials with multiple minima/maxima
per one period, to reach a more complete understanding
of non-Hermitian band theory is left for future study. Ex-
tending the analysis to two or higher dimensional systems
is also of great interest, in which case we need to consider
a vector potential which is not just a constant, result-
ing in a complex magnetic field. In the Hermitian band
theory, it is known that bands with nonzero Chern num-
bers do not give rise to localized Wannier functions [77].
We expect similar localization properties for Chern bands
from non-Hermitian Hamiltonians, where we need to in-
clude multiple bands to construct localized bi-orthogonal
Wannier basis. Exploring the evolution of band struc-
tures and formation/collisions of exceptional points un-
der these various types of non-Hermitian potentials, us-
ing both from the continuum theory and bi-orthogonal
tight-binding models, will also shed light on further ex-
ploration of devices and phenomena inspired by non-
Hermiticity in optics, acoustics, and other systems where
the non-Hermitian Schrödinger equation can emerge.
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Appendix A: Symmetric Wannier functions

We explain how we construct the Wannier functions
which are symmetric around a minimum or a maximum
of Im[V (x)], when the potential is V (x) = c sin(2πx) with
imaginary c.

We construct the Wannier functions at 0-th unit cell
to be symmetric around x = ±1/4, that is, we make
Wannier functions fulfill w0

1(−x − 1/2) = w0
1(x) and

w0
2(−x+1/2) = w0

2(x). We demonstrate in detail how to
construct the Wannier function w0

1(x) which is localized
around x = −1/4 and symmetric around the localization
center, which is one of the minima of Im[V (x)]. The con-
struction of w0

2(x) symmetric around x = +1/4 can be
carried our following the same procedure. What is cru-
cial in the following argument is that the scalar potential
has the same symmetry V (−x − 1/2) = V (x). We first
show that u1k(x) at opposite k obeys

u1k(−x− 1/2) = eiθ1(k)u1−k(x), (A1)

that is, by flipping u1k(x) around x = −1/4 one obtains
u1−k(x), apart from the overall phase factor when Bloch
states are normalized. To show the relation Eq. (A1) we
examine the structure of the eigenvalue equation in the
matrix form, Eq. (8). Explicitly writing out Hlm(k), this

matrix equation in the absence of the vector potential is∑
m

{
(k + 2πm)2δlm + Vl−m

}
unm(k) = εn(k)unl (k).

(A2)

The symmetry of the scalar potential V (−x − 1/2) =
V (x) implies

V (x) =
∑
l

Vle
i2πlx = V (−x− 1/2)

=
∑
l

Vle
−iπle−i2πlx =

∑
l

V−l(−1)lei2πlx. (A3)

Comparing the top and bottom lines, we obtain Vl =
V−l(−1)l. Using this relation to the equation obtained
by flipping signs of k, l, and m in Eq. (A2), we obtain∑

m

{
(k + 2πm)2δlm + Vl−m(−1)l−m

}
un−m(−k)

= εn(−k)un−l(−k). (A4)

Multiplying both sides by (−1)l, we obtain∑
m

{
(k + 2πm)2δlm + Vl−m

}
(−1)mun−m(−k)

= εn(−k)(−1)lun−l(−k). (A5)

Comparing this final equation with Eq. (A2), we see that
the vectors {unl (k)} and {(−1)lun−l(−k)} are the eigen-
vectors of the same matrix. Assuming that there is no de-
generacy of energy, we can conclude that εn(k) = εn(−k)
and the eigenvectors {unl (k)} and {(−1)−lun−l(−k)} are
the same up to a phase factor provided that the eigen-
vectors are normalized

unl (k) = e−iθn(−k)(−1)−lun−l(−k), (A6)

where θn(−k) is an l-independent phase factor. From
this we can see the desired relation:

unk (−x− 1/2) =
∑
l

unl (k)e−i2πlxe−iπl

=
∑
l

un−l(k)(−1)lei2πlx =
∑
l

eiθn(k)unl (−k)ei2πlx

= eiθn(k)un−k(x). (A7)

In the same way, we can show unk (−x + 1/2) =

eiθn(k)un−k(x). Using these transformation properties, we
now show how we choose the phases of the Bloch sates
to construct the Wannier functions with the symmetries
w0

1(−x−1/2) = w0
1(x) and w0

2(−x+1/2) = w0
2(x). From

the definition of the Wannier function, we obtain

w0
1(−x− 1/2) =

1√
N

∑
k,n

Un1(k)ψnk (−x− 1/2)

=
1√
N

∑
k,n

Un1(k)e−ikx−ik/2eiθn(k)un−k(x)

=
1√
N

∑
k,n

Un1(−k)eik/2eiθn(−k)ψnk (x). (A8)
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Therefore, if we choose Un1(−k)eik/2eiθn(−k) = Un1(k),
the final line becomes equal to w0

1(x) and the Wannier
function respects the symmetry of the potential, w0

1(−x−
1/2) = w0

1(x). In the same way, reflecting w0
2(x) around

x = +1/4 results in

w0
2(−x+ 1/2) =

1√
N

∑
k,n

Un2(−k)e−ik/2eiθn(−k)ψnk (x),

(A9)

and thus w0
2(−x+ 1/2) = w0

2(x) is satisfied if matrix ele-
ments and phases are chosen as Un2(−k)e−ik/2eiθn(−k) =
Un2(k). We note that there is a redundancy in defining
the phase; one can include the phase Unn(k) in the def-
inition of the Bloch state. Nevertheless, it is computa-
tionally useful to separate these two phases, one phase
to be determined when we calculate the Bloch wave-
functions, and the other phase to be determined when
constructing the Wannier function. A choice of eiθn(k)

fixes the relative phase between Bloch states with op-
posite momenta k and −k. There is still a freedom to
choose relative phases of unk (x) with k ≥ 0; as long as the

relation Unm(−k)e−i(−1)
mk/2eiθn(−k) = Unm(k) is sat-

isfied, choosing different phases for unk (x) with k ≥ 0
yields different Wannier functions obeying the symme-
try w0

n[−x + (−1)n/2] = w0
n(x). One particular choice

of the phase which we employed in numerically calcu-
lating the Bloch wavefunctions is to make θn(k) = 0
and unl=0(k) ≥ 0. In the case that the Wannier func-
tions are constructed from individual bands, or equiv-
alently U12(k) = U21(k) = 0 is satisfied, we choose
U11(k) = e+ik/4 and U22(k) = e−ik/4 which fulfills the
conditions above and thus realizes symmetric Wannier
functions around x = ±1/4. We have also confirmed
that this choice of phase yields Wannier functions well
localized at x = ±1/4 when |c| is large, as shown in Fig.
7 (a). We expect that one can also apply the procedure
of constructing maximally localized Wannier functions
studied in Hermitian systems [2–4] to non-Hermitian sys-
tems. However, localization functions, which is to be
minimized, can be defined either with respect to the
right eigenstates or to the bi-orthogonal basis. Under-
standing physical relevance of these two different local-
ization functions and its consequence in the resulting
tight-binding models are left for future works. When
we construct wmn (x) based on trial Wannier functions
and U(k) is not diagonal, Un1(−k) = e−ik/2Un1(k) and
Un2(−k) = e+ik/2Un2(k) are also satisfied, as we clar-
ify in Appendix B, which leads to symmetric Wannier
functions around x = ±1/4.

Finally we derive a relation between the Wannier func-
tions localized around x = −1/4 and x = +1/4 which
results from our phase convention and the PT symme-
try of the Hamiltonian. The eigenvalue equation for the
Bloch state of the first band takes the form

Hxe
ikxu1k(x) = ε1(k)eikxu1k(x). (A10)

Taking the complex conjugation of the above equation

and making x→ −x, we obtain

Hxe
ikx[u1k(−x)]∗ = ε∗1(k)eikx[u1k(−x)]∗, (A11)

where we used the PT symmetry of the Hamiltonian
H∗−x = Hx. This relation shows that ε∗1(k) is also an
eigenvalue of the Hamiltonian with momentum k. When
|c| is large and the two lowest bands are separated, the
energy of the first band is not real and thus ε2(k) = ε∗1(k).
Therefore, eikx[u1k(−x)]∗, which is an eigenstate with the
eigenvalue ε2(k), should be the Bloch wavefunction of
the second band with momentum k up to a phase factor
eiφ(k). We then have an equality

u2k(x) = eiφ(k)[u1k(−x)]∗. (A12)

Expanding both sides as unk (x) =
∑
l u
n
l (k)ei2πlx, the

above relation implies

u2l (k) = [u1l (k)]∗eiφ(k). (A13)

Since the phase factor eiφ(k) is independent of l, we can
fix the factor eiφ(k) by examining this relation for l = 0.
At l = 0, our convention is to choose u2l=0(k) and u1l=0(k)
to be real and positive, which implies φ(k) = 0. From
φ(k) = 0 and Eq. (A12), we can derive a useful rela-
tion for the Wannier functions. The Wannier functions
constructed from the first (second) band is localized at
x = −1/4 (x = +1/4). Then, our phase convention is
to choose U11(k) = eik/4 and U22(k) = e−ik/4 = U∗11(k)
when the first and second bands are separated. Then, we
obtain

[w0
1(−x)]∗ =

1√
N

∑
k

U∗11(k)eikx[u1k(−x)]∗

=
1√
N

∑
k

U22(k)eikxu2k(x) = w0
2(x). (A14)

This relation implies that by flipping the Wannier func-
tion constructed from the first band, which is centered
around x = −1/4, and taking its complex conjugation,
we obtain the Wannier function constructed from the sec-
ond band, which is centered around x = +1/4. This
relation will be useful in finding relations among tight-
binding matrix elements, as discussed in the next section.

Appendix B: Derivation of relations among
tight-binding hopping amplitudes

Here, we derive various relations among tight-binding
hopping amplitudes in Eq. (27), by explicitly calculating
U(k) in Eq. (26). When we write the singular value
decomposition of D(k) as

D(k) = E(k)F (k)G†(k) (B1)

where E(k) and G(k) are unitary matrices, U(k) can be
written as

U(k) = E(k)G†(k). (B2)
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As mentioned in Appendix A, the trial Wannier functions
under a strong imaginary potential are symmetric around
their localization centers x = ±1/4,

g1(x) = g1(−x− 1/2) =
1√
N

∑
k

e+i
k
4ψ1

k(x), (B3)

g2(x) = g2(−x+ 1/2) =
1√
N

∑
k

e−i
k
4ψ2

k(x). (B4)

Also, the Bloch functions form the PT symmetric pair
[ψ1
k(−x)]∗ = ψ2

k(x) when the first and second bands are
separated with imaginary c, resulting in the PT symmet-
ric pair of trial Wannier functions

g∗1(−x) = g2(x). (B5)

For the calculation of U(k), we separate the Brillouin
zone into two regions α and β; ε∗n(k) = εn(k) in the
region α and ε∗1(k) = ε2(k) in the region β. In the region

α, if we choose phases of ψ̃nk (x) such that ũnl=0(k) is real
and positive, the Bloch eigenfunctions of H†x satisfy PT
symmetry,

[ψ̃nk (−x)]∗ = ψ̃nk (x). (B6)

From Eqs. (B5) and (B6), we can understand that the
matrix elements of D(k) are related by

D11(k) =

∫
dx[ψ̃1

k(x)]∗g1(x)

=

∫
dxψ̃1

k(−x)g∗2(−x) = D∗12(k) ≡ α(k) (B7)

D21(k) =

∫
dx[ψ̃2

k(x)]∗g1(x)

=

∫
dxψ̃2

k(−x)g∗2(−x) = D∗22(k) ≡ α′(k) (B8)

and D(k) can be written as

D(k) =

(
α(k) α∗(k)
α′(k) [α′(k)]∗

)
. (B9)

Through the singular value decomposition of D(k) in
Eq. (B9), we can find that the components of U(k) =

D(k)[D†(k)D(k)]−
1
2 are

U11(k) =
1

2
α∗(k)e−iϕk

[
1√
A+(k)

− 1√
A−(k)

]

+
1

2
α(k)

[
1√
A+(k)

+
1√
A−(k)

]
(B10)

U21(k) =
1

2
[α′(k)]∗e−iϕk

[
1√
A+(k)

− 1√
A−(k)

]

+
1

2
α′(k)

[
1√
A+(k)

+
1√
A−(k)

]
, (B11)

where U12(k) = U∗11(k), U22(k) = U∗21(k), eiϕk =
([α(k)]2 + [α′(k)]2)∗/|[α(k)]2 + [α′(k)]2|, and A±(k) =
|α(k)|2 + |α′(k)|2 ± |[α(k)]2 + [α′(k)]2|. Equations (B10)
and (B11) indicate that all components of U(k) have the
same absolute value

|Uij(k)| = 1√
2
, {i, j} = {1, 2} (B12)

in the region α. In the region β, PT symmetry of Bloch
eigenfunctions are broken and thus

[ψ̃1
k(−x)]∗ = ψ̃2

k(x) (B13)

is satisfied with ũnl=0(k) being real and positive. From
Eq. (B13), we can find

D11(k) =

∫
dx[ψ̃1

k(x)]∗g1(x)

=

∫
dxψ̃2

k(−x)g∗2(−x) = D∗22(k) ≡ β(k) (B14)

D12(k) =

∫
dx[ψ̃1

k(x)]∗g2(x)

=

∫
dxψ̃2

k(−x)g∗1(−x) = D∗21(k) ≡ β′(k) (B15)

and thus D(k) can be written as

D(k) =

(
β(k) β′(k)

[β′(k)]∗ β∗(k)

)
. (B16)

Carrying out the singular value decomposition of D(k)
in Eq. (B16), we can find

U11(k) =
1

2
β′(k)e−iϕk

[
1√
B+(k)

− 1√
B−(k)

]

+
1

2
β(k)

[
1√
B+(k)

+
1√
B−(k)

]
(B17)

and

U12(k) = U21(k) = 0 (B18)

are satisfied in the region β, with U22(k) =
U∗11(k), eiϕk = β∗(k)β′(k)/|β(k)β′(k)|, and B±(k) =
|β(k)|2 + |β′(k)|2 ± 2|β(k)β′(k)|.

We can derive the relations of tm−m
′

nn′ in Eq. (27) from
U(k) in regions α and β obtained through PT symmetry
H∗−x = Hx. Equations (B12) and (B18) indicate that
hopping amplitudes in Eq. (22) can be written as

tm−m
′

nn =
∑
k∈α

ε+(k)
e−ik(m−m

′)

2N
+
∑
k∈β

εn(k)
e−ik(m−m

′)

N

(B19)

tm−m
′

12 =
∑
k∈α

U∗11(k)U12(k)ε−(k)
e−ik(m−m

′)

N
(B20)

tm−m
′

21 = −
∑
k∈α

U∗22(k)U21(k)ε−(k)
e−ik(m−m

′)

N
(B21)
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where ε+(k) = ε1(k) + ε2(k) and ε−(k) = ε1(k)− ε2(k).

From Eq. (B19), we can understand that tm−m
′

nn =

tm
′−m

nn and tm−m
′

11 = (tm−m
′

22 )∗ are satisfied owing to
ε∗1(k) = ε2(k) in the region β and εn(k) = εn(−k)
in the whole Brillouin zone. Also, in the light of

U†11(k)U12(k) +U†12(k)U22(k) = 0, Eqs. (B20) and (B21)

indicate (tm−m
′

12 )∗ = tm
′−m

21 . In addition, from Eqs.

(B20) and (B21), we can find tm−m
′

12 = tm
′−m

21 = 0 when
the first and second bands are separated or equivalently
the region α is absent. In this case, the tight-binding
models based on trial Wannier functions become the
same as the tight-binding models for individual bands,
respectively discussed in Secs. IV B 2 and IV B 1.

From the matrix components of U(k) in the regions α
and β, we can also show that t−m12 = tm+1

12 in Eq. (28)
is satisfied, through the symmetry around x = ±1/4,
H−x±1/2 = Hx. To this end, we first derive a relation
between Dij(k) and Dij(−k). Since the trial Wannier
function of the second band satisfies g2(x) = g2(−x +
1/2), Dn2(−k) becomes

Dn2(−k) =

∫
dxeikx[ũn−k(x)]∗g2(x)

=

∫
dxeik(−x+1/2)[ũn−k(−x+ 1/2)]∗g2(−x+ 1/2)

= eik/2
∫
dxe−ikx[ũnk (x)]∗g2(x)

= eik/2Dn2(k), (B22)

where we changed the variable of the integral from x into
−x + 1/2 in the second line and used ũ−k(−x + 1/2) =
ũk(x) which was shown in Appendix A. In the same
way, we can show Dn1(−k) = e−ik/2Dn1(k). With
these relations for the components of D(k), Eqs. (B10),
(B11), and (B17) indicate Un1(−k) = e−ik/2Un1(k) and
Un2(−k) = eik/2Un2(k). These relations for the com-
ponents of U(k) result in symmetric Wannier functions
around x = ±1/4

w0
1(−x− 1/2) = w0

1(x), w0
2(−x+ 1/2) = w0

2(x) (B23)

even when first and second bands are not separated,
which can be understood from Eqs. (A8) and (A9) with
θn(k) = 0. The corresponding bi-orthogonal Wannier
functions w̃0

1(x) and w̃0
2(x) satisfy the same symmetries

of w0
1(x) and w0

2(x). Therefore, the hopping amplitudes
between different bands satisfy

t−m12 =

∫
dxw̃0

1(x)Hxw
m
2 (x)

=

∫
dxw̃0

1(−x− 1/2)H−x−1/2w
m
2 (−x− 1/2)

=

∫
dxw̃0

1(x)Hxw
−m−1
2 (x) = tm+1

12 (B24)

which corresponds to Eq. (28), since the reflection
around x = −1/4 corresponds to the reflection around
x = −m − 1 + 1/4 after the translation of −2m − 1 for
wm2 (x).
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[18] B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer,
F. Monifi, C. Bender, F. Nori, and L. Yang, Loss-
induced suppression and revival of lasing, Science 346,
328 (2014).

[19] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and
H. Schomerus, Selective enhancement of topologically in-
duced interface states in a dielectric resonator chain, Na-
ture communications 6, 6710 (2015).

[20] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer,
S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, Ob-
servation of a topological transition in the bulk of a non-
Hermitian system, Phys. Rev. Lett. 115, 040402 (2015).

[21] K. Mochizuki, D. Kim, and H. Obuse, Explicit definition
of PT symmetry for nonunitary quantum walks with gain
and loss, Phys. Rev. A 93, 062116 (2016).

[22] Y. Ashida, S. Furukawa, and M. Ueda, Parity-time-
symmetric quantum critical phenomena, Nature commu-
nications 8, 15791 (2017).

[23] K. Kawabata, Y. Ashida, and M. Ueda, Information re-
trieval and criticality in parity-time-symmetric systems,
Phys. Rev. Lett. 119, 190401 (2017).

[24] L. Xiao, X. Zhan, Z. Bian, K. Wang, X. Zhang, X. Wang,
J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi,
H. Obuse, B. C. Sanders, and P. Xue, Observation of
topological edge states in parity–time-symmetric quan-
tum walks, Nature Physics 13, 1117 (2017).

[25] K. Kawabata, Y. Ashida, H. Katsura, and M. Ueda,
Parity-time-symmetric topological superconductor,
Phys. Rev. B 98, 085116 (2018).

[26] V. V. Konotopand D. A. Zezyulin, Odd-time reversal PT
symmetry induced by an anti-PT -symmetric medium,
Phys. Rev. Lett. 120, 123902 (2018).

[27] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and
L. Luo, Observation of parity-time symmetry breaking
transitions in a dissipative Floquet system of ultracold
atoms, Nature communications 10, 855 (2019).

[28] S. Longhi, Non-Bloch PT symmetry breaking in non-
Hermitian photonic quantum walks, Opt. Lett. 44, 5804
(2019).

[29] R. Okugawaand T. Yokoyama, Topological exceptional
surfaces in non-Hermitian systems with parity-time and
parity-particle-hole symmetries, Phys. Rev. B 99, 041202
(2019).

[30] L. Xiao, K. Wang, X. Zhan, Z. Bian, K. Kawabata,
M. Ueda, W. Yi, and P. Xue, Observation of critical
phenomena in parity-time-symmetric quantum dynam-
ics, Phys. Rev. Lett. 123, 230401 (2019).

[31] K. Mochizuki, D. Kim, N. Kawakami, and H. Obuse,
Bulk-edge correspondence in nonunitary Floquet systems
with chiral symmetry, Phys. Rev. A 102, 062202 (2020).

[32] K. Mochizuki, N. Hatano, J. Feinberg, and H. Obuse,
Statistical properties of eigenvalues of the non-Hermitian
Su-Schrieffer-Heeger model with random hopping terms,
Phys. Rev. E 102, 012101 (2020).

[33] W.-C. Wang, Y.-L. Zhou, H.-L. Zhang, J. Zhang, M.-C.
Zhang, Y. Xie, C.-W. Wu, T. Chen, B.-Q. Ou, W. Wu,
H. Jing, and P.-X. Chen, Observation of PT -symmetric
quantum coherence in a single-ion system, Phys. Rev. A
103, L020201 (2021).

[34] A. P. Acharya, A. Chakrabarty, D. K. Sahu, and
S. Datta, Localization, PT symmetry breaking, and
topological transitions in non-Hermitian quasicrystals,
Phys. Rev. B 105, 014202 (2022).

[35] M. S. Rudnerand L. S. Levitov, Topological transition in

a non-Hermitian quantum walk, Phys. Rev. Lett. 102,
065703 (2009).

[36] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge
states and topological phases in non-Hermitian systems,
Phys. Rev. B 84, 205128 (2011).

[37] Y. C. Huand T. L. Hughes, Absence of topological insula-
tor phases in non-Hermitian pt-symmetric Hamiltonians,
Phys. Rev. B 84, 153101 (2011).

[38] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and
F. Nori, Edge modes, degeneracies, and topological num-
bers in non-Hermitian systems, Phys. Rev. Lett. 118,
040401 (2017).

[39] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte,
K. G. Makris, M. Segev, M. C. Rechtsman, and A. Sza-
meit, Topologically protected bound states in photonic
parity–time-symmetric crystals, Nature materials 16, 433
(2017).

[40] V. M. Martinez Alvarez, J. E. Barrios Vargas, and
L. E. F. Foa Torres, Non-Hermitian robust edge states in
one dimension: Anomalous localization and eigenspace
condensation at exceptional points, Phys. Rev. B 97,
121401(R) (2018).

[41] H. Shen, B. Zhen, and L. Fu, Topological band theory
for non-Hermitian Hamiltonians, Phys. Rev. Lett. 120,
146402 (2018).

[42] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Hi-
gashikawa, and M. Ueda, Topological phases of non-
Hermitian systems, Phys. Rev. X 8, 031079 (2018).

[43] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal bulk-boundary correspondence
in non-Hermitian systems, Phys. Rev. Lett. 121, 026808
(2018).

[44] B. Qi, L. Zhang, and L. Ge, Defect states emerging from
a non-Hermitian flatband of photonic zero modes, Phys.
Rev. Lett. 120, 093901 (2018).

[45] S. Lieu, Topological phases in the non-Hermitian Su-
Schrieffer-Heeger model, Phys. Rev. B 97, 045106 (2018).

[46] F. Dangel, M. Wagner, H. Cartarius, J. Main, and
G. Wunner, Topological invariants in dissipative exten-
sions of the Su-Schrieffer-Heeger model, Phys. Rev. A 98,
013628 (2018).

[47] S. Yaoand Z. Wang, Edge states and topological invari-
ants of non-Hermitian systems, Phys. Rev. Lett. 121,
086803 (2018).

[48] A. Ghatakand T. Das, New topological invariants in non-
Hermitian systems, Journal of Physics: Condensed Mat-
ter 31, 263001 (2019).

[49] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Sym-
metry and topology in non-Hermitian physics, Phys. Rev.
X 9, 041015 (2019).

[50] S. Longhi, Topological phase transition in non-Hermitian
quasicrystals, Phys. Rev. Lett. 122, 237601 (2019).

[51] K. Soneand Y. Ashida, Anomalous topological active
matter, Phys. Rev. Lett. 123, 205502 (2019).

[52] K. Yokomizoand S. Murakami, Non-Bloch band theory
of non-Hermitian systems, Phys. Rev. Lett. 123, 066404
(2019).

[53] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-
Hermitian boundary modes and topology, Phys. Rev.
Lett. 124, 056802 (2020).

[54] S. Lieu, M. McGinley, and N. R. Cooper, Tenfold way
for quadratic Lindbladians, Phys. Rev. Lett. 124, 040401
(2020).

[55] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato,

https://science.sciencemag.org/content/346/6207/328.abstract
https://science.sciencemag.org/content/346/6207/328.abstract
https://www.nature.com/articles/ncomms7710/
https://www.nature.com/articles/ncomms7710/
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevA.93.062116
https://www.nature.com/articles/ncomms15791
https://www.nature.com/articles/ncomms15791
https://doi.org/10.1103/PhysRevLett.119.190401
https://www.nature.com/articles/nphys4204
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1103/PhysRevLett.120.123902
https://doi.org/https://doi.org/10.1038/s41467-019-08596-1
https://doi.org/10.1364/OL.44.005804
https://doi.org/10.1364/OL.44.005804
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevLett.123.230401
https://doi.org/10.1103/PhysRevA.102.062202
https://doi.org/10.1103/PhysRevE.102.012101
https://doi.org/10.1103/PhysRevA.103.L020201
https://doi.org/10.1103/PhysRevA.103.L020201
https://doi.org/10.1103/PhysRevB.105.014202
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1103/PhysRevB.84.153101
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.040401
https://www.nature.com/articles/nmat4811
https://www.nature.com/articles/nmat4811
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.120.093901
https://doi.org/10.1103/PhysRevLett.120.093901
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevA.98.013628
https://doi.org/10.1103/PhysRevA.98.013628
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://iopscience.iop.org/article/10.1088/1361-648X/ab11b3/meta
https://iopscience.iop.org/article/10.1088/1361-648X/ab11b3/meta
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.122.237601
https://doi.org/10.1103/PhysRevLett.123.205502
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.040401
https://doi.org/10.1103/PhysRevLett.124.040401


17

Topological origin of non-Hermitian skin effects, Phys.
Rev. Lett. 124, 086801 (2020).

[56] K. Sone, Y. Ashida, and T. Sagawa, Exceptional non-
Hermitian topological edge mode and its application to
active matter, Nature communications 11, 5745 (2020).

[57] K. Zhang, Z. Yang, and C. Fang, Correspondence be-
tween winding numbers and skin modes in non-Hermitian
systems, Phys. Rev. Lett. 125, 126402 (2020).

[58] X. Zhangand J. Gong, Non-Hermitian Floquet topolog-
ical phases: Exceptional points, coalescent edge modes,
and the skin effect, Phys. Rev. B 101, 045415 (2020).

[59] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Ex-
ceptional topology of non-Hermitian systems, Rev. Mod.
Phys. 93, 015005 (2021).

[60] J.-S. Pan, L. Li, and J. Gong, Point-gap topology with
complete bulk-boundary correspondence and anomalous
amplification in the fock space of dissipative quantum
systems, Phys. Rev. B 103, 205425 (2021).

[61] K. Mochizuki, K. Mizuta, and N. Kawakami, Fate of
topological edge states in disordered periodically driven
nonlinear systems, Phys. Rev. Research 3, 043112 (2021).

[62] M. V. Berry, Physics of nonhermitian degeneracies,
Czechoslovak journal of physics 54, 1039 (2004).

[63] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney,
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