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Non-Hermiticity gives rise to unique topological phases that have no counterparts in Hermitian
systems. Such intrinsic non-Hermitian topological phases appear even in one dimension while no
topological phases appear in one-dimensional Hermitian systems. Despite the recent considerable
interest, the intrinsic non-Hermitian topological phases have been mainly investigated in noninter-
acting systems described by band theory. It has been unclear whether they survive or reduce in
the presence of many-body interactions. Here, we demonstrate that the intrinsic non-Hermitian
topological phases in one dimension survive even in the presence of many-body interactions. We
formulate a many-body topological invariant by the winding of the complex-valued many-body spec-
trum in terms of a U (1) gauge field (magnetic flux). As an illustrative example, we investigate the
interacting Hatano-Nelson model and find a unique topological phase and skin effect induced by
many-body interactions.

I. INTRODUCTION

Recently, topological characterization of non-
Hermitian systems has attracted considerable interest
both in theory [1–49] and experiments [50–68]. Non-
Hermiticity originates from exchanges of particles or
energy with the external environment and gives rise
to unique phenomena in open classical and quantum
systems [69–71]. The rich behavior of non-Hermitian
topological systems is due to the complex-valued
spectrum, which enables two types of complex-energy
gaps: line and point gaps [20]. In the presence of a
line gap, non-Hermitian systems can be continuously
deformed to Hermitian systems. Thus, the line-gap
topology describes the stability of Hermitian topology
against non-Hermitian perturbations and is relevant
to, for example, topological lasers [4, 20, 50, 55–
57, 59, 60]. In the presence of a point gap, on the
other hand, non-Hermitian systems can only be contin-
uously deformed to unitary systems. Consequently, the
point-gap topology can describe topology that has no
counterparts in Hermitian systems and is intrinsic to
non-Hermitian systems. For example, such intrinsic non-
Hermitian topology appears in one dimension [12] while
one-dimensional Hermitian systems cannot support
topological phases without symmetry protection [72–74].
The point-gap topology describes unique non-Hermitian
topological phenomena such as the unidirectional dy-
namics [5, 12, 15, 31, 44, 64] and the emergence of
exceptional points [7, 8, 10, 26, 52, 58]. Furthermore, it
is the topological origin of the non-Hermitian skin ef-
fect [34, 35], which is the anomalous localization induced
by non-Hermiticity [6, 13, 14, 16, 27, 61–64, 67, 68].
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Despite the considerable interest in non-Hermitian
topological systems, much work has hitherto focused
on noninteracting systems. While several recent works
investigated interacting non-Hermitian topological sys-
tems [75–91], they focused only on the topological char-
acterization in terms of a line gap. For example,
the fate of interacting Hermitian topological phases to
non-Hermitian perturbations was studied, such as non-
Hermitian extensions of the fractional quantum Hall in-
sulator [76], toric code [75, 80, 84], and topological Mott
insulator [81–83]. Thus, there remains a need for devel-
oping a theory of the intrinsic non-Hermitian topology in
the many-body regime. Furthermore, many-body topol-
ogy of non-Hermitian systems is relevant to the topolog-
ical characterization of Liouvillians appearing in master
equations [92–97].

In the Hermitian case, an important effect of many-
body interactions is the reduction of topological phases
in noninteracting systems. For example, while one-
dimensional Hermitian systems with chiral symmetry are
characterized by the Z topological invariant in the single-
particle regime, many-body interactions can reduce the
band topology and replace the Z topological invariant
with the Z4 one [98]. However, it has been unclear
how many-body interactions affect the band topology of
non-Hermitian systems. In a recent work [88], point-
gap topology of zero-dimensional non-Hermitian systems
protected by chiral symmetry was shown to be sub-
ject to reduction due to many-body interactions. Mean-
while, it has remained unclear whether the intrinsic non-
Hermitian topology in one dimension, which is relevant
to exceptional points and the skin effect, reduces or sur-
vives in the presence of many-body interactions.

In this work, we develop a topological theory of non-
Hermitian many-body systems. In Sec. II, we formulate a
many-body topological invariant for non-Hermitian inter-
acting systems in one dimension. The many-body topo-
logical invariant is defined by the winding of the complex-
valued many-body spectrum in terms of a U (1) gauge
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field (i.e., magnetic flux) and describes the nonequilib-
rium dynamics generated by the non-Hermitian opera-
tors. We demonstrate that it is free from reduction in
the presence of many-body interactions. In Sec. III, we
discuss the relationship between the many-body topol-
ogy and band topology of non-Hermitian systems. We
argue that Hermitization, which plays a key role in the
characterization of non-Hermitian band topology, is no
longer applicable in many-body systems. In Sec. IV, we
investigate the interacting Hatano-Nelson model as an
illustrative example of the many-body topological invari-
ant. We find the unique complex-spectral winding and
the concomitant skin effect induced by the interplay of
non-Hermiticity and many-body interactions. In Sec. V,
we conclude this work and discuss several outlooks.

II. MANY-BODY TOPOLOGICAL INVARIANT

We introduce a topological invariant W = W (E) for

a generic non-Hermitian operator Ĥ in one dimension
and reference energy E ∈ C. Here, Ĥ can be either a
bosonic or fermionic operator. Suppose that Ĥ respects
U (1) symmetry, i.e., Ĥ commutes with the total particle
number operator:

[Ĥ, N̂ ] = 0. (1)

As a result of U (1) symmetry, Ĥ can be block diagonal-

ized according to the eigenvalue of N̂ . Then, we consider
the N -particle operator

ĤN := P̂N ĤP̂N , (2)

where P̂N is the projector onto the subspace with the
fixed particle number N . To define a topological invari-
ant, we need an energy gap. Here, we assume

det [ĤN − E] 6= 0 (3)

as a gap condition for ĤN . This is a many-body gener-
alization of the point gap in band theory [12, 20]. Sim-

ilarly to the noninteracting case, ĤN with a point gap
can be flattened to a unitary operator in the N -particle
subspace.

Owing to U (1) symmetry, we can introduce a U (1)
gauge field An,n+1 on the link between sites n and
n + 1 even for the non-Hermitian operator. From this
local gauge field, a magnetic flux φ is given as φ :=∑L
n=1An,n+1. We further assume the presence of the

point gap for arbitrary φ, i.e.,

∀φ ∈ [0, 2π) det [ĤN (φ)− E] 6= 0. (4)

The complex spectrum of ĤN (φ) is independent of the
gauge choice. Furthermore, although the complex spec-
trum of ĤN (φ) generally depends on φ, it is invariant
in the presence of a unit flux φ = 2π. Consequently,
the winding number of the determinant of ĤN (φ) − E

in the complex plane is well defined under the adiabatic
insertion of a unit magnetic flux. Then, we can identify
this complex-spectral winding number as a topological
invariant W = W (E). More precisely, W (E) is given as

W (E) :=

∮ 2π

0

dφ

2πi

d

dφ
log det [ĤN (φ)− E]. (5)

Notably, W (E) depends on the reference energy E, as

well as the non-Hermitian operator Ĥ.

This topological invariant is well defined even in
the presence of many-body interactions and disorder.
In noninteracting systems (i.e., N = 1), the topo-
logical invariant W in Eq. (5) was applied to non-
Hermitian disordered systems that exhibit localization
transitions [12, 19, 43]. We demonstrate that a similar
complex-spectral winding number W is well defined also
for a non-Hermitian many-body operator.

Importantly, the topological invariant W (E) is defined
only by the complex spectrum. In fact, W (E) in Eq. (5)
can be written as

W (E) :=

DN∑
n=1

∮ 2π

0

dφ

2πi

d

dφ
log [E

(n)
N (φ)− E], (6)

where DN is the dimension of the N -particle Hilbert

space, and E
(n)
N (φ) is the n th eigenenergy of ĤN (φ).

This is contrasted with the topological invariants of Her-
mitian operators, which are formulated solely by their
eigenstates. For example, the many-body Chern number
is defined by the ground-state wave function in the pres-
ence of a gauge flux [99]. While such state-based topo-
logical invariants can be defined also for non-Hermitian
operators, the spectral formulation of topological phases
is a new type of topological characterization intrinsic to
non-Hermitian operators. While no topological phases
appear in one-dimensional Hermitian systems without
symmetry [72–74], a topological invariant can be as-
signed to one-dimensional non-Hermitian systems with-
out symmetry, as discussed above. Topological invariants
of Hermitian systems describe the static order of eigen-
states including the ground states. By contrast, topo-
logical invariants intrinsic to non-Hermitian systems de-
scribe the nonequilibrium dynamics described by non-
Hermitian operators. As discussed in Ref. [44], the in-
trinsic non-Hermitian topology also requires a new for-
mulation of topological field theory.

The topological invariant can vanish in the presence
of certain symmetry. For example, it vanishes when the
non-Hermitian operator respects reciprocity

T̂ ĤT
N (φ) T̂ −1 = ĤN (−φ) , (7)

where T̂ is a unitary operator. In fact, in the presence
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of reciprocity, W (E) in Eq. (5) satisfies

W (E) =

∮ 2π

0

dφ

2πi

d

dφ
log det [T̂ ĤT

N (−φ) T̂ −1 − E]

=

∮ 2π

0

dφ

2πi

d

dφ
log det [ĤN (−φ)− E]

= −W (E) , (8)

leading to W (E) = 0. The vanishing winding num-
ber due to reciprocity is similar to the noninteracting
regime [20, 37].

Before proceeding, we provide several further remarks.
First, the topological invariant is well defined for a
generic non-Hermitian many-body operator Ĥ. For ex-
ample, Ĥ can be a non-Hermitian Hamiltonian that effec-
tively describes open quantum systems subject to post-
selection [100, 101]. In addition, Ĥ can be a Liouvillian
of a master equation [102, 103].

Second, U (1) symmetry in Eq. (1) enables the intro-
duction of the U (1) gauge field. In Hermitian systems,
U (1) symmetry also leads to conservation of the particle
number. In non-Hermitian systems, by contrast, this is
not necessarily the case. In the Heisenberg picture, the
particle number operator N̂ evolves as

N̂ (t) = eiĤ†tN̂e−iĤt (9)

under the non-Hermitian Hamiltonian Ĥ. Thus, we have

i
dN̂

dt
= N̂Ĥ − Ĥ†N̂ , (10)

and the conservation of the particle number (i.e.,

dN̂/dt = 0) is given by

N̂Ĥ − Ĥ†N̂ = 0. (11)

While Eqs. (1) and (11) are equivalent to each other for

Ĥ = Ĥ†, this is not the case for Ĥ 6= Ĥ†.
Next, we emphasize the importance of the block di-

agonalization according to N̂ . In the presence of uni-
tary symmetry that commutes with Ĥ [i.e., Eq. (1)],
each block with fixed N is independent and cannot in-
teract with each other. Consequently, we have to define
the topological invariant for each subspace with fixed N .
If we considered the complex-spectral winding without
block diagonalization, it would be meaningless and irrel-
evant to the skin effect. Even in band theory, the block
diagonalization is needed to understand the skin effect of
non-Hermitian systems with commutative unitary sym-
metry [29, 35, 37].

Finally, when the dimension of the Hilbert
space and the degree of the point gap (i.e.,

minφ∈[0,2π) |det [ĤN (φ) − E]|) are sufficiently large, the

integrand ∂φ log det [ĤN (φ) − E] in Eq. (5) is expected
to be independent of φ. Then, the topological invariant
W in Eq. (5) is simplified to

W (E) ' −i
d

dφ
log det [ĤN (φ)− E], (12)

where the φ derivative can be taken for arbitrary φ. This
simplification is similar to the Niu-Thouless-Wu formula
for the many-body Chern number [99, 104]. In Sec. IV,
we confirm this simplification for the interacting Hatano-
Nelson model.

III. RELATIONSHIP WITH BAND TOPOLOGY

The intrinsic non-Hermitian topological phases were
generally formulated for noninteracting systems in terms
of band theory [12, 20, 35]. The many-body topological
invariant W in Eq. (5) reduces to the band topology for
a single particle N = 1 and in the presence of trans-
lation invariance. The single-particle Hamiltonian Ĥ1

with translation invariance is diagonalized in momentum
space as

Ĥ1 =
∑
k∈BZ

ĉ†kH (k) ĉk, (13)

with the one-dimensional Brillouin zone

BZ :=

{
0,

2π

L
,

4π

L
, · · · , 2π (L− 1)

L

}
(14)

and the Bloch Hamiltonian H (k). In the presence of a
magnetic flux φ, the Hamiltonian reads

Ĥ1 (φ) =
∑
k∈BZ

ĉ†k−φ/LH (k − φ/L) ĉk−φ/L, (15)

where the gauge field is chosen to be uniform (i.e.,
An,n+1 := φ/L). Then, we have

det [Ĥ1 (φ)− E] =
∏
k∈BZ

det [H (k − φ/L)− E], (16)

and hence the topological invariant W (E) in Eq. (5) re-
duces to

W (E) =
∑
k′∈BZ

∮ 2π

0

dφ

2πi

d

dφ
log det [H (k′ − φ/L)− E]

= −
∑
k′∈BZ

∮ k′

k′−2π/L

dk

2πi

d

dk
log det [H (k)− E]

= −
∮ 2π

0

dk

2πi

d

dk
log det [H (k)− E], (17)

which reproduces the topological invariant in band the-
ory [12, 20]. We note that k in the second equality is
introduced by k := k′−φ/L to replace the magnetic flux
φ with the momentum k.

Notably, the band topology of noninteracting non-
Hermitian Hamiltonians is understood by Hermitiza-
tion [12, 20, 105, 106]. For a given noninteracting non-
Hermitian Hamiltonian H, a noninteracting Hermitian
Hamiltonian H̃ in the doubled Hilbert space can be con-
structed as

H̃ :=

(
0 H
H† 0

)
, (18)
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where the reference energy E is set to zero. By construc-
tion, the extended Hermitian Hamiltonian H̃ respects
chiral symmetry

τzH̃τ
−1
z = −H̃ (19)

with a Pauli matrix τz. For example, when we Hermi-
tize the Hatano-Nelson model H [107], we obtain the

Su-Schrieffer-Heeger model H̃ [108]; the complex-spectral
winding number of H coincides with the winding number
of the eigenstates in H̃. In this manner, non-Hermitian
band topology in terms of a point gap can be generally
classified on the basis of Hermitization [12, 20, 21]. Her-
mitization plays a key role also in the skin effect [35]
and Anderson localization [109] of noninteracting non-
Hermitian systems.

Now, suppose that Hermitization were valid in the
same manner even in interacting systems. Then, the
many-body topology of one-dimensional non-Hermitian
systems would be associated with the many-body topol-
ogy of one-dimensional Hermitian systems with chiral
symmetry. Here, many-body interactions reduce the
band topology of chiral-symmetric Hermitian systems
characterized by the Z topological invariant to the Z4

topology [98]. Thus, the band topology of noninteract-
ing non-Hermitian systems would also be reduced from Z
to Z4 because of many-body interactions. However, this
would contradict the Z topological invariant well defined
even for non-Hermitian many-body systems, as shown in
Sec. II.

This discussion implies that Hermitization is no longer
valid in the many-body regime in the same manner as
the noninteracting regime. While Hermitization maps a
noninteracting non-Hermitian Hamiltonian to a nonin-
teracting Hermitian Hamiltonian in the doubled single-
particle Hilbert space, it cannot preserve the structure of
the many-body Hilbert space. The correspondence be-
tween non-Hermitian systems and chiral-symmetric Her-
mitian systems is unique to the noninteracting regime
and breaks down in the many-body regime. Even if
we may associate a non-Hermitian many-body system

Ĥ with another Hermitian many-body system ˆ̃H, chiral

symmetry should not be respected by ˆ̃H.
We note in passing that unitary operators can be

mapped to ground states of Hermitian Hamiltonians in
the double Hilbert space [110]. In the single-particle
regime, a non-Hermitian operator with a nontrivial topo-
logical invariant W 6= 0, including the Hatano-Nelson
model [107], can be flattened to the unitary transla-
tion operator. However, a single-particle unitary oper-
ator cannot be generalized to many-body operators in a
unique manner, and an important difference arises be-
tween unitary operators and generic non-Hermitian op-
erators in the many-body regime. For unitary opera-
tors, the spectrum lies on the unit circle in the complex
plane and retains a point gap around E = 0 in all the
N -particle subspaces; for generic non-Hermitian opera-
tors, even if a point gap is open in a specific N -particle

subspace, this point gap may be closed for another N ′-
particle subspace. For example, in the Hatano-Nelson
model, while a point gap is open around E = 0 in the
single-particle subspace, no point gap is open around
E = 0 in the many-particle subspaces (see Sec. IV for
details). Consequently, generic non-Hermitian operators
cannot be flattened to unitary operators in arbitrary N -
particle subspaces.

The topological invariant W in Eq. (5) may be simi-
lar to the topological invariant of zero-dimensional Her-
mitian systems, which is defined by the U (1) charge
(i.e., particle number) of the ground state, rather
than one-dimensional Hermitian systems with chiral
symmetry. This is compatible with the topological
field theory—(1+0)-dimensional Chern-Simons theory—
for one-dimensional non-Hermitian systems [44].

IV. EXAMPLE: INTERACTING
HATANO-NELSON MODEL

While the many-body topological invariant W in
Eq. (5) reduces to the band topology for noninteracting
Hamiltonians with translation invariance, its relevance is
unclear for many-particle cases N ≥ 2. To understand
the role of W in non-Hermitian many-body systems, we
investigate the interacting Hatano-Nelson model

Ĥ =

L∑
n=1

(
−1 + γ

2
ĉ†n+1ĉn −

1− γ
2

ĉ†nĉn+1

+ Uĉ†nĉnĉ
†
n+1ĉn+1

)
. (20)

Here, ĉn (ĉ†n) is an annihilation (creation) operator of a
spinless fermion at site n. In addition, γ ∈ R is the de-
gree of non-Hermiticity, and U ∈ R is the strength of the
two-body interaction. In the absence of the interaction
(i.e., U = 0), the model reduces to the Hatano-Nelson
model [107], which is a prototypical model that exhibits
intrinsic non-Hermitian topology in band theory [12, 20].
Similar fermionic interacting models were also investi-
gated in Refs. [77, 111, 112]. Furthermore, similar spin
models (i.e., XXZ chains with asymmetric XX coupling)
were investigated in Refs. [113–115]. Below, we study
the topological phase and skin effect of the interacting
Hatano-Nelson model. In the presence of a magnetic flux
φ ∈ [0, 2π), the Hamiltonian reads

Ĥ =

L∑
n=1

(
−eiφ/L 1 + γ

2
ĉ†n+1ĉn − e−iφ/L 1− γ

2
ĉ†nĉn+1

+ Uĉ†nĉnĉ
†
n+1ĉn+1

)
, (21)

where the gauge field is chosen to be uniform (i.e.,
An,n+1 := φ/L).
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FIG. 1. Interacting Hatano-Nelson model with one particle
(L = 30, N = 1, γ = 0.5). (a) Complex spectra under the
periodic boundary conditions (red dots) and open boundary
conditions (black dots). (b) Complex spectra under the pe-
riodic and open boundary conditions in the presence of the
flux φ ∈ {0, 2π/5, 4π/5, 6π/5, 8π/5}. (c) Spatial distributions
of particle numbers for an eigenstate with E = −0.10− 0.50i
under the periodic boundary conditions (red dots) and an
eigenstate with E = −0.04 under the open boundary con-
ditions (black dots). (d) Arguments of the determinants of

Ĥ1 (φ)−E as a function of the flux φ for E = 0 (purple dots,
W = 1) and E = −1.5 (blue dots, W = 0).

A. N = 1 (single particle)

For clarity, we begin with the single-particle case N =
1. In the single-particle sector, the two-body interaction

Uĉ†nĉnĉ
†
n+1ĉn+1 is irrelevant, and the Hamiltonian with

periodic boundaries reads in momentum space

Ĥ1 =
∑
k∈BZ

E (k) ĉ†k ĉk (22)

with the complex-energy dispersion

E (k) := −1 + γ

2
e−ik − 1− γ

2
eik

= − cos k + iγ sin k. (23)

The spectrum forms a loop in the complex-energy plane
[Fig. 1 (a, b)]. Because of this loop structure of the com-
plex spectrum, we have W1 (E) = sgn (γ) [W1 (E) = 0]
when the reference energy E is inside (outside) the loop
[Fig. 1 (d)]. As demonstrated in Refs. [34, 35], the
complex-spectral winding number W leads to the skin
effect under the open boundary conditions. Consistently,
the open-boundary spectrum is drastically different from
the periodic-boundary spectrum, and the eigenstates are
localized at the edge [Fig. 1 (c)]. It is notable that

−i∂φ log det [Ĥ1 (φ) − E] = ∂φ arg det [Ĥ1 (φ) − E] is al-
most independent of φ when the degree of the point gap
is sufficiently large. The simplified formula in Eq. (12) is
thus valid even in the single-particle case.
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FIG. 2. Interacting Hatano-Nelson model with two particles
(L = 20, N = 2, γ = 0.5, U = −3.0). (a) Complex spec-
tra under the periodic boundary conditions (red dots) and
open boundary conditions (black dots). (b) Complex spec-
tra under the periodic and open boundary conditions in the
presence of the flux φ ∈ {0, 2π/5, 4π/5, 6π/5, 8π/5}. (c) Spa-
tial distributions of particle numbers for an eigenstate with
E = −0.02 under the periodic boundary conditions (red dots)
and an eigenstate with E = −0.05 under the open boundary
conditions (black dots). (d) Arguments of the determinants

of Ĥ2 (φ)−E as a function of the flux φ for E = −0.2 (purple
dots, W = 8), E = −2.5 (blue dots, W = 0), and E = −3.2
(yellow dots, W = 2).

B. N = 2

In the two-particle case N = 2, we numerically diago-
nalize the non-Hermitian Hamiltonian Ĥ2 (φ) and obtain
the topological invariant W (E) (Fig. 2). In these nu-
merical calculations, the attractive interaction U < 0 is
considered. First, the complex spectrum includes mul-
tiple layers of loops around the origin [Fig. 2 (a, b)].
Consequently, we can have a large winding number W
[Fig. 2 (d)], which is unfeasible in the single-particle case.
This multilayer structure is typical behavior of many-
particle non-Hermitian Hamiltonians and does not actu-
ally require the many-body interaction. In the absence
of the interaction (i.e., U = 0), the complex spectrum of

the two-particle Hamiltonian Ĥ2 is given as

E (k) + E (k′) , (24)

where k and k′ are independent momenta, and E (k) is
the single-particle energy dispersion in Eq. (23). As a
result, the complex spectrum forms the following disk
for L→∞: (

ReE

2

)2

+

(
ImE

2γ

)2

≤ 1. (25)

The multilayer structure numerically obtained for an in-
teracting and finite system is reminiscent of the disk
for the noninteracting and infinite system. It should
be noted that the presence of the point gap between
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the loops is due to the finite-size effect. As the system
size L increases, this point gap gets smaller. Meanwhile,
the number of the loops, as well as the complex-spectral
winding numbers, gets larger. For the infinite-size limit
L → ∞, the point gap vanishes, and the winding num-
bers diverge and are no longer well defined. While a point
gap is open around E = 0 even for L→∞ in the single-
particle case N = 1, no point gap is open around E = 0
in the two-particle case N = 2.

The skin effect occurs also in the two-particle case
[Fig. 2 (c)]. The two-body interaction complicates the
localization of skin modes. Still, skin modes appear only
for the energy with W (E) 6= 0. The correspondence be-
tween the topological invariant W and the skin effect is
hitherto proved only for the single-particle case [34, 35].
Our numerical calculations may suggest a similar rela-
tionship even in non-Hermitian many-body systems.

Another remarkable feature in the two-particle spec-
trum is the appearance of an additional loop isolated
from the multiple loops around the origin in the complex-
energy plane [Fig. 2 (a, b)]. Such an isolated loop appears
only for a sufficiently large interaction U and is charac-
terized by the winding number W = 2 sgn (γ), and con-
sequently, the skin effect occurs under the open bound-
ary conditions. In contrast to the multilayer structure
around the origin, the point gap of this isolated loop is
open even for L → ∞. As discussed below, this iso-
lated loop can be understood by a second-order pertur-
bation theory in terms of 1/U . For a sufficiently strong
many-body interaction, the energy separation occurs in
the many-body spectrum. In the additional presence of
non-Hermiticity γ, a point gap is open for this separated
many-body spectrum, which leads to the formation of the
isolated loop. Thus, the isolated loop in the two-particle
complex spectrum originates from the interplay between
many-body interactions and non-Hermiticity. We note in
passing that it may be related to the cluster structure in
the complex spectrum of random Liouvillians [116]; it is
interesting to investigate the spectral structure of non-
Hermitian many-body systems in the presence of more
general many-body interactions.

Now, we derive the effective Hamiltonian Ĥeff when
the interaction term

Ĥint := U

L∑
n=1

ĉ†nĉnĉ
†
n+1ĉn+1 (26)

is much larger than the hopping term

Ĥhop :=

L∑
n=1

(
−1 + γ

2
ĉ†n+1ĉn −

1− γ
2

ĉ†nĉn+1

)
. (27)

We obtain Ĥeff by a perturbation theory for |U | � 1.

For the two-particle sector N = 2, the spectrum of Ĥint

consists of E = 0 and E = U . Here, we focus on E = U
to account for the separate loop induced by the many-
body interaction. For E = U , we have L eigenstates

|n〉〉 := ĉ†nĉ
†
n+1 |vac〉 (n = 1, 2, · · ·L) (28)

with the fermionic vacuum |vac〉. Then, in the presence

of the hopping term Ĥhop, the effective Hamiltonian Ĥeff

is perturbatively obtained as

Ĥeff = E + P̂intĤhopP̂int

+ P̂intĤhop (E − Ĥint)
−1ĤhopP̂int +O (Ĥ3

hop), (29)

where P̂int :=
∑L
n=1 |n〉〉〈〈n| is the projector onto the

eigenspace of Ĥint [see, for example, Sec. 10.1 of Ref. [117]
for a derivation of Eq. (29)]. The first-order contribution

vanishes, i.e., P̂intĤhopP̂int = 0. On the other hand, the
second-order contribution is computed explicitly as

〈〈m|Ĥhop (E − Ĥint)
−1Ĥhop|n〉〉

=
1− γ2

2U
δm,n +

(1 + γ)
2

4U
δm,n+1 +

(1− γ)
2

4U
δm,n−1.

(30)

Thus, the effective Hamiltonian Ĥeff in Eq. (29) is

Ĥeff ' U +
1− γ2

2U

+

L∑
n=1

[
(1 + γ)

2

4U
|n+ 1〉〉〈〈n|+ (1− γ)

2

4U
|n〉〉〈〈n+ 1|

]
.

(31)

The obtained effective Hamiltonian Ĥeff is similar to
the single-particle Hatano-Nelson model whose hopping
amplitude from the left to the right (from the right to the

left) is (1 + γ)
2
/4U [(1− γ)

2
/4U ]. Hence, the spectrum

is given as

E ' U +
1− γ2

2U
+

(1 + γ)
2

4U
e−iθ +

(1− γ)
2

4U
eiθ

= U +
1− γ2

2U
+

1 + γ2

2U
cos θ − i

γ

U
sin θ (32)

with θ ∈ [0, 2π). This is consistent with the numerical
results in Fig. 2. In the presence of the gauge flux φ, the
effective Hamiltonian reads

Ĥeff (φ) ' U +
1− γ2

2U

+

L∑
n=1

[
e−2iφ/L (1 + γ)

2

4U
|n+ 1〉〉〈〈n|

+e2iφ/L (1− γ)
2

4U
|n〉〉〈〈n+ 1|

]
, (33)

which leads to the winding number W = 2 sgn (γ) for the
reference energy inside the loop. The doubled winding
number compared to the single-particle case is a unique
feature of the many-body topological invariant.

Under the open boundary conditions, the effective
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Hamiltonian reads

Ĥeff ' U +
1− γ2

2U

(
1− |1〉〉〈〈1|+ |L− 1〉〉〈〈L− 1|

2

)
+

L−2∑
n=1

[
(1 + γ)

2

4U
|n+ 1〉〉〈〈n|+ (1− γ)

2

4U
|n〉〉〈〈n+ 1|

]
.

(34)

The spectrum of this effective Hamiltonian is obtained as

E = U +
1− γ2

2U
(1 + cos θ) (35)

with θ = mπ/ (L− 1) (m = 1, 2, · · · , L − 1). This
is clearly different from the spectrum for the periodic
boundary conditions [i.e., Eq. (32)], which is a signature
of the skin effect. In fact, the corresponding right eigen-
state is

∝
L−1∑
n=1

(
1 + γ

1− γ

)n
sin

[(
n− 1

2

)
θ

]
|n〉〉, (36)

localized at the right (left) edge for γ > 0 (γ < 0). Simi-
larly to the single-particle case, the skin effect under the
open boundary conditions is consistent with the spec-
tral winding number W = 2 sgn (γ) under the periodic
boundary conditions.

C. N = 3

Figure 3 shows the numerically obtained complex spec-
tra, eigenstates, and winding numbers for the three-
particle case N = 3. While the spectrum becomes
more complicated, it is qualitatively similar to the two-
particle spectrum: multilayer loops around the origin and
interaction-induced separate loops. Similarly to the two-
particle case, for the infinite-size limit L→∞, the point
gap between the multilayer loops vanishes, and the con-
comitant winding numbers are ill defined. Notably, the
separate loops consist of multiple layers in contrast to the
two-particle case. Similarly to the fewer-particle case,
the skin effect occurs also in the three-particle case. The
skin modes for the open boundary conditions seem to
appear only in the energy regions characterized by the
nonzero topological invariant for the periodic boundary
conditions. The simplified formula in Eq. (12) is also
valid.

D. N = 5 (half filling)

Figure 4 shows the numerical results for the half-filling
case (L = 10, N = 5). We observe the appearance of real
eigenenergy whose real part is minimum (E = −12.1).
It is L-fold degenerate. Notably, it is insensitive to the
flux φ and robust to the change of the boundary condi-
tions, which is to be contrasted with the isolated loops
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FIG. 3. Interacting Hatano-Nelson model with three particles
(L = 12, N = 3, γ = 0.5, U = −3.0). (a) Complex spec-
tra under the periodic boundary conditions (red dots) and
open boundary conditions (black dots). (b) Complex spec-
tra under the periodic and open boundary conditions in the
presence of the flux φ ∈ {0, 2π/5, 4π/5, 6π/5, 8π/5}. (c) Spa-
tial distributions of particle numbers for an eigenstate with
E = −0.004 − 0.28i under the periodic boundary conditions
(red dots) and an eigenstate with E = −0.005 under the
open boundary conditions (black dots). (d) Arguments of

the determinants of Ĥ3 (φ) − E as a function of the flux φ
for E = −0.2 (purple dots, W = 9), E = −1.6 (blue dots,
W = 3), and E = −3.0 (yellow dots, W = 6).

in the fewer-particle case. The energy gap between this
eigenenergy and the nearest eigenenergy is induced by
the many-body interaction similarly to the Mott gap. If
we further increase non-Hermiticity or decrease the in-
teraction, the energy gap decreases; above a threshold,
a phase transition should occur as a consequence of the
competition between non-Hermiticity and interactions.
It merits further research to investigate this phase tran-
sition, which may be related to the dielectric breakdown
of a Mott insulator [118, 119].

It is also notable that the absence of the skin effect
may be a special feature of half-filled ground states (i.e.,
eigenstates with the minimum real part of energy for
the half filling), which is compatible with other non-
Hermitian systems [79, 82, 90]. While the ground states
do not exhibit the skin effect, the open-boundary spec-
trum for generic eigenstates is different from the periodic-
boundary spectrum, which is a clear signature of the
skin effect. Similarly to the fewer-particle cases, the skin
modes seem to appear only in the energy regions charac-
terized by the nonzero topological invariant. In addition,
−i∂φ log det [Ĥ1 (φ)−E] = ∂φ arg det [Ĥ1 (φ)−E] signif-
icantly depends on φ in contrast to the previous cases.
This behavior may be due to a small system size or a
small point gap.
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FIG. 4. Interacting Hatano-Nelson model with five particles
(L = 10, N = 5, γ = 0.5, U = −3.0). (a) Complex spec-
tra under the periodic boundary conditions (red dots) and
open boundary conditions (black dots). (b) Complex spec-
tra under the periodic and open boundary conditions in the
presence of the flux φ ∈ {0, 2π/5, 4π/5, 6π/5, 8π/5}. (c) Spa-
tial distributions of particle numbers for an eigenstate with
E = −5.98 under the periodic boundary conditions (red dots)
and an eigenstate with E = −5.60 under the open boundary
conditions (black dots). (d) Arguments of the determinants

of Ĥ5 (φ)− E as a function of the flux φ for E = 0.0 (purple
dots, W = 0), E = −5.0 (blue dots, W = 3), and E = −9.0
(yellow dots, W = 0).

V. DISCUSSIONS

We have formulated a topological invariant of non-
Hermitian many-body systems in one dimension. This
many-body topological invariant characterizes the wind-
ing of the complex spectrum and describes the open
quantum dynamics generated by the non-Hermitian op-
erator. While it reduces to the band topology for non-
interacting systems with translation invariance, we have
shown that it is free from reduction in the presence of

many-body interactions. As an illustration, we have ap-
plied the many-body topological invariant to the interact-
ing Hatano-Nelson model and found the unique complex-
spectral winding and concomitant skin effect induced by
the interplay of non-Hermiticity and many-body interac-
tions.

In the noninteracting regime, the intrinsic non-
Hermitian topological invariant was shown to be the ori-
gin of the non-Hermitian skin effect [34, 35]. However,
the proofs are strongly based on band theory and Her-
mitization, both of which are no longer applicable in the
presence of many-body interactions. Thus, it is impor-
tant to revisit the relationship between the topological in-
variant and the skin effect in non-Hermitian many-body
systems. Moreover, generalizations to other symmetry
classes and higher dimensions are a future issue. It is also
of interest to apply the intrinsic non-Hermitian topolog-
ical invariant to the open quantum dynamics of Liouvil-
lians in master equations [92–97]. In particular, it should
be relevant to the Liouvillian skin effect [120–123].

Note added.—After the completion of this work, we
became aware of a recent related work [124].
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