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The two-electron states and exchange couplings are investigated for a phosphorous donor pair in
silicon using an atomistic full configuration interaction method for donor separations spanning from
0.4 to 15 nm. Three distinct donor separation regimes appear from our large basis calculations, from
which the validity of simplified methods such as Heitler-London and Hartree-Fock type approaches
can be assessed. For bulk donors, the exchange coupling saturates below 5 nm due to excited
bonding orbital contributions to the wavefunctions. Ionic contributions to the two-electron state
decrease between 5 and 14 nm, and a fully correlated Heitler-London like state is reached from 14
nm onwards. Oscillations in exchange couplings can be strongly suppressed by placing the donors
in the same z-plane and at a small depth D from the surface. This is a consequence of the z-
valley terms becoming dominant within the dopant’s wavefunction, and small changes with x and
y separations no longer having much effect. We find the depth to be an important parameter in
determining the exchange coupling for sub-surface dopants, not only through valley repopulation
(D < 10 nm), but also through additional interface effects for ultra shallow depths (D < 2.5 nm).
Our full configuration interaction method provides new insights in the exchange interaction for
various regimes of donor separation and depths, from the Heitler-London limit at large distances to
the 0.4-5 nm range relevant for STM based quantum state imaging and spectroscopy experiments.
The precise control of electron-electron quantum correlations in such engineered atoms in the solid-
state is useful to design quantum logic gates and quantum simulators.

PACS numbers: 71.55.Cn, 03.67.Lx, 85.35.Gv, 71.70.Ej

I. INTRODUCTION

Phosphorus donors in silicon have been proposed as the
functional block of a silicon quantum information proces-
sor that can combine the benefits of single-atom quantum
systems with the mature technological platform of silicon
[1]. Single qubit logic has been demonstrated on both
electronic and nuclear spins [2, 3] bound to these donors
along with exceptional coherence times and fidelity [4].
Recently, the first two-qubit logic gate was also demon-
strated with dopant atoms coupled by the exchange in-
teraction between electronic spins, thereby providing a
proof-of-principle demonstration of universal quantum
logic [5]. Coupled dopant atoms are also amenable to
quantum simulation of Fermi-Hubbard systems [6, 7] and
coherent transport of quantum information [8]. The de-
velopment of atomically precise placement technology for
donor atoms in silicon has resulted in a breakthrough in
single-atom electronics, with clusters ranging from single
to many dopant atoms being realized with deterministic
precision [9]. This technology has led to the realization
of single atom transistors [10], atomically thin nanowires
[11], single crystal quantum dots [12, 13], and atomically
precise tunnel junctions [14], opening up the prospect of

a myriad of applications in both classical and quantum
electronics.

Direct exchange between electronic spins bound to
donors remains the principal method of coupling dopants
out of different mechanisms explored both theoretically
and experimentally, including long-range dipole-dipole
interactions [15, 16]. Soon after the original proposal
to use the exchange coupling as a means to perform two-
qubit logic using dopant atoms [1], it was predicted that
the exchange could be highly sensitive to the exact po-
sition of the atoms in the lattice due to interference be-
tween six-fold degenerate conduction band valley states
of silicon [17]. Since then, a body of theoretical works on
exchange couplings has appeared in the literature, which
mostly focus on the 10-20 nm donor separation regime
and relies on the effective mass Heitler-London formalism
(EMHL) [17–23]. Recent scanning tunnelling microscope
(STM) based spectroscopy and imaging experiments have
also probed directly the nature of the two-electron wave-
functions of donors separated by a few nanometers and in
the proximity of the silicon surface [23]. This closer sep-
aration regime offers interesting electronic correlations
that can be exploited in quantum simulation [6]. The
recently demonstrated two-qubit logic gate [5] also re-
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lies on a separation distance of 13 nm, as opposed to the
original proposal of 20 nm separation of Kane [1]. The
smaller separations of sub-surface donors of relevance to
experiments call for a more detailed investigation of the
exchange coupling and electronic correlations of the two-
electron donor states beyond the EMHL formalism.

In this work, we investigate the two-electron states
of phosphorus donor pairs in silicon using an atomistic
full configuration interaction (AFCI) technique. This
method provides an exact solution to the two-electron
problem for all donor separation regimes within a 20-
orbital spin-resolved Slater-Koster tight-binding (TB)
method [24]. This approach enables us to asses the
regimes of validity of Heitler-London and other simpli-
fied many-body approaches for the coupled-donor prob-
lem, as well as to track the evolution of electronic corre-
lations as a function of donor separation. Furthermore,
the atomistic description of the single-electron states of
the donor pairs in TB as a basis for AFCI goes beyond
the effective mass approximations, as it includes an atom-
istic description of interfaces and incorporates conduction
band momentum states from a full Brillouin zone (BZ)
approach. These considerations are important to repro-
duce non-bulk experimental situations [23]. The calcu-
lations provide us insights into exchange oscillations and
how to mitigate these. Lastly, we present calculation re-
sults in the regime of 2-5 nm separation that was probed
in a recent experimental work on STM imaging of ex-
change coupled donor pairs [23], showing both exchange
and charging energies as a function of depths and sep-
aration of the pairs. The atomistic study of the depth
dependence of exchange energy down to the sub-Bohr
radii distances from the surface is another novelty of this
work.

II. METHODOLOGY

The accuracy of an exchange coupling calculation de-
pends on two main factors, 1) the dimensions and the
quality of the single electron basis set, and 2) the ap-
proximations made for the multi-electron wavefunction.
In this section, first we compare and contrast between
various methodologies with regards to points 1) and 2)
before describing the AFCI methodology in detail.

Even though a hydrogenic donor, such as phosphorus,
in silicon has energy states in the bandgap within an
energy window of about 50 meV below silicon’s conduc-
tion band minima (CBM), the shallow nature of these
states allows the application of the effective mass approx-
imation on the conduction band (CB) with a Coulombic
potential well. As a result, envelope functions can be
constructed using the transverse and longitudinal effec-
tive masses of the CB of silicon. However, the six-fold
degeneracy of the CB has to be taken into account in the
donor states, and hence, a multi-valley Schrödinger equa-

tion needs to be solved [20, 21, 25–35]. A core-correction
term, involving a few free parameters, is often introduced
to account for the non-Coulombic part of the donor po-
tential close to the nuclear site, and to obtain the correct
coupling between orbital and valley states (valley-orbit
coupling) [25]. Hence, the effective mass solution to the
donor wavefunctions comprises of products of hydrogenic
envelope functions and Bloch functions of CBM weighted
by the valley contributions. In several recent variants
of this approach, the Bloch states have been obtained
from ab initio calculations of a bulk silicon unit cell [36–
38]. In realistic donor devices, non-bulk like scenario of-
ten arises from non-uniform local electric fields, inter-
faces, and strain. To first order, such effects can readjust
the weight of wavefunction asymmetrically among valley
states, an effect known as valley repopulation. Such ef-
fects can also change the form of the envelope functions
through hybridization with other states in the device.

Beyond effective mass theories, atomistic tight-binding
(TB) techniques can provide an atomically resolved so-
lution of the donor wavefunction expanding over several
million atoms. The method takes into account realis-
tic interface geometries built from atoms at the surface
and uses atomic orbital-based central-cell corrections for
donors which can model different species of donor atoms
[39]. Furthermore, TB is a full BZ method and does
not assume that CB minima states are the only k-states
contributing, which are typically important in hetero-
structures and disordered super lattices. Once the full
TB Hamiltonian is set up along with proper device ge-
ometry, interface, and applied fields, all the valley-orbital
(and spin) states are directly obtained by eigensolving,
with no further optimisation or parameterisation. Other
atomistic approaches such as density functional theory
are not feasible for exchange calculations due to size lim-
itations as overlaps between tails of wavefunctions con-
tribute to exchange energy.

For the two-electron interactions, the full configuration
interaction (FCI) method, which solves the two-electron
Schrödinger equation in a basis of Slater determinants
constructed from the single electron basis set, is an ex-
act many-body technique that can capture Coulomb,
exchange and higher-order correlations. However, the
method is computationally resource consuming, and typ-
ically simplified approximations are made. The simplest
and most popular method in literature is the Heitler-
London (HL) approximation, which uses a localized or-
bital for each donor. This method is valid for low wave-
function overlaps, and typically breaks down for close
separations and at modest electric fields. In the other
scenario, when the two donors are very close, and form
strong molecular states, electrons may occupy a super-
position of both up and down spin configuration of the
lowest molecular orbital, a regime that is well-described
by the single Slater determinant solution corresponding
to a Hartree-Fock (HF) like approach. A molecular basis
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CI was also performed with effective mass wavefunctions
in Ref [40] but focused on larger donor separations. A re-
cent work has also applied time-dependent Hartree-Fock
on this problem with the effective mass wavefunctions
[41]. Our motivation for AFCI therefore stems from the
need for accuracy in both the single electron basis and
the two-electron methodology.

For the single electron basis set, we have employed
a 20-band spin-resolved sp3d5s* Slater-Koster tight-
binding model to obtain the single electron states of the
donor pair [42]. This approach has been well-calibrated
to experimental measurements of single donor energy
states [39] including the experimentally observed valley-
orbital splitting of the 1s and higher manifolds [43].
The model has also been validated in a number of joint
experiment-theory works on single donors including STM
imaging experiments [44] and in calculations of various
spin properties such as hyperfine and spin-orbit Stark ef-
fects [45, 46], and spin-lattice relaxation times [47]. The
TB Hamiltonian of 1-2 million silicon atoms with hy-
drogen passivated surfaces and 2 phosphorus atoms with
central-cell corrected Coulomb potential wells are solved
using a Block Lanczos eigensolver to obtain the molecu-
lar states of the dopant pair located just below the bulk
conduction band of silicon in energy using NEMO3D [48].

For the two-electron calculations with FCI, a selected
set of N low-energy single electron molecular states
are then used to construct all possible Slater Determi-
nants (SDs) representing ground and excited configura-
tions of the donor molecule as basis states. The two-
electron Hamiltonian (H(2e)) including electron-electron
Coulomb interaction is then evaluated between every
pair of SDs to obtain a full Hamiltonian of size CN

2 ×
CN

2 . Here, CN
2 denotes the number of all possible 2-

combinations out of the set of N single-electron states.
H(2e) is then solved with either LAPACK or FEAST
eigensolvers [24] for the total two-electron eigen-energies
(ETotal(2e)). The eigen-vectors of H(2e) are linear com-
binations of the SDs, from which spin singlet and triplet
states can be readily identified. The exchange energy ∆E
(also labeled as J in this work) is defined as the energy
difference between the lowest spin triplet (ET ) and spin
singlet (ES) energies, i.e. ∆E = ET − ES . This defini-
tion of the exchange energy is used all throughout this
work irrespective of the orbital symmetries of the states.

We have tested convergence of the FCI results by pro-
gressively increasing N , and observing whether the two-
electron energy changes beyond a numerical tolerance of
10−8 eV. For the P-P molecule studied here, we typically
found that N = 24 was sufficient for convergence for
closely separated donors. For far separated donors, even
N = 4 can provide converged solutions, consistent with
the Heitler-London wavefunctions analyzed later. The
single-electron TB solutions typically take 3-4 hours on
48 processors, while the two-electron AFCI calculations
with N = 24 takes 2 hours in 300 processors. The most

time consuming part is evaluating the Coulomb and ex-
change integrals between sets of 4 wavefunctions each of
which spans over 1-2 million atoms and 20 orbitals per
atom.

Further implementation details of the AFCI method
can be found in Ref [24], where the technique was ap-
plied to solve the challenging problem of two electrons
bound (D−) to a single phosphorus donor in silicon. Ex-
cellent quantitative agreement was obtained with exper-
imentally measured binding and charging energies both
for a bulk donor and for donors closer to an interface and
subject to an electric field [49]. The D− problem is a dif-
ficult calculation with FCI because many single-electron
states, even from the higher 2s, 3s, and 4s manifolds,
are needed to build up the expanded valley-orbital states
of the two electrons. Additionally, in Ref [50], we have
extensively applied the AFCI technique on two electrons
bound to a cluster of well-separated donors, and showed
how the voltage dependency of the exchange coupling
can be increased by several orders of magnitude. These
give us confidence that the AFCI method captures both
the single particle physics and two-electron correlations
accurately.

III. RESULTS AND ANALYSIS

FIG. 1. (a) Schematic of two phosphorus impurity ions (P+)
with two bound electrons embedded in a silicon crystal. The
P atoms are separated by a distance R, and are placed at a
depth D from the surface in the z direction. (b) Schematic
of an xy plane of the silicon lattice showing two distinct sep-
aration axes of the donors, [110] and [100]. (c) Breakdown
of the analysis of the calculations into three regimes of sep-
aration, far (14 nm and larger), intermediate (5-14 nm), and
close (0.4-5 nm) spacings. As we show later, the nature of the
two electron wavefunctions differ in these regimes, and can
be linked with well-known approximations, such as Heitler-
London and Hund Mulliken (Ionic), for certain separations.

Fig. 1 a) and b) show schematic of the silicon crystal
we investigate. They also define all the geometric param-
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eters of interest such as donor separation R, donor depth
D below the surface in z, and separation axes [100] and
[110]. Based on FCI calculations shown later, we can
identify three donor separation regimes as shown in 1c).
In the close separation regime (R < 5 nm) of relevance
to STM imaging experiments, the P-P molecule is in the
strongly coupled regime where the electrons are fully de-
localized between the two P atoms and are strongly af-
fected by Coulomb interactions and screening. In the far
separated regime (R > 14 nm), of relevance to qubits,
the electrons are weakly coupled and are highly localized.
The intermediate separation regime (5− 14 nm), also of
relevance to qubits and quantum simulations, shows a
gradual transition between the close and the far separa-
tion regimes.

Exchange saturation at small donor separations

The exchange (J) evaluated for large donor separations
using Heitler-London (HL) method is known to increase
exponentially with decreasing donor separations, albeit
oscillations in certain directions [17]. AFCI allows us
to explore if this trend also holds for closer donor sep-
arations, where the HL method is not expected to be
valid. Fig. 2(a) shows the exchange energy as a func-
tion of donor separation from 0.38 to 15 nm along [110]
for donors at three different depths, 3.5a0, 6.25a0 and
28.5a0 (or bulk-like), where a0 = 0.543095 nm is the sil-
icon crystal lattice constant. We choose the [110] direc-
tion as exchange oscillations are clearly visible for rela-
tive donor positions changing by 1√

2
a0 (0.38 nm) in that

direction. From the log-linear scale of Fig. 2(a), we see
the exponential increase and J-oscillations down to donor
separations of 5 nm, corroborating the HL trends from
literature. However, we find that the exchange energy
saturates for donors closer than a critical separation dis-
tance of 5 nm.

To understand these observed trends, we show the sin-
gle electron energy levels of the two donors at a shal-
low depth in Fig. 2(b). In a bulk donor, the six 1s
states are split into states of A1 (1), T2 (3), and E1 (2)
symmetry, with energies of 45.6, 33.9, 32.6 meV below
the CB minima respectively, where the numbers included
in parentheses indicate their degeneracy excluding spin
[25, 29]. Each of these states in a donor pair can form
both bonding (B) and anti-bonding (AB) states through
tunnel coupling. In the large separation regime, the split-
ting between these B and AB states is small, hence the
A1 B and AB states remain far separted from the T2 and
E1 manifolds due to the large energy gap between the A1

and these excited manifolds. However, as the donor sep-
aration decreases, the B-AB splitting increases, and ul-
timately the A1 AB state anti-crosses the T2 B state, as
shown in Fig. 2(b). As the donor separation decreases,
the B-AB splitting increases among all the valley-orbital

FIG. 2. (a) Exchange energy of donor pairs obtained from
atomistic configuration interaction calculations as a function
of donor separation along [110] crystallographic axis, for three
different donor depths from the surface. The depth 28.5a0

represents a bulk-like donor, reproduced here from Ref. [50].
The exchange energy saturates for donor separations below
5 nm, and the oscillations in exchange are strongly suppressed
for shallow depths. (b) Single-electron energy levels of the
donor pairs located at 3.5 a0 from the silicon surface rela-
tive to the bulk valence band maxima of silicon in the tight-
binding model (at 0 eV). The conduction band minima is at
1.131355 eV. The A1, T2 and E1 states follow labels from
group theory (based on symmetry) for the six 1s-like states
of a single donor in bulk silicon [25]. In a coupled donor
molecule, pairs of states can form bonding (B) or anti-bonding
(AB) states. While the B and AB states come in pairs for far
separated donors, closer separations lower the B states in en-
ergy due to larger B-AB splittings.

states, and below 5 nm, the lowest six states are all
bonding states. This changes the symmetry of the donor
molecule since the two electrons now occupy the bond-
ing states instead of A1-B and A1-AB states. Further
decreasing the donor separation does not affect the split-
ting between the A1 and T2 bonding states as much as
that of the A1 B and AB states since the splitting be-
tween the A1 and T2 bonding states mostly depend on
the valley-orbit interaction. Thus, the exchange satu-
rates once the two-electron states mainly consist of the
bonding states.

Suppressed exchange oscillations for sub-surface
donors

The AFCI results in Fig. 2(a) show the variation in
exchange with donor separations along [110] diminishes
as the depth reduces from 28.5 a0 (bulk) to 6.25 a0, and
ultimately gets completely suppressed at 3.5 a0. It is also
observed that for donor separations larger than 5 nm the
magnitude of J increases with decreasing depth, while a
monotonic increase in J cannot be observed for all the
data points for R < 5 nm. However, the J-oscillations
with in-plane donor locations still diminish for all donor
separations as depth is decreased.

Both suppression of exchange variations and increase
in its amplitude can be explained to first order by an in-
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crease of the confinement along the direction perpendic-
ular to the interface, z in this case. For donors separated
in the xy-plane, the exchange oscillations arise from val-
ley interference of the x and y-valleys. At 28.5 a0 depth
mimicking a bulk-like scenario, the x, y and z valleys are
all contributing similarly to the donor wavefunction, with
the z valley weight slightly dominating over the x and y
(shown later) due to the confinement asymmetry of the
potential. When the three valley weights are similar, a
small change in the in-plane separation of the donor af-
fects both the x and y-valley interference and thus, the
exchange J . At smaller donor depths, the stronger inter-
face confinement increases the energies of the x and y-
valleys more than the z valleys since the x and y valleys
have smaller effective mass along the z direction. There-
fore, the lower energy states of the sub-surface donors are
z-valley dominant, as shown in Fig. 3 a) where the valley
population was obtained through the Fourier transform
of the real-space wavefunction. The x and y valley popu-
lations are much smaller and therefore, the xy-valley in-
terference has a much smaller effect on J . This valley re-
population also means that the anisotropic effective mass
of the valleys play a more prominent role in the xy con-
finement of the wavefunction. When the wavefunction is
equally distributed over all six valleys, the wavefunction
confinement is determined by the heavier longitudinal
mass of each valley, which yields an equal wavefunction
extent in each direction. However, for dominant z valley
contribution, the xy wavefunction extent is dictated by
the lighter transverse effective mass of the z valleys. As a
result, the overlap between the two donor wavefunctions
increases in the xy direction, and causes an increase in
J . This is highlighted in Fig. 3 b) which shows the inte-
grated electron density over a region centred in-between
the two donors, indicative of the wavefunction overlap in
the molecular orbital basis.

Suppressed exchange oscillations closer to the surface
may minimize statistical fluctuations of J from qubit to
qubit, particularly when the STM lithography can place
the donors in-plane and minimize straggle in z [22]. Note
that J-oscillations are still expected for depth variations
through the dominant z-valley contributions.

For donor separations smaller than 5 nm, the value
of J does not always increase as the depth decreases,
even though the J-oscillations with R are suppressed at
smaller depths. In this small separation regime, there
is J-saturation arising from the excited bonding orbitals
that contribute to the two-electron ground state signifi-
cantly (shown later). Since these bonding orbitals from
the T2 and E manifolds still have significant xy valley
population, we do not see the exchange splitting mono-
tonically increasing due to the single (z) valley effective
mass anisotropy. There are additional effects beyond val-
ley repopulation that emerge when the interface is within
two Bohr radii of the wavefunction, as discussed later.
Unlike most other approximate calculation methods, this

FIG. 3. a) Valley population of the lowest bonding state as a
function of the depth of the donor pair separate by R = 13.8
nm along [110]. The z valleys dominate at shallow depth,
and saturate to a moderate value at when the depth of the
donors is large enough to be considered bulk. The valley
populations are calculated from the valley peak heights of
the Fourier transform of the single-electron (bonding) ground
state obtained in real space. b) Central wavefunction den-
sity between the donors as a function of donor depth for the
same donor pair as a). This is calculated by summing the
square amplitude of the wavefunction between the two planes
perpendicular to the donor axis from 1/4 to 3/4 of the sepa-
ration R.

regime of small R and small D can be captured by AFCI.

Angular dependence of exchange and charging
energy

FIG. 4. Exchange energy J and 1e− → 2e− charging energy
(CE) of shallow donor pairs. (a) J is shown (in color) at
varying donor separations in the xy-plane (from 2 to 5 nm)
and separation directions (from [100] to [110]). The exchange
J varies by less than an order of magnitude for shallow donors
due to z-valley repopulation. (b) CE (in color) for the same
distance range is more monotonic compared to J .

In this section, we perform FCI calculations of ex-
change and charging energies in donor pairs as a func-
tion of in-plane angular separations from [100] to [110].
We focus on a separation regime of 2-5 nm and a typical
depth of 4.5 a0 for both donors. These donor configura-
tions are of relevance to STM imaging and spectroscopy
experiments [23], which aim to resolve wavefunction in-
terefence and to establish its links with J coupling. This
is a regime where the distinct identity of the two donors
are still preserved, while electron-electron interactions
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and J-couplings are large enough to be probed. These
theoretical calculations further substantiate the experi-
mental results [23].

The two-electron charging energy (CE) is the energy
required to overcome the electron-electron interaction to
load the second electron to the donor pair. Experimen-
tally, this can be directly measured from the charge sta-
bility diagram (conductance vs gate bias) using electro-
static lever arms or capacitances of the gates. The CE
is dominated by the Coulomb repulsion energy of the
electrons. Hence, the measurement of the CE can also
be used to identify the number of bound electrons to the
donor pair [13]. For example, the CE of the third electron
is expected to be much less than that of the second elec-
tron, as the wavefunctions spread out more with higher
number of electrons and the corresponding Coulomb re-
pulsion reduces. Hence, it is important to know the range
of possible CEs with donor separations. This may also
help to obtain information about donor separations in
experiments directly from transport measurements. The
CE is the total energy difference between the interacting
and non-interacting two-electron systems,

CE = ETotal−GS(2e)− 2 ∗ ETotal−GS(1e) (1)

where ETotal−GS(2e) is the total energy of the two-
electron ground state, and ETotal−GS(1e) is the single
electron ground orbital energy. Similarly, the binding
energy (BE) of the second electron relative to the con-
duction band minima (CBmin) is given by,

BE = ETotal−GS(2e)− CBmin − ETotal−GS(1e) (2)

Hence,

BE = CE + ETotal−GS(1e)− CBmin (3)

For a bound orbital, ETotal−GS(1e) − CBmin is nega-
tive. The CE, for repulsive electron-electron interac-
tion is, on the other hand, positive. For the second
electron to be bound, BE has to be negative. Hence,
|CE| < |ETotal−GS(1e) − CBmin| for a two-electron
bound state. This means that the electron-electron inter-
action obstructs the loading of the second electron, and
the second electron can be bound to the two-phosphorus
molecule if CE does not overcome the negative single
electron orbital energy.

Fig. 4 (a) and (b) show the exchange and charging
energies (CE) respectively for all possible in-plane lattice
positions when one donor is located at the origin and
the other donor at the circled positions 2-5 nm away.
The color scale indicates the magnitudes of J and CE.
The exchange oscillations are smaller by about an order
of magnitude for this shallow depth compared to bulk,
irrespective of the donor separation direction. The two-
electron CE, which is dominated by the Coulomb repul-
sion energy, does not oscillate like J . In fact, the CE

changes rather monotonically with the donor separations
and remains nearly constant with the donor separation
direction, as seen from Fig. 4(b).

Oscillations in exchange with depth variation

FIG. 5. Effect of donor depth on J and CE. (a) J for donors
separated by 3 nm along [100] with increasing donor depths.
(b) CE for the same donor locations as in (a) is again more
monotonic and saturates to its corresponding bulk value. (c)
J for donor pairs where one donor is fixed (green dot) at 4.5 a0

from the silicon surface, with varying depth of the second
donor. Lattice points circled in black and blue correspond to
slightly different y positions that alternate between adjacent
monolayers by 0.25a0.

Fig. 5(a) shows the exchange energy variations with
the depth D of co-planar donors, for a fixed separation
R of 3 nm along [100]. The depth variation here is within
several Bohr radii of the donor wavefunction. While val-
ley repopulation effects are still present, there are excited
bonding orbitals at play in this regime of J saturation.
Furthermore, these excited states do not have the well-
defined valley-orbital (1s−T2- and 1s−E1-like) symmetry
of bulk states, as the interface significantly modifies both
their valley and orbital components. Hence, the trends
in J with depth does not follow the same monotonic be-
havior as in the case of large R. The reasoning based on
the single z valley effective mass anisotropy is no longer
applicable here, as there are still non-negligible x and y
valleys through the excited bonding states. In the par-
ticular case of R and D shown here, we find that as the
depth decreases, J decreases, which is an opposite trend
to the HL regime. Also, we observe that J oscillates with
D at about two Bohr radii depth. Such oscillations can
emerge from the sharp confining potential of the inter-
face, which introduces an additional source of interfer-
ence through the z valley phase in the wavefunction.

The CE for this donor pair shows a limited increase
with depth of less than 2 meV (Fig. 5(b)). The CE
saturates to the bulk values as the depth of the donor pair
increases, and more Coulomb-like symmetry is restored.

We also investigated the impact of a relative depth
between the two donors, which modifies the z-valley in-
terference condition. When there is a difference in the
relative depths of the two donors, the z-valley interfer-
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ence is affected by this difference. Due to high z-valley
population in sub-surface donors, a small change in rel-
ative donor depths can lead to a significant change in J .
Fig. 5(c) shows exchange energy (in color) as a function
of depth of one donor with the other donor fixed at 4.5 a0
from the silicon surface. The exchange energy in this case
is sensitive to the relative depth due to the z-valley inter-
ference, highlighting the relevance of keeping the donors
in the same plane during fabrication.

Regimes of validity of approximate calculation
methods for exchange energy

The AFCI method helps to evaluate the contributions
of various molecular orbital states to the two-electron
ground state as a function of donor separation. This
is shown in Fig. 6(a) for a donor-pair at 4.5 a0 depth
and separated along [110]. The eigen vectors solved
from AFCI are normalized linear combinations of two-
electron Slater Determinants (SD) composed of spin-
resolved molecular orbitals of the system. Hence, from
the coefficients of these SDs, we can obtain the percent-
age contributions. It is observed that the lowest (A1)
bonding and anti-bonding orbitals have almost equal
(50% each) contributions for large donor separations of
about 14 nm and more. Hence, this large separation
regime is given by a linear combination of two SDs, rem-
iniscent of a Heitler-London (HL) regime. As the donor
separation decreases, the contribution of the bonding SD
increases and that of the anti-bonding SD decreases. Be-
tween 3 to 5 nm, we observe the bonding SD contribution
is so dominant (above 80%), that the ground state can
almost be approximated with a single SD comprising of
the bonding orbital with up and down spins. This is,
therefore, more in the regime of a Hartree-Fock (HF)
like solution, where a single SD is a good approxima-
tion to the many-body ground state. However, AFCI
also shows that this approximation is also not fully cor-
rect for the donor-pair problem, as excited orbitals from
other valley symmetries (T2, E) begin to contribute to
the ground state. At donor separations smaller than 4
nm, we observe that the excited SD contributions grow
considerably (while the anti-bonding SD contributions
drop to zero). At about R = 2 nm, these excited SD
contributions even exceed those of the A1 bonding SD.
This causes a change in the valley-orbit symmetry of the
donor molecule at very small separations.

Electron interactions are often evaluated in literature
using approximate methods such as Heitler-London (HL)
or Hartree-Fock (HF) type approaches. AFCI helps to
assess the validity of these approximations as a function
of donor separations. This is shown in Fig. 6(b). The HL
approximation assumes that the electrons are localized in
different donors, and uses a two-electron wavefunction of
the form,

FIG. 6. Assessment of approximate methods for calculat-
ing two-electron ground state of a donor pair from AFCI.
The donors are located 4.5a0 below the silicon surface, sepa-
rated along [110]. (a) Contributions of bonding states, anti-
bonding states and all the remaining (excited) states to the
ground state. For donor separations larger than 14 nm (the
Heitler-London regime) the bonding and anti-bonding contri-
butions are equal and there are no contributions from any
other (excited) states of the donors.(b) Contributions from
Heitler-London wavefunction, ionic (two-electron on the same
site) wavefunction and all the remaining (excited) wavefunc-
tions. For separations below 5 nm, there is a significant con-
tribution from the excited states of the donor that is not cap-
tured in a Hartree-Fock like single Slater Determinant ap-
proximation.

ψ(r1, r2) =
1

2
[φL(r1)φR(r2) + φR(r1)φL(r2)]

× (↑1↓2 − ↓1↑2)
(4)

where φL and φR are orbitals localized to the left and
right donors, respectively. Here, the spatial coordi-
nates of the electrons are represented as r1 and r2, and
their spins are ↓ and ↑ with subscripts 1 and 2. The
orbital part of this state is symmetric and the spin
part anti-symmetric, making the total wavefunction anti-
symmetric. In an orthogonal molecular orbital basis, this
same state is given as a linear combination of two SDs of
the form,

ψ(r1, r2) =
1√
2

[φB(r1)φB(r2)] (↑1↓2 − ↓1↑2)

+
1√
2

[φAB(r1)φAB(r2)] (↑1↓2 − ↓1↑2)

(5)

where φB and φAB are the bonding and the anti-bonding
orbitals. By making the substitution φB = 1√

2
(φL +φR),

and φAB = 1√
2
(φL − φR), eq (5) reduces to the HL form

of eq (4).
The HL wavefunction, however, ignores ionic contri-

butions in which both electrons are located either on the
left donor or both in the right donor. These ionic con-
tributions are stronger for smaller separations of donor
pairs, and is given by a Hartree-Fock type wavefunction,
such as,
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ψ(r1, r2) =
1

2
√

2
[φL(r1)φL(r2) + φL(r1)φR(r2)

+φR(r1)φL(r2) + φR(r1)φR(r2)]

× (↑1↓2 − ↓1↑2)

(6)

The single SD with bonding orbitals yields a wavefunc-
tion of this form,

ψ(r1, r2) =
1√
2

[φB(r1)φB(r2)] (↑1↓2 − ↓1↑2) (7)

Again, eq (7) reduces to eq (6) when we make the sub-
stitution φB = 1√

2
(φL + φR). In other words, we obtain

the single SD Hartree-Fock type solution when the anti-
bonding SD contribution diminishes from the HL wave-
function.

Fig. 6(b) decomposes the FCI wavefunction solution
as comprising of HL, ionic (HF), or excited two-electron
configurations. For donors separated by 14 nm and
above, a true HL state is formed with two SDs in the
molecular orbital (MO) basis. This correlated regime
cannot be expressed by a single SD in the MO basis.
As the donor separation decreases, the ionic contribu-
tions build up while the HL contributions diminish in
the FCI wavefunction. This amounts to a cancellation of
the anti-bonding SDs from the HL wavefunction by the
ionic contributions, and between 3 to 5 nm, we witness
an uncorrelated, Hartree-Fock like regime. However, FCI
also shows, as discussed earlier, significant contributions
from excited SDs from other valley-orbit symmetries con-
tributing to the wavefunction for very close donor sepa-
rations.

We have restricted our analysis in this section to the
singlet state only, as it is trivial to do the same analy-
sis on the triplet state. The essential difference between
the two states are the sign changes to interchange the
symmetric and antisymmetric parts of the wavefunction.
For the triplet state, the orbital part of the wavefunction
is anti-symmetric and the spin part is symmetric, which
preserves the anti-symmetry of the entire wavefunction
over both spin and charge.

IV. CONCLUSION

We have developed a computational framework to cal-
culate exchange and charging energies using a full con-
figuration interaction method which solves an interacting
2e-Hamiltonian using an atomistic tight-binding based
single-electron basis. Using this approach, the validity of
approximate methods can be assessed as a function of the
separation between the donors. The Heitler-London state
becomes fully valid for donor separations beyond 14 nm.

A single Slater Determinant solution in the molecular or-
bital basis in the spirit of Hartree-Fock gives a good rep-
resentation of the wavefunction for a range between 3 and
5 nm of interest in STM imaging and spectroscopy ex-
periments. However AFCI calculations reveal the grow-
ing influence of excited states in the wavefunctions in the
small separation regime of 3 nm and below. Approximate
methods for J calculations do not typically account for
these states. In this close distance regime, the influence
of higher bonding orbitals causes the exchange to satu-
rate. The oscillations in exchange with donor separation
along [110] are also shown to be suppressed for shallow
donors located close to the interface. This is due to an in-
crease in z-valley population that makes exchange more
immune to donor separation along the x and y directions,
but the exchange oscillations remain present with vary-
ing donor depths due to the associated changes in the
z-valley interference condition. Relative donor depths
and close proximity of interfaces are also seen to induce
oscillations in exchange coupling, which emphasizes the
need to precisely control the vertical straggle in donor
positions. Table I summarizes the main features of the
two-electron states as observed from the FCI simulations.

Although the methodology developed here is applied
to phosphorus donors, the same technique can be ap-
plied to other shallow donor and acceptor pairs (Group
III and VI) in silicon and germanium. The main differ-
ence will arise from the single electron wavefunctions of
the dopants. For example, the deeper the binding en-
ergy of the dopant, the stronger the electron density in
the central cell, which means that the tail of the wave-
function will reduce in its extent. This will also reduce
the exchange splitting, but one can still observe the var-
ious regimes of exchange energy. They will only occur at
slightly reduced separations. For very deep donors, the
tight-binding method may no longer be applicable due
to the sub-atomically confined wavefunctions and more
complicated electron-electron interactions in the core of
the impurity species. For shallow acceptor pairs, such as
boron [51], exchange oscillations are not expected as the
valence band maxima states occur at k = 0. The method
is also applicable directly to such dopants embedded in
realistic devices, which may have applied gate voltages or
strain, and requires no additional computational costs.
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also acknowledge computational resources and services
from the National Computational Infrastructure (NCI)
under NCMAS 2020 & 2021 allocations, supported by
the Australian Government, and of the computational
cluster Katana supported by Research Technology Ser-
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D
R

Small (0.4-5 nm) Intermediate-Large (> 5 nm)

Small (< 5 nm) J: Oscillating with D, J: Larger magnitude compared to large D,
suppressed oscillations with R, strongly suppressed oscillations with R,
saturation in average magnitude with R. exponential drop with R.
WF: Excited orbital contributions. WF: HL at large R to ionic (HF-like) at
Valleys: Case-by-case analysis intermediate R, large overlap due to small D.
needed based on R and D. Valleys: z-valley dominant.

Large (> 5 nm) J: Pronounced oscillations with R, J: Noticeable oscillations with R,
saturation in average magnitude with R. exponential drop with R.
WF: Large contribution from WF: HL at large R to ionic (HF-like)
excited bonding orbitals. at intermediate R, small WF overlap due to large D.
Valleys: z dominant in ground orbital, Valleys: Slight asymmetry in valley populations
x-y valleys from excited orbitals. due to separation axis.

TABLE I. Summary of R and D dependence of J . The symbol WF denotes wavefunctions, HL Heitler-London, HF Hartree
Fock.
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