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The modern theory of polarization establishes the bulk-boundary correspondence for the bulk
polarization. In this paper, we attempt to extend it to a sum rule of the bulk quadrupole moment
by employing a many-body operator introduced in [Phys. Rev. B 100, 245134 (2019)] and [Phys.
Rev. B 100, 245135 (2019)]. The sum rule that we propose consists of the alternating sum of four
observables, which are the phase factors of the many-body operator in different boundary conditions.
We demonstrate its validity through extensive numerical computations for various non-interacting
tight-binding models. We also observe that individual terms in the sum rule correspond to the bulk
quadrupole moment, the edge-localized polarizations, and the corner charge in the thermodynamic

limit on some models.

I. INTRODUCTION

Recent developments in topological insulators':? dis-
covered a new class of topological material, called higher-
order topological insulators (HOTIs)*®. It was found
that HOTIs are not just conceptual ideas as there are
material proposals®” as well as material realizations®° of
them. HOTIs are characterized by non-trivial boundary-
of-boundary states despite that the boundaries are triv-
ial. Among various theoretical tools, the bulk polariza-
tion has proven useful in understanding many aspects
of topological insulators'® 14, Tt is therefore natural to
ask if the bulk quadrupole or higher multipole moments
could play the same role for HOTISs.

The modern theory of polarization'®7 identifies the
bulk polarization with the sum of Wannier centers.
Later, the bulk polarization of a many-body state is
shown to be identified as the phase factor of the expecta-
tion value of a many-body operator'®. Despite the suc-
cess of the modern theory of polarization, the modern
theory of quadrupole and higher multipole moments has
not been fully developed so far. One attempt is to employ
the Wannier centers to define the bulk quadrupole mo-
ment, but this approach has been successful when there
exist crystalline symmetries so that the bulk multipole
moment is quantized®'?. On the other line of develop-
ment, Refs. 20 and 21 introduced a many-body operator
U, for the quadrupole moment generalizing the many-
body operator presented in Ref. 18:
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where 7, is the number operator, and n. is the back-
ground charge. This approach can in principle be ap-
plied to systems without any crystalline symmetries and
to interacting systems, however, the observables given by
U, have difficulties in identifying their physical meanings
with respect to their coordinate dependence®® and lack

of periodicity?? so their physical meaning have not been
fully understood yet.

One of the success of the modern theory of polariza-
tion is that it identifies the bulk polarization with the
boundary charge, which is called the bulk-boundary cor-
respondence’™?3. While the bulk polarization is deter-
mined by a full many-body electron state, the boundary
charge is determined by a simple one-body observable
near the boundary. Thus, the identification of the two
is rather surprising and also provides a firm justification
of the modern theory of polarization. A natural ques-
tion is then whether such a correspondence for HOTIs
can be formulated in terms of the bulk quadrupole mo-
ment. In recent studies, the bulk-boundary correspon-
dences for HOTIs were formulated in terms of the filling
anomaly with rotation symmetries®* 2%, in terms of the
bulk quadrupole moment with inversion symmetry2?:3°,
and in terms of the adiabatic current flowing along the
edges3!. The bulk-boundary correspondences in terms of
the quadrupole moment were presented using Wannier
functions, where the corner charge is expressed as a sum
of quantities that depend on the choice of the bulk Wan-
nier functions, although the corner charge itself is not.

In this paper, we propose another bulk-boundary cor-
respondence in terms of the operator Us, which is given
by an alternating sum of four phase factors, where the
sum vanishes in the thermodynamic limit:

Gpp — Gop — Ppo + oo =0 (mod 1).

Four phase factors are the phase factors of the expec-
tation values of Us with respect to the ground state in
different boundary conditions,

1 N
bap = 5-Im | log ((GS(a,b)|02|GS(a,b))) |.
where ‘a’ and ‘b’ refer to as the boundary conditions along
x- and y-direction, respectively, with ‘a’ and ‘b’ being ei-
ther ‘p’ (periodic) or ‘o’ (open). We observe that for band
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insulators having well-localized edge-localized polariza-
tions defined in Ref. 4 based on the hybrid Wannier func-
tion (HWF), the phase factors ¢,p, ¢pojop, and ¢o, can
be identified with the bulk quadrupole moment, the edge-
localized polarizations, and the corner charge, respec-
tively, which consequently elevates our bulk-boundary
correspondence to that for the quadrupole moment. We
further observe that for some insulators, there exists
HWFs with the corresponding hybrid Wannier value at
0.5 so that one cannot directly apply the definition of
the edge-localized polarization presented in Ref. 4 due to
its branch cut dependence, as elaborated in Appendix F.
For those insulators, we find that at least the phase factor
o0 can be regarded as the corner charge in the thermo-
dynamic limit while the physical meaning of the other
phase factors becomes unclear.

The paper is organized as follows. In Sec. II, we intro-
duce sum rules encoding the bulk-boundary correspon-
dence for multipole moments using many-body opera-
tors. In Sec. III, we provide numerical results presenting
our observations in Sec. II. We conclude in Sec. IV where
the summary of main results and possible future direc-
tions are discussed. In Appendix A, we derive the dipolar
and quadrupolar sum rules for classical systems. In Ap-
pendix B, we give field theoretic justifications of the in-
terpretations of the phase factors ¢4;. In Appendix C, we
provide a proof that the many-body operator can mea-
sure the corner charge in one-dimensional geometry for
band insulators. In Appendix D, we discuss the coordi-
nate dependence of the phase factor ¢,,. In Appendix E,
we provide numerical results for a Cs-symmetric insula-
tor, which suggests that the sum rule may hold in other
types of symmetric insulators besides the Cy-symmetric
ones discussed in the main text. Finally, in Appendix F,
we provide technical remarks on the HWF-based edge-
localized polarization including the branch cut depen-
dence which becomes more explicit for the models with
the hybrid Wannier value at 0.5.

II. MULTIPOLAR SUM RULES

In the following, we present the multipolar sum rules
for quantum systems in one- and two-dimension. For
concreteness, we note here some remarks on the sum
rules. First, we only focus on one-dimensional systems
having non-zero bulk polarization in Sec. I A and two-
dimensional systems with vanishing bulk polarization in
Sec. II B. Second, we focus on circle/line geometry for
one-dimensional systems and torus/cylinder/rectangle
geometry for two-dimensional systems. Each geometry is
characterized by open or periodic boundary conditions.
In addition, we always use hard-cutoff boundary condi-
tions for open boundaries. Third, for simplicity we re-
strict the position of each orbital at a Bravais lattice site.
Fourth, for all the quantum systems presented below, we
assume translation symmetry and Cy symmetry, which
includes the cases where the corner charge is not quan-

tized. Finally, for convenience, we set the electron charge
to 1 in the following discussions.

A. Dipolar Sum Rule

In this subsection, we introduce the dipolar sum rule
for many-body quantum systems as a generalization of
the classical dipolar sum rule. The dipolar sum rule re-
lates the bulk polarization with the boundary charge. To
motivate the quantum mechanical dipolar sum rule, we
first state the classical dipolar sum rule,

Q.=P, (1)

where P and Q. are the classical bulk polarization and
boundary charge, respectively. The derivation of Eq. (1)
and the definitions of the electric moments can be found
in Appendix A 1.

We now generalize the classical dipolar sum rule
Eq. (1) to a one-dimensional quantum mechanical sys-
tem. To this end, we first need to define the bulk polar-
ization and the boundary charge for a quantum system.
The boundary charge can be defined as a one-body ob-
servable:

L./2
Q=3 (pz)—n) (mod1),  (2)

r=1
where L, is the total system size, p(x) = (f,) =
<Zglf clyacz’@ is the charge density at site x with the

number of orbitals per site Ny, and n. is the average
number of electrons per site. We then employ the Resta’s
many-body operator!'®

Ui = exp <2Lm i: x(Ng — ne)> , (3)
T z=1

where we include the background charge n. from ions sit-
ting at each lattice site. Using U;, the bulk polarization
is given by

1
S 27

P Im [1og (<GS|U1|GS>)}, (4)
where |GS) is the many-body ground state subject to the
periodic boundary condition. With these, the classical
dipolar sum rule Eq. (1) generalizes as'”:?3

QM =P (mod 1) (5)

in quantum systems. Unlike the dipole sum rule in clas-
sical systems, Eq. (5) holds only modulo 1, the unit of
electron charge.

Having obtained the sum rule for the dipole moment,
we consider the further characterization solely in terms
of the many-body operator U;. For this, we define the
phase factor ¢, of the expectation value of U; as

60 = -t log (GS@ITAIGS @), ©)



where |GS(a)) is the ground state under the boundary
conditions of type ‘a’ which can be either ‘p’ (periodic)
or ‘o’ (open).

While it seems not widely known, the boundary charge
can also be captured from ¢, in the thermodynamic limit,
ie.,

QM = ¢,

as the system size goes to infinity when the system is
gapped. Our proof of Eq. (7) for band insulators can be
found in Appendix C. Thus, by combining Eqs. (4) and
(7), the dipole sum rule can be succinctly recast in terms
of the phase factors:

¢p:¢o

(mod 1) (7)

(mod 1). (8)

B. Quadrupolar Sum Rule

In this subsection, we introduce the quadrupolar sum
rule for many-body quantum systems, which general-
izes the quantum mechanical dipolar sum rule to the
quadrupole case, and discuss its difficulties for certain
cases in identifying the physical meaning of individual
terms in the sum rule.

The quadrupole sum rule would relate the bulk
quadrupole moment, the edge-localized polarization, and
the corner charge®2° if these quantities are well-defined.
To illustrate the quadrupolar sum rule, we first need to
state the classical quadrupolar sum rule,

Qe = —Quy + Pyt + Py, 9)
where Q. P;‘;Zg/e, and Q. are the classical bulk-

quadrupole moment, the edge-localized polarizations,
and the corner charge, respectively. The derivation of
Eq. (9) and the definitions of the classical electric mo-
ments can be found in Appendix A 2.

A natural generalization of the classical quadrupolar
sum rule to the quantum mechanical one in two dimen-
sions would be

Q) = —Quy + PF¥+ Py (mod 1), (10)

where Q£2) is the corner charge of a two dimensional sys-
tem of the size L, x Ly,

™~
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QP (mod 1), (11)
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local charge density, @, and Pﬁ?ie are the quantum me-
chanical bulk quadrupole moment and the edge-localized
polarizations, respectively. As a side note, our corner
charge Eq. (11) corresponds to the bare corner charge
in Ref. 30. We remark that the edge-localized polariza-

tions P;?Ee include the contribution from a dressing of

polarized one-dimensional chains along the boundaries®?,

which does not affect the quadrupolar sum rule Eq. (10),
and are fixed for a given state. The precise forms of @,

and P;;l’ygc will be presented below.

Similar to the dipole case, let us introduce the following

many-body operator?%-2!:
Qi Lo, Ly
~ i
Us; = ex xY(Npy — N , 12
2 p L.L, I;I y( T,y e) (12)

where 7, is the electron number operator at (z,y)
and L, (L,) is the linear system size in z-direction (y-
direction). For the open boundary, we assign the coordi-
nate z = 1 (y = 1) to sites on the left (bottom) bound-
ary and the coordinate x = L, (y = L,) to sites on the
right (top) boundary. For the periodic boundary, the -
coordinate (y-coordinate) could be assigned arbitrary as
long as it starts from 1 and ends with L, (L,) since it
does not change the expectation value of U, with respect
to a translation invariant state.

In order to formulate the quadrupolar sum rule in
terms of the phase factors of the expectation values of
U,, we first introduce

bap = %Im{log (<GS(a,b)\UQ|GS(a,b)>)]7 (13)

where |GS(a, b)) is the ground state under the ‘a’ and
‘b’ boundary conditions along z- and y-direction, respec-
tively, with ‘a’ and ‘b’ being either ‘p’ (periodic) or ‘o’
(open). Each boundary condition corresponds to differ-
ent geometry, for example, ‘pp’ and ‘po’ mean the torus
and the cylinder geometry, respectively. As a note, the
phase factor ¢, (¢po) is guaranteed to be invariant under
the coordinate transformation y — y + L, (x —  + L)
in the thermodynamic limit if the system has translation
symmetry along the y(z)-direction, and if the limit of
L,(L,) — oo is taken first. Even though the invariance of
®op is not guaranteed on the 2D limit L, = L, = L — oo,
the thermodynamic values of ¢, presented on tables I
to VI are extrapolated on the 2D limit as we empirically
check that the convergence values do not depend on the
order of limits. Details regarding the coordinate depen-
dence of ¢, /. are discussed in Appendix D.

Using these phase factors, we propose the bulk-
boundary correspondence in terms of the phase factors
as

¢pp - d)op - ¢po + ¢oo =0

and numerically find that this holds in the thermody-
namic limit on band insulators. We will call this as the
sum rule of the phase factors, or simply the sum rule. In

addition, we also find that ¢,, agrees with QgQ),
Q® = ¢, (mod 1). (15)

As a demonstration, we provide numerical confirmations
of these on band insulators in Sec. III. The above two

(mod 1) (14)



equations, i.e., Egs. (14) and (15), are the main results
of our present paper.

Based on the identification of the corner charge
Eq. (15) and the comparison between two sum rules
Egs. (10) and (14) suggest that ¢y, can be naturally iden-
tified with the bulk quadrupole moment

Quy = ¢pp (mod 1), (16)
which has been checked for the cases with non trivial

bulk quadrupole moment?®2!. In addition, ®pojop AT
identified with the edge-localized polarizations

edge __
Pz - Ypo

edge __
P8 = ¢op

(mod 1)

(17)

(mod 1).
The above identifications of the phase factors ¢,, can
also be justified using the effective field theoretic descrip-
tion of multipole moments which is summarized in Ap-
pendix B. Whenever these identifications can be made,
the sum rule Eq. (14) indeed becomes the quadrupole
sum rule for quantum systems. In Sec. IIT A, we numer-
ically demonstrate the validity of the identifications of
®pojop Dy comparing these with the HWF-based edge-
localized polarizations defined in Ref. 4. However, it is
important to note that these identifications are not al-
ways possible. In Sec. III B, we provide an example on
which these identifications fail as ¢pp, @op, and ¢, are
not convergent in the thermodynamic limit. Nonetheless,
even for these cases, the sum rule Eq. (14) and the iden-
tification of the corner charge with ¢,, Eq. (15) always
hold.

In the remainder of this section, we shortly discuss the
HWF-based edge-localized polarization?,

Ly/2

e =33 vipily) (mod 1), (18)

y=1

where p/(y) is the density, and €2"%i is the eigenvalue
of the j-th HWF 7 (y) of the hybrid Wilson loop W,
along the z-direction. We find that for band insulators
having well-localized ]55756 along the boundaries, 15;?56
and ¢p,/0p seem to agree each other in the thermody-
namic limit and the same quantized value for insulators
having C4 symmetry,

JSZedge = (bop

pedge __
Py = dpo

(mod 1)

(mod 1). 19)
However, P;)dfe crucially depends on the choice of the
branch cut of the hybrid Wannier values. In particular,
for the models with the hybrid Wannier value at 0.5, this
depdendance becomes more explicit, thereby leading to
a difficulty in computing Pi?yge. We discuss this branch
cut dependence more in details in Appendix F.

IIT. NUMERICAL DEMONSTRATION

In this section, we provide numerical demonstrations of
the sum rule Eq. (14) and the observations, Egs. (15) and
(19). Due to size limitation, our numerics are based on
non-interacting tight-binding models on the square lat-
tice. However, we believe that the same sum rule should
also hold in interacting cases as well, since our formal-
ism is based on many-body operators. In addition, we
separately discuss models without and with the hybrid
Wannier value at 0.5 as there exists a difficulty in com-
puting Pj%e for the latter case. We therefore numerically

confirm the validity of Eq. (19) only for the former case
while the numerical confirmation of the sum rule Eq. (14)
and Eq. (15) are presented in all cases.

A. Models without the hybrid Wannier value at 0.5

We present numerical results on models without the
hybrid Wannier value at 0.5. Tested models are the
quadrupole insulator, the edge-localized polarization in-
sulator, the quadrupole insulator with 7/2-flux per pla-
quette, and the two band model introduced in Ref. 33,
where details of these models can be found below. In
the case of full open boundary conditions, Cy; symme-
try breaking term is always introduced in order to split
the possible degeneracy at the Fermi level. Due to such
term, the number of filled states is always equal to the
filling ne /Ny times the number of sites N. The same
Cy breaking term often splits the degeneracy of the hy-
brid Wannier values at 0.5 in the case of mixed open and
periodic boundary conditions.

For each model, we numerically compute the phase fac-

tors @qp Eq. (13), the edge-localized polarizations ﬁ;?fc

Eq. (18), and the corner charge Q¥ Eq. (11) for various
parameters. The results are summarized in Tables I, II,
and III. All observables in the tables are the extrapo-
lated values in the thermodynamic limit L — oo which
are obtained via quadratic extrapolations as a function
of 1/L, as shown in Fig. 1. In all cases, we find that
the phase factors in the sum rule and the sum rule itself
are convergent in the thermodynamic limit. We also see
that our edge-localized polarizations, qbop/po, have val-
ues similar to the other ones, P;?ie, with differences at
worst O(1073). In addition, when a C; symmetry break-
ing term is small, ¢,, has the same quantized value as
the one predicted by the nested Wilson-loop approach®.
Furthermore, the identification of ¢,, with Qg) and the

sum rule hold up to errors of O(10~%). The errors may
be attributed to the finite-size effect.



1. Quadrupole insulator Hquad

As our first model with gapped Wannier spectrum, we
consider the following tight-binding model* having a non-
zero bulk quadrupole moment:

Hquaa (k) :(’ym + Az cos(kx))l“4 + Agsin(k, )T (20)
+ (1 + Ay cos(ky)) T2 + Ay sin(k, )Ty + 6 Lo,

where I'g = 03 ® 09, ['y = —09 ® 0y, for k = 1,2,3, and
I'y = 01 ® 09 with or—1,2,3 being Pauli matrices and og
being the 2 x 2 identity matrix.

When § = 0, there exists two anti-commuting mirror
symmetries which quantize the bulk quadrupole moment
Qzy = 0 or 1/2. The half-filled ground state of Eq. (20)
realizes topologically trivial quadrupole insulator when
[72] > |Az| and |yy| > |A,| and topologically non-trivial
quadrupole insulator when |y,| < |Az| and |y,| < [Ay].
When 6 # 0, Cy symmetry and the mirror symmetries
are broken and hence the bulk quadrupole moment is no
longer quantized.

The numerical results for the quadrupole insulator are
summarized in Table I.

2. FEdge-localized polarization insulator Heage

Our next model is the edge-localized polarization insu-
lator®. The tight-binding Hamiltonian in the momentum
space can be written as

Hedge(k) =(72 + Ay cos(ky))Ta + Ay sin(k,)T's (21)
+ (1 + Ay cos(ky))f‘g + Ay sin(k,)T1 4 0 o,

where fg =01 ® oy, fl = —01 ® 09, and all the other T’
matrices are the same as the ones in Eq. (20).

The half-filled ground state of Eq. (21) has a van-
ishing bulk quadrupole moment but having a non-zero
corner charge. In particular, when § = 0, there ex-
ist two mirror symmetries M, and M, which quantize
the corner charge to be 0 or 1/2, where the corner
charge is originated sorely from the edge-localized po-
larizations*. The half-filled ground state of Eq. (21)
with |7,y < |As/y| has (Pdee, Pedse) = (0,0.5) when
Az > Ay and (Pgdee, Pedse) = (0.5,0) when Ay < Ay

The numerical results for the edge-localized polariza-
tion insulator are summarized in Table II.

(m/2)

3. Quadrupole insulator with w/2-flux per plaquette H od

Our third model is the quadrupole insulator with 7/2-
flux per plaquette?®. The tight-binding Hamlitonian in
momentum space can be written as
HSD (k) =7,T4 + vy (ive @ v2) + 6T (22)

— Mg (cos(ky)(oy @ 0p) + sin(ky) (0, ® 02))
— Ay(cos(ky) (11 ® vo) + sin(ky) (ivn @ 11)),

where v; and vy are defined as
01 01
vy = L 0] and vy = {—i 0} , (23)

and all I' and o matrices are the same as in Eq. (20).
Similar to the quadrupole insulator, which has m-flux
per plaquette, the bulk quadrupole moment of the half-
filled ground state of Eq. (22) is quantized when ¢ = 0.
However, when  # 0, the bulk quadrupole moment Q.

is non-zero and (me,fz’i(/iﬁe, ng)) are all distinct unlike
in the quadrupole insulator. These features provide non-
trivial checks of the sum rule Eq. (14) and our observa-
tions Eqs. (15) and (19), which are summarized in Ta-

ble III.

4. Two band insulator Hywo

Our final model is the two band insulator introduced
in Ref. 33. The tight-binding Hamlitonian in momentum
space can be written as

t ) )
Hiyo(k) = 5101 + ethe [tg iﬂ + et {%’ ig] + h.c.,
(24)

with the five hopping parameters (t1,ts,t3,t4,t5). The
half filled ground state of this Hamiltonian has non-zero
corner charge and edge-localized polarizations.

The numerical results for the two band insulator with
the same parameters as in Ref. 33 are summarized in
Table IV.

B. Models with the hybrid Wannier value at 0.5

We now turn to models with the hybrid Wannier value
at 0.5, which are all based on Cy-symmetric insulators?*.
Note that for the models presented below, a HWF with
the corresponding hybrid Wannier value at 0.5 exists even
after introducing a Cy symmetry breaking term. In these
models, corner charges are originated from the filling
anomaly n?%:

n = #F ions — # electrons mod 4, (25)

where the number of ions equals the number of lattice
sites times the filling. In each model, we take into account
the filling anomaly 7 which determines the corner charge
and the phase factor ¢,,, where we tune the chemical
potential to include or not include the zero modes in the
full open boundary conditions.

For tested models which are specified below, we nu-
merically compute the phase factors ¢4 Eq. (13) and

the corner charge Qg) Eq. (11). The results are summa-
rized in Tables V and VI. In the tables, P;?ffe are not
presented since they depend sensitively on the choice of



Model parameters Phase factors Electric moments Sum rule
Hquad("fxv Vys Azs Ay, d) Dpp $po dop oo Q(Q) P;dge ngdge Z(—l)ab¢ab
(0.1,0.1,1.0,1.0,10=7)  0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0) 0.00000(0)
(0.5,0.5,1.0,1.0,0.7) -0.11389(0) -0.11385(0) -0.11385(0) -0.11392(0) -0.11387(0) -0.11386(0) -0.11386(0) -0.00010(0)
(0.2,0.3,1.0,1.0,0.1) -0.43156(0) -0.43155(0) -0.43155(0) -0.43155(0) -0.43156(0) -0.43156(0) -0.43155(0) -0.00001(0)
(0.1,0.1,1.0,1.2,0.1) -0.44018(0) -0.44017(0) -0.44018(0) -0.44019(0) -0.44018(0) -0.44018(0) -0.44018(0) -0.00002(0)

TABLE L. The phase factors ¢a; in Eq. (13) and the electric moments (Q'2, Pedee, Pgee°) in Egs. (11) and (18) are computed
for the quadrupole insulator Eq. (20) with various parameters. The sum of the phase factors 3 (—1)* ¢ in the last column
refers to the combination ¢pp — dpo — Pop + Goo as per Eq. (14). All values are the ones from extrapolating the observables as a
function of 1/L, where we consider isotropic systems L, = L, = L with L from 23 to 30. An explicit extrapolation procedure
is presented in Fig. 1. We use round brackets to denote the errors of the least significant digit. We see that the edge-localized
polarizations P8¢ and ﬁ;dge agree with phase factors ¢,, and ¢.p, corner charge ng) agrees with ¢o0, and the sum rule is
satisfied up to small errors.

Model parameters Phase factors Electric moments Sum rule
HcdgC(’Ymﬁy:)\ac’ Ay, ) Dpp Ppo Pop ®oo Q(~2) pfdge PEdge Z(—l)ab¢ab
(0.1,0.1,1,1.2,10~7)  0.00000(0)  0.50000(0)  0.00000(0)  0.50000(0)  0.50000(0)  0.50000(0)  0.00000(0) 0.00000(0)
(0.5,0.5,1.0,1.0,0.7) -0.01661(0) -0.09914(0) -0.09914(0) -0.18179(0) -0.18174(0) -0.09836(0) -0.09836(0) -0.00012(0)
(0.2,0.3,1.0,1.0,0.1) -0.05940(1) -0.27871(1) -0.31926(1) 0.46139(1) 0.46122(1) -0.27833(1) -0.31897(1) -0.00004(1)
(0.1,0.1,1.0,1.2,0.1)  -0.01585(0) -0.44086(0) -0.12064(0)  0.45436(0)  0.45434(0) -0.44172(0) -0.11936(0) 0.00002(0)

TABLE II. The phase factors ¢q and the electric moments ( IS Pﬁdge,f:’;dge) with are computed for the edge-localized
polarization insulator Eq. (21) with various parameters. Here we use the same extrapolation procedure as in Table. I. In this

case as well, the edge-localized polarizations PS¢ and P;dge agree with phase factors ¢, and ¢,p, corner charge Q(CQ) agrees
with ¢o0, and the sum rule is satisfied up to small errors.

Model parameters Phase factors Electric moments Sum rule
H (2,79, Ay Ay, 6) bop bpo bop oo Q¥ pydee BglEe S (—1) %y
(0.1,0.1,1.0,1.0,10~7) ~ 0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0)  0.50000(0) 0.00000(0)
(0.5,0.5,1.0,1.0,0.7) -0.06272(0) -0.09622(0) -0.09622(0) -0.12980(0) -0.12975(0) -0.09675(0) -0.09675(0) -0.00009(0)
(0.2,0.3,1.0,1.0,0.1) -0.40237(0) -0.42169(0) -0.42104(0) -0.44037(0) -0.44039(0) -0.42192(0) -0.42155(0) -0.00001(0)
(0.1,0.1,1.0,1.2,0.1) -0.42101(0) -0.43853(0) -0.43160(0) -0.44913(0) -0.44913(0) -0.43855(0) -0.43165(0) -0.00001(0)

TABLE III. The phase factors ¢4, and the electric moments (Qg)7 Ppedee T:fdge) are computed for the quadrupole insulator
with 7/2-flux per plaquette Eq. (22) with various parameters. Here we use the same extrapolation procedure as in Table. I.

In this case as well, the edge-localized polarizations PS¢ and ﬁ;dge agree with phase factors ¢p, and ¢op, corner charge Qg)
agrees with ¢.., and the sum rule is satisfied up to small errors.

Model parameters Phase factors (x1076) Electric moments (x107%) Sum rule (x1076)
Hiwo (tlv ta,t3,t4, t5) ¢pp ¢po ¢0p (1500 532) P;dge P;dge Z(_l)ab¢ab
(=2.2,-0.15,-0.1,—-0.09, —0.06)  0.000(0) 1.459(0)  1.459(0)  2.920(0) 2.918(0)  0.851(0) 0.851(0) 0.002(0)

TABLE IV. The phase factors ¢4, and the electric moments (Qf)7 pedee ﬁ;dge) are computed for the two band insulator Hiwo
Eq. (24). Here we use the same extrapolation procedure as in Table. I. In this case as well, the edge-localized polarizations

pedse and P;dgc agree with phase factors ¢p, and ¢op, corner charge ng agrees with ¢o,, and the sum rule is satisfied up to
small errors.
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FIG. 1. (a-c) Extrapolation of the observables (a) ¢pp, (b) ¢op and PL°, (c) ¢oo and QY| as a quadratic function in 1/L for
the quadrupole insulator Eq. (20) with parameters (Vz, 7y, Ae; Ay, d) = (0.5,0.5,1.0,1.0,0.7) and isotropic system sizes. The
quadratic extrapolation works well and the error from the extrapolation is less than 107° in all cases. (b) @0, and Pg&° agree

with each other in O(107%). (c) ¢oo and Q' agree with each other in the same order of accuracy.

the branch cut for the considered models, as we discuss in
Appendix F. However, we do compare the corner charge

®) with ¢, and check whether the sum rule Eq. (14)
is satisfied. All observables in the tables are the extrap-
olated values in the thermodynamic limit as described in
Sec. IITA.

For each model, we separate the cases based on the
quadrupole moment ¢q of the background ions,

¢o = —ne(Ly+1)(Ly +1)/4 (mod 1),

with n. being the charge of the ions at each lattice site
and (Lg, L,) being the linear system sizes. We then ob-

(26)

tain ¢4, and Q((;Q) in the thermodynamic limit L — oo
for each value of ¢y and summarize the numerical results
in Tables V and VI. We find that for the model Eq. (28)
defined below, the convergent values of the three phase
factors ¢pp, Gop, and ¢p, depend on ¢y while the phase
factor ¢,, is convergent on the same model. One the con-
trary, all the phase factors are convergent on the other

1 = 2. Therefore on full open boundary conditions, fill-
ing 2N — 2 electrons, where N is the number of sites,
results in the corner charge of —1/2 (in unit of electron
charge) at each corner. When § # 0, the ground state
no longer respects Cy symmetry and the corner charge is
not quantized.

The numerical results for the Cy-symmetric insulator

HQ(‘;) are summarized in Table V.

2. Cy-symmetric insulator Hﬁf) @ Héﬁ)

Finally, we consider the Cj-symmetric insulator?*
Hl(zl) @ Héi). This model was used as an example on
which ¢, depends on the system size??, which indicates
it is ill-defined on this model. We also see that ¢,, in fact
does as discussed below. The tight-binding Hamiltonian
of this model in the momentum space is given by

model Eq. (27). Thus, at least ¢, is interpretable among @ o 7@ () — Hl(;f) F B (1) 98
the four phase factors for these models. In addition, we W @ Ha (k) = 7(4)(t)T H2(4) ) (28)
find that in all cases, ¢,, converges to corner charge fo)
up to an error O(107%), and the sum rule holds up to the =~ where
same order of an error. r 0 . t, + eths 0 . t, + etk
(4) ty +e e 0 t, + e 0
Hy,' (k) = ik, —iky
1. Cy-symmetric insulator Hé? 0 i ty t+e 0 % te +e
[ty + e 0 t, + et 0
We first consider a Cj-symmetric insulator Hz(;l) in- ) ik
troduced in Ref. 24 with a C4 symmetry breaking term 8 8 tg to 8 8 eom g
arameterized by §: (4) _ Y ey
p y | H,. (k) £ 0 0 0 +1.5 e—ik: 00
5 ¢ et(katky) .(kt o) L0 t, 00 0 ethy 0
(4) B t —d t e~ Hhe=hy
Hy, (k) = e—ilkatky) ¢ 5 " and
t eilka=ky) t —0 tt00
(27) W= |0F 0
When 6 = 0 and ¢t < 1, the half-filled ground state of v T [00 ¢t ¢t
Eq. (27) respects Cy symmetry and has filling anomaly t 00t

)



Model parameters Background Phase factors Electric moment Sum rule
H) (¢,9) %0 Sop $po Gop $oo & )P0
0.5
(0.1,0.001) 0.50000(0) 0.49992(0) 0.49992(0) 0.49983(0) 0.49983(0) 0.00000(0)
0
0.5 0.49972(0 0.49433(0 0.49433(0
(0.1,0.1) ©) © © 0.48896(0) 0.48895(0) 0.00002(0)
0 0.49976(0) 0.49435(0) 0.49435(0)
0.5 0.49732(2 0.49095(1 0.49095(1 0.00003(0
(0.1,0.5) ) M) ) 0.48461(0) 0.48460(0) ©
0 0.49732(0) 0.49095(0) 0.49095(0) 0.00002(0)

TABLE V. The phase factors ¢4, and the corner charge QEQ) are computed for HQ(;I) in Eq. (27) with various parameters. The
number of filled electrons is taken as 2N — 2 with the number of sites N when the system is under the full open boundary
condition due to the filling anomaly n = 2. Here we use the same extrapolation procedure as in Table. I. The corner charge
agrees with ¢, and the sum rule Eq. (14) is satisfied up to small errors.

Both the 1/4-filled ground state of Hl(zl) and the 1/2-filled

ground state of chl) have non-zero bulk polarizations,
and we stack two models and introduce additional hop-
ping term given by v (t) so that the 3/8-filled ground
state of the stacked model has vanishing bulk polariza-
tion while respecting C4 symmetry. The stacked model
H 1(;1) @ H, (4) has the filling anomaly n = 3 which results
in —3/4 corner charge (in the unit of electron charge)
at each corner when 4N — 3 electrons are filled under
full open boundary conditions, where N is the number of
sites.

The numerical results for the Cy-symmetric insulator
Hl(zl) @ Hz(i) are summarized in Table VI.

IV. CONCLUSION

In this paper, we have presented the bulk-boundary
correspondence for the bulk quadrupole moment which
is expressed in terms of the phase factors of the expec-
tation values of the many-body operators with respect
to the ground states under various boundary conditions.
Our bulk-boundary correspondence is given by the can-
cellation between the four gauge-invariant phase factors,
which can be computed in fully interacting systems. We
also have proposed that one of them is expected to be
identified with the corner charge. On these, we have nu-
merically observed that when the band insulator without
the hybrid Wannier value at 0.5, each phase factor corre-
sponds to a physical observable including the bulk multi-
pole moment and edge-localized polarizations. Whether
the same correspondence holds with the hybrid Wannier
value at 0.5 has not been fully understood yet. Through
extensive numerical computations on band insulators, we
have found that our bulk-boundary correspondence and
the identification of one of the phase factors with the
corner charge hold up to small errors of O(10~*), which
might be originated from the finite-size effect of the nu-
merics. Furthermore, we have also found that another
two of the phase factors have values similar to the edge-

localized polarizations defined in Ref. 4 with differences
at most O(10~?), which supports our observations.

Let us conclude by making remarks on possible fu-
ture directions of our work. It would be interesting to
prove the sum rules at least in the case of band insu-
lators. This would also extend our knowledge of bulk
multipole moments in solids. Comparing our definition
of the quadrupole moment with another one proposed
in Ref. 34 would be interesting. Since our formulation
works for disordered and interacting systems, one could
also test our sum rules for those cases. Finally, finding
connections between previous works? 3! and our sum
rule would be interesting.

ACKNOWLEDGMENTS

WL and GYC acknowledge the support of the National
Research Foundation of Korea (NRF) funded by the Ko-
rean Government (Grant No. 2020R1C1C1006048 and
2020R1A4A3079707), as well as Grant No. IBS-R014-
D1. This work is also supported by the Air Force Office of
Scientific Research under Award No. FA2386-20-1-4029.
BK is supported by KIAS individual Grant PG069402 at
Korea Institute for Advanced Study and the National Re-
search Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2020R1F1A1075569).
GYC acknowledges financial support from Samsung Sci-
ence and Technology Foundation under Project Number
SSTF-BA2002-05.

Appendix A: Classical multipolar sum rules

In this appendix, we derive classical dipolar and
quadrupolar sum rules based on classical electrostatics.
The derivations closely follow the construction presented
in Ref. 4. Here, we consider continuum systems for clas-
sical systems.



Model parameters Background Phase factors Electric moment Sum rule
H(4) @D H(4) (tam tyv t) ¢0 ¢pp d’po ¢0p ¢oo gz) Z(fl)abqsab
-0.25 0.33354(0) -0.33994(1) -0.07653(1) 0.24992(1) -0.00007(1)
0.5 0.14434(1 -0.49995(1 -0.10573(0 0.24997(0 -0.00002(0
(0,0,0.1) ) ) © ©) 0.25000(0) ©
0.25 0.43112(2) -0.15944(1) -0.15944(1) 0.24999(0) 0.00000(0)
0 -0.24983(2) -0.49992(1) -0.49992(1) 0.24999(0) 0.00000(0)
-0.25 0.374(2) -0.307(1) -0.0683(3) 0.24992(1) -0.00007(1)
0.5 0.1592(5 0.49999(0 -0.0908(5 0.24997(0 -0.00002(0
(0.1,0.1,0.1) ) © 5) © 0.25000(0) ©
0.25 0.489(2) -0.131(1) -0.131(1) 0.24999(0) 0.00000(0)
0 -0.24984(2)  -0.49992(1)  -0.49992(1)  0.24999(0) 0.00000(0)
-0.25 0.33455(4) -0.33916(4) -0.07630(0) 0.24992(1) -0.00007(1)
0.5 0.14470(1 0.49999(0 -0.10530(1 0.24997(0 -0.00002(0
(0.01,0.1,0.1) ) ©) ) ©) 0.25000(0) ©
0.25 0.43274(8) -0.15863(4) -0.15863(4) 0.24999(0) 0.00000(0)
0 -0.24983(2) -0.49992(1) -0.49992(1) 0.24999(0) 0.00000(0)

TABLE VI. The phase factors ¢q» and the corner charge Qg)

are computed for HS) GBHQ(;D in Eq. (28) with various parameters.

On each ¢o, all observables are obtained by extrapolating them as a function of 1/4/LsL,. The phase factors ¢4 converge to
different values on each ¢o, so we separate the convergence values of ¢4, by each value of ¢9. Each extrapolation uses a sequence

of four system sizes with the interval (ALy, AL,) =
and (19, 19), which correspond to ¢o =

(4,4), and each sequence starts from (L, L) =
—0.25,0.5,0.25, and 0, respectively. Here, we use the same extrapolation procedure as

(18,16), (18, 17), (18, 18),

in Table. I. The corner charge agrees with ¢,, and the sum rule Eq. (14) is satisfied up to small errors.

1. Classical dipolar sum rule

The macroscopic polarization ﬁ(é) is defined in the
classical electrostatics as the averaged first moment of
the charge density over a region U(é), which is small
compared with the whole system,

—

P(R) = / 7+ R)7,
[w(R)| Jo()

where p(7) is the volume charge density and |v(R)| is
the volume of the region v(R).

macroscopic system with the bulk polarization P induces
the charge density p via

(A1)
It is well-known that a

p=-V_ P. (A2)

Suppose that the system has a boundary to the vacuum

so that the polarization drops on the boundary, then the

boundary charge Q. is accumulated on the boundary:
—/V-ﬁdv:— P - d3, (A3)

v ov

where 0v is the boundary of a volume v which encircles

the boundary of the system as shown in Fig. 2, and § is

the surface vector normal to Ov. If the system is one-

dimensional and has a uniform bulk polarization density
P along the z-direction, then Eq. (A3) becomes

Qc:P7

which is depicted in Fig. 2, where the circle containing
the plus symbol being the boundary charge.

(A4)

(=7

Q= = ) ) ) o) ey i )
|

- ———

v
4

———

- - -

FIG. 2. A schematics of the polarization in a one-dimensional
system. Here, gray arrows represent the bulk polarization.
The bulk polarization P accumulates charges at each bound-
ary with the same amount but different signs.

2. Classical quadrupolar sum rule

The macroscopic quadrupole moment Qij(]:’,) is de-
fined in the classical electrostatics as the averaged second
moment of the charge density over v(R),

1 3 ~

Qi(R) = —— rp(F+ R)rir;, (A5)
! lo(R)| Ju(i) !

where p(7) is the volume charge density. We first con-
sider a classical system with a uniform bulk quadrupole
moment Q;;. We assume that the system has a vanishing
bulk polarization, which follows when the system has the
inversion symmetry. Then the quadrupole moment Q;;



induces the charge density p via

1

If we consider a rectangular geometry as in Fig. 3, then
the corner charge Q. accumulated on a corner of a macro-
scopic two-dimensional system due to quadrupole mo-
ment Q;; drop is given by

1 1
Q. = 3 izj:/vﬁiajgijdv = 2;7({% 0iQijnjds, (AT)

where n; is the i-th component of the unit vector normal
to dv, v is a volume envelops the corner and dv is the
boundary of v, which are illustrated in Fig. 3. For a
rectangular system, Eq. (A7) becomes

Qc = me7

where we used the symmetry of the quadrupole moment,
Qury = Qya. In addition to inducing corner charge, the
quadrupole moment also induces the polarizations along
the edges, which we call the edge-localized polarizations.
To this end, we first consider the geometry given in Fig. 3.
The line charge density o, at the edge w in Fig. 3 is given
as

(A8)

ow =~ 0;(niQy), (A9)
2]}

where n; is the normal vector of the edge in Fig. 3. Since
the charge density is given as the divergence of ), n;Q;;,
this can be considered as the polarization induced by the
quadrupole moment localized on the edge w. We will
call this polarization as P4u8d. For a rectangular system,
the quadrupole induced polarizations at the y-boundaries
Pauad and the x-boundaries ’P;“ad are given by

puad = paead — g, (A10)

On the other hand, one can dress one dimensional sys-
tems having edge polarizations P&e® and P;ree along
the boundaries while respecting the inversion symmetry,
where Pree and ’P;ree do not come from the quadrupole
moment. Note that Pir/e; also accumulates the charge

Qfree at the corner due to the dipolar sum rule

Qiree _ rpiree + rp?gree. (A]. 1)
Thus, if we define the edge-localized polarization Pze‘/iie
in classical systems as
edge __ pquad free
Pz/y :Pz/y + Py (A12)
then the corner charge is given by
Qe = —Qqy + P 4 PLiee, (A13)

We call Eq. (A13) the quadrupolar sum rule in classical
systems, which is summarized in Fig. 3.

10

Pfree

FIG. 3. Schematic understanding of the bulk quadrupole
moment and the free edge polarization. Here, gray arrows
and orange arrows represent the quadrupole moment and the
free edge polarization, respectively. Both of them accumulate
charges at each corner, and the total amount of charge at each
corner is fixed by the charge conservation law Eq. (A7).

Appendix B: Field theoretic derivations of ¢qs

Here, we show that the phase factors ¢y, ¢op/po, and
®oo should correspond to quadrupole moment @, edge-
localized polarization P;}ife, and corner charge Q. in the
thermodynamic limit. To see these, we closely follow the
effective field theory description of the multipoles elabo-
rated in Ref. 20.

We first briefly summarize the effective field theory
description of the phase factors ¢,,2°. We start from the

thermal expectation of an operator UG(F) = ei®a(MA(r)

()5 = 5 Te [0, (B1)

with the partition function Z = Tr {e_ﬁﬁ ] The ground

state expectation value of U, can be achieved in the limit
of B — oo,

(GS|U, |GS) = lim (U,)g, (B2)
B—00
or equivalently, we can rewrite it as
> 1 " oo 2 TFr s .
<GS| Ua |GS> = E TI' ei jo fM drd T[H71¢an5(7)] , (BS)

where M is a region we considered. The right hand side
of Eq. (B3) except 1/Z can be interpreted as the partition



function of a system coupled with the gauge potential
Ao(F, ) = ¢pa(7)6(7). Performing the trace in the above
expression, i.e., integrating out the fermionic degrees of
freedom of the RHS, we find

1 A 1 .
5 Imlog (GS|Ua |GS) = o Sea[Ao (7, 7)]

(mod 1).
For more details to derive this result, we refer Ref. 20, 35—
37. To proceed, we note that the electric response of in-
sulators can be naturally expanded by electric multipoles
in the region M. Here, the insulators that we consider
do not have the Chern numbers. For the case with the
Chern number, please see Ref. 38 and 39. Hence we ex-
pect?0:

oo
Seff,monopole = / / deQTpAo
0 M

Scff,dipo]e = / / dezTﬁ . E
0 M

Seff,quadrupole = / / de27"sz [6£Ey + @,E@]
0 M

2

Using these effective actions, we can demonstrate the
phase factors ¢pp, Pop/po, and ¢, indeed correspond
to quadrupole moment, edge-localized polarization, and
corner charge in the thermodynamic limit.

1. Interpretation of ¢,

Before giving the derivations of ¢y, we illustrate that
the effective action approach correctly predicts the identi-
fications of ¢, with polarization as well as ¢, with bound-
ary charge, which was shown in Ref. 18 and Appendix B
of our work, respectively. For these, we will set U, as the
Resta’s U; operator'®,

Uy () = exp [27”35} , (B4)
L,

so we have Aoz, 7] = ZX2§(7) and E, = %5(7’).
First, we can show that ¢p corresponds to polariza-

tion, which reproduces Resta’s formula. We consider a

line M = (0,L,) having constant polarization P, and

periodic boundaries. Then, the effective action of the

region M is given by

Seff’p:/ / drdx P, E,.
0 M

Then, inserting the gauge potential Ay to the effective
action gives

(B5)

2
Setp = Ll / dxP, = 21 P,, (B6)
z JM

so we have

¢p =P, (mod 1). (B7)
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Next, we can show that ¢, corresponds to the bound-
ary charge, when the system is subject to the open
boundary conditions. In this case, we consider the same
M having constant polarization P as well as free bound-
ary charge Q¢ i.e., free electrons which can be added
and is not related to the bulk polarization, and open
boundaries. Then, the effective action is

Sefto = / - / drda{ Py By +QF Ao[5(x— L) +6(2)]}.
0 M

Again, inserting the gauge potential to the effective ac-
tion gives

Setp = 2m(Py + QTe°), (B8)

so we have

d)o = PI + Qgree (mOd 1)a (Bg)
where the right hand side is the boundary charge pre-
dicted by the classical electrostatics.

From these, we can also easily show the bulk-boundary
correspondence in terms of the phase factors. Since Qe
is an integer, we have

¢p = ¢o

(mod 1). (B10)

2. Interpretation of ¢.

We then give the derivations of ¢, for two-dimensional
systems using the effective field theory approach. To do
so, we will consider a square region M = (0, L,) % (0, L,)
with an inversion symmetric Hamiltonian for all cases,
however, the boundary conditions of M will be chosen
differently for each case.

We first discuss the identification of ¢, with Quy.
Let the region M have periodic boundaries along the z-
and y-directions and assume that the region has constant
quadrupole moment and vanishing polarizations. In ad-
dition, since we deal with Us, we set the gauge potential
as Agl7, 7] = Li’zy 2yd(7). Then, the effective action of
the region M is given by

o 1
Seft.pp = / / dezTngy[azEy +0,E;]. (B11)
0 M

Thus, inserting the gauge potential to the effective action
gives

2T

— B12

Seff,pp =

/ dQ’I“QIy = 21Quy.
M

In other words, (GS|U, |GS) is proportional to ¢*7@wu,
so we can identify ¢p, with Q.

We next discuss the identification of ¢,, with P;dg".
In this case, we let the region have open boundaries
along the x-direction and periodic boundaries along



the y-direction and assume that the region has con-
stant quadrupole moment as well as constant free edge-
localized polarizations P;ree along the opened boundaries

that respect inversion symmetry, i.e., szmc is not related
to the bulk quadrupole moment. One example of this is
the edge polarization model*. Then, the effective action

is given as

Seft,op = / / deQT{lme[awa + 0y E,]
0 JM 2 (B13)

+PICE, (6(x — Ly) — 5(93))}.
Again, inserting the gauge potential to the effective ac-
tion gives

Lizy /M dzT{Qxy + P;dgcm(d(x - Lw) o 5($))}

= 27(Quy + PI°). |

Seff,op =

> 1
Seft.00 = / / de%{Qsz[amEy + 0y Ex] + P Ey(8(x — Ly) — 6(2)) + P Ex(8(y — Ly) — 6(y))
0 M

+Qe(w,y)Ao(8(z — La)d(y — Ly) + 6(2)d(y) — 8(2)8(y — Ly) — d(z — Lx)5(y))}

with Q°¢(0,0) = QT°°(L,,L,) and QT°(L,,0) =
Q'e°(0, L,). Then, the insertion of the gauge potential
to the effective action gives

boo = Quy + P + P + QF°°(L,, Ly) (mod 1).

One can see using the classical electrostatics that the
right side is indeed the corner charge at ¥ = (L, Ly),
and so does ¢,.

We can also directly derive the quadrupole sum rule
using the above results. Since the free corner charge
Qree(L,, L,) is an integer, we have

¢pp + ¢oo = ¢op + ¢po

In summary, the sum rule and the identifications of the
quadrupole moment, edge-localized polarizations, and
corner charge can be justified via the above effective field
theory descriptions of multipoles.

(mod 1). (B15)

Appendix C: Uy operator and the corner charge

In this appendix, we show that for band insulators in
one dimension, the phase factor of the U; expectation
value with respect to the ground state in the open bound-
ary condition converges to the boundary charge in the
thermodynamic limit.

We prove the claim by constructing bulk and boundary
Wannier functions. The bulk Wannier functions are iden-
tical to the Wannier functions in the periodic boundary

12

Thus, we have ¢op = Quy + PI® (mod 1). As we
discussed in Appendix A, the total edge-localized po-
larization P;dge is given by the sum of the free edge-
localized polarization P;CC and the quadrupole induced
edge-localized polarization, which is Q. for square sys-
tems. Therefore, we can identify ¢,, with the edge-
localized polarization P;dge. In the same fashion, ¢p,
should be identified with Pgdee,

We finally discuss the identification of ¢,, with Q.. In
this case, we let the region have full open boundaries and

assume that the region has constant Q,, constant Pff;,

and free corner charge Qf°°. Again, we will assume that
the system has inversion symmetry. These assumption
gives the effective action as

(B14)

(

condition and the boundary Wannier functions are local-
ized near the left and right boundaries. The phase factor
of U; expectation value is determined by the bulk Wan-
nier functions while boundary Wannier functions do not
contribute, as in the original bulk-boundary correspon-
dence for the polarization'”23. To avoid any ambiguity,
we assume that no mode exists at the chemical potential,
which can always be done by either introducing a (small)
symmetry breaking term splitting the zero modes or tun-
ing the chemical potential slightly.

In the open boundary condition, the position opera-
tor & is well-defined, which we choose to take values in
{1,2,---, L}, and thus we can diagonalize the position
operator in the subspace of occupied single-particle or-
bitals Pycc.. We would like to show that the eigenvectors
of Poec(2)Poce are exactly the bulk and boundary Wan-
nier functions with desirable properties.

We first recall the results in Refs. 40 and 41, which
state that the Wannier functions {|wa, gr)}, where a =
1,-+-,ne with n, being the electron filling and R € Z
labels the position at which the Wannier function is lo-
calized, are the eigenvectors of & operator in the subspace
of the occupied single-particle orbitals of the infinite open
system with the corresponding eigenvalues R+, At the
same time, {|wq, )} are the eigenvectors of e*Z" in the
subspace of occupied single-particle orbitals of a periodic
system with the corresponding eigenvalues e*27(f+va)/L
when the system size L is sufficiently large. Moreover, the
Wannier functions {|wq, r)} are exponentially localized



and satisfy the usual property (z|wg, r+1) = (x—1|wa,R)-

Let us take a positive integer § which is much larger
than the localization lengths of {|ws r)}. Using the ex-
ponentially localized nature, {|wa,r)} R=6+1,65,-- ,.L—0o are
the claimed bulk Wannier functions, i.e., eigenvectors of
Pyce(Z) Poce localized on the bulk, where P,.. projects
to the subspace of occupied single-particle orbitals of a
finite open system. Also, for a sufficiently large L, the
bulk Wannier functions {|wa r)}r=6+1,6,,--,L—s are the
eigenvectors of POCC(eMLW)POCC with the corresponding
eigenvalues e?27(f+ve)/L  The remaining eigenvectors of
Pocc(2) Poce are localized near the left and right bound-
aries, hence we call them the boundary Wannier func-
tions.

We now evaluate the expectation value of U, using
the bulk and boundary Wannier functions. Since the
ground state of a band insulator is given by the slater
determinant of occupied single-particle orbitals, which we
choose to be the bulk and boundary Wannier functions,
(Uy) can be expressed as

(Uy) = e~ (EHDmem? det . (cy

oo

0 0
DO
0 R

where e~ (L+Dnemi ig the phase factor from background
ions, £ and R are n.d-by-n.d matrices, and

5+1+u1 L—S+vn .

D = diag(e 2mi oo, e L ) (C2)

is a diagnal matrix. By expanding the diagonal part in
the determinant, we get

(U} = e Uebmemig 2 (=0 e )
x det(L) det(R)
L (20)e2mi 0% Ve det (L) det(R)

= e_Z”i%ez’ri Lalive det(L) det(R),

271'1

(C3)

where we used the fact that § is an integer in the last
equahty Note that £ (R) is the matrix representation
of e*T with respect to the left (right) Wannier func-
tions which are localized within the range 0. Thus, in
the thermodynamic limit U, = I + O(1) on the left
(right) Wannier functions and hence det(£) =1+ O(1)
(det(R) =1+ O(1)). Thefore,

Noce

ZV QW

where the last equality follows from the original bulk-
boundary correspondence!"?3. This completes the proof
that U; expectation value reproduces the boundary
charge for band insulators in the open boundary con-
dition.

1
lim 2—Im [ log

L—oo

(C4)
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Appendix D: Coordinate dependence of ¢,

In this appendix, we discuss the coordinate depen-
dence of the phase factors {¢,,} defined in Eq. (13). The
phase factor ¢,, is computed on a system having peri-
odic boundary conditions along the y-direction, i.e., the
system is invariant under the coordinates transformation
along that direction y — y+ L,. Thus, one naturally ex-
pects that the phase factors should also be invariant un-
der the coordinates transformation. Here, we show that
if the system size is sufficiently large, then the phase fac-
tors are invariant under the coordinates transformation.

We first treat the system as a quasi-1D system by con-
sidering the y-label as a sub-lattice index of the enlarged
unit cell. We then consider the transformation rule for
the Uy operator: Uy — Uy = UsUy,, following from the
translation along the periodic direction y — y+L,, where
Ul;x is

. Lo Ly

A 21 .
Up.p = exp T Z T(Nay — Ne)

x

(D1)

z,y=1

with the background charge n.. Since we consider the
system as a quasi-1D system, the additional operator
U1 .. can be viewed as the Resta’s U5 operator Eq. (3).
Although |GS(o,p)) is not an eigenstate of Ul;m in gen-
eral, it converges to an eigenstate of Ul;w in the limit of
L, — oo. We can show this in the following two steps.
First, if the system size is sufficiently large, then the ex-
pectation value of Uy, with |GS(o, p)) is bounded by
- L
1= (@S0 U GSOp))|| <72 (D)
x

with some constant C. This can be seen from Eq. (C3).
Second, since Ul;w is a unitary operator, the absolute
value of its expectation value with a state is the unity
if and only if the state is an eigenstate of Uy,,. Thus,
Eq. (D2) implies that |GS(o,p)) is an eigenstate of Uy,
in the limit of L, — oo. With these, the expectation

value of U} with |GS(o,p)) can be written as that of U
in the limit of L, — oc:

eiQBOP = <GS(O,p)| Ué |GS(07p)>

| i (D3)
= "% (GS(0,p)| Ursz |GS(0,p)) -

Thus, the only thing we need to show is that the ad-

ditional term (GS(o,p)| Ui, |GS(0,p)) converges to the

unity in the thermodynamic limit. .

Now, we will show that (GS(o,p)| U1, |GS(0,p)) in-
deed converges to the unity in the thermodynamic
limit. Since we treat the system as a quasi-1D system,
(GS(0,p)| U1 |GS(0,p)) can be interpreted as e'®e de-
fined in Eq. (6). In Appendix C, we show that ¢, can
be identified with the boundary charge in the limit of
L, — oo. In addition, since the polarization of each
model is vanishing to make the quadrupole moment be



well-defined, the quasi-1D system cannot have the polar-
ization as well as the boundary charge. Combining these
implies that (GS(o,p)| Ui, |GS(0,p)) should converge to
the unity in the thermodynamic limit, and thus e*?e» in
the thermodynamic limit is invariant under y — y + L.

As an explicit demonstration of our proof
above, we first conduct numerical calculations on
(GS(0,p)| U1, |GS(0,p)) and find that it converges
to the unity in the thermodynamic limit. Here, we
consider the edge-localized polarization insulator,
which are defined in Eq. (21). We choose the param-
eters as  (Va, Vys Az, Ay, 0) = (0.2,0.3,1.0,1.0,0.1).
We then compute real and imaginary parts of
log[(GS(0,p)| U1, |GS(0,p))] on anisotropic systems
L, # L, with L, = 10 and L, from 40 to 80. We extrap-
olate them in the thermodynamic limit as a function of
1/L,. The extrapolations of them are shown in Fig. 4a
and 4b which are for real and imaginary parts, respec-
tively. These clearly show that (GS(o,p)| Uz, |GS(0,p))
converges to the unity in the thermodynamic limit.

The above argument only guarantees the invariance
of ¢op under the transformation y — y + L, when we
take the limit of L, — oo first since the right hand side
of Eq. (D2) may not converge for other order of limits.
However, even for those cases, we numerically check that
@op is still invariant under the coordinate transformation.
Below, we provide numerical calculations on ¢,p,, and
for those cases, one can see that the phase factor it is
invariant under the transformation y — y + L, in the
thermodynamic limit.

We compute the phase factor ¢,, and the transformed
phase factor ¢~Sop Eq. (D3) on the same system used in this
section. However, here, we separately compute them on
1) isotropic systems L, = L, = L with L from 23 to 30
and 2) anisotropic systems L, # L, with L, = 10 and
L, from 40 to 80. We then extrapolate ¢, and g?)op in
the thermodynamic limit via quadratic extrapolations as
a function of 1/L,. The extrapolations of ¢, and ¢,
on the edge-localized polarization insulator are shown in
Fig. 4c and 4d which are for 1) isotropic systems and 2)
anisotropic systems, respectively. The numerical results
clearly show that the transformation y — y + L, does
not change the thermodynamic value of ¢p.

In addition, we also compute ¢, and g?)op when the
limit of L, — oo is taken first. We first extrapolate
¢op and éop as quadratic functions of L, for various
L, € [10,20] as shown in Fig. 5. From this, we get the
thermodynamic values of ¢,, and (ﬁop in the quasi-1D
system L, — oco. We then extrapolate those thermody-
namic values as quadratic functions of L, as shown in
Fig. 5. One can see from Fig. 5 that the extrapolated
values of ¢,, and ¢, in the quasi-1D system agrees with
that of ¢,p in the 2D system L, = L, = L — oo. Thus,
even we take the limit of L, — oo first, ¢, and éop agree
in the thermodynamic limit on this case.
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FIG. 4. (a-b) Quadratic extrapolations of (a) real and (b)

imaginary parts of (Ul;z> = (GS(o,p)| Ul;z |GS(0,p)) on Hedge
with L, > L, = 10. <Ull> converges to the unity in the limit
of Ly — 00. (c-d) The phase factors ¢op and ¢~30p on Hedge
with (c) isotropic systems, L, = L, = L, and (d) anisotropic
systems L, > L, = 10. Both of them converge to the same
value in the limit of (¢) L — oo and (d) L, — co.

Appendix E: Sum rule in C3-symmetric insulator

As a demonstration that the sum rule Eq. (14) works
for insulators having other types of symmetry besides Cy
symmetry, we consider a Cs-symmetric insulator?* and
numerically confirm the sum rule on this model.

1. (C3-symmetric insulator: Héi) &) Héi)

The tight-binding hamiltonian in the momentum space
of the Cs-symmetric insulator HQ(Z) &) Héi) is given by?*

H(3) 3) (t)
H(S) @H(S) k) = 2b v ) , E1l
where
B 0 tO +eik-ag tO + e—ik-as_
H;Z))(k) = |tg+ €fik'a2 0 to + e~ tkar s
i tO + ezk-ag tO 4 ezk-al 0 |
i 0 ‘ to + etk-a1 to + 6“?”12 i
Hég)(k) = |ty + eil'k'a’l 0 to + e~ tk-as R
|0 + e~ tkaz ¢ 4 eikas 0 |
and

~+ o~
O+ O
—
=
[\)
S—

'
() = [0
¢
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FIG. 5. (a-b) Quadratic extrapolations of (a) ¢op and ¢,y
as functions of 1/L, while fixing L, and (b) limz,,, . ¢op and
limz,, oo gz;op as functions of 1/L,. (a) The blue dashed lines
are quadratic extrapolations of ¢, and the orange dotted
lines are quadratic extrapolations of éop. Each y-intercept of
an extrapolation in (a) is a point in (b). (b) The ochre dashed
line is the thermodynamic value of ¢, in the 2D system.

The 2/3-filled ground states of H;g) and HQ(i’) have non-
vanishing polarizations 1/3 and 2/3, respectively, so the
stacked model H2(2) ® Héi) at 2/3-filling with the inter-
layer hopping term ~()(¢) has vanishing bulk polariza-
tion and respects Cs-symmetry.

We will consider the stacked model Eq. (E1) on the
square lattice. To do so, we use the coordinates sys-
tem (z,y) with two basis vectors d; = (1,0) and dy =
(1/2,4/3/2), i.e., the coordinates (z,y) refer to as the
vector of xd, + yds. All the phase factors ¢, defined in
Eq. (13) and appears in Table VII are computed using
these coordinates. We find that the stacked model on
the square lattice at 2/3-filling has corner charges 1/3
and —1/3 well localized near the corners.

The numerical results are summarized in Table VII.
We see that the corner charge QgZ) agrees with ¢,, and

the sum rule Eq. (14) is satisfied up to small errors of
0(1079).
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Appendix F: Branch cut dependence of the
HWF-based edge-localized polarization

In this section, we discuss the branch cut depen-
dence in the hybrid Wannier values of the HWF-based
edge-localized polarization P;?Se defined in Ref. 4 and

Eq. (18). To be self-contained, we first rewrite the defi-
nition of the edge-localized polarization,

L,/2

P =33 vipily) (mod 1), (FL)

where p/(y) and 2% are the density and the j-th
eigenvalue of the hybrid Wilson loop Wy, along the z-
direction, respectively. We will call »7 the hybrid Wan-
nier value.

The edge-localized polarization pﬁdge can be well de-
fined after one fixes the branch cut of the hybrid Wannier
value since the hybrid Wannier value is defined by a phase
angle, which has the modulo 27 ambiguity. Unless fix-
ing the branch cut, each 7 can be shifted by an integer
n’/ = 41, which results in shifting P& as

Ly/2

AP =303 i), (F2)

Since Zji/f p’(y) is not quantized in general, APcdee
may also not be quantized if n/ is not the same for all
j. Consequently, the edge-localized polarization is am-
biguous before fixing the branch cut even if we take the
modulo one equivalence on both sides of Eq. (F1). Here
we fix the branch cut by fixing the range of the hybrid-
Wannier value as v € (—0.5,0.5]. This choice is made
for our numerical results to be consistent with that of
Ref. 4. Note that another equally valid choice of the
range is v € [—0.5,0.5), which includes —0.5 instead of
+0.5.

However, these possibilities in ranges again cause a
problem when a hybrid Wannier value 17 is at the branch
cut value since 17 can be either +0.5 or —0.5 depend-
ing on the choice of the range. In this case, the edge-
localized polarization is invariant under the choice of the
range only when Zjif P’ (y) is quantized, i.e., the HWF
is localized one of the two half systems. The situation
gets worse when more than two hybrid Wannier values

v, 12, ..., ™ are degenerated at the brach cut since for all

n

possible unitary transformations ¢(y) = 3. i1 w7 (y)

2
of the Wannier functions {4,942, ..., 9"}, Z?jji/lz ‘ﬁz(y)’

should be quantized for the edge-localized polarization
not to depend sensitively on the choice of the branch
cut. To avoid this difficulty, we computed ﬁ;?ie only for

the models without the hybrid Wannier value at 0.5 in
the main text.
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Model parameters Phase factors Electric moment Sum rule
Hég) @ Héi)(to, t) Ppp ®po Pop $oo £2) Z(*l)ab@zb
(0.001, 0.001) -0.33340(0) -0.33333(0) -0.33333(0) -0.33331(0) -0.33333(0) -0.00005(0)
(0.1,0.001) -0.33340(0) -0.33335(0) -0.33335(0) -0.33334(0) -0.33337(0) -0.00005(0)
(0.1,0.1) -0.33377(0) -0.33441(0) -0.33441(0) -0.33510(0) -0.33513(0) -0.00004(0)
(0.2,0.1) -0.33380(0) -0.33504(0) -0.33504(0) -0.33631(0) -0.33634(0) -0.00004(0)
TABLE VII. The phase factors ¢4, and the corner charge Q£ are computed for H(3> &) H(g) (to,t) in Eq. (E1) on a square

lattice with various parameters. The details about the lattice and filling are dlscussed in the paragraph below Eq. (E2). Here
we use the same extrapolation procedure as in Table. I. The corner charge agrees with ¢, and the sum rule Eq. (14) is satisfied
up to small errors.
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