Role of point defects in stress-induced martensite transformations in NiTi shape memory alloys: A molecular dynamics study
Chao Yang and Janelle P. Wharry
Phys. Rev. B 105, 144108 — Published 25 April 2022
DOI: 10.1103/PhysRevB.105.144108
Role of Point Defects on Stress-Induced Martensite Transformations in NiTi Shape Memory Alloy: A Molecular Dynamics Study

Chao Yang1, * and Janelle P. Wharry1

1 School of Materials Engineering, Purdue University, West Lafayette, IN 47906

* Corresponding author

Abstract

Shape-memory properties of equiatomic NiTi rely on the thermal- or stress-induced reversible martensitic phase transformation between the B2 and B19’ phases. Irradiation defects suppress thermal-induced transformations, but their effects on stress-induced transformations are poorly understood. We use molecular dynamics to investigate the effect of vacancies, vacancy clusters, interstitials, and anti-site defects on stress-induced transformations. All defects suppress the transformation, but vacancy clusters do so to the greatest extent, while anti-site defects do so to the least extent. The responsible mechanisms are grain boundary pinning and chemical disordering.

Key words: Molecular dynamics, Shape memory alloy, Point defects, Stress-induced martensitic transformation

Introduction

Nitinol (Ti-Ni at approximately equal atomic percentages) draws considerable interest due to its unique properties such as the shape memory effect, superelasticity (pseudoplasticity), excellent corrosion resistance and high damping capacity [1,2]. These properties place nitinol amongst the next-generation materials for the defense, nuclear and aerospace industries [3,4]. Stable mechanical performance under extreme environments such as irradiation are required for these applications. Thus, researchers have studied the microstructural evolution and mechanical behaviors of nitinol alloys under neutron [5-12], proton [13-22], ion [23-25] and electron irradiation [26,27], with an emphasis on thermally- and/or stress-induced martensite transformation, which is
the origin of the shape memory effect and super elasticity.

For thermally induced martensite transformation, Hoshiya et al. [5,6,8] reports a significant drop of the martensite start temperature (M_s) of NiTi under different energies, doses and temperatures of neutron irradiation using electrical resistance measurements. The decrease in M_s can be restored through one cycle of post-irradiation annealing or aging. They suspect that the inhibition of the martensite transformation is caused by losing long range order under irradiation. Kimura et al. [7] confirms Hoshiya’s result by differential scanning calorimetry (DSC). What’s more, they also confirm the generation of amorphous regions and vacancy clusters using transmission electron microscopy (TEM). Besides amorphization and disordereding, Kimura et al. also thinks irradiation-induced stress may play a role in the suppression of the martensite transformation. Matsukawa et al. [10] conducts a similar study as Kimura and finds that the B2-B19’ transformation can be completely suppressed under certain irradiation conditions due to amorphization. Later, Konopleva et al. [9] finds that neutron irradiation not only lowers the M_s, but also changes the transformation path from a one-step transformation ($B2\rightarrow B19’$) to a two-step transformation ($B2\rightarrow R\rightarrow B19’$) due to irradiation disordereding. Belyaev et al. [11] concurs that irradiation amorphization changes the path of transformation, and additionally finds that neutron irradiation can induce the B19’→B2 phase transformation without applied stress [12].

Most proton irradiations [13-22] show similar effects on the M_s as neutron irradiation. A1-Aql, et al. [13,14,16] considers that point defects play a significant role in the suppression of the martensite transformation, while Dughaish [15] purports the suppression to be a synergistic effect of both point defect pinning and disordering. Wang, et al. [17] shows that proton irradiation does not affect the R phase transformation but lowers all M_s/M_f and A_s/A_f ratios; they ascribe these behaviors to the formation of TiH and TiH$_2$. Contrary to Konopleva’s neutron irradiation study, wherein irradiation induces the path change from $B2\rightarrow B19’$ to $B2\rightarrow R\rightarrow B19’$, Gao, et al. [21] finds proton irradiation induces the path change from $B2\rightarrow R\rightarrow B19’$ to $B2\rightarrow B19’$ due to irradiation induced stresses. Zhao, et al. [22] observes a decrease in M_s in the one-step transformation but attributes it to irradiation induced amorphization
and irradiation induced segregation. Most ion irradiations [23-25] cause a decrease in M_s, for similar reasons as neutron irradiation. Finally, Wang and coworkers’ electron irradiation studies show a decrease of M_s when dose rate is high [26], but nearly no influence on M_s when the dose rate is low [27].

The aforementioned literature focuses on thermal-induced martensite transformations, but irradiation effects are also studied on stress-induced martensite transformations. Afzal, et al. [18] investigates the stress-induced martensite transformation under proton irradiation and finds that irradiation suppress the one-step transformation but prompts the two-step transformation. Stresses required to initiate the R-phase transformation and martensite transformation decrease with increasing irradiation exposure time and may be associated with disordering. Ayub, et al. [19] observe the same effect on the one-step transformation for irradiation temperatures of 25°C and 50°C. But higher irradiation temperatures, specifically 75°C and 100°C, change the transformation path from a two-step to a one-step transformation, due to irradiation induced Ni$_4$Ti$_3$ segregation.

This review of the experimental literature reveals a lack of a unified explanation of irradiation effects on thermal- and stress-induced martensite transformations. This apparent controversy stems from the nature of irradiation experiments, in which varying just a single experimental parameter (e.g. temperature, dose, dose rate, irradiating particle type) produces changes to the nature (or existence) of the irradiation damage cascade and the resultant defects. A wide variety of defect types are produced by irradiation in NiTi, ranging from point defects and chemical disordering (e.g. antisite defects) [28-29], to extended defects such as dislocation loops and amorphous regions [29-30]. These various defects often exist concurrently in materials examined post mortem after irradiation, and are likely to have synergetic effects on the martensitic transformation through several mechanisms, including stress relaxation, grain boundary pinning or disordering. These synergetic behaviors preclude researchers from drawing clear conclusions about the fundamental roles of individual defect types on the martensitic transformation.

Fortuitously, simulations may help solve this problem of multiple dependent
variables, since each microstructural factor can be introduced individually. Molecular Dynamics (MD) simulations can successfully explain both thermal- [31-48] and stress-
[33,37,43, 49-74] induced martensite transformations in NiTi. Most of the published MD simulations on martensite transformations in NiTi are focused on perfect single crystals, polycrystals or crystals containing “annealing twin” boundaries. The role of irradiation type defects – e.g. amorphization, chemical segregation, and especially point defects – on NiTi transformations, remains underexplored by MD. Local stresses are the focus of a few studies. For example, Chowdhury, et al. [51] uses MD to prove that the existence of coherent Ti$_4$Ni$_3$ precipitates can reduce the stress needed to initiate the B2→B19’ transformation due to the stress field around the precipitate. Similarly, Ko, et al. [72] and Zhang, et al. [66] show that amorphous regions suppress thermal- and stress-induced B19’ formation by changing local stress. With respect to defects, Tehrani, et al. [34] shows that both vacancy and anti-site point defects inhibit thermal-induced martensite transformation, with anti-site point defects having a more obvious effect than vacancies. To the best of the authors’ knowledge, no MD simulations have yet been published investigating the role of defects on stress-induced martensite transformations.

In this paper, the effect of different types of point defects – namely interstitials, vacancies, vacancy clusters, and anti-site point defects – on the stress-induced martensite transformation is studied using MD. This work focuses specifically on the one-step B2→B19’ transformation, given the lack of interatomic potentials that can accurately describe the two-step martensite transformation. This work will show that all defect types inhibit the stress-induced martensite transformation, though each to a differing degree. The specific mechanism is the synergistic defect-driven grain boundary pinning and disordering.

Simulation Methods

A modified embedded atom method (MEAM) potential developed by Ko, et al. [37] is used in this simulation of equiatomic NiTi. This potential is widely used by researchers to study both thermal-induced [37, 49] and stress-induced [55, 57-60, 62, 64, 66-68, 70-74] martensite transformations. Moreover, this potential is intentionally
developed to capture the phase transformations between the B2 and B19\(^\prime\) structures in equiatomic NiTi alloy with high predictive accuracy and is by far the most widely used potential for stress-induced martensite transformation in NiTi.

ATOMSK [75] is used to build the initial microstructures of the simulation cell. The dimensions of the simulation cell are 21.2×21.2×21.0 nm in the x, y, and z directions respectively (representing 50×50×70 unit cells with lattice constant of 3 Å), with x parallel to [1\(\overline{1}\)0\(_{\text{BCC}}\), y parallel to [110\(_{\text{BCC}}\), and z parallel to [001\(_{\text{BCC}}\). Ordered B2 (CsCl) structure is built with Ti occupying the corner of the BCC cell, and Ni occupying the body centered position. Five unique simulation cells are built. The first simulation cell has a perfect B2 single crystal and is henceforth set as the reference simulation. The second and third simulation cells are B2 single crystals with randomly distributed vacancies at a concentration of 10\(^{-4}\) and 10\(^{-3}\) (atomic %), respectively. The purpose of the third simulation is not to introduce individual vacancies, but rather to investigate vacancy clusters through later simulated annealing. The fourth and fifth simulation cells are B2 single crystals with randomly distributed interstitials and anti-site point defects, respectively, at concentrations of 10\(^{-4}\) (atomic %). The second through fifth simulations will be referred to as the vacancy simulation, vacancy cluster simulation, interstitial simulation, and anti-site simulation henceforth for convenience. (Note that interstitial clusters and anti-site clusters are not simulated because these clusters are not found experimentally.) The point defect concentrations used in the simulations are intentionally higher than experimentally achievable (even under extreme irradiation fluences), so that the deformation phenomena will be distinctly obvious [34]. Another key simplification is that all point defects are generated stoichiometrically (i.e., 50% of Ti and 50% Ni), while in reality, Ni vacancies and Ti anti-sites are more energetically favorable than Ti vacancies and Ni anti-sites and will thus be present at a higher concentration [76,77]. But this approach enables us to eliminate the influence of chemical composition, which can drastically affect the martensite transformation behavior [31,36].

A periodic boundary condition is applied in all three dimensions, meaning that the simulations do not have a free surface. The simulation cells are first equilibrated under
NPT conditions (constant atom number, pressure, and temperature) using a time step size of 0.002 ps for 100 ps in vacuum at 400 K, which is approximately 20 K higher than the \(M_s \) temperature of the potential used [37]. The strain-controlled method is used during the deformation. The crystal is loaded in the z-direction, with strain rate of 0.001 \(\text{ps}^{-1} \), until a total strain of 0.1 (50000 steps), which is the limit of recoverable strain for NiTi [53,58,63], and then the deformation is reversed until the strain returns to 0 (100000 steps). No stress is applied along the x- or y- directions, which are allowed to relax during the deformation. The time step size during the deformation is also 0.002 ps. The open-source code LAMMPS [78] is used to perform the simulations, and open-source software OVITO is used for visualization [79], during which the Common Neighbor Analysis (CNA) method is used to determine the phases present. The CNA algorithm is proven to be efficient at capturing the B2→B19’ transformation when using Ko’s potential [55, 57-60, 62, 64, 66-68, 70-74].

Results

Figure 1 (a)-(e) shows the equilibrized simulation boxes of the reference, vacancy, vacancy cluster, interstitial and anti-site simulation, respectively. The equilibrized material is predominantly an ordered B2 single crystal. However, atoms adjacent to vacancies and interstitials are off ideal lattice sites due to stress induced by that vacancy or interstitial, and their lattice type is hence referred to as “other”. Anti-site defects do not cause lattice structure changes when using the CNA algorithm. No B19’ structure exists before deformation. Cluster analysis of Figure 1 (b)-(d) shows that both point defect species tend to exist as individual defects at concentrations of \(10^{-4} \), but form into clusters at concentrations of \(10^{-3} \) after equilibration.
Figure 1: Equilibrized simulation boxes of (a) reference, (b) vacancy, (c) vacancy cluster, (d) interstitial and (e) anti-site simulations, with insets showing chemical composition in (a) and (e), and clusters of atoms identified as having an other lattice type in (b), (c) and (d).
Figure 2: Stress and B19’ phase fraction as a function of time step for the reference simulation; insets show the evolution of the B19’ phase at selected points throughout the loading-unloading.

Figure 2 shows the stress as a function of time (i.e. stress-strain curve) and fraction of B19’ phase as a function of time, for the reference simulation. Insets show the B19’ phase surfaces at certain points, to illustrate the phase evolution throughout the loading and unloading. The stress is higher than measured experimentally due to the high strain rate used in MD, and it is consistent with other MD simulations using the Ko potential [55, 57-60, 62, 64, 66-68, 70-74]. The deformation can be subdivided into several stages. First, for time steps 0-15000, elastic deformation of the B2 phase occurs during loading since no B19’ has yet formed at this stage. The slope of the stress-time curve is constant, indicative of the constant elastic modulus. The second stage of deformation is characterized by a slope change near time step ~15000, which indicates the onset of the B2→B19’ transformation since the transformation induces local contraction due to differences in B2 and B19’ lattice parameter. In the third deformation stage, the slope of the stress-time curve continually changes as the time step increases from 20000 to
50000, indicating formation of new B19’ grains and coalescence of existing B19’ grains. In the fourth stage, spanning between time steps 50000-85000, the reverse transformation occurs, with B19’ reverting back to B2. Finally, between time steps 90000-100000, elastic recovery of the B2 phase occurs during unloading. The curves are not symmetrical, indicating hysteresis happens during loading and unloading. However, hysteresis is beyond the scope of the present study because it is more appropriate to use a stress-controlled simulation to study hysteresis.

Figure 3. (a-b) Stress-time curves and (c-d) B19’-time curves of all the simulations; (b) and (d)
show an enlarged view of the framed regions in (a) and (c), respectively; (e) strain required to initiate martensite transformation, taken at B19’ phase fraction of 0.02.

Figure 3 (a-b) show the stress-time curves for all of the simulations and Figure 3 (c-d) show the B19’-time steps curves for all of the simulations. The most significant differences across the simulations happen between time steps 10000 and 30000, and this range is therefore magnified to show detail in Figures 3 (b) and (d). One can see in Figure 3 (b) that the interstitial simulation has the highest stress between time steps 10000 and 15000, while the vacancy cluster simulation has the lowest stress. The other simulations show little difference over this time step range. Stress-time slope changes occur near time step 15000, indicating the onset of the martensite transformation, which is confirmed by the increase in B19’ phase fraction shown in Figure 3 (d). The degree of stress-time slope change across the simulations trends as:

vacancy clusters < interstitials < vacancies < anti-site < reference

Because a slope change indicates the B2→B19’ transformation, the larger the slope change, the greater the extent of the martensite transformation. What’s more, the defects also cause an increase in the strain required to initiate the martensite transformation, as shown in Figure 3 (e), which is taken at a fixed B19’ phase fraction of 0.02 for consistent comparison across simulations. The strain at the onset of the transformation follows the opposite trend as the stress-time curve slope change:

reference < anti-site < vacancies < interstitials < vacancy clusters.

From Figure 3 (b), we can see that all types of point defects studied inhibit the B2→B19’ transformation. At a fixed point defect concentration of 10^{-4}, interstitials have the most pronounced effect, while anti-site defects have the least pronounced effect. This trend is notably different from that in thermal-induced martensite transformations [34], wherein anti-site defects have a stronger influence than vacancies. Increasing the vacancy concentration by one order of magnitude to initiate vacancy clustering, drastically inhibits the B2→B19’ transformation.
Figure 4. Snapshots of all the simulations showing phase evolution throughout loading and unloading, at time steps indicated. Colors are identical to those provided in legend in Figure 1.

Figure 4 shows the still frames from each of the simulations, showing the phase evolution throughout the loading and unloading process, taken at fixed time steps; the same color coding is used as in the legend in Figure 1. These still frames reveal how significantly that vacancy clusters inhibit the B2→B19’ transformation compared to the other defect types. Visually, the still frames from the reference, vacancy, interstitial, and anti-site simulations are difficult to distinguish from one another, which is consistent with quantitative results shown in Figure 3. Lüders bands form in all simulations except the vacancy cluster simulation; this phenomenon is believed to be associated with low defect levels [80].
Figure 5. Snapshots of vacancy cluster simulation at time steps (a) 25000, (b) 30000, (c) 35000, (d) 40000, (e) 45000, and (f) 50000, showing only the “other” atoms (white atoms, relaxed around vacancy clusters) and B19’ surfaces (red). Note that all B2 and B19’ type atoms are hidden, and the simulation box background is colored aqua, to enable clear observation of the “other” atoms.

Figure 5 shows a two-dimensional slice taken from the vacancy cluster simulation approaching and at the maximum loading. The slice shows only “other” atoms (recall they are identified as “other” because they are off-ideal lattice sites due to relaxation around vacancy clusters) and the surface of B19’ phases. Comparing the magenta boxed region across all time steps reveals that the B19’ phases tend to nucleate in regions between vacancy clusters, and also that the vacancy clusters can pin the B19’ interfaces during their growth. Complementary slice analysis of the other simulations are not shown because the lower concentration of point defects limits the number of defects a given slice can intersect, and thus identifying a “representative” slice is unrealistic.

Discussion

The observed suppression of the martensitic transformation is likely due to the defect species introduced into the original simulation boxes, because the kinetics of dynamic precipitation or amorphous region formation cannot be reached in MD time scales. Existing theories on how point defects inhibit the B2→B19’ transformation
include: (1) point defects – vacancies to be specific – relax local stresses and thus inhibit the martensite transformation, (2) point defects pin grain boundaries of the B19’ phase, making their growth harder, and (3) point defects disrupt long range order, which is critical for the B2→B19’ transformation.

The results of this work are contrary to the local stress relaxation theory. That is, vacancies may cause local stress relaxation since the simulation box containing vacancies is less closely packed than the other simulation boxes. However, interstitials will have the opposite effect, since stresses are easier to build up in the interstitial simulation, as shown in Figure 2 (b). So by the stress relaxation theory argument, interstitials should promote the B2→B19’ transformation. But both vacancies and interstitials inhibit the transformation, which may be inconsistent with the local stress relaxation theory.

With respect to the grain boundary pinning idea, vacancies likely pin B19’ interfaces from further growth, as shown in Figure 5. The pinning effect is believed to come from the stress distortion generated by point defects. Interstitials generate a higher stress distortion than vacancies, and anti-site defects generate the lowest stress distortion. Thus, the extent of the pinning effect on inhibiting the B2→B19’ transformation would likely go in the order of: interstitial > vacancy > anti-site, just as shown in Figure 2 (d). The higher the vacancy concentration, the higher the pinning force. Thus, the effect of vacancy clusters is more pronounced than that of individual vacancies. But as shown in Figure 5, the pinning effect is not the only active mechanism, as vacancy clusters not only affect the growth of B19’ grains but also the nucleation of B19’ grains. Thus, chemical disordering likely plays at least some role in the early stages of the transformation.

Grummon, et al. [24] shows that ion irradiation-induced chemical disordering can frustrate the forward and reverse displacive shape memory transformations in NiTi thin films, by inhibiting collective shearing. Additionally, Huo, et al. [81] points out that disordering makes the lattice structure less distinct between the B2 and B19’ phases, consequently lowering both the chemical potential energy and the coherency energy between the two phases. These effects compete with one another, as a reduction in
chemical potential energy promotes the B2→B19’ transformation, while a reduction in coherency limits the transformation. Since the reduction of chemical potential energy by disordering exceeds that of coherency energy, disordering tends to inhibit the B2→B19’ transformation.

First-principles calculations of defect formation energies support the idea that irradiation-induced defects (and defects, more generally) suppress the nucleation of B19’ grains. Specifically, density functional theory (DFT) calculations reveal that Ni and Ti vacancies [82, 83], anti-site defects [83, 84], and H interstitials [84] are more stable in the B2 phase than in the B19’ phase. Additionally, Holec and coworkers [84] also show that with increasing H interstitial concentration, the total energies of the B2 and B19’ phases approach one another, which decreases the driving force for thermal-induced martensite transformations. Collectively, these DFT studies suggest that the presence of defects extends the temperature range for B2 stability, which supports the findings herein.

Conclusions

Molecular dynamics simulations are used to study the effects of various point defect species on the B2→B19’ martensite transformation in NiTi. Results show that all types of defects studied – vacancies, vacancy clusters, interstitials, and anti-site defects – inhibit martensite transformations, though each to a differing degree. At a fixed point defect concentration, interstitials have the most pronounced effect on suppressing the extent of the martensite transformation and increasing the strain required to initiate the transformation; by contrast, anti-site defects have the smallest effect on suppressing the transformation. Increasing the vacancy concentration by an order of magnitude to induce vacancy clustering, greatly inhibits the extent of the martensite transformation and dramatically increases the martensite initiation strain. Both grain boundary pinning and disordering may act synergistically to explain the inhibition of stress-induced martensite transformations. The extent to which these conclusions translate for real NiTi systems should be considered within the limitations of MD, including strain rate sensitivity, time scales, and typical NiTi precipitate and
grain microstructures.

Acknowledgements

The authors thank Professors Peter Anderson, Yunzhi Wang, and Michael Mills from The Ohio State University for their engaging scientific discussions. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award #DE-SC0020150.

References

[40] S. Gur, and G. N. Frantziskonis. Linking simulations and experiments for the multiscale tracking of thermally induced martensitic phase transformation in NiTi

(2016).

