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We examine the appearance of superconductivity in the strong-coupling limit of the Hubbard
model on the pyrochlore lattice. We focus upon the limit of half filling, where the normal-state
band structure realizes a j = 3/2 semimetal. Introducing doping, we show that the pairing is
favored in a J = 2 quintet Eg state. The attractive interaction in this channel relies on the fact
that Eg pairing on the pyrochlore lattice avoids the detrimental on-site repulsion. Our calculations
show that a time-reversal symmetry-breaking superconducting phase is favored, which displays
Bogoliubov Fermi surfaces.

I. INTRODUCTION

The physics of pyrochlore systems such as the iri-
date compounds R2Ir2O7 (R is a rare-earth element)
has attracted much attention over the past decade [1–
10]. These materials are characterized by the inter-
play of strong electronic correlations and strong spin-
orbit coupling [11], which is predicted to yield a variety
of exotic correlated states, such as spin liquids [1] and
magnetically-ordered states with nontrivial topology [2–
10]. The pyrochlore crystal structure of these materials
is characterized by a lattice of corner-sharing tetrahe-
dra composed of Ir4+ ions, with the low-energy electronic
states deriving from the spin-orbit-split Je↵ = 1/2 dou-
blet of the t2g manifold of the Ir 5d orbitals [1]. Due
to the cubic structure of the pyrochlore lattice, the low-
energy Bloch states deriving from the Je↵ = 1/2 doublets
of the four Ir ions in each unit cell can possess a nontriv-
ial emergent j = 3/2 angular momentum. This emergent
angular momentum describes states near quadratic band-
touchings at the Brillouin-zone center, which have been
observed in a number of pyrochlore iridates [12, 13].

Fermionic systems with j = 3/2 have been proposed to
host a number of exotic ordered phases and possibly non-
Fermi-liquid behavior [6, 8, 14]. In particular, the allowed
superconducting states are much enriched: in addition to
pairing in a spin-singlet (J = 0) or triplet (J = 1) chan-
nel, pairing in quintet (J = 2) or septet (J = 3) states
is also allowed [15]. These higher spin states can display
gap functions with remarkable nodal structures, e.g., Bo-
goliubov Fermi surfaces (BFSs) [16–20] or Dirac super-
conductors with quadratic or cubic nodal dispersions [21].
So far, however, these states have mostly been discussed
in terms of the e↵ective Luttinger model valid near the
quadratic band-touching point [15, 22–25], whereas the-
ories of unconventional superconductors are more typi-
cally formulated in terms of tight-binding models with
local interactions. Using the latter perspective, Laurell

and Fiete [9] have studied superconductivity in a quasi-
two-dimensional model of a pyrochlore lattice, but the
breaking of cubic symmetry implies that the quasiparti-
cles do not have j = 3/2 character.

In this paper we motivate the pyrochlore lattice as a
minimal tight-binding model in which to study the su-
perconductivity of fermions with an emergent j = 3/2
e↵ective angular momentum. Including an on-site Hub-
bard repulsion U , we derive the pairing interaction in the
strong-coupling limit. We find that the dominant pair-
ing instability will be the extended s-wave Eg pairing
channel corresponding to J = 2 quintet pairing, which is
likely to realize a time-reversal-symmetry-breaking state
with BFSs.

Our paper is organized as follows: In Sec. II, we in-
troduce the tight-binding model of the pyrochlore lattice
and determine the parameter regime where the j = 3/2
fermionic quasiparticles are the low-energy excitations at
half filling. The parameters of the e↵ective Luttinger
model are obtained in terms of the tight-binding param-
eters. In Sec. III A, we postulate a general interaction
Hamiltonian for our tight-binding model, including both
on-site and nearest-neighbor interactions. We project
this interaction onto the low-energy states and decouple
it in the Cooper channel, restricting our attention to the
states with nonzero pairing amplitude at the Brillouin-
zone center, namely the singlet A1g state and the quintet
Eg and T2g states. Specializing to the strong-coupling
limit, where the nearest-neighbor interaction potentials
perturbatively arise from virtual hopping events, we ar-
gue in Sec. III B that the e↵ective pairing interaction is
repulsive in the A1g and T2g channels. In contrast, the
pairing interaction is attractive in the Eg channel, which
we show in Sec. III C is generically realized in a time-
reversal-symmetry-breaking state supporting BFSs.
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II. j = 3/2 FERMIONS ON THE PYROCHLORE
LATTICE

The fundamental structural feature of the pyrochlore
lattice are corner-sharing tetrahedra. The tetrahedra
which do not directly touch one another form an fcc lat-
tice. Taking the centers of these tetrahedra as the lattice
points, the basis vectors for the four atoms are given by
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where a is the lattice constant of the conventional fcc
unit cell.

The standard electronic model for the pyrochlore iri-
dates is a tight-binding model extending up to next-nea-
rest neighbors for Ir Je↵ = 1/2 doublets at each py-
rochlore site [4]. For simplicity, henceforth we label these
doublets by a spin degree of freedom {", #}. The nonin-
teracting model is described by the Hamiltonian

H =
X

hiji
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i
(t1 + it2dij · �) cj

+
X

hhijii
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1
+ i [t0
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Rij + t0

3
Dij ] · �) cj , (5)

where c
i
= (ci,", ci,#)T is the spinor of creation and an-

nihilation operators for the doublet states at site i, � is
the vector of Pauli matrices, and the vectors appearing
in Eq. (5) are defined as [10]

dij = 2bi ⇥ bj , (6)

Rij = (bi � bk)⇥ (bk � bj), (7)

Dij = dik ⇥ dkj , (8)

where k is a common nearest neighbor of sites i and j.
In the context of the iridates, the hopping integrals ap-
pearing in Eq. (5) can be expressed in terms of direct
iridium-iridium hopping via � and ⇡ bonds (t�, t⇡, t0�,
t0
⇡
) and also indirect hopping via oxygen ions (tO). The

Slater-Koster method then predicts [4]
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As mentioned in the introduction, the pyrochlore
structure naturally gives rise to j = 3/2 fermionic excita-
tions. This is most easily understood by considering the
electronic structure of an isolated tetrahedron with an Ir
ion with a Je↵ = 1/2 doublet at each vertex. The orbital
component of the electron wavefunctions for this four-site
cluster can be decomposed into an s-wave-like (A1 irrep
of the point group Td of a tetrahedron) and three p-wave-
like (T2 irrep) wavefunctions. Spin-orbit coupling splits
the electronic states of the isolated tetrahedron into two
j = 1/2 doublets and a j = 3/2 quartet [26]. For the
full pyrochlore lattice, this emergent electronic structure
persists close to the � point. In the following, we will fo-
cus on the case where the low-energy excitations are due
only to the j = 3/2 fermions. In particular, this is pos-
sible if the j = 3/2 bands are half filled, in which case a
semimetallic state with a quadratic band-touching point
may be realized. This is of special interest as combin-
ing the half-filling condition with interactions raises the
possibility of strongly-correlated j = 3/2 fermions [27].
To quadratic order in momentum, the j = 3/2 excita-

tions close to the � point are described by an e↵ective
Luttinger-Kohn model with Hamiltonian matrix
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Ĵ2

µ
+ �

X

µ 6=⌫
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where ↵, �, and � are constants, ˆ is the 4 ⇥ 4 identity
matrix, and Ĵµ, µ = x, y, z, are the j = 3/2 angular-
momentum matrices; see Appendix A for a detailed
derivation. The two distinct eigenvalues of the Luttinger-
Kohn model are
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Both are twofold degenerate. By considering the disper-
sion along the [100] and [111] directions, the conditions
for the bands to have opposite curvature, and thus for a
semimetal, are
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In Fig. 1(a), we plot the region in parameter space where
these conditions are satisfied.
Projecting the pyrochlore Hamiltonian onto the j =

3/2 subspace, we recover the Luttinger-Kohn model with
the coe�cients [8]
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FIG. 1. (Color online) (a) Range of parameters � and � in
the Luttinger-Kohn Hamiltonian where a j = 3/2 semimetal
is realized (shaded). (b) Range of parameters t� and t⇡

where a j = 3/2 semimetal state is realized for the py-
rochlore lattice: The pink (light gray) region indicates where
a semimetallic quadratic band touching is found at the �
point and is obtained by mapping the region in panel (a)
to the pyrochlore lattice using Eqs. (18)–(20). Within the
enclosed dark blue (dark gray) region, there are no other
states elsewhere in the Brillouin zone at the same energy
as the quadratic band-touching point. (c) Typical band
structure along high-symmetry directions showing the pres-
ence of a j = 3/2 semimetal state. The parameter choice
(t� = �0.795tO, t⇡ = 0.53tO) is indicated by the yellow dot
in panel (b). The dashed red lines show the low-energy bands
in the equivalent Luttinger-Kohn model.
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The five distinct Slater-Koster hopping integrals would
give a large parameter space to explore. However, we
shall follow convention and set tO = 1 as our reference
and then further impose that

t0
�
= 0.08 t�, t0

⇡
= 0.08 t⇡. (21)

Thus, we shall regard t� and t⇡ as free parameters. The
parameter range in which the conditions Eqs. (16) and
(17) for a semimetallic quadratic band touching are sat-
isfied is shown by the pink region in Fig. 1(b). In this re-
gion, the j = 3/2 states also lie between the two j = 1/2
bands at the � point, which is a necessary condition
for such a semimetallic state at half filling. Since the
Luttinger-Kohn Hamiltonian is only valid close to the
� point, however, it is possible that other states are
present elsewhere in the Brillouin zone at the same en-
ergy as the quadratic band touching. Accounting for this

shaves o↵ some of the edges of the region identified by
the conditions Eqs. (16) and (17), leaving the dark blue
region in Fig. 1(b) as the parameter range where the
low-energy excitations result solely from the quadratic
band-touching point. Figure 1(c) shows a comparison of
the tight-binding and Luttinger-Kohn model dispersions
for the parameter values corresponding to the yellow dot
in Fig. 1(b).

III. SUPERCONDUCTING STATES

A. Pairing interactions

The most general interactions for spin-1/2 electrons
consistent with the symmetry of the pyrochlore lattice
up to nearest neighbors have the form [3, 9]
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spin operator with components Sµ
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where sµ = �µ/2 are the spin-1/2 matrices. The first line
of Eq. (22) contains an on-site Hubbard repulsion as well
as nearest-neighbor charge-charge and Heisenberg inter-
actions. The second line contains the Dzyaloshinski-Mo-
riya interaction and the traceless symmetric interaction
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In performing the sum over nearest neighbors hi, ji, we
count each bond once.
The nearest-neighbor interactions in Hint naturally

arise in the strong-coupling limit of the Hubbard model
[5, 9]. Ignoring next-nearest-neighbor hopping and as-
suming half filling and that the Hubbard energy U0

greatly exceeds t1 and t2, we integrate out doubly oc-
cupied sites to obtain the e↵ective interaction strengths
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To work in the more convenient j = 3/2 subspace, we
project the interactions onto the low-energy states. We
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express the annihilation operator at site a of tetrahedron
i in terms of the local operators in the j = 3/2 subspace,

ci,a,� ⇡

3/2X
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where the coe�cients ua,�;↵ are obtained in Appendix A.
Substituting Eq. (29) into Eq. (22), we obtain the e↵ec-
tive interaction in the low-energy subspace,
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where the sum over hi, jiaa0 contains all nearest-neighbor
pairs of sites a, a0 on tetrahedra i, j. The interaction
potentials are given by
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for the nearest-neighbor interactions. Here, ✏µ⌫⇢ is the
Levi-Civita symbol. The lengthy explicit expressions for
the coe�cients ua,�;↵ and the potentials V and Va,a0 are
relegated to Appendix B.

We treat Hint in Eq. (30) as an e↵ective pairing in-
teraction, which we eventually want to decouple in the
Cooper channel. To that end, we decompose the inter-
action into the even-parity Cooper channels, using the
generalized Fierz identity [14]
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The right-hand side of Eq. (33) represents a pairing in-
teraction, where Ā ⌘ ÂUT and UT = exp(i⇡Ĵy) is the
unitary part of the time-reversal operator. The matrices
Ā describe the internal symmetry of the Cooper pairs in
the j = 3/2 space [17]. The six matrices compatible with

TABLE I. Internal symmetries of Cooper pairs allowed for
even-parity pairing. The irreps of the point group Oh and the
pairing matrices are given. The matrix UT = exp(i⇡Ĵy) is the
unitary part of the time-reversal operator.
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even parity are listed in Table I, together with the cor-
responding irreps.  and � are field operators on a basis
of j = 3/2 fermions.
Transforming the interaction to momentum space and

restricting ourselves to the pairing of electrons with op-
posite momenta, we write the pairing Hamiltonian as

Hpair =
1
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where N is the number of unit cells. The coupling
strength contains contributions from the on-site inter-
action, Eq. (31), and from the nearest-neighbor interac-
tion, Eq. (32). The undoped semimetal has the Fermi
energy at the quadratic band-touching point and vanish-
ing electronic density of states, and thus does not show
superconductivity at weak coupling. Upon doping the
semimetal, a small Fermi surface will appear at the zone
center. We hence restrict our study to the even-parity
channel since odd-parity superconductivity has a vanish-
ing pairing amplitude at the � point and is thus typically
weak at this small Fermi surface.
The decomposition into the even-parity Cooper chan-

nels is performed in Appendix C. Here, we focus on the
limit of weak doping, i.e., kF ⌧ ⇡/a. In this limit, only
those terms that remain nonzero for k ! 0 are impor-
tant. The resulting pairing interaction then reads as
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where we define the product ⌦̄ to simplify the no-
tation such that for a given field operator cTk ⌘

(ck, 32 , ck, 12 , ck,� 1
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The first line of Eq. (36) refers to on-site pairing, whereas
the remaining terms result from nearest-neighbor inter-
actions. The latter terms can be understood as extended
s-wave pairing, and contain the matrix-valued functions

cA1g = (cxcy + cycz + czcx) ¯, (38)
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Ē1, Ē2
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with cµ = cos kµa. The prime signifies dependence on k0.
Full results are presented in Appendix C.

Equation (36) shows that on-site pairing in the A1g

and T2g channels is penalized by the Hubbard interac-
tion; in contrast, the on-site Eg pairing is immune to the
Hubbard repulsion U0, and there is no on-site interac-
tion in this channel. This is a key result of our work.
The nearest-neighbor interactions in Eq. (22) lead to the
momentum-dependent, extended s-wave pairing terms in
Eq. (36). In the strong-coupling limit, the pairing poten-
tials for extended s-wave pairing are
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It is clear from this formulation that the interaction in
the extended s-wave channels is always attractive.

B. A1g and T2g channels

Both the on-site and extended s-wave pairing poten-
tials in the A1g and T2g channels are nonzero. The states
will in general involve both components, e.g., in the case
of the A1g irrep we have �A1g = �o

¯ + �e cA1g . Fol-
lowing Ref. [28], the critical temperature of this mixed
state is obtained from the solution of the determinantal
equation
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!
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where go and ge are the interactions for the on-site and
extended s-wave channels, respectively, and the general-
ized superconducting susceptibilities are defined by

�ab = N0

Z
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4✏
hTr(�̂aP�̂†

b
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where N0 is the density of states at the Fermi energy,
and P projects onto the states at the Fermi surface.
The o↵-diagonal components in Eq. (44) account for

the overlap between the on-site and extended s-wave
states. Close to the Brillouin-zone center, the form factor
of the extended s-wave states is

cxcy + cycz + czcx ⇠= 3� |k|2a2. (46)

Assuming weak mass anisotropy of the quadratic bands,
the extended s-wave potentials should open an approxi-
mately isotropic gap at the Fermi surface; the gap opened
by the on-site potential is always isotropic. Accordingly,
the response of the system to the on-site and the ex-
tended s-wave gaps will be very similar, and we expect
the susceptibilities to be proportional, i.e., �ee ⇡ r2�oo

and �oe ⇡ r�oo, where r is the ratio of the gap opened by
the extended to the on-site potential. The determinantal
equation then reduces to

�oo =
1

go + r2ge
. (47)

For su�ciently large U0, the on-site repulsion will domi-
nate over the attractive extended s-wave pairing in Eqs.
(41)–(43), and the e↵ective coupling constant go + r2ge
will be repulsive. As such, we do not expect pairing in
the A1g or T2g channels in the strong-coupling limit.

C. Eg channels

We now turn our attention to the extended s-wave Eg

state. Since the Eg pairing avoids the on-site Hubbard
repulsion U0, the interaction potential in this channel
is always attractive, and it should be favored for su�-
ciently large U0. In the following, we consider which Eg

pairing state is expected to be realized. The Eg pairing
channel being two dimensional, the properties of the su-
perconducting state are determined by a two-component
order parameter �Eg ⌘ (�1,�2). A general Landau
free-energy expansion in terms of these parameters sug-
gests three possible ground states: (1, 0), (0, 1), and (1, i)
[15, 29]. The free energies of the (1, 0) and (0, 1) states
are not expected to be the same as the two states are not
related by any point-group operation [17, 22]. The third
state breaks TRS due to the imaginary number i and thus
has BFSs beyond infinitesimal coupling strength [16, 17].
Within the BCS formalism, the mean-field-decoupled

pairing interaction in the Eg channel takes the form

HBCS

pair
=

1

2N

X

k,k0

2X

m=1


�m(k)f(k0) c†k0Ēmc†T�k0

+�⇤
m
(k0)f(k) cT�kĒ

†
m
ck +

�m(k)�⇤
m
(k0)

V0

�
, (48)

with the two components of the two-dimensional Eg order
parameter

�1,2(k) = �V0f(k) hc
T

�kĒ
†
1,2

cki. (49)
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Here, f(k) = cxcy + cycz + czcx is the extended s-wave
form factor, V0 is the absolute value of the interaction
strength given by Eq. (42), and Ē1,2 are the pairing ma-
trices in the Eg channel of j = 3/2 fermions, see Table I
and Eqs. (A26)–(A28) in Appendix A.

To study superconductivity, we numerically solve the
gap equation at T = 0,

�m =
V0

2N

X

k,i2 occ

@|Ek,i|

@�m

, (50)

where �m = N�1
P

k �m(k), m = 1, 2, i represents the
band index, and the sum is over all occupied states, i.e.,
all states with Ek,i < 0. The derivatives can be calcu-
lated in analytical form since the problem of finding the
quasiparticle energies Ek,i reduces to the solution of a
quartic equation. Details of the numerical method are
relegated to Appendix D.

The free energy per unit cell at T = 0, i.e., the internal
energy per unit cell, reads as

F = �
1

N

X

k,i2 occ

|Ek,i|+
2X

m=1

|�m|
2

V0

. (51)

We compare the free energies for the three pairing states
and plot the free-energy gain, i.e., the condensation en-
ergy, on a logarithmic scale as a function of V0 and of
U0 in Fig. 2. For weak interactions V0 and thus small
gap, the energy gain is maximal for the TRS-broken (1, i)
state. Increasing V0, a first-order transition occurs to the
TRS-preserving (0, 1) state.

We can understand this result as follows: from Sigrist
and Ueda [29], (1, i) is expected to be the most stable
state in the weak-coupling limit since it has point nodes
and thus lower density of states close to the Fermi en-
ergy than the (1, 0) and (0, 1) states with line nodes. For
strong pairing interactions, however, the (1, i) state de-
velops large BFSs, which lead to large density of states
(DOS) and is thus no longer expected to be favored. The
TRS-preserving (0, 1) state is found to be more stable
than the also TRS-preserving (1, 0) state. They both
have two line nodes but for the (1, 0) state these nodes
cross each other, whereas for (0, 1) they do not. The
crossing leads to higher DOS at the Fermi energy and is
thus disfavored [29].

In Fig. 2(a), the data for small V0 also show the ex-
pected weak-coupling behavior Fn�Fs ⇠ e�A/V0 at T =
0 with some constant A; see also Appendix D. It is thus
safe to extrapolate this curve down to zero interaction,
which is not done here, though. In Fig. 2(b), the energy
gain vs. the Hubbard repulsion U0 shows nearly linear
behavior, which follows from the fact that log(Fn � Fs)
is linear in 1/V0 in weak-coupling BCS theory and that
V0 is inversely proportional to U0; see Eq. (42). The en-
ergies in Fig. 2 are given in units of tO. To estimate the
absolute energy scale, we note that the band width of the
four bands in the model is roughly 2.5 tO. Recent band-
structure calculations for various pyrochlore iridates by

Antonov et al. [30] predict band widths of about 600meV
to 800meV. This yields tO ⇡ 300meV. Using this value,
we find that the condensation energy in Fig. 2 is compa-
rable to that predicted by weak-coupling BCS theory in
elemental superconductors.
The di↵erences in condensation energy of the various

pairing states in Fig. 2 look rather small. This is in fact
a misleading impression of the logarithmic plot. The rel-
evant energy scale is the condensation energy itself. In
Fig. 3, we therefore plot the ratio of �F ⌘ Fn � Fs for
the (0, 1), (1, 0), and (1, i) states to �F for the (1, i)
state, which is favored over much of the considered range
of V0. Evidently, the energetic separation between the
three states is sizable on the relevant energy scale.

IV. CONCLUSIONS

In this work we have proposed the Hubbard model on
the pyrochlore lattice as a minimal tight-binding model
in which to study the superconductivity of emergent
j = 3/2 fermions. In particular, we have demonstrated
that doping the strong-coupling limit of the half-filled
Hubbard model on the pyrochlore lattice generates an
attractive interaction in the extended s-wave quintet Eg

channel. This attractive interaction results solely from
the Hubbard repulsion. The main point here is that
pairing in the Eg channel avoids a local repulsive inter-
action and so is driven by non-local attractive magnetic
interactions. For su�ciently strong on-site interaction,
the Eg pairing channel will be favored over competing
states in the A1g and T2g channels. Our numerical cal-
culation shows that this Eg pairing state likely breaks
time-reversal symmetry, and hence will support BFSs.
The time-reversal-symmetry-breaking state is compatible
with the d + id state found for a quasi-two-dimensional
model [9].
Our analysis has focused entirely on pairing in the low-

energy j = 3/2 states, which emerge from the charac-
teristic tetrahedral structural elements of the pyrochlore
lattice. However, close to the boundaries of the j = 3/2
semimetal phase shown in Fig. 1(b), doping the py-
rochlore lattice will typically produce Fermi pockets of
other bands elsewhere in the Brillouin zone. Since these
states do not generally have j = 3/2 character, care must
be taken in considering the significance of the pairing in-
teraction in these regions. In particular, the condition
that the gap be nonzero at the zone center is less rele-
vant, and the restriction to s-wave-like states is no longer
justified. Hence, it is promising to search for metallic py-
rochlores with small Fermi pockets around the � point.

ACKNOWLEDGMENTS

S. K. was supported by JSPS KAKENHI Grant No.
JP19K14612 and by the CREST project (JPMJCR16F2,
JPMJCR19T2) from Japan Science and Technology



7

0.38 0.4 0.42 0.44 0.46

V
0
 / t

O

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

(F
n
 −

 F
s) 

/ 
t O

E
g
 (0,1)

E
g
 (1,0)

E
g
 (1,i)

0.44 0.45

10
−3

0.375 0.38
10

−7

0.055 0.06 0.065

U
0
 / t

O

0.055 0.056 0.057

10
−3

0.066 0.067
10

−7

(a) (b)
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Appendix A: Derivation of Luttinger-Kohn
Hamiltonian

In this appendix, we review the derivation of the
Luttinger-Kohn Hamiltonian from the pyrochlore lat-
tice [8]. The Hamiltonian is obtained by project-
ing out the j = 1/2 subspaces and then expand-
ing up to the quadratic order in momentum. To
this end, we first provide the momentum-space form
of the Hamiltonian H =

P
a,a0

P
��0
P

k c
†
a,�,k[Ĥ0(k) +

ĤSO(k)]a,�;a0,�0ca0,�0,k with

Ĥ0(k) = F+

xy
�0 ⌦ �̂1 + F+

yz
�0 ⌦ �̂4 + F+

zx
�0 ⌦ �̂9

+ F�
zx
�0 ⌦ �̂6 + F�

yz
�0 ⌦ �̂11 + F�

xy
�0 ⌦ �̂13

(A1)

and

ĤSO(k) = (G+

xy
�x �G+

xy
�y +K�

xy
�z)⌦ �̂2

+ (G+

yz
�y �G+

yz
�z +K�

yz
�x)⌦ �̂5

+ (G+

zx
�z �G+

zx
�x +K�

zx
�y)⌦ �̂10



8

+ (G�
zx
�z +G�

zx
�x +K+

zx
�y)⌦ �̂7

� (G�
yz
�y +G�

yz
�z +K+

yz
�x)⌦ �̂12

+ (G�
xy
�x +G�

xy
�y +K+

xy
�z)⌦ �̂14, (A2)

where ca,�,k is a fermion annihilation operator for sub-
lattice a = 1, 2, 3, 4, see Fig. 4, and spin � = ", #. The
momentum dependence is represented by functions F±

ij
,

G±
ij
, and K±

ij
such that

F±
ij

= 2t1 cos(ki ± kj) + 4t0
1
cos(2kl) cos(ki ⌥ kj), (A3)

G±
ij
= �2t2 cos(ki ± kj)

+ 4(t0
2
+ t0

3
) cos(2kl) cos(ki ⌥ kj), (A4)

K±
ij

= 4(t0
2
� t0

3
) cos(2kl) sin(ki ⌥ kj), (A5)

where l 2 {x, y, z} \ {i, j} and the lattice constant has
been set to a = 4. �0 is the 2⇥ 2 identity matrix, �i are
the Pauli matrices, and �̂j are the SU(4) generators

�̂1 =

0

BBBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

CCCCA
, �̂2 =

0

BBBB@

0 �i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1

CCCCA
, (A6)

�̂3 =

0

BBBB@

1 0 0 0

0 �1 0 0

0 0 0 0

0 0 0 0

1

CCCCA
, �̂4 =

0

BBBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1

CCCCA
, (A7)

�̂5 =

0

BBBB@

0 0 �i 0

0 0 0 0

i 0 0 0

0 0 0 0

1

CCCCA
, �̂6 =

0

BBBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1

CCCCA
, (A8)

�̂7 =

0

BBBB@

0 0 0 0

0 0 �i 0

0 i 0 0

0 0 0 0

1

CCCCA
, �̂8 =

1
p
3

0

BBBB@

1 0 0 0

0 1 0 0

0 0 �2 0

0 0 0 0

1

CCCCA
,

(A9)

�̂9 =

0

BBBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

CCCCA
, �̂10 =

0

BBBB@

0 0 0 �i

0 0 0 0

0 0 0 0

i 0 0 0

1

CCCCA
, (A10)

�̂11 =

0

BBBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1

CCCCA
, �̂12 =

0

BBBB@

0 0 0 0

0 0 0 �i

0 0 0 0

0 i 0 0

1

CCCCA
, (A11)

�̂13 =

0

BBBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1

CCCCA
, �̂14 =

0

BBBB@

0 0 0 0

0 0 0 0

0 0 0 �i

0 0 i 0

1

CCCCA
, (A12)

�̂15 =
1
p
6

0

BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �3

1

CCCCA
. (A13)

We first examine the band degeneracy at the � point. In
the absence of spin-orbit coupling (t2 = t0

2
= t0

3
= 0),

the eight bands split into sixfold and twofold degenerate
bands. This can be seen by diagonalizing H0(k) through
the unitary transformation

S†
1
Ĥ0(0)S1 = �2(t1 + 2t0

1
)
p

6 �0 ⌦ �̂15, (A14)

with

S1 =
1

2
�0 ⌦

0

BBBB@

1 �1 1 �1

�1 1 1 �1

1 1 �1 �1

�1 �1 �1 �1

1

CCCCA
. (A15)

When the spin-orbit couplings are turned on, the six-
fold degeneracy further splits into twofold and fourfold
degenerate bands:

S†
2
S†
1
[H0(0) +HSO(0)]S1S2

= �2(t1 + 2t0
1
)
p

6 �0 ⌦ �̂15

� 4[t2 � 2(t0
2
+ t0

3
)]
p

3 �0 ⌦ �̂8, (A16)

under the unitary transformation with

S2 =

0

BBBBBBBBBBBBBBB@

i

2

i

2

1

2
p
3

�
1

2
p
3

0 �
1p
3

0 0

�
1

2
p
3

1

2
p
3

�
i

2
�

i

2

1p
3

0 0 0
1

2

1

2

i

2
p
3

�
i

2
p
3

0 �
ip
3

0 0
i

2
p
3

�
i

2
p
3

1

2

1

2
�

ip
3

0 0 0
1p
3

�
1p
3

0 0 1p
3

0 0 0

0 0 1p
3

�
1p
3

0 1p
3

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCCCA

.

(A17)
As a result, the eight energy bands are split into a j =
3/2 quartet and two j = 1/2 doublets. Since we are
interested in the j = 3/2 quartet, we hereafter project
the Hamiltonian onto the j = 3/2 subspace and discard
the j = 1/2 doublets. The dispersion relation around
the � point can be obtained by expanding the projected
Hamiltonian up to the quadratic order in momentum.
Applying yet another unitary transformation with

S3 =
1

2

0

BBBB@

1� i �1� i 0 0

1� i 1 + i 0 0

0 0 �1� i 1� i

0 0 1 + i 1� i

1

CCCCA
(A18)
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to the projected Hamiltonian results in a Luttinger-Kohn
Hamiltonian of the canonical form

ĤLK(k) =
�
E0 + ↵0

|k|2
�

4⇥4

+ �0
⇣p

3kykz�̂1 +
p

3kzkx�̂2 +
p

3kxky�̂3

⌘

+ �0
"p

3(k2
x
� k2

y
)

2
�̂4 +

(2k2
z
� k2

x
� k2

y
)

2
�̂5

#
,

(A19)

with

E0 = �2 [t1 + 2(t2 + t0
1
)� 4(t0

2
+ t0

3
)] , (A20)

↵0 =
2

3
[t1 + 2t2 + 6t0

1
� 12(t0

2
+ t0

3
)], (A21)

�0 = �
2

3
[t1 + 2(t2 � t0

1
� 2t0

2
+ 6t0

3
)] , (A22)

�0 = �
2

3
[t1 � t2 � 6(t0

1
+ t0

2
+ t0

3
)]. (A23)

Five mutually anticommuting � matrices are defined as

�̂1 =
1
p
3
{Ĵy, Ĵz}, �̂2 =

1
p
3
{Ĵz, Ĵx}, �̂3 =

1
p
3
{Ĵx, Ĵy},

(A24)

�̂4 =
Ĵ2
x
� Ĵ2

y
p
3

, �̂5 =
2Ĵ2

z
� Ĵ2

x
� Ĵ2

y

3
, (A25)

where the Ĵµ are the spin-3/2 matrices

Ĵx =
1

2

0

BBBB@

0
p
3 0 0

p
3 0 2 0

0 2 0
p
3

0 0
p
3 0

1

CCCCA
, (A26)

Ĵy =
i

2

0

BBBB@

0 �
p
3 0 0

p
3 0 �2 0

0 2 0 �
p
3

0 0
p
3 0

1

CCCCA
, (A27)

Ĵz =
1

2

0

BBBB@

3 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �3

1

CCCCA
. (A28)

Comparing Eq. (A19) with Eq. (14), we obtain the rela-
tionship between the coe�cients in the two Hamiltonians,

↵0 =

✓
↵+

5

4
�

◆
, �0 = �, �0 = �. (A29)

From the elements of the full unitary transformation ma-
trix S1S2S3, we can express the projection of the annihi-
lation operators in the site-spin basis onto the low-energy
j = 3/2 subspace at the Brillouin zone center:

c0,1," =
i

2
c0,3/2 �

1 + i

2
p
3
c0,1/2 �

1

2
p
3
c0,�1/2, (A30)

c0,1,# =
i

2
p
3
c0,1/2 �

1 + i

2
p
3
c0,�1/2 �

1

2
c0,�3/2, (A31)

c0,2," = �
i

2
c0,3/2 �

1 + i

2
p
3
c0,1/2 +

1

2
p
3
c0,�1/2, (A32)

c0,2,# = �
i

2
p
3
c0,1/2 �

1 + i

2
p
3
c0,�1/2 +

1

2
c0,�3/2,(A33)

c0,3," =
1

2
c0,3/2 +

1 + i

2
p
3
c0,1/2 �

i

2
p
3
c0,�1/2, (A34)

c0,3,# =
1

2
p
3
c0,1/2 +

1 + i

2
p
3
c0,�1/2 �

i

2
c0,�3/2, (A35)

c0,4," = �
1

2
c0,3/2 +

1 + i

2
p
3
c0,1/2 +

i

2
p
3
c0,�1/2, (A36)

c0,4,# = �
1

2
p
3
c0,1/2 +

1 + i

2
p
3
c0,�1/2 +

i

2
c0,�3/2,(A37)

where ck,n,� annihilates an electron with momentum
k and spin � at site n of the tetrahedron, and
ck,s̃ annihilates an electron with momentum k and
s̃ = �3/2,�1/2, 1/2, 3/2. Although the coe�cients in
Eqs. (A30)–(A37) will be momentum-dependent away
from k = 0, we continue to use the k = 0 coe�cients
since the j = 3/2 description is only valid su�ciently
close to the Brillouin-zone center, where the zero-order
contributions to these coe�cients dominate. Within this
approximation, it follows that the coe�cients ua,�,j in
Eq. (29) are identical to the coe�cients appearing in
Eqs. (A30)–(A37).

Appendix B: Interactions projected onto the j = 3/2
subspace

In this appendix, we derive the explicit form of the on-
site and nearest-neighbor interactions V and Va,a0 pro-
jected onto the j = 3/2 subspace. These are obtained by
substituting Eqs. (A30)–(A37) into Eqs. (31) and (32).
To obtain a compact description, we employ a symmetric
form presented in Ref. 14. A local interaction term can
be written as

gNM ( †N )(�†M�), (B1)

with coupling gNM , field operators in a basis of j = 3/2
fermions  and �, and 4⇥4 Hermitian matricesN andM .
In order to cover all possible interactions, we introduce
a basis of sixteen matrices that are irreducible tensor
operators of the point group Oh [14, 18]:

Ê1 = �̂4, (B2)

Ê2 = �̂5, (B3)

T̂i = �̂i, (B4)

Ĵi =
2
p
5
Ĵi, (B5)

Ŵi =
2
p
5

3

✓
Ĵ3

i
�

41

20
Ĵi

◆
, (B6)



10

Ŵ 0
i
=

1
p
3

h
Ĵi,
⇣
Ĵ2

i+1
� Ĵ2

i+2

⌘i
, (B7)

Ŵ7 =
2
p
3
(ĴxĴyĴz + ĴzĴyĴx), (B8)

and the 4 ⇥ 4 identity matrix . Here, i = x, y, z and
i + 1 and i + 2 are understood cyclically. These sixteen
matrices satisfy

Tr(ÂB̂) = 4�
Â,B̂

. (B9)

Of these matrices, belongs to the irrep A1g, Ê1 and Ê2

belong to Eg, T̂i belong to T2g, Ĵi and Ŵi belong to T1g,

Ŵ 0
i
belong to T2g, and Ŵ7 belongs to A2g [18].

In the following, we show an explicit form of onsite
and nearest-neighbor interactions using the sixteen basis
matrices. We employ a vector notation with

~̂T = (T̂1, T̂2, T̂3) (B10)

etc.

1. On-site interaction

We first consider the on-site interaction, which is read-
ily calculated as

V =
U0

8
ˆ ⌦̂ ˆ +

U0

24
~̂T ⌦̂

~̂T, (B11)

where the product ⌦̂ is defined by
X

↵,↵0,�,�0

(Â ⌦̂ B̂)↵↵0;��0  †
↵
 ↵0 †

�
 �0

=
X

↵,↵0,�,�0

Â↵↵0B̂��0  †
↵
 ↵0 †

�
 �0

=

0

@
X

↵,↵0

 †
↵
Â↵↵0 ↵0

1

A

0

@
X

�,�0

 †
�
B̂��0 �0

1

A

⌘ ( †Â )( †B̂ ) (B12)

and if Â and B̂ are vectors of equal dimension, summa-
tion over their components is implied. The results for the
e↵ective interactions in each channel reveal that the on-
site Hubbard interaction is relevant for the s-wave A1g

and T2g channels, but that the s-wave Eg channels are
insensitive to this interaction.

2. Charge-charge interaction

Next, we consider the nearest-neighbor interactions,
given by the second term in Hint, see Eq. (30). We make
the numbers i, j of the tetrahedra, i.e., the sites, explicit
by writing
X

hi,jiaa0

X

↵,↵0

X

�,�0

[Va,a0 ]↵↵0;��0c†
i,↵

c
i,↵0c†

j,�
c
j,�0

=
X

hi,jiaa0

X

↵,↵0

X

�,�0

[Via,ja0 ]↵↵0;��0c†
i,↵

c
i,↵0c†

j,�
c
j,�0 (B13)

and symmetrize the interaction by rewriting the previous
expression as

1

2

X

hi,jiaa0

X

↵,↵0

X

�,�0

[Via,ja0 + Vja0,ia]↵↵0;��0c†
i,↵

c
i,↵0c†

j,�
c
j,�0 .

(B14)
The interaction strength is given by Eq. (32). It can be
written in terms of expressions depending on the sites
i, j and expressions depending on the orientation of the
bond (aa0) between the corners a and a0 of the elementary
tetrahedron, see Fig. 4, as

Via,ja0 + Vja0,ia = V 0

ij
+cyz2

aa0V 1

ij
+cxz2

aa0V 2

ij
+cxy2

aa0V 3

ij

+cyzaa0V 4

ij
+cxzaa0V 5

ij
+cxyaa0V 6

ij
, (B15)

where

cyzaa0 =

8
><

>:

1 if (aa0) = (13),

�1 if (aa0) = (24),

0 otherwise,

(B16)

cxzaa0 =

8
><

>:

1 if (aa0) = (14),

�1 if (aa0) = (23),

0 otherwise,

(B17)

cxyaa0 =

8
><

>:

1 if (aa0) = (12),

�1 if (aa0) = (34),

0 otherwise.

(B18)

Here, we take (aa0) = (a0a). The coe�cients V 0

ij
etc.

can be obtained by substituting the coe�cients from
Eqs. (A30)–(A37) into Eq. (32).
The charge-charge interaction is given by the first

term in Eq. (32). Substituting the coe�cients from
Eqs. (A30)–(A37) into Eq. (32), this interaction is cal-
culated as

V U1,0

ij
=

U1

8
ˆ
i ⌦̂

ˆ
j

�
U1

24

⇣
T̂1i ⌦̂ T̂1j + T̂2i ⌦̂ T̂2j + T̂3i ⌦̂ T̂3j

⌘
,

(B19)

V U1,1

ij
=

U1

12
T̂1i ⌦̂ T̂1j , (B20)

V U1,2

ij
=

U1

12
T̂2i ⌦̂ T̂2j , (B21)

V U1,3

ij
=

U1

12
T̂3i ⌦̂ T̂3j , (B22)

V U1,4

ij
= �

U1

4
p
3
{ˆ, T̂1}ij �

U1

12
{T̂2, T̂3}ij , (B23)

V U1,5

ij
= �

U1

4
p
3
{ˆ, T̂2}ij �

U1

12
{T̂1, T̂3}ij , (B24)

V U1,6

ij
= �

U1

4
p
3
{ˆ, T̂3}ij �

U1

12
{T̂1, T̂2}ij , (B25)

where we define {Â, B̂}ij ⌘
1

2
(Âi ⌦̂ B̂j + B̂i ⌦̂ Âj).
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3. Heisenberg interaction

The Heisenberg interaction is given by the second term
in Eq. (32). In a similar manner, the Heisenberg inter-

action is also represented by the irreducible spin tensors,
which yields

V J,0

ij
=

5J

288

⇣
Ĵ1i ⌦̂ Ĵ1j + Ĵ2i ⌦̂ Ĵ2j + Ĵ3i ⌦̂ Ĵ3j

⌘
�

J

96
Ŵ7i ⌦̂ Ŵ7j , (B26)

V J,1

ij
= �

J

720
Ĵ1i ⌦̂ Ĵ1j �

J

80
Ŵ1i ⌦̂ Ŵ1j �

J

48
Ŵ 0

1i
⌦̂ Ŵ 0

1j

+
J

120
{Ĵ1, Ŵ1}ij �

J

8
p
15

⇣
{Ŵ2, Ŵ

0
2
}ij � {Ŵ3, Ŵ

0
3
}ij

⌘
+

J

24
p
15

⇣
{Ĵ2, Ŵ

0
2
}ij � {Ĵ3, Ŵ

0
3
}ij

⌘
, (B27)

V J,2

ij
= �

J

720
Ĵ2i ⌦̂ Ĵ2j +

J

80
Ŵ2i ⌦̂ Ŵ2j �

J

48
Ŵ 0

2i
⌦̂ Ŵ 0

2j

+
J

120
{Ĵ2, Ŵ2}ij �

J

8
p
15

⇣
{Ŵ3, Ŵ

0
3
}ij � {Ŵ1, Ŵ

0
1
}ij

⌘
+

J

24
p
15

⇣
{Ĵ3, Ŵ

0
3
}ij � {Ĵ1, Ŵ

0
1
}ij

⌘
, (B28)

V J,3

ij
= �

J

720
Ĵ3i ⌦̂ Ĵ3j �

J

80
Ŵ3i ⌦̂ Ŵ3j �

J

48
Ŵ 0

3i
⌦̂ Ŵ 0

3j

+
J

120
{Ĵ3, Ŵ3}ij �

J

8
p
15

⇣
{Ŵ1, Ŵ

0
1
}ij � {Ŵ2, Ŵ

0
2
}ij

⌘
+

J

24
p
15

⇣
{Ĵ1, Ŵ

0
1
}ij � {Ĵ2, Ŵ

0
2
}ij

⌘
, (B29)

V J,4

ij
= �

11J

720
{Ĵ2, Ĵ3}ij �

J

80
{Ŵ2, Ŵ3}ij +

J

8
p
15

{Ŵ1, Ŵ7}ij +
J

48
{Ŵ 0

2
, Ŵ 0

3
}ij +

J

16
p
15

⇣
{Ŵ2, Ŵ

0
3
}ij � {Ŵ3, Ŵ

0
2
}ij

⌘

�
7J

48
p
15

{Ĵ1, Ŵ7}ij +
J

40

⇣
{Ĵ2, Ŵ3}ij + {Ĵ3, Ŵ2}ij

⌘
+

J

12
p
15

⇣
{Ĵ2, Ŵ

0
3
}ij � {Ĵ3, Ŵ

0
2
}ij

⌘
, (B30)

V J,5

ij
= �

11J

720
{Ĵ3, Ĵ1}ij �

J

80
{Ŵ3, Ŵ1}ij +

J

8
p
15

{Ŵ2, Ŵ7}ij +
J

48
{Ŵ 0

3
, Ŵ 0

1
}ij +

J

16
p
15

⇣
{Ŵ3, Ŵ

0
1
}ij � {Ŵ1, Ŵ

0
3
}ij

⌘

�
7J

48
p
15

{Ĵ2, Ŵ7}ij +
J

40

⇣
{Ĵ3, Ŵ1}ij + {Ĵ1, Ŵ3}ij

⌘
+

J

12
p
15

⇣
{Ĵ3, Ŵ

0
1
}ij � {Ĵ1, Ŵ

0
3
}ij

⌘
, (B31)

V J,6

ij
= �

11J

720
{Ĵ1, Ĵ2}ij �

J

80
{Ŵ1, Ŵ2}ij +

J

8
p
15

{Ŵ3, Ŵ7}ij +
J

48
{Ŵ 0

1
, Ŵ 0

2
}ij +

J

16
p
15

⇣
{Ŵ1, Ŵ

0
2
}ij � {Ŵ2, Ŵ

0
1
}ij

⌘

�
7J

48
p
15

{Ĵ3, Ŵ7}ij +
J

40

⇣
{Ĵ1, Ŵ2}ij + {Ĵ2, Ŵ1}ij

⌘
+

J

12
p
15

⇣
{Ĵ1, Ŵ

0
2
}ij � {Ĵ2, Ŵ

0
1
}ij

⌘
. (B32)

4. Dzyaloshinski-Moriya interaction

The Dzyaloshinskii-Moriya interaction is given by the third term in Eq. (32), where dij = �dji is a vector per-
pendicular to the bond (ij) and takes the values d12 = (1,�1, 0), d13 = (0, 1,�1), d14 = (�1, 0, 1), d23 = (1, 0, 1),
d24 = (0,�1,�1), and d34 = (1, 1, 0). Here, we have set the lattice constant to a = 4. We obtain the interaction
terms

V D,0

ij
=

D

180

⇣
Ĵ1i ⌦̂ Ĵ1j + Ĵ2i ⌦̂ Ĵ2j + Ĵ3i ⌦̂ Ĵ3j

⌘
�

D

80

⇣
Ŵ1i ⌦̂ Ŵ1j + Ŵ2i ⌦̂ Ŵ2j + Ŵ3i ⌦̂ Ŵ3j

⌘

+
D

48

⇣
Ŵ 0

1i
⌦̂ Ŵ 0

1j
+ Ŵ 0

2i
⌦̂ Ŵ 0

2j
+ Ŵ

0
3i
⌦̂ Ŵ 0

3j

⌘
�

D

80

⇣
{Ĵ1, Ŵ1}ij + {Ĵ2, Ŵ2}ij + {Ĵ3, Ŵ3}ij

⌘
+

D

24
Ŵ7i ⌦̂ Ŵ7j ,

(B33)

V D,1

ij
= �

7D

360
Ĵ1i ⌦̂ Ĵ1j +

D

80
Ŵ1i ⌦̂ Ŵ1j �

D

48
Ŵ 0

1i
⌦̂ Ŵ 0

1j
+

13D

240
{Ĵ1, Ŵ1}ij �

5D

48
p
15

⇣
{Ĵ2, Ŵ

0
2
}ij � {Ĵ3, Ŵ

0
3
}ij

⌘
,

(B34)

V D,2

ij
= �

7D

360
Ĵ2i ⌦̂ Ĵ2j +

D

80
Ŵ2i ⌦̂ Ŵ2j �

D

48
Ŵ 0

2i
⌦̂ Ŵ 0

2j
+

13D

240
{Ĵ2, Ŵ2}ij �

5D

48
p
15

⇣
{Ĵ3, Ŵ

0
3
}ij � {Ĵ1, Ŵ

0
1
}ij

⌘
,

(B35)
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V D,3

ij
= �

7D

360
Ĵ3i ⌦̂ Ĵ3j +

D

80
Ŵ3i ⌦̂ Ŵ3j �

D

48
Ŵ 0

3i
⌦̂ Ŵ 0

3j
+

13D

240
{Ĵ3, Ŵ3}ij �

5D

48
p
15

⇣
{Ĵ1, Ŵ

0
1
}ij � {Ĵ2, Ŵ

0
2
}ij

⌘
,

(B36)

V D,4

ij
=

D

90
{Ĵ2, Ĵ3}ij �

D

40
{Ŵ2, Ŵ3}ij �

D

8
p
15

{Ŵ1, Ŵ7}ij �
D

6
p
15

{Ĵ1, Ŵ7}ij +
5D

48
p
15

⇣
{Ĵ2, Ŵ

0
3
}ij � {Ĵ3, Ŵ

0
2
}ij

⌘

�
D

24
{Ŵ 0

2
, Ŵ 0

3
}ij �

D

80

⇣
{Ĵ2, Ŵ3}ij + {Ĵ3, Ŵ2}ij

⌘
, (B37)

V D,5

ij
=

D

90
{Ĵ3, Ĵ1}ij �

D

40
{Ŵ3, Ŵ1}ij �

D

8
p
15

{Ŵ2, Ŵ7}ij �
D

6
p
15

{Ĵ2, Ŵ7}ij +
5D

48
p
15

⇣
{Ĵ3, Ŵ

0
1
}ij � {Ĵ1, Ŵ

0
3
}ij

⌘

�
D

24
{Ŵ 0

3
, Ŵ 0

1
}ij �

D

80

⇣
{Ĵ3, Ŵ1}ij + {Ĵ1, Ŵ3}ij

⌘
, (B38)

V D,6

ij
=

D

90
{Ĵ1, Ĵ2}ij �

D

40
{Ŵ1, Ŵ2}ij �

D

8
p
15

{Ŵ3, Ŵ7}ij �
D

6
p
15

{Ĵ3, Ŵ7}ij +
5D

48
p
15

⇣
{Ĵ1, Ŵ

0
2
}ij � {Ĵ2, Ŵ

0
1
}ij

⌘

�
D

24
{Ŵ 0

1
, Ŵ 0

2
}ij �

D

80

⇣
{Ĵ1, Ŵ2}ij + {Ĵ2, Ŵ1}ij

⌘
. (B39)

5. Traceless symmetric interaction

The traceless symmetric interaction is given by the fourth term in Eq. (32), where �µ⌫

ij
splits into diagonal and

o↵-diagonal parts: �µ⌫

ij
= dµ

ij
d⌫
ij
(�0�µ⌫ + �1[1� �µ⌫ ]). The corresponding interaction terms are given by

V �,0

ij
=

13�0 � 5�1

720

⇣
Ĵ1i ⌦̂ Ĵ1j + Ĵ2i ⌦̂ Ĵ2j + Ĵ3i ⌦̂ Ĵ3j

⌘
+

�0

160

⇣
Ŵ1i ⌦̂ Ŵ1j + Ŵ2i ⌦̂ Ŵ2j + Ŵ3i ⌦̂ Ŵ3j

⌘

+
�0

96

⇣
Ŵ 0

1i
⌦̂ Ŵ 0

1j
+ Ŵ 0

2i
⌦̂ Ŵ 0

2j
+ Ŵ 0

3i
⌦̂ Ŵ 0

3j

⌘
�

�0 � 5�1

240

⇣
{Ĵ1, Ŵ1}ij + {Ĵ2, Ŵ2}ij + {Ĵ3, Ŵ3}ij

⌘

�
�0 + �1

48
Ŵ7i ⌦̂ Ŵ7j , (B40)

V �,1

ij
= �

7�0 � 2�1

360
Ĵ1i ⌦̂ Ĵ1j �

3�0 + 2�1

160
Ŵ1i ⌦̂ Ŵ1j �

3�0 � 2�1

96
Ŵ 0

1i
⌦̂ Ŵ 0

1j
+

�0 + �1

120
{Ĵ1, Ŵ1}ij

�
�0

16
p
15

⇣
{Ŵ2, Ŵ

0
2
}ij � {Ŵ3, Ŵ

0
3
}ij

⌘
+

�0 � 5�1

48
p
15

⇣
{Ĵ2, Ŵ

0
2
}ij � {Ĵ3, Ŵ

0
3
}ij

⌘
, (B41)

V �,2

ij
= �

7�0 � 2�1

360
Ĵ2i ⌦̂ Ĵ2j �

3�0 + 2�1

160
Ŵ2i ⌦̂ Ŵ2j �

3�0 � 2�1

96
Ŵ 0

2i
⌦̂ Ŵ 0

2j
+

�0 + �1

120
{Ĵ2, Ŵ2}ij

�
�0

16
p
15

⇣
{Ŵ3, Ŵ

0
3
}ij � {Ŵ1, Ŵ

0
1
}ij

⌘
+

�0 � 5�1

48
p
15

⇣
{Ĵ3, Ŵ

0
3
}ij � {Ĵ1, Ŵ

0
1
}ij

⌘
, (B42)

V �,3

ij
= �

7�0 � 2�1

360
Ĵ3i ⌦̂ Ĵ3j �

3�0 + 2�1

160
Ŵ3i ⌦̂ Ŵ3j �

3�0 � 2�1

96
Ŵ 0

3i
⌦̂ Ŵ 0

3j
+

�0 + �1

120
{Ĵ3, Ŵ3}ij

�
�0

16
p
15

⇣
{Ŵ1, Ŵ

0
1
}ij � {Ŵ2, Ŵ

0
2
}ij

⌘
+

�0 � 5�1

48
p
15

⇣
{Ĵ1, Ŵ

0
1
}ij � {Ĵ2, Ŵ

0
2
}ij

⌘
, (B43)

V �,4

ij
=

�5�0 + 13�1

360
{Ĵ2, Ĵ3}ij +

�1

80
{Ŵ2, Ŵ3}ij �

�1

48
{Ŵ 0

2
, Ŵ 0

3
}ij +

�1

16
p
15

⇣
{Ŵ2, Ŵ

0
3
}ij � {Ŵ3, Ŵ

0
2
}ij

⌘

+
5�0 � �1

240

⇣
{Ĵ2, Ŵ3}ij + {Ĵ3, Ŵ2}ij

⌘
+

5�0 � �1

48
p
15

⇣
{Ĵ2, Ŵ

0
3
}ij � {Ĵ3, Ŵ

0
2
}ij

⌘

+
�0 + �1

8
p
15

{Ŵ1, Ŵ7}ij �
�0 + �1

24
p
15

{Ĵ1, Ŵ7}ij , (B44)

V �,5

ij
=

�5�0 + 13�1

360
{Ĵ3, Ĵ1}ij +

�1

80
{Ŵ3, Ŵ1}ij �

�1

48
{Ŵ 0

3
, Ŵ 0

1
}ij +

�1

16
p
15

⇣
{Ŵ3, Ŵ

0
1
}ij � {Ŵ1, Ŵ

0
3
}ij

⌘

+
5�0 � �1

240

⇣
{Ĵ3, Ŵ1}ij + {Ĵ1, Ŵ3}ij

⌘
+

5�0 � �1

48
p
3

⇣
{Ĵ3, Ŵ

0
1
}ij � {Ĵ1, Ŵ

0
3
}ij

⌘

+
�0 + �1

8
p
15

{Ŵ2, Ŵ7}ij �
�0 + �1

24
p
15

{Ĵ2, Ŵ7}ij , (B45)
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V �,6

ij
=

�5�0 + 13�1

360
{Ĵ1, Ĵ2}ij +

�1

80
{Ŵ1, Ŵ2}ij �

�1

48
{Ŵ 0

1
, Ŵ 0

2
}ij +

�1

16
p
15

⇣
{Ŵ1, Ŵ

0
2
}ij � {Ŵ2, Ŵ

0
1
}ij

⌘

+
5�0 � �1

240

⇣
{Ĵ1, Ŵ2}ij + {Ĵ2, Ŵ1}ij

⌘
+

5�0 � �1

48
p
3

⇣
{Ĵ1, Ŵ

0
2
}ij � {Ĵ2, Ŵ

0
1
}ij

⌘

+
�0 + �1

8
p
15

{Ŵ3, Ŵ7}ij �
�0 + �1

24
p
15

{Ĵ3, Ŵ7}ij . (B46)

Appendix C: E↵ective interactions in the
even-parity Cooper channel

We here demonstrate a decomposition of the interac-
tion terms (31) and (32) into the even-parity Cooper
channels. The decomposition takes place through the
generalized Fierz identity [14]

( †N )(�†M�) =
X

Â,B̂

fNM (Â, B̂) ( †Ā�†T )(�T B̄† ),

(C1)
with

fNM (Â, B̂) =
1

16
Tr(U †

T
ÂNB̂UTM

T ) (C2)

and Ā ⌘ ÂUT , where UT is the unitary part of the time-
reversal operator. In deriving Eq. (C1), we have used
the orthogonality relation in Eq. (B9). This approach
is useful for the construction of the e↵ective interaction
because the coe�cients fNM (Â, B̂) are given explicitly
by the trace formula (C2).

In the following, we apply Eq. (C1) to the interaction
terms and decompose them into the even-parity channels,
i.e., Â, B̂ 2 { , Ê1, Ê2, T̂1, T̂2, T̂3}. The even-parity pairs
satisfy (ÂUT )T = �ÂUT due to the Fermi statistics. To
this end, we first transform the interaction to momentum
space and restrict it to pairing of electrons with opposite
momenta,

Hpair =
1

2N

X

k,k0

X

↵,�,↵0,�0

[Vk,k0 ]↵�;↵0�0

⇥ c†k,↵c
†
�k,�c�k0,↵0ck0,�0 . (C3)

The coupling strength contains contributions from the
on-site interaction, Eq. (31), and from the nearest-
neighbor interaction, Eq. (32), as

Vk,k0 = V o

k,k0 + V e

k,k0 . (C4)

From the trace formula (C2), we obtain the on-site part

V o

k,k0 =
U0

8
¯ ⌦̄ ¯ +

U0

24
~̄T ⌦̄

~̄T, (C5)

where the product ⌦̄ is defined by, for a given field oper-
ator cTk ⌘ (ck, 32 , ck, 12 , ck,� 1

2
, ck,� 3

2
),

X

↵,�,↵0,�0

(Ā ⌦̄ B̄)↵�;↵0�0 c†k,↵c
†
�k,�c�k0,↵0ck0,�0

⌘

X

↵,�,↵0,�0

Ā↵�B̄
⇤
�0↵0 c†k,↵c

†
�k,�c�k0,↵0ck0,�0

=

0

@
X

↵,�

c†k,↵Ā↵�c
†
�k,�

1

A

0

@
X

↵0,�0

c�k0,↵0B̄⇤
�0↵0ck0,�0

1

A

= (c†kĀc†T�k)(c
T

�k0B̄†ck0). (C6)

If Ā and B̄ are vectors of equal dimension, summation
over their components is implied.

The coe�cients of the nearest-neighbor interaction are
also determined from the trace formula; the result com-
prises extended s-wave and d -wave channels. For in-
stance, the charge-charge interaction is decomposed into
Cooper channels in terms of irreps of Oh as

V e, U1

k,k0 =
U1

18
cA1g ⌦̄ c0

A1g
+

U1

12
c(E)

A1g
⌦̄ c(E)0

A1g
+

U1

6
s(T )

A1g
⌦̄ s(T )0

A1g
�

U1

6
p
3

⇣
cA1g ⌦̄ s(T )0

A1g
+ s(T )

A1g
⌦̄ c0

A1g

⌘
+

U1

12
c (E)

A2g
⌦̄ c (E)0

A2g

+
U1

12
~cEg ⌦̄ ~c 0

Eg
+

U1

9
~c (E)

Eg
⌦̄ ~c (E)0

Eg
+

U1

12
~̃c (E)

Eg
⌦̄ ~̃c (E)0

Eg
+

U1

4
~s (T )

Eg
⌦̄ ~s (T )0

Eg
+

U1

4
p
3

⇣
~cEg ⌦̄ ~s (T )0

Eg
+ ~s (T )

Eg
⌦̄ ~c 0

Eg

⌘

+
U1

12

⇣
~c (T )

T1g
+ ~s (T )

T1g

⌘
⌦̄

⇣
~c (T )0
T1g

+ ~s (T )0
T1g

⌘
+

U1

3
~s (E)

T1g
⌦̄ ~s (E)0

T1g
+

5U1

54
~c (T )

T2g
⌦̄ ~c (T )0

T2g
+

7U1

108
~̃c (T )

T2g
⌦̄ ~̃c (T )

T2g

+
U1

6
~sT2g ⌦̄ ~s 0

T2g
+

U1

3
~s (E)

T2g
⌦̄ ~s (E)0

T2g
+

U1

12
~s (T )

T2g
⌦̄ ~s (T )0

T2g
�

U1

27

⇣
~c (T )

T2g
⌦̄ ~̃c (T )0

T2g
+ ~̃c (T )

T2g
⌦̄ ~c (T )0

T2g

⌘

�
U1

6
p
3

⇣
~c (T )

T2g
⌦̄ ~s 0

T2g
+ ~sT2g ⌦̄ ~c (T )0

T2g

⌘
�

U1

18

⇣
~c (T )

T2g
⌦̄ ~s (T )0

T2g
+ ~s (T )

T2g
⌦̄ ~c (T )0

T2g

⌘
+

U1

6
p
3

⇣
~̃c (T )

T2g
⌦̄ ~s 0

T2g
+ ~sT2g ⌦̄ ~̃c (T )0

T2g

⌘
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TABLE II. All even-parity nearest-neighbor pairing states and the corresponding irreps of the point group Oh. We adopt the
abbreviations cµ = cos kµa, sµ = sin kµa. The symbols ¯ etc. are defined in Table I. Entries that are nonzero at the � point
are marked in the rightmost column.

irrep pairing state nonzero at �

A1g cA1g = (cycz + cxcz + cxcy)¯
p

c
(E)
A1g

= (cxcz � cycz)Ē1 + 1p
3
(cycz + cxcz � 2cxcy)Ē2

s
(T )
A1g

= syszT̄1 + sxszT̄2 + sxsyT̄3

A2g c
(E)
A2g

= (cxcz � cycz)Ē2 � 1p
3
(cycz + cxcz � 2cxcy)Ē1

Eg ~cEg =
⇣
cxcz � cycz,

1p
3
(cycz + cxcz � 2cxcy)

⌘
¯

~c
(E)
Eg

= (cycz + cxcz + cxcy)
�
Ē1, Ē2

� p

~̃c
(E)
Eg

=
⇣
(cxcz � cycz)Ē2 + 1p

3
(cycz + cxcz � 2cxcy)Ē1, (cxcz � cycz)Ē1 � 1p

3
(cycz + cxcz � 2cxcy)Ē2

⌘

~s
(T )
Eg

=
⇣
syszT̄1 � sxszT̄2,

1p
3
(2sxsyT̄3 � syszT̄1 � sxszT̄2)

⌘

T1g ~c
(T )
T1g

=
�
(cxcz � cxcy)T̄1, (cxcy � cycz)T̄2, (cycz � cxcz)T̄3

�

~s
(E)
T1g

=
�
1
2sysz(

p
3Ē2 + Ē1), 1

2sxsz(
p
3Ē2 � Ē1), sxsyĒ1

�

~s
(T )
T1g

=
�
(sxsyT̄2 � sxszT̄3), (syszT̄3 � sxsyT̄1), (sxszT̄1 � syszT̄2)

�

T2g ~c
(T )
T2g

= (cycz + cxcz + cxcy)
�
T̄1, T̄2, T̄3

� p

~̃c
(T )
T2g

=
�
(cxcy + cxcz � 2cycz)T̄1, (cxcy + cycz � 2cxcz)T̄2, (cycz + cxcz � 2cxcy)T̄3

�

~sT2g = (sysz, sxsz, sxsy)¯

~s
(E)
T2g

=
�
1
2sysz(

p
3Ē1 � Ē2),� 1

2sxsz(
p
3Ē1 + Ē2), sxsyĒ2

�

~s
(T )
T2g

=
�
(sxsyT̄2 + sxszT̄3), (syszT̄3 + sxsyT̄1), (sxszT̄1 + syszT̄2)

�

�
U1

36

⇣
~̃c (T )

T2g
⌦̄ ~s (T )0

T2g
+ ~s (T )

T2g
⌦̄ ~̃c (T )0

T2g

⌘
, (C7)

where the representations of pairing states (matrix-
valued functions) are tabulated in Table II and the prime
refers to the primed momentum coordinates. A general
analysis taking into account all contributions to the in-
teraction and all pairing channels would be extremely
laborious. However, we should bear in mind that the
projection to the j = 3/2 subspace is only valid close to
the � point. Most of the states tabulated in Table II are
quadratic in k close to � (i.e., d -wave like); the excep-
tions are the three states marked in Table II, which cor-
respond to the extended s-wave form factor, and which
have a finite value at the � point. Since the extended
s-wave states have similar coupling constants compared
to the d -wave states, we expect that for su�ciently small
chemical potential relative to the band touching point
the extended s-wave states will be the leading instabil-
ities since the d -wave states will open a much smaller
gap at the Fermi surface. We similarly expect that p-
wave states in the odd parity channel will not be leading
instabilities. We can thus ignore the d -wave states and
focus upon the s-wave states, and so approximate the
pairing interaction from the charge-charge coupling as

V e, U1

k,k0 ⇡
U1

18
cA1g ⌦̄ c0

A1g
+

U1

9
~c (E)

Eg
⌦̄ ~c (E)0

Eg

+
5U1

54
~c (T )

T2g
⌦̄ ~c (T )0

T2g
. (C8)

For the same reason, we ignore the d -wave states for the
spin interactions. Using the same procedure, the pairing
interaction from the spin coupling is obtained as

V e, spin

k,k0 ⇡

✓
�

J

216
�

D

27
�

�0 � 2�1

108

◆
cA1g ⌦̄ c0

A1g

+

✓
�

J

108
+

D

27
�

�0 + �1

54

◆
~c (E)

Eg
⌦̄ ~c (E)0

Eg

+

✓
J

216
�

D

27
+

�0 + 2�1

108

◆
~c (T )

T2g
⌦̄ ~c (T )0

T2g
.

(C9)

Equations (C5), (C8), and (C9) correspond to Eq. (36).

Appendix D: Details of numerical solution of the
gap equation

In this Appendix, we provide some background on the
numerical solution of the BCS gap equation for the Eg or-
der parameter (�1,�2). A more detailed discussion will
be given in a future work [31]. Both the gap equation (50)
and Eq. (51) for the internal energy involve integration
over the three-dimensional Brillouin zone, which is the
main complication compared to the textbook calculation
for a parabolic band. In Eq. (51), we take the di↵erence
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of the momentum contributions to the internal energy in
the normal state and in the superconducting state first
and then perform the integral to get Fn � Fs plotted in
Fig. 2. This strongly reduces round-o↵ errors.

The main problem for accurate numerics then stems
from the form of the integrand. We here discuss the case
of Eq. (51), the situation for Eq. (50) is analogous. For
a simple parabolic band and constant pairing amplitude
�, the integrand is proportional to

�✏k =
q
⇠2k +�2 � ⇠k, (D1)

where ⇠k is the normal-state dispersion relative to the
chemical potential. (In our case the expression is more
complicated but the essential points remain.) The ra-
dial integral diverges logarithmically at large momenta k.
The integral is cut o↵ at large k corresponding to an en-
ergy scale ⇤, leading to a term proportional to ln(�/⇤).
The appearance of the large scale ⇤ and the small scale
� shows that the integral is sensitive to the whole of
momentum space. For our lattice model, the integral is
naturally cut o↵ by the finite Brillouin zone but still the
full Brillouin zone is important for accurate results.

We perform the integrals using spherical coordinates.
The radial integral is performed first, inside the angu-
lar integrals. From Eq. (D1), we expect that momenta
close to the normal-state Fermi momentum kF will con-
tribute most and, since ⇠k is linear in k, the integrand
changes on a momentum scale proportional to �. There-
fore, we split the radial integral into four parts [0, kF�k1],
[kF �k1, kF ], [kF , kF +k2], and [kF +k2, kBZ(✓,�)], where
k1 and k2 are proportional to � at kF and kBZ(✓,�) de-
scribes the surface of the Brillouin zone in the direction
✓, �. The constants of proportionality in k1 and k2 are

chosen so as to minimize numerical noise. The integrals
are performed using globally adaptive sampling as imple-
mented in Mathematica (version 12) with the accuracy
goal typically set to 18 digits and the maximum number
of recursions set to 12 for the two outer intervals and to
8 for the two inner intervals.
The resulting integrand for the wrapping integrals over

angles ✓ and � is a well-behaved function. For these in-
tegrals, we also use globally adaptive sampling, with the
accuracy goal set to 18 digits and the maximum number
of recursions set to 4.
The main diagnostics for the quality of the numerical

integration are (a) the observation that it gives smooth
Fn�Fs and also � (not shown) vs. V0 down to very small
Fn�Fs and � and (b) that the results in this range agree
with the expected scaling for weak-coupling BCS theory.
The numerical noise is small compared to the thickness
of the lines in Fig. 2. Also note that the crossings of
lines in Figs. 2(a) and (b) take place in a range where �
and Fn � Fs are so large that the numerical integration
is unproblematic in any case. The BCS scaling results
from the leading terms in the energy di↵erence being

Fs � Fn = a�2 ln
�

⇤
+ b�2 + c

�2

V0

, (D2)

where a, b, c are constants. The first two terms are
due to the quasiparticle contribution, whereas the third
stems from the mean-field decoupling. Minimization with
respect to � gives the BCS results � ⇠ e�c/aV0 and
Fs � Fn ⇠ �e�2c/aV0 . This leads to

ln
Fn � Fs

t⇡
⇠= const�

2c

aV0

, (D3)

which is seen in Fig. 2(a).

[1] D. Pesin and L. Balents, Mott physics and band topol-
ogy in materials with strong spinorbit interaction, Nature
Phys. 6, 376 (2010).

[2] X. Wan, A. M. Turner, A. Vishwanath, and S. Y.
Savrasov, Topological semimetal and Fermi-arc surface
states in the electronic structure of pyrochlore iridates,
Phys. Rev. B 83, 205101 (2011).

[3] W. Witczak-Krempa and Y. B. Kim, Topological and
magnetic phases of interacting electrons in the pyrochlore
iridates, Phys. Rev. B 85, 045124 (2012).

[4] W. Witczak-Krempa, A. Go, and Y. B. Kim, Pyrochlore
electrons under pressure, heat, and field: shedding light
on the iridates, Phys. Rev. B 87, 155101 (2013).

[5] E. K.-H. Lee, S. Bhattacharjee, and Y. B. Kim, Magnetic
excitation spectra in pyrochlore iridates, Phys. Rev. B
87, 214416 (2013).

[6] L. Savary, E.-G. Moon, and L. Balents, New Type of
Quantum Criticality in the Pyrochlore Iridates, Phys.
Rev. X 4, 041027 (2014).
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