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Abstract.  [Ni(HF2)(3-Clpyradine)4]BF4 (NBCT) is a one-dimensional (1-D), S = 1 spin chain 

material that shows no long range magnetic order down to thermometer temperatures of 0.1 K.  

Previous ambient pressure inelastic neutron scattering experiments identified NBCT to be in the 

large-D quantum paramagnetic phase of the D/J phase diagram, where D is the axial single-ion 

anisotropy and J is the intrachain superexchange.  Here, we extend the previous experiments to a 

hydrostatic pressure of 0.9 GPa.  By comparing to density matrix renormalization group 

calculations, we find D/J increases from 1.5 to 3.2 as pressure increases from 0 GPa to 0.9 GPa, 

which pushes the system further into the large-D phase. 

*pajerowskidm@ornl.gov 

I. Introduction 

Recently, there has been a correction to the trajectory for considering and discussing states of 

condensed matter.  Namely, it is being emphasized that classification of states by ordering and 

symmetry is not sufficient for some phases and instead there must be a topological 

classification  [1].  The S = 1 spin chain is one of the simpler systems that is a gateway to the 

panoply of proposed topological states. 

One spin Hamiltonian for an anisotropic S = 1 spin chain may be written as 

𝐻 = 𝐽 ∑ 𝑺𝑖 ∙ 𝑺𝑖+1

𝑖

+ 𝐽′ ∑ 𝑺𝑖 ∙ 𝑺𝑗

〈𝑖,𝑗〉

+ 𝐷 ∑(𝑆𝑖
𝑧)2

𝑖

+ 𝐸 ∑ [(𝑆𝑖
𝑥)2 − (𝑆𝑖

𝑦
)

2
 ]

𝑖

 
(1) 

where Si = (Si
x, Si

y, Si
z), J > 0 is the antiferromagnetic (AFM) intrachain (super)exchange energy, 

J’ is the interchain (super)exchange energy, the <i, j> summation is between neighboring chains, 

D is the single-ion axial anisotropy, and E is the single-ion rhombic anisotropy.  The phase 

diagram for D, E, and J was calculated in reference [2] and a portion is shown in Figure 1.  

Further complexities may be included, such as anisotropic exchange in the so-called XXZ 

chains [3,4].  The bellwether S = 1 case that only considers isotropic AFM intrachain interactions 

has a nondegenerate gapped ground state that is called the Haldane phase [5–7].  Eventually, this 
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Haldane phase was categorized as symmetry-protected topological phase with short-range 

entanglement [8].  Application of other terms in equation 1 tunes the ground state away from the 

Haldane phase, such as for the J’ = 0 and E = 0 critical easy-plane (D/J)C = 0.96845 ratio [3] or 

the J’ = 0 and E = 0 critical easy-axis (D/J)C = –0.32 ratio [4,9].  The large-D phase is a product 

state of |Sz
i = 0> sites and is topologically distinct from the Haldane phase.  Therefore, moving 

across the quantum phase transition out of the Haldane phase as a function of D/J (or other 

parameters in equation 1) is a topological phase transition, and there is no order parameter that 

changes during the phase transition. 

 

 

Figure 1.  Anisotropic spin chain phase diagram.  

The theoretical boundary is from reference [2].  

The point for NBCT at 0 GPa is from 

reference [10] and the 0.9 GPa point for NBCT is 

from this work.  The uncertainty bars for NBCT 

data are derived from model fitting. 

 

 

Even before the heightened necessity of explicit topological descriptors for quantum states, the S 

= 1 anisotropic spin was the subject of extensive theoretical and experimental efforts.  A 

summary of some experimental realization of S = 1 spin chains shows that most compounds are 

either deep in the Haldane phase (D/J ≲ 0.25) or deep in the large-D phase (D/J ≳ 4)  [11,12].  

One exception being the [Ni(HF2)(3-Clpyradine)4]BF4 (NBCT) compound that bulk 

measurements assigned to D/J = 0.88 [13].  Inelastic neutron scattering (INS) of an isotopically 

doped polycrystalline NBCT compound later assigned D/J = 1.51 and E/J = 0.05 [10] based upon 

the spin correlations that were fit to density matrix renormalization group (DMRG) calculations.  

The small (<0.1 meV) gap observed for NBCT is consistent with the upper limit on the critical 

field (HC ≲ 35 ± 10 mT) seen in 50 mK magnetization measurements [14]. 

The NBCT crystal is a coordination polymer that crystallizes in the P21/c space group [13], 

Figure 2.  The magnetic chains are identified to be along the c-axis (c = 12.291 Å) that has F-H-

F– spin exchange between the formally S = 1 Ni2+ magnetic ions, as seen in density functional 
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theory calculations [13] and the INS [10].  There are two Ni2+ sites within the unit cell along the 

chain so the AFM zone center is at a momentum of 2π/c = 0.511 Å–1.   These Ni2+ sites have 

distorted octahedral coordination spheres with F-coordination along the c-axis chain direction 

and N-coordination in the plane of the octahedra.  The spins have an easy-axis anisotropy (D > 0) 

with a preferential direction in the N4 plane, as seen in the UV-visible spectroscopy [13] and the 

INS [10].  The pyridine rings provide a large separation between the chains (e.g. J’ << J), and no 

magnetic diffraction peaks were found down to 0.1 K [10], as well as no long-range order 

signatures in specific heat or muon relaxation down to 0.3 K [13].  All experimental evidence 

points to NBCT being described well by J, D, and E, although there has been no formal 

investigation of antisymmetric or anisotropic exchange and the low symmetry of the crystal 

allows all three components of the antisymmetric exchange and all nine components of the 

exchange tensor. 

This INS technique is especially diagnostic as it directly probes time and space magnetic 

correlations, and has been leveraged extensively for the investigation of spin chains [15].  These 

spin-spin correlations are observed in INS via the conjugate energy and momentum spaces.  The 

D = E = 0 Haldane phase has triply degenerate lattice periodic spin-spin correlations <SαSα> 

(where α = x,y,z) with the Haldane gap at the AFM zone center (often called the π-point).  

Numerical DMRG calculations find the Haldane phase gap at the π-point to be Δ = 0.41 J [16].  

As anisotropy is increased, this gap closes and goes to zero at the (D/J)C points described above.  

The introduction of axial D anisotropy breaks the degeneracy of longitudinal <SzSz> and 

transverse <SxSx> = <SySy> spin-spin correlations, so two lattice periodic modes are observed in 

the INS.  The further introduction of rhombic E anisotropy separates <SxSx> and <SySy> 

correlations to give three distinct modes.  The effects of these anisotropies on the spin-spin 

correlations may be captured by DMRG calculations. 

 

 

Figure 2.  Crystal structure of [Ni(HF2)(3-

Clpyridine-D4)4]
11BF4 (NBCT).  Atoms along 

magnetic interaction and in nickel coordination 

sphere are shown, other atom representations 

are suppressed but all nearest neighbor bonds 

are illustrated.  The green polyhedra are the 

BF4 units and the rings of bonds are the (3-

Clpyridine-D4).  Schema for the D and J 

 



5 
 

parameters of equation 1 are shown.  This 

figure is a modification of an output generated 

by VESTA [17]. 

 

The previous INS report on NBCT placed it at a position in the (D,E)-phase space that is 

precipitously close to a line separating the large-D phase assignment and a Néel phase, 

suggesting that external pressure could modify D, E, and J and induce a quantum phase 

transition.  The effect of pressure for these parameters is highly specific to the material, and each 

term may either increase or decrease.  For example, the distances and angles of the Ni-F-H-F-Ni 

exchange pathways of NBCT could change with pressure and modify the J parameter to either 

increase or decrease.  Hypothetically, pressure could even tune through the Néel phase into the 

topologically distinct Haldane phase.  The application of external pressure has previously been 

used with INS to show a quantum phase transition in the S = ½ dimer compound TlCuCl3  [18].  

An INS study of the Haldane spin chain Ni(C2H8N2)2NO2ClO4 (NENP) material showed a 

modification of the D/J ratio from 0.16 to 0.09 as pressure increased from ambient to 2.5 

GPa, [19] but no change in phase was observed. 

Here, the effect of 0.9 GPa hydrostatic pressure on the spin-spin correlations of NBCT as probed 

by INS is presented.  The experimental 0.9 GPa spectra are quantified using DMRG calculations 

of the dynamical spin structure factor S(|Q|, ℏω) arising from equation 1 with J’ = 0 to extract D, 

J, and E.  Fits to the data show that pressure increases D/J from 1.5 at 0 GPa to 3.2 at 0.9 GPa 

and drives the system deeper into the large-D quantum paramagnetic phase.  Additional technical 

details are given in Appendix A. 

II. Results and Discussion 

Neutron spectra of polycrystalline NBCT were collected using a NiCrAl-alloy clamp pressure 

cell at P = 0.9 GPa, temperatures of T = 15 K and 0.3 K, and incident energy (Ei) values of Ei = 

12.0 meV, 3.32 meV, 1.55 meV, and 1.00 meV.  No magnetic signal was observed above sample 

energy gains of ℏω ≈ 1.2 meV.  Reverse-powder-averaged, one-dimensional scattering functions 

were extracted from these powder data using the reported method, [20] and the one-dimensional 

Brillouin zone spans Q1D = [0, 2].  The scattering from the pressure cell is greater than the 

scattering from more standard aluminum cans, so T = 15 K data were subtracted from T = 0.3 K 

data to better illustrate the spin correlations.  Representative unsubtracted data are shown in 

Appendix B.  A gapped, lattice periodic mode is visible in in the Ei = 3.32 meV spectra, Figure 

3.  The powder data in Figure 3 (d) are reverse-powder-averaged to yield the data in Figure 3 (b).  

Even at T = 15 K there is still inelastic scattering from the sample in the region of interest, but 

increasing temperature smears out the correlations as can be seen in Figure 5 (c) of 

reference [10], and this gives rise to an over-subtraction of the background. 
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Figure 3.  (note to editor: 2 column width figure) P = 0.9 GPa, Ei = 3.32 meV, subtraction of T 

= 15 K from T = 0.3 K neutron scattering spectra.  The reverse-powder-averaged (a) model 

and (b) data and the powder data for (c) model and (d) data are shown.  The graphed brackets 

illustrate the binning regions used for the scatter plots.  White lines on the model show the 

kinematic constraint boundary, and white regions in the data are outside of the kinematic 

constraint.  Momentum integrations Q = [0.4335, 0.5785] Å–1 that include the 1-D Brillouin 

zone center are shown for (e) reverse-powder-averaged and (f) powder data.  Momentum 

integrations Q = [0.7235, 1.2165] Å–1 that include the 1-D Brillouin zone boundary are shown 

for (g) reverse-powder-averaged and (h) powder data.  The scatter plots use open circles for 

data and lines for the model.  The uncertainty from counting statistics is given by the “+/–” 

bar. 

 

To connect these experimental neutron scattering data to equation 1, the spin correlations were 

calculated with DMRG.  A phenomenological parameterization of these spectra is possible using 

lattice periodic modes with functional forms motivated by linear spin wave theory, equations 3 

and 4, but the resulting parameters have no built-in mapping to those in equation 1, and each 

<SαSα> mode is independent.  Instead, the approach taken here is to use DMRG calculations that 

have D, J, and sometimes E as inputs to connect the neutron spectra to the phase diagram in 

Figure 1.  The DMRG spectra were themselves parameterized before comparing with experiment 

to reduce numerical noise, as numerical noise can be especially problematic when powder-

averaging the calculations, and details are in Appendix A. 

The lower-resolution Ei = 3.32 meV data are fit with the two intrinsic parameters D and J, and 

one extrinsic fit parameter that scales the overall intensity.  No splitting of the <Sx/ySx/y> mode 

was modeled for this incident energy.  Fitting the Ei = 3.32 meV data yields the models 

illustrated in Figure 3 that use D = 0.67 meV and J = 0.21 meV (uncertainties estimated from 
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fitting to be ±0.01 meV).  The data and model are presented as color maps to broadly compare 

Figure 3 (a) with (b) and Figure 3 (c) with (d), and as scatter plots in Figures 3 (e-h) for a more 

quantitative visual comparison.  The integration ranges that generate S1D and Spowder as a function 

of ℏω were chosen to emphasize a region near the AFM zone center (within 0.5060 Å–1 ± 

0.0725 Å–1 for Figures 3 (e) and (f)) and a region near the AFM zone boundary (within 0.9700 

Å–1 ± 0.2465 Å–1 for Figures 3 (g) and (h)), the latter range chosen to be larger due to a weaker 

intensity in that region.  The D anisotropy splits the triply degenerate Haldane mode into two 

modes, <SzSz> and <Sx/ySx/y>, that can be most clearly seen in the model plot of Figure 3 (a) of 

the dispersion along the chain.  For the powder averaged model of Figure 3 (c), the <SzSz> mode 

is visually present mainly as a smeared line that is flat in momentum.  The largest spectral weight 

is associated with the <Sx/ySx/y> band that is lower in energy at the AFM zone center.  The 

<SzSz> mode is pushed higher in energy with D and has less spectral weight than <Sx/ySx/y>.  The 

location of the <SzSz> mode has an intensity consistent with the calculations, Figures 3 (f) and 

(h) around 1.3 meV, although the intensity is close to the limit of observation.  However, in the 0 

GPa data [10] intensity consistent with the <SzSz> mode was observed, Appendix C.  The bottom 

of the <Sx/ySx/y> band has a gap at the AFM zone center that increases from Δx/y = 0.080 meV at 

0 GPa [10] to Δx/y = 0.332 meV at 0.9 GPa.  The value of Δx/y = 0.332 meV for D = 0.67 and J = 

0.21 is in perfect agreement with the value of the gap from large-D expansion to third order in 

J/D. [21,22]  The plots of intensity versus ℏω in Figures 3 (e-h) show intensity below the gap 

that is not present in the model, but for this incident energy the resolution is sufficiently coarse 

that such scattering is indiscernible from the elastic line.  In addition to the dispersive modes, 

there is also a mode that is flat in momentum peaked at ℏω = D, similar to the observation at 0 

GPa for NBCT. [10]  The magnetic susceptibility of NBCT has a Curie tail component at low 

temperatures, [13] and this non-dispersive scattering is assigned to that paramagnetic species. 

Measuring with lower incident energy reduces the flux and reduces the accessible momentum 

and energy transfers but provides a sharper resolution.  The Ei = 1.00 meV data show the bottom 

of the band to be broader than the instrumental resolution, Figure 4.  The solid red line in Figure 

4 (c) is narrower than the spread of data at the gap.  This broadening could be due to a 

distribution of D and J values due to pressure variations but may also have a component due to 

the rhombic E-term.  For higher resolution data, an additional intrinsic parameter ΔE captures the 

effect of the rhombic E-term by splitting the Δx/y gap of <Sx/ySx/y> into the two modes <SxSx> 

and <SySy> as Δx = Δx/y + ΔE/2 and Δy = Δx/y – ΔE/2.  The splitting ΔE may be connected to E 

either by calculations such as DMRG, exact diagonalization, or perturbation theory.  Fitting these 

Ei = 1.00 meV data with values of D and J fixed from the Ei = 3.32 meV data yields a value of 

ΔE = 0.07 meV ± 0.01 meV.  This rhombic splitting is shown as the dashed blue line in Figure 4 

(c).  A similar fitting was performed in previous work of NBCT at 0 GPa to yield ΔE = 0.05 meV 

± 0.01 meV, which was modeled to extract E/J = 0.05 with J = 0.35 meV and E = 0.018 

meV. [10]  If the width of the Δx/y mode is solely due to rhombic splitting, then E may be 

estimated from ΔE using exact diagonalization of a ring of eight S = 1 spins with D = 0.67 and J 

= 0.21.  For E = 0, the exact diagonalization yields Δx/y = 0.325 meV.  For the E/J values from 0 
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to 0.25 a linear dependence of ΔE = 0.4731 × E/J was found, which yields E/J = 0.15 ± 0.02 (E = 

0.032 meV ± 0.004 meV) for NBCT at 0.9 GPa.  Uncertainties are standard deviations of the 

fitting parameters. 

These Ei = 1.00 meV data also show that there is finite intensity below the gap of the <Sx/ySx/y> 

band.  The source of this additional intensity could be due to multiple scattering, quasi-elastic 

scattering, or perhaps from a region in the sample that did not wet with the pressure medium and 

remained at nominally zero pressure.  The statistics are not enough to make a definitive 

statement about the source of this intensity in the gap, although the data are suggestive that this 

extra scattering has an intrinsic component as it is larger at the AFM zone center.  If ≈10% of the 

sample were at nominally zero pressure, this extra intensity is reproduced as illustrated with the 

dot-dashed green line in Figure 4 (c) that could be added to the high-pressure dashed blue line to 

reproduce the intensities in those data.  All DMRG calculations are for zero temperature so it 

could be that this scattering is a thermal effect, although for T = 0.3 K there is less than 0.001 % 

population in a 0.3 meV state above the ground state.  This intensity in the gap is also present in 

the Ei = 1.55 meV data, Appendix D. 

 

 

Figure 4.  P = 0.9 GPa, Ei = 1.00 meV, subtraction 

of T = 15 K from T = 0.3 K neutron scattering 

spectra.  The powder data for (a) model and (b) 

data are shown.  Brackets illustrate the binning 

regions used for the scatter plots.  White lines on 

the model show the kinematic constraint 

boundary, and white regions in the data are 

outside of the kinematic constraint.  (c) 

Momentum integrations Q = [0.376, 0.880] Å–1 

are shown.  The scatter plots use open circles for 

data.  There is a thick red line for the model using 

D = 0.67 meV and J = 0.21 meV parameters fit 

from Ei = 3.32 meV (ΔE = 0). There is a dashed 

blue line for the model using D = 0.67 meV, J = 

0.21 meV, and adding the phenomenological ΔE = 

0.07 meV.  There is a thin green dot-dashed line 

for the NBCT 0 GPa parameters D = 0.53 meV 

and J = 0.35 meV with ΔE = 0.05 meV.  The 

uncertainty from counting statistics is given by the 

“+/–” bar. 
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At zero pressure, NBCT was previously identified to be precipitously close to a quantum phase 

transition from the large-D phase to either the Haldane phase or a Néel phase, and it was 

hypothesized that pressure could be used to drive the system critical [10].  These high-pressure 

neutron scattering data of NBCT show the gap to open up with pressure, and model fits show the 

system to be driven away from a quantum phase transition and instead deeper in the large-D 

phase, Figure 1.  There is no model from equation 1 within the Haldane phase that accurately 

describes the features of these 0.9 GPa NBCT data.  The effect of pressure on NBCT is 

illustrated with the dispersions of the <SzSz> and <Sx/ySx/y> modes in Figure 5, where the 

spectral weights have been normalized to the peak intensity.  The rhombic E-term (or 

phenomenologically ΔE) would modify these plots by splitting <Sx/ySx/y>.  The modifications to 

the spin correlations with pressure are striking, considering the modest pressure of 0.9 GPa.  

These pressure induced changes suggest that a material similar to NBCT may be designed that 

could have a pressure induced quantum phase transition.  However, our result shows that for 

NBCT, a negative pressure either via doping or some mechanical strain is required in order to 

induce a quantum phase transition.  Single crystal data would also be helpful to refine these 

powder-based models, potentially including other terms such as antisymmetric or anisotropic 

exchange.  It will also be interesting to see how these INS determined parameters for NBCT can 

reproduce bulk measurements such as magnetization and specific heat. 

 

 

Figure 5.  Pressure induced changes to model (a) 

dispersion along chain and (b) spectral weight 

integrated in the 1-D Brillouin zone. 

 

 

III. Conclusions 
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In conclusion, drastic changes in the spin-spin correlations of the anisotropic S = 1 spin chain 

[Ni(HF2)(3-Clpyradine)4]BF4 under applied hydrostatic pressure of 0.9 GPa were observed using 

inelastic neutron scattering.  The anisotropy increases with pressure and the exchange decreases 

with pressure, driving from D/J = 1.5 to D/J = 3.2 and pushing the system deeper into the large-

D, with less substantial changes to E.  This finding shows the large tunability of this class of 

coordination polymers and suggests a continued avenue of investigation for a pressure induced 

topological phase transition. 
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APPENDIX A: Technical details 

A ≈0.1 gram portion of the same isotopically enriched polycrystalline samples as for the ambient 

pressure experiment [10] was mounted in the pressure cell and wet with FluorinertTM as a 

pressure medium.  The pressure was determined at room temperature with Raman fluorescence, 

and this setup has shown no significant changes of pressure between ambient temperature and 

low temperature [24].  Cryogenic temperatures were achieved with a wet 3He cryostat for the T = 

0.3 K and T = 15 K data.  The time-of-flight spectrometer at the SNS BL-5 (CNCS) was used in 

high-flux mode. [25]  Experimental energy resolutions are from MANTID, and at ħω = 0 the 

full-width-half-max resolution 0.02 meV, 0.04 meV, and 0.11 meV for 1 meV, 1.55 meV, and 

3.32 meV incident energies, respectively. [26]  The momentum resolution is modeled as a 

gaussian from fitting a Bragg peak for each incident energy condition.  The data were normalized 

to the proton current on target during collection.  The detectors were normalized using a 

vanadium standard measurement that is defined to have an average intensity per pixel of 1 scaled 

http://energy.gov/downloads/doe-public-access-plan
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unit.  Intensities are multiplied by the ratio of incident and final momentum to result in numbers 

that are proportional to a correlation function.  All numerical optimizations used the libraries of 

SciPy. [27] 

The many-body ground state of the system is studied via the density matrix renormalization 

group (DMRG) method within the single-center site approach. [28–30]  The dynamical 

correlation functions were calculated with the dynamical-DMRG method, [31,32] evaluated 

directly in terms of frequency via the Krylov decomposition. [33]  The zero-temperature 

dynamical spin structure factor S(q1D, ω) is evaluated as the resolvent 

𝑆(𝑞1𝐷 , 𝜔) =  −
1

𝐿𝜋
∑ 𝑒𝑖ℓ𝑞Im ⟨gs|𝑆ℓ

1
𝜔+ − 𝐻 + 𝜖gs

𝑆𝐿/2|gs⟩

ℓ

 
(2) 

with ω = ω + iη, and |gs> (εgs) as the ground-state wave-vector (energy).  Calculations were 

performed for D/J = [3.0, 3.5, 4.0] using L = 80 sites on a chain with open boundary conditions.  

Throughout the DMRG procedure, M ≈ 1200 states are kept and ≈ 20 full sweeps are performed 

in the finite-size algorithm, maintaining the truncation error below 10–7.  We have chosen δω = 

0.02 as the frequency resolution with broadening η = 2ω. 

For de-noising, these DMRG correlations were fit to the same phenomenological relationships 

used in the ambient pressure study of NBCT 

𝐼(𝑞1𝐷 , ħω) = (1 − cos(𝑞1𝐷)) (𝐼0 +
𝐼−1

ħω
) 

(3) 

 

𝐸(𝑞1𝐷)

𝐽
= √𝐴 cos(

𝑞1𝐷

2
)2 + 𝑣2 sin2(𝑞1𝐷) + Δ2 

 

(4) 

where the dispersion relationship parameterization is inspired by linear spin wave theory. [34]  

The resulting parameters were then interpolated with cubic splines to give smooth functions of 

A, v, Δ, I0, and I-1 for the <SxSx>, <SySy>, and <SzSz> correlation functions.  The <Sx/ySx/y> 

correlations were further split by letting Δx/y → Δx/y ± ΔE/2.  The validity of the ΔE 

parameterization to capture the resulting correlation was checked with DMRG and found to be 

satisfactory.  To compare DMRG with experiment, a Bose factor was included to modify the 

intensity as a function of ħω.  The Ni2+ magnetic form factor was included to modify the 

intensity as a function of momentum transfer. [35] 

APPENDIX B: unsubtracted data with pressure cell contribution 

These high-pressure measurements are experimentally more challenging due to the smaller 

sample volumes and larger scattering from the containment.  Neutron scattering events 

associated with the pressure cell and with multiple scattering from the sample position to the 
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surrounding equipment are visible in the unsubtracted data for Ei = 3.32 meV, Figure 6.  Unlike 

the signal from the sample, these extrinsic scattering features are essentially independent of 

temperature for the ranges investigated.  Even on top of the large background contributions, the 

essential features of the data visible in the one-dimensional integrations, Figure 6 (c) and (d).  

There is the intensity from the bottom of the dominant mode, the intensity at the top of the mode, 

and the flat mode we associate with single-ion-like excitations.  

 
Figure 6.  (note to editor: 2 column width figure) P = 0.9 GPa, Ei = 3.32 meV, unsubtracted 

data.  (a) T = 0.3 K and (b) T = 15 K neutron scattering spectra are shown.  Momentum 

integrations of (c) Q = [0.4335, 0.5785] Å–1 and (d) Q = [0.7235, 1.2165] Å–1. 

 

APPENDIX C: <SzSz> mode in 0 GPa versus 0.9 GPa 

A combination of effects make observation of the <SzSz> mode for the high-pressure 0.9 GPa 

difficult.  The available sample volume of the pressure cell is less than a standard can, and the 

extra material required to achieve high pressures decreases the transmission and increases the 

background scattering.  Conversely, the reverse-powder-averaged 0 GPa NBCT data [10] do 

show scattering consistent with an <SzSz> mode, Figure 7. 

 

 

Figure 7.  Comparison of Ei = 3.32 meV data 

showing <SzSz> contributions.  These (a) 0 GPa 

and (b) 0.9 GPa data are subtractions of low-

temperature minus high-temperature data 

visualized as a reverse-powder-average.  Brackets 
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illustrate the binning regions, Q = [0.52, 0.64] Å–

1, used for (c) the scatter plot. 

 

APPENDIX D: Ei = 1.55 meV 

Data were also collected for Ei = 1.55 meV, Figure 8.  These data are consistent with and further 

support the findings in the main body for Ei = 3.32 meV and Ei = 1.00 meV. 

 
Figure 8.  (note to editor: 2 column width figure) P = 0.9 GPa, Ei = 1.55 meV, subtraction of T 

= 15 K from T = 0.3 K neutron scattering spectra.  The reverse-powder-averaged (a) model 

and (b) data and the powder data for (c) model and (d) data are shown.  Brackets illustrate the 

binning regions used for the scatter plots.  White lines on the model show the kinematic 

constraint boundary, and white regions in the data are outside of the kinematic constraint.  

Momentum integrations Q = [0.468, 0.628] Å–1 are shown for (e) reverse-powder-averaged 

and (f) powder data.  Momentum integrations Q = [0.788, 1.332] Å–1 are shown for (g) 

reverse-powder-averaged and (h) powder data.  The scatter plots use open circles for data and 

lines for the model. 
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