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The presence of disorder in semiconductors can dramatically change their physical properties.
Yet, models faithfully accounting for it are still scarce and computationally inefficient. We present
a mathematical and computational model able to simulate the optoelectronic response of semicon-
ductor alloys of several tens of nanometer sidelength, while at the same time accounting for the
quantum localization effects induced by the compositional disorder at the nano-scale. The model
is based on a Wigner-Weyl analysis of the structure of electron and hole eigenstates in phase space
made possible by the localization landscape theory. After validation against eigenstates-based com-
putations in 1D and 2D, our model is applied to the computation of light absorption in 3D InGaN
alloys of different compositions. We obtain the detailed structures of the absorption tail below the
average bandgap and the Urbach energies of all simulated compositions. Moreover, the Wigner-
Weyl formalism allows us to define and compute 3D maps of the effective locally absorbed power
at all frequencies. Finally the proposed approach opens the way to generalize this method to all
energy-exchange processes such as radiative and non-radiative recombination in realistic devices.

I. INTRODUCTION

Semiconductor structures used for fundamental stud-
ies or device applications most often incorporate alloy
materials. The necessity of using alloys results from the
incapacity of associations of pure compounds to reach the
desired functions or from fabrication issues due to lattice
parameters mismatch. For common III-V alloys, based
on GaInAsP or GaInAlAs materials systems, the effects
of compositional disorder inherent to random alloys on
the electronic properties can be treated with a pertur-
bative approach. This is unfortunately not the case for
the more recent nitride-based GaInAlN alloys, where the
changes in potential associated with the various atoms
induce strong localization effects. While considerable
progress has been made in the past decades in using such
materials for high performance light generation devices,
these materials and their uses in heterostructures require
new tools to model their properties. Conversely, they
constitute a unique laboratory to evaluate strong disor-
der effects due to the large difference in band gap energy
and band offset between the pure compounds.

The simplest phenomena of absorption and lumines-
cence are of primary importance for the characterization
of semiconductor alloys as they reveal information about
the electronic properties [1–3]. Absorption near the band
edges is of particular interest due to its sensitivity to
temperature, impurities, Coulomb interaction, and alloy
disorder. It is also a much simpler phenomenon than
luminescence to analyze as it directly probes the elec-
tronic band structure without the energy and momen-
tum relaxation involved in luminescence. Phenomeno-
logical laws have been proposed to describe the behav-
ior observed near the absorption edge for crystalline and
amorphous semiconductors, such as the Tauc power laws

just above the edge [4, 5], or the Urbach exponential
law just below the edge [6]. It is now accepted that the
wide variety of behaviors near the absorption edge in
semiconductors may be caused by thermal effect, micro-
field distribution [7], the electron-hole Coulomb interac-
tion [8], alloy disorder [9], or the joint effect of the lat-
ter two [10]. Alloy disorder can impact the absorption
and emission spectra in different ways depending on the
type of atomic species [11, 12], and on the type of disor-
der. One may encounter uncorrelated alloy disorder [13]
or correlated alloy disorder exemplified by (i) spinodal
phase separation [14], (ii) clustering [15], or even (iii)
the formation of pure crystalline quantum dots [16, 17].
In practice, correlated alloys effects remain controversial
in nitrides as (i) they have been shown to occur due
to the degradation of the materials by the observation
technique, (ii) they are debated due to the limited effi-
ciency of Atomic Probe Tomography (APT) in compar-
ison with modern high resolution Transmission Electron
Microscopy, (iii) their observation correspond to vastly
non-optimum growth regimes, yielding microstructures
never observed in industry-grade materials.

Modeling and numerical simulation of light absorption
in disordered semiconductor alloys are challenging
tasks. First they require an appropriate model for the
electronic structure. A hierarchy of methods exists to
model the electronic structure of alloys, going from
density functional theory which can be considered as
a first principle method, via the tight binding method,
to continuous effective models (see the tutorial [15] and
references therein). Once a model for the electrons is
chosen, there comes the second step of computing the
absorption coefficient by considering the interaction with
light. Several methods exist which use either directly the
Fermi golden rule and require the computations of all in-
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volved electronic eigenstates of the Hamiltonian, or time
dependent simulation of the polarization field [10, 18].

In the present paper, we derive a model based on the
localization landscape (LL) theory [19] for disordered
semiconductor alloys, which we apply to the computa-
tion of the light absorption coefficient in bulk InGaN. In
Section II, we start by introducing a continuous model
of disordered band edges based on the regularization of
the indium concentration from randomly placed indium
atoms on a lattice. Two Schrödinger equations (one per
band) are then written for the envelope functions of the
electron and hole eigenstates. In Section III, exploiting
this framework, we derive an exact formulation of the
absorption process in phase space based on the Wigner
transform of the eigenstates and the Weyl transform of
the Hamiltonians. We then identify local quasi-densities
of states in phase space, which lead in turn to closed form
approximations for the absorption coefficient and for the
absorbed power density. The results are presented in two
sections: Section IV is devoted to the benchmark of the
landscape-based model for the absorption coefficient for
1D and 2D systems by comparison with the eigenstates-
based computation, while Section V presents 3D simula-
tions in large samples (above 100, 000 nm3), from which
we extract the characteristics of the absorption response
in InGaN disordered alloys. Finally, we conclude by pro-
viding perspectives on the generalization of the presented
method to a broader class of electronic processes.

II. DISORDERED SEMICONDUCTOR ALLOYS

A. The effective mass approximation

We work within the framework of the effective mass ap-
proximation (EMA). The alloy, consisting of randomly
drawn atoms on a lattice, is described by continuous
position-dependent conduction and valence potentials,
and effective masses. These profiles are obtained locally
from a Gaussian averaging of the atomic composition. In
mathematical terms, we denote by ri the position of the
cation site i ∈ I on the lattice (where I is an arbitrary
set of indices), and Xi a Bernoulli random variable tak-
ing values 0 with probability 1− x or 1 with probability
x corresponding to whether a Ga atom or an In atom is
found at site i. We define the continuous local indium
concentration X(r) as

X(r) =

∑
i∈I

Xi exp

(
−|r− ri |2

2σ2

)
∑
i∈I

exp

(
−|r− ri |2

2σ2

) , (1)

which is a Gaussian averaging of the discrete atomic com-
position with smearing length σ. The Xi being ran-
dom variables, this operation constitutes a continuous

bounded stochastic process X(r). Note that if the ran-
dom variables Xi are independent and identically dis-
tributed, then the mathematical expectation of X(r) is
E [X(r)] = E [Xi] = x and its variance is

Var [X(r)] = x(1− x)fσ(r) , (2)

with

fσ(r) =

∑
i∈I

exp

(
−|r− ri |2

σ2

)
[∑
i∈I

exp

(
−|r− ri |2

2σ2

)]2 . (3)

In particular the two last equations show, through the
function fσ, that the variance is position-dependent,
X(r) is therefore not a stationary process. In fact, the
variance of X has the periodicity of the lattice. More-
over the variance decreases with increasing σ, and also
decreases with the dimension of the system since the de-
nominator grows faster than the numerator with increas-
ing number of neighboring sites around point r. Indeed,
it can be easily shown that 0 ≤ fσ ≤ 1, and that for a
cubic lattice of lattice parameter a and asymptotically
for σ/a� 1, fσ becomes roughly constant and we have

fσ ∼
[

1

2
√
π

a

σ

]d
, (4a)

where d denotes the space dimension. For a 3D wurtzite
lattice, the above expression becomes

fσ ∼
√

3a2c

4 (2
√
πσ)

3 . (4b)

Keeping in mind the decaying variance of X(r) with
increasing smearing length and space dimension will be
useful in comparing results in Secs. IV and V.

From the local concentration X(r) we deduce the posi-
tion dependent band gap energy, Eg, the conduction and
valence potentials, Ec and Ev, and the effective masses,
mc and mv, as follows

Eg(r) =(1−X(r))E(GaN)
g +X(r)E(InN)

g

− EbowX(r)(1−X(r)) (5)

Ec(r) =E(GaN)
g − γ

(
E(GaN)
g − Eg(r)

)
(6)

Ev(r) =(1− γ)
(
E(GaN)
g − Eg(r)

)
(7)

mc(r) =

[
X(r)

m
(InN)
e

+
1−X(r)

m
(GaN)
e

]−1

(8)

mv(r) =−
[
X(r)

m
(InN)
h

+
1−X(r)

m
(GaN)
h

]−1

. (9)

Note that we have chosen to give a negative sign to
the valence band effective mass in Eq. (9). This will
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FIG. 1. Realization of a two-dimensional In0.05Ga0.95N alloy. (a) Atomic configuration. Open blue circles denote Ga atoms
and red disks denote In atoms. (b) Conduction and (c) valence potentials obtained from Eqs. (6,7). The smearing length was
set to σ = 2a ≈ 6.4 Å.

TABLE I. Crystal parameters (a and c), band structure pa-
rameters (band gap Eg, effective masses me, mhh and mlh)
and energy Ep associated to the momentum matrix element
for wurtzite GaN and InN. Bowing parameter for InGaN: 1.4
eV. Band offset factor γ = 0.63. Parameters extracted from
Refs. [20, 21].

Alloy a c Eg Ep me mhh mlh

(Å) (Å) (eV) (eV) (m0) (m0) (m0)

GaN 3.189 5.185 3.437 9.9 0.21 1.87 0.14

InN 3.545 5.703 0.608 5.7 0.07 1.61 0.11

enables us to express energies both for the valence
and conduction band states on the same energy axis.

Values of the band gap energies E
(GaN)
g , E

(InN)
g , the

bowing energy Ebow, the effective masses m
(InN)
e , m

(InN)
h ,

m
(GaN)
e , m

(GaN)
h , and the band offset factor γ (i.e. the

fraction of the band offset E
(GaN)
g − E

(InN)
g which is

attributed to the conduction band) are extracted from
the literature and are given in Table I and its caption.
As an illustration, a realization of the atomic config-
uration and of the conduction and valence potentials
for a two-dimensional InGaN alloy are shown in Fig. 1.
In this paper, we only take one valence band into
consideration, the one for heavy holes and neglect the
contribution from light holes, for simplicity. Moreover
since we use the InGaN alloy as a proxy for a disordered
semiconductor, we neglect the piezoelectric fields of the
true InGaN materials.

B. Conduction and valence states

Let the domain of study be Ω = [0, L[d with Born-
von Karman periodic boundary conditions along the
three axis x1, x2 and x3 [to which we assign the or-

thonormal basis (e1, e2, e3)]. The crystal is assumed
to be oriented such that the so-called c-axis is aligned
with the x3-direction. The band edges being dis-
ordered, the eigenstates of the Hamiltonian in the
semiconductor cannot be described by Bloch waves of
the form ψ(v) = uv,k(r) exp(ik · r)/|Ω|1/2 and ψ(c) =

uc,k(r) exp(ik · r)/|Ω|1/2, where uv,k and uc,k are lattice-
periodic functions, as for a homogeneous crystalline semi-
conductor. Instead, we can assume the states to have the
form

ψ(c)
µ (r) = uc(r) χ(c)

µ (r) (10a)

ψ(v)
ν (r) = uv(r) χ(v)

ν (r) , (10b)

where χ
(c)
µ and χ

(v)
ν are envelope functions satisfying

Ĥc χ
(c)
µ = −~2

2
∇ ·

[
∇χ(c)

µ

mc

]
+ Ec χ

(c)
µ = E(c)

µ χ(c)
µ (11)

Ĥv χ
(v)
ν = −~2

2
∇ ·

[
∇χ(v)

ν

mv

]
+ Ev χ

(v)
ν = E(v)

ν χ(v)
ν .

(12)

Here µ, ν are arbitrary indices associated to the eigenen-

ergies E
(c)
µ and E

(v)
ν . Note that in Bloch’s theorem, the

lattice-periodic functions depend in principle on the wave
vector k. However, since we are primarily interested in
the band edge part of the spectrum, we have assumed
here that the uv,k and uc,k cell functions from Bloch’s
theorem depend weakly on k so that they can be ap-
proximated by uv,0 and uc,0 , and which we have simply
denoted uv and uc in Eq. (10).

For completeness, we report in Appendix A a critical
discussion on the validity of the effective mass approxi-
mation and its relevance for modeling InGaN.
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III. LIGHT ABSORPTION

A. Absorption in the EMA

The transition rate for the excitation of an initial state
in the valence band, |ψ(v)

ν 〉, to a final state in the con-

duction band, |ψ(c)
µ 〉, by absorption of a photon of energy

~ω, is given by the Fermi golden rule [1–3]

Wµν =
2π

~

(
e

2m0

)2 ∣∣∣ 〈ψ(c)
µ |A0 · p̂ |ψ(v)

ν 〉
∣∣∣2

× δ
(
E(c)
µ − E(v)

ν − ~ω
)
, (13)

where E
(v)
ν and E

(c)
µ are the energies of the initial and

final states, respectively. The vector A0 is the amplitude
of the electromagnetic vector potential, which we take
to be a plane wave, i.e., A = A0 cos(k0 · r − ωt), with
k0 = k0 e3 being the wave vector of the plane wave in
the material. The operator p̂ = −i~∇ is the momentum
operator. We assume the optical wavelength to be sig-
nificantly larger than the typical scales of variations of
the potentials to work within the dipole approximation,
i.e., we regard the electromagnetic field as only a vary-
ing function of time. Assuming the light intensity to be
weak and the absence of doping, we can neglect stimu-
lated emission and the total absorption rate is obtained
by summing the elementary rates, in Eq. (13), over all
states in the valence and conduction bands,

Wtot(ω) = 2
∑
µν

Wµν , (14)

where the factor 2 accounts for the spin degeneracy. We
have seen that within the effective mass approximation,

the wave functions ψ
(v)
ν and ψ

(c)
µ have the form given in

Eq. (10). Provided that the envelope functions χ
(c)
µ and

χ
(v)
ν vary slowly over the crystal unit cell, the matrix ele-

ment Mµν = 〈ψ(c)
µ |A0 · p̂ |ψ(v)

ν 〉 can be factorized as [2]
(see Appendix B)

Mµν = 〈uc|A0 · p̂ |uv〉 〈χ(c)
µ |χ(v)

ν 〉 . (15)

Note that this assumption may be questionable if σ < a
since then the potentials Ec and Ev will vary on a scale
of the order of a few lattice constants and so may the
envelope functions. For such low values of σ, the use of
the EMA should also be questioned anyway. The total
absorption rate can then be recast as

Wtot(ω) =
πe2A2

0Ep
~m0

C(~ω) . (16)

Here we denote A0 = |A0 |, a = A0 /A0, and let
Ep = | 〈uc|a · p̂ |uv〉 |2/m0 be the energy associated to
the momentum matrix element. For practical computa-
tion, we will take for Ep a linear interpolation of the val-
ues for GaN and InN weighted by the average In concen-
tration x [22]. Moreover, we define the spectral coupling

density as

C(~ω) =
∑
µ,ν

∣∣ 〈χ(c)
µ |χ(v)

ν 〉
∣∣2 δ(E(c)

µ − E(v)
ν − ~ω

)
. (17)

A pair of modes contributes to the spectral coupling den-
sity at energy ~ω if their difference of energy is equal to
~ω (conservation of energy) and if there is a significant

coupling factor | 〈χ(c)
µ |χ(v)

ν 〉 |2. Note that in the absence
of disorder, the envelope functions are plane waves and
the coupling factor yields the conservation of momentum
as expected for homogeneous materials (see Appendix C
for the derivation in the homogeneous limit). The photon
flux through the surface area S = L2 is given by the flux
of the average Poynting vector along the x3-direction, Π,
divided by ~ω

Φ =
ΠS

~ω
=
ε0ωn(ω)c0A

2
0S

2~
, (18)

where ε0 is the vacuum permittivity, c0 is the speed of
light in vacuum, and n(ω) is the real part of the refrac-
tive index of the material. The ratio Wtot/Φ is thus the
fraction of absorbed photons in the volume Ω along the
propagation of a distance L in the x3-direction, which by
definition of the absorption coefficient α is

Wtot(ω)

Φ
= α(ω)L , (19)

provided αL � 1. From Eqs. (16), (18) and (19) we
deduce the following expression of the absorption coeffi-
cient

α(ω) =
2πe2Ep

m0ε0ωc0n(ω)

C(~ω)

|Ω| . (20)

B. Wigner transform and Weyl law

According to Eq. (17), the spectral coupling density
for a given realization of the alloy requires computing

the eigenstates χ
(c)
µ and χ

(v)
ν , which can be numerically

costly, especially for 3D alloys. Instead, we look for
an alternative way to evaluate C(~ω) without resorting
to solving the Schrödinger equations. This will be
achieved in two steps. First, we will rewrite Eq. (17)

using the Wigner transform of χ
(c)
µ and χ

(v)
ν , and

reinterpret the spectral coupling density in terms of
quasi-densities of states in phase space. Second, we will
approximate the quasi-densities of states in phase space
by exploiting the properties of the localization landscape.

To begin, we recall that the Wigner transform Wψ of a
function ψ is a distribution in phase space and is defined
by [23, 24]

Wψ(r,k) =

∫
ψ∗
(
r− x

2

)
ψ
(
r +

x

2

)
exp

(
− ik · x

)
ddx .

(21)
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There exist several conventions for the definition of the
Wigner transform in the literature differing in factors 2π
and ~ depending on whether one works with the wave
vector k or the momentum p = ~k. Here we have chosen
the convention used in Ref. [23]. The square modulus of

the scalar product, | 〈χ(c)
µ |χ(v)

ν 〉 |2, appearing in Eq. (17),
can equivalently be written in terms of the Wigner trans-

forms W
χ
(c)
µ

and W
χ
(v)
ν

of χ
(c)
µ and χ

(v)
ν . This is done via

Moyal’s formula [23]

∣∣∣〈χ(c)
µ |χ(v)

ν 〉
∣∣∣2 =

∫∫
W
χ
(c)
µ

(r,k)W
χ
(v)
ν

(r,k)
ddr ddk

(2π)d
.

(22)
Inserting Eq. (22) into Eq. (17) we obtain

C(~ω) =

∫∫ ∑
µ,ν

W
χ
(c)
µ

(r,k)W
χ
(v)
ν

(r,k) δ(E(c)
µ − E(v)

ν − ~ω)
ddr ddk

(2π)d
. (23)

Now in order to decouple the sums over µ and ν, we write

the Dirac mass δ(E
(c)
µ − E(v)

ν − ~ω) as the convolution
product

δ(E(c)
µ −E(v)

ν − ~ω) =

∫
δ(E(c)

µ − ~ω− ε)δ(E(v)
ν − ε) dε .

(24)
By inserting Eq. (24) into Eq. (23) we obtain

C(~ω) =

∫∫∫
D(c)(r,k, ε+ ~ω)D(v)(r,k, ε) dε

ddr ddk

(2π)d
,

(25)
where we have defined

D(c)(r,k, E) =
∑
µ

W
χ
(c)
µ

(r,k) δ(E(c)
µ − E) , (26a)

D(v)(r,k, E) =
∑
ν

W
χ
(v)
ν

(r,k) δ(E(v)
ν − E) . (26b)

Since each Wigner function involved in the sum in
Eq. (26) corresponds to a quasi-probability density in
phase space associated with an eigenstate, the quan-
tities D(c)(r,k, E) and D(v)(r,k, E) can be interpreted
as quasi-densities of states in phase space at energy E
for the conduction and valence band, respectively. The
quasi-density of states in phase space is in fact tightly
linked with the usual densities of states, such as the local
and integrated density of states and the spectral func-
tion, since they are recovered as marginal integrations of
the quasi-density of states in phase space as shown in
Appendix D and expressed below in Eq. (28).

Equation (25) therefore provides an alternative but
equivalent picture of the spectral coupling density to that
given by Eq. (17). Equation (17) states that in order to
contribute to the spectral coupling density at energy ~ω,

a pair of states χ
(c)
µ and χ

(v)
ν must be such that their dif-

ference of energies is equal to ~ω and that they have sig-
nificant overlap integral. Equation (25) states, instead,
that the coupling spectral density evaluated at ~ω can
be viewed as summing over the whole phase space the
convolution product of the conduction and valence lo-
cal quasi-density of states in phase space at energy ~ω.

The conservation of energy is encoded in the convolution
product, i.e., we scan in energy D(c) and D(v) simulta-
neously but with a fixed energy difference equal to ~ω.
The coupling weight encoded in the square modulus of
the scalar product in direct space, is now encoded in the
sum over phase space of the product of D(c) and D(v).

The steps we have taken so far are exact. We now need
to assess the quasi-densities of states in phase space, D(c)

and D(v). To that end, we integrate (26a) over energy:∫ E

−∞
D(c)(r,k, ε)dε =

∑
µ

W
χ
(c)
µ

(r,k) Θ(E−E(c)
µ ) , (27)

where Θ is the Heaviside step function. We refer to the
above quantity as the integrated density of states in phase
space. The idea now is to observe that, on the one hand,
the sum over phase space of the above integral is exactly
equal to the integrated density of states (IDOS) for all
E,∫∫ ∫ E

−∞
D(c)(r,k, ε) dε

ddr ddk

(2π)d
= IDOS(c)(E) . (28)

Equation (28) is proven in Appendix D. On the other
hand, Weyl’s law for the IDOS associated with the Hamil-
tonian Ĥc states that, asymptotically for E → ∞, the
IDOS is proportional to the volume of the region of phase

space Hc(r,k) = ~2k2

2mc(r) + Ec(r) < E, i.e.,

IDOS(c)(E) ∼
∫
Hc(r,k)<E

ddr ddk

(2π)d
. (29)

Equations (28) and (29) suggest that, asymptotically for

E → ∞, the function
∫ E
−∞D(c)(r,k, ε) dε, can be ap-

proximated by a plateau function equal to 1 within the
domain Hc(r,k) < E, i.e.,∫ E

−∞
D(c)(r,k, ε) dε ≈ Θ

(
E −Hc(r,k)

)
. (30)

We have verified numerically that the approximation
Eq. (30) is indeed satisfied for E sufficiently large. Fig-
ure 2 illustrates the plateau function approximation for a
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FIG. 2. Integrated density of states in phase space, i.e. the sum of the Wigner transforms W
χ
(c)
µ

of eigenstates whose eigenenergy

lie below a given energy E [see Eq. (27)] for a one-dimensional alloy with In-concentration x = 5% and L = 100 nm. The
smearing length was set to σ = 2a. (a) E = 3.06 eV (first 2 states), (b) E = 3.22 eV (first 14 states), and (c) E = 3.46 eV
(first 20 states) and (d) E = 3.84 eV (first 50 states). The dashed lines are the contour Hc(x1, k1) = E and the solid lines are

the contour H
(eff)
c (x1, k1) = E. The color scale is held fixed for the sake of visibility.

one-dimensional alloy, by comparing the integrated den-
sity of states in phase space, Eq. (27), with the level line
Hc(x1, k1) = E for different values of E (dashed lines).
For E large enough the dashed contour line captures well
the volume occupied by the integrated density of states
in phase space [see Figs. 2(c) and (d); lower values of E
will be discussed at the end of the section]. We note,
however, that the suggested approximation may not be
mathematically valid point-wise but rather in a weaker
sense, as can be seen by the high frequency oscillations on
the line k1 = 0, which develop for sufficiently large values
of E [see Fig. 2(d)]. These oscillations result from the in-
terference in the Wigner transform of high energy states
which are quasi-plane waves ≈ exp(±ikx1). Clearly, a
similar approximation holds for the valence band:

∫ ∞
E

D(v)(r,k, ε) dε ≈ Θ
(
Hv(r,k)− E

)
, (31)

with Hv(r,k) = ~2k2

2mv(r) + Ev(r). The change of order in

the bounds of the integral is due to the negative effective
mass mv, i.e., higher order excited states have decreasing
energy. Differentiating with respect to the energy E in

Eqs. (30) and (31) readily yields

D(c)(r,k, E) ≈ δ
(
E −Hc(r,k)

)
(32a)

D(v)(r,k, E) ≈ δ
(
Hv(r,k)− E

)
. (32b)

It follows that the integral over ε in Eq. (25) can be
approximated by∫

D(c)(r,k, ε+ ~ω)D(v)(r,k, ε) dε ≈

δ
(
~ω −Hc(r,k) +Hv(r,k)

)
. (33)

Inserting the above equation into Eq. (25) we finally ob-
tain

C(~ω) ≈
∫∫

δ
(
~ω −Hc(r,k) +Hv(r,k)

) ddr ddk

(2π)d

≈ d

dE

∫∫
H(c)(r,k)−H(v)(r,k)<E

ddr ddk

(2π)d

∣∣∣∣∣
E=~ω

,

(34)

the two right-hand sides being equivalent ways of writing
the same quantity. Equation (34) can be referred to as a
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Weyl law for the spectral coupling density. Furthermore,
the integration over k can be performed analytically. In-
deed, we have

Hc(r,k)−Hv(r,k) =
~2|k|2
2mr(r)

+ Eg(r) , (35)

where the reduced mass mr is given by

1

mr
=

1

mc
− 1

mv
. (36)

Thus we have

∫∫
Hc(r,k)−Hv(r,k)<E

ddr ddk

(2π)d
=

∫∫
|k|2<2mr(E−Eg)/~2

ddr ddk

(2π)d
=

vd
(2π)d

∫ [
2mr(r)(E − Eg(r))

~2

]d/2
+

ddr , (37)

where vd = πd/2/Γ(d/2 + 1) is the volume of the d-dimensional unit ball, and the + subscript denotes the positive
part function, i.e., x+ = max(x, 0). By differentiation with respect to E we obtain the following expressions for the
spectral coupling density in any dimension, and for the absorption coefficient in 3D [25]

CWW(~ω) =
dvd

2(2π)d

∫
Ω

[
2mr(r)

~2

]d/2 (
~ω − Eg(r)

)d/2−1

+
ddr , (38)

αWW(ω) =
e2Epv3

m0ε0c0ωn(ω)(2π)2|Ω|
3

2

∫
Ω

[
2mr(r)

~2

]3/2 (
~ω − Eg(r)

)1/2

+
d3r . (39)

Note that in the homogeneous limit (where mr and Eg
are constant), we recover the well-known expression for
the absorption coefficient (see Appendix C). We give
in Appendix E an alternative derivation of the above
result based on the Weyl transform of a two-particle
Hamiltonian. Although the result is identical, this
second approach gives a complementary picture in terms
of electron-hole pair, and may be a good starting point
for further developments, in particular for taking the
electron-hole interaction into account.

We have now found a closed form approximation for
the absorption coefficient, which in view of our analysis
appears to be accurate either in the limit of vanishing
disorder or for large enough values of the photon energy.
But what about the bottom of the spectrum? For lower
values of E, we observe that the level line Hc(x1, k1) = E
overestimates the volume occupied by the integrated den-
sity of states in phase space [see Fig. 2(a)]. The level
lines Hc(x1, k1) = E enclose a significant volume in phase
space which does not hold any eigenstate at the consid-
ered energy. Eigenstates appear in these pockets of phase
space only at slightly larger energy values [see Fig. 2(b)],
this phenomenon being a manifestation of the tails in
the density of states characteristic of a disordered sys-
tem at low energy. We thus foresee here two limita-
tions of the plateau function approximation: (i) the set
Hc(x1, k1) < E overestimates the volume in phase space
occupied by eigenstates as the phase space pockets ap-
pear ”too early” energy wise; (ii) the volume enclosed
by the level lines grows continuously with energy while

eigenstates appear at discrete energies. We show in the
next paragraph how the so-called localization landscape
overcomes the first limitation.

C. Localization landscape and effective potential

In Refs. [26, 27], the authors introduced a new object
called the effective potential, defined as the reciprocal of
the so-called localization landscape (LL) L which is the

solution to the equation ĤL = 1 (Ĥ being the Hamilto-
nian and the right-hand side being the constant function
equal to one) [19]. In particular they showed numeri-
cally that for a wide class of potentials, one could obtain
a very accurate approximation of the integrated density
of states over the entire spectrum by replacing in Weyl’s
asymptotic law the original potential by this effective po-
tential. Following this work, we introduce the localiza-
tion landscapes Lc and Lv associated with the conduc-
tion band and the valence band potentials, respectively,
which we define by

−~2

2
∇ ·

[
1

mc
∇Lc

]
+ (Ec −minEc)Lc = 1 , (40a)

~2

2
∇ ·

[
1

mv
∇Lv

]
− (Ev −maxEv)Lv = 1 . (40b)

Note the change of sign in the Schrödinger operator in
Eq. (40b) in order to comply with the hypothesis of the
positiveness of the operator from the localization land-
scape theory (i.e. a change of orientation of the energy
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axis). Also note that the reference of energy is set in such
a way that the potentials Ec−minEc and−(Ev−maxEv)
are non-negative. The effective potentials (expressed in
the original energy frame) are then deduced from the lo-

calization landscapes as

E(eff)
c (r) = minEc +

1

Lc(r)
, (41a)

E(eff)
v (r) = maxEv −

1

Lv(r)
, (41b)

and their difference defines the effective band gap profile

E(eff)
g (r) = E(eff)

c (r)− E(eff)
v (r) . (42)

We thus obtain a new approximation for the absorption
coefficient α (or equivalently for C) by replacing Eg by

E
(eff)
g in Eq. (39) [or Eq. (38)],

CWWL(~ω) =
dvd

2(2π)d

∫
Ω

[
2mr(r)

~2

]d/2 (
~ω − E(eff)

g (r)
)d/2−1

+
ddr , (43)

αWWL(ω) =
e2Epv3

m0ε0c0ωn(ω)(2π)2|Ω|
3

2

∫
Ω

[
2mr(r)

~2

]3/2 (
~ω − E(eff)

g (r)
)1/2

+
d3r . (44)

Equation (43) is asymptotically equivalent to Eq. (38)
as ~ω →∞. The advantage of the approximation based
on the localization landscape can be appreciated at the
bottom of the spectrum. Indeed, Eq. (43) corresponds
to replacing the conduction potential Ec by its effec-

tive counterpart E
(eff)
c in the plateau function approx-

imation Eq. (30) and similarly for the valence potential
in Eq. (31):∫ E

−∞
D(c)(r,k, ε) dε ≈ Θ

(
E −H(eff)

c (r,k)
)
, (45a)∫ ∞

E

D(v)(r,k, ε) dε ≈ Θ
(
H(eff)
v (r,k)− E

)
, (45b)

with H
(eff)
c (r,k) = ~2k2

2mc(r) + E
(eff)
c (r) and

H
(eff)
v (r,k) = ~2k2

2mh(r) + E
(eff)
v (r). The level lines

H
(eff)
c = E (resp. Hc = E) are shown as solid (resp.

dashed) black lines in Fig. 2. While both lines capture
correctly the volume in phase hosting eigenstates at
large energies [see Figs. 2(c) and (d)], the quality of
the approximation provided by the effective potential
appears clearly at lower energy [Figs. 2(a) and (b)]. Fig-
ure 2(a) is particularly illustrative of the fact that phase

space pockets enclosed by the lines H
(eff)
c = E appear

at higher energy than those obtained with Hc = E due
to the quantum confinement energy that is accounted
for by the localization landscape. As a general rule, for
a given energy value E, the phase space pockets are
slightly broader along x1 and less broad along k1 because
the effective potential implicitly incorporates the uncer-
tainty principle [27]. The plateau function based on the

effective potential is thus expected to be a more faithful
continuous approximation of the integrated density of
states in phase space which evolves in jumps as the
energy is increased. This property is reminiscent of that
found for the integrated density of states in Refs. [26, 27].

D. Spatial distribution of the absorbed power

The absorption coefficient appearing in Eq. (44) is ex-
pressed as an integral over the volume Ω of a function pro-

portional to (~ω−E(eff)
g (r))

1/2
+ . We note that due to the

positive part function, only the volume E
(eff)
g < ~ω con-

tributes to the integral. This suggests an energetic pic-
ture, namely, that the power brought by a given photon of

energy ~ω is absorbed inside the volume E
(eff)
g < ~ω. Let

us attempt to make this idea more precise by defining an
absorbed power density at frequency ω, P(r, ω). Coming
back to the Fermi golden rule expressed in Eq. (13), the
transition rate Wµν gives the number of transitions from

state ψ
(v)
ν to state ψ

(c)
µ per unit time, i.e., the number

of photons of energy ~ω absorbed by this transition per
unit time. Hence ~ωWµν is the (time-) average absorbed
power by the transition ν → µ. If we ask now where
is this energy absorbed during one such transition, we
could answer that the energy ~ω of the absorbed pho-
ton is transferred to the electron during the time of the
interaction as the wave function of the electron, ψ(r, t),

evolves from the initial state ψ
(v)
ν to the final state ψ

(c)
µ .

In virtue of the Poynting theorem from classical electro-
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dynamics [28], the instantaneous absorbed power density
is equal to the work transferred to the electron moving
in the electric field, which is of the form

pµν(r, t) = Jµν(r, t) ·E(r, t) (46)

where J = e
mRe(ψ∗ p̂ ψ) is the electric current density

and E is the electric field. In fact, the absorbed power
density can easily be induced by rewriting the Fermi
golden rule Eq. (13) involved in the time-averaged ab-
sorbed power:

~ωWµν =

∫
Ω

(
e

2m0

)2

〈ψ(c)
µ |A0 · p̂ |ψ(v)

ν 〉
∗
ψ(c)
µ

∗
(r) p̂ ψ(v)

ν (r) ·ωA0 2πδ
(
E(c)
µ − E(v)

ν − ~ω
)

ddr (47)

=

∫ ∞
−∞

∫
Ω

(
e

2m0

)2
1

~
〈ψ(c)
µ |A0 · p̂ |ψ(v)

ν 〉
∗
ψ(c)
µ

∗
(r) p̂ ψ(v)

ν (r) exp(iωµνt) ·ωA0 exp(−iωt) ddr dt ,

=

∫ ∞
−∞

∫
Ω

Jµν(r, t) · E(t) ddr dt . (48)

Here we have introduced the short-hand notation ωµν = (E
(c)
µ −E(v)

ν )/~ and used the relation 2πδ(ω) =
∫

exp(iωt)dt
in the second step. In Eq. (48), we have identified the electric field E = ωA0 exp(−iωt) and the current density
associated to the transition ν → µ

Jµν(r, t) =

(
e

2m0

)2
1

~
〈ψ(c)
µ |A0 · p̂ |ψ(v)

ν 〉
∗
ψ(c)
µ

∗
(r) p̂ ψ(v)

ν (r) exp(iωµνt) . (49)

Equations (48) and (49) are interesting as they link the
concept of transition rate between stationary states given
by the Fermi golden rule from quantum mechanics, and
the electromagnetic power from classical electrodynam-

ics. Here we are rather interested in the time-averaged
power density associated to the transition for a photon
of energy ~ω, pµν(r, ω), which in view of Eq. (47) can be
defined as

pµν(r, ω) =

(
e

2m0

)2

〈ψ(c)
µ |A0 · p̂ |ψ(v)

ν 〉
∗
ψ(c)
µ

∗
(r) p̂ ψ(v)

ν (r) ·ωA0 2πδ
(
E(c)
µ − E(v)

ν − ~ω
)
. (50)

If we wish to consider the absorbed power density at
the scale of the envelope functions, i.e., without resolv-
ing the contributions of the periodic functions uc and
uv in Eq. (50), we can integrate pµν over a lattice unit

cell and follow the same steps as the ones presented in
Appendix B for the factorization of the matrix element
Mµν . This gives the following cell averaged absorbed
power density

p̄µν(r, ω) =

∫
Ωcell

pµν(r− r′, ω)
ddr′

Ωcell
=
πωe2A2

0Ep
2m0

〈χ(c)
µ |χ(v)

ν 〉
∗
χ(c)
µ

∗
(r)χ(v)

ν (r) δ
(
E(c)
µ − E(v)

ν − ~ω
)
. (51)

The above result gives a clear intuitive picture of the lo-
calization of the absorbed power. The absorbed power is
distributed proportionally to the product of the envelope
functions of the initial and final states. The total power
density absorbed at frequency ω, normalized by the inci-
dent photon power ΠS, is obtained by summing Eq. (51)

over all transitions

P(r, ω) =
2

ΠS

∑
µν

p̄µν(r, ω)

=
2πe2Ep

m0ε0ωn(ω)c0S

∑
µν

〈χ(c)
µ |χ(v)

ν 〉
∗
χ(c)
µ

∗
(r)χ(v)

ν (r)

× δ
(
E(c)
µ − E(v)

ν − ~ω
)
. (52)
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We note the close resemblance with the expression for the
absorption coefficient given in Eq. (20). As for the ab-
sorption coefficient, evaluating the above expression for
P is numerically costly since it requires the knowledge of
the eigenstates. We can nevertheless make a simple guess
for an approximation of P based on the Wigner-Weyl ap-
proach. Consider the integral of P over the volume Ω. It

is clear by integration of Eq. (52) that∫
Ω

P(r, ω) ddr = α(ω)L . (53)

This result was expected, of course, since by definition
of P its integral should agree with ~ωWtot/~ωΦ (by con-
struction). The interesting point is that since we have an
approximation for α, e.g., Eq. (44), we obtain directly an
approximation for

∫
P, namely,

∫
Ω

P(r, ω) ddr ≈ e2Epvd
m0ε0c0ωn(ω)(2π)d−1S

d

2

∫
Ω

[
2mr(r)

~2

]d/2 (
~ω − E(eff)

g (r)
)d/2−1

+
ddr . (54)

The above equation states that two integrals over Ω are equal for all frequencies ω. We therefore propose to induce
that the corresponding integrands are equal (a derivation which is not mathematically correct in general). This yields
the following approximation for P

PWWL(r, ω) =
e2Epvd

m0ε0c0ωn(ω)(2π)d−1S

d

2

[
2mr(r)

~2

]d/2 (
~ω − E(eff)

g (r)
)d/2−1

+
. (55)

Equation (55) translates mathematically our initial in-
tuition at the beginning of the paragraph: the absorbed

power at frequency ω is deposited in the volume E
(eff)
g <

~ω, and the associated power density is proportional to

[2mr(r)/~2]d/2(~ω − E
(eff)
g (r))

d/2−1
+ . For photon ener-

gies ~ω < minE
(eff)
g there is no energy transfer since no

photon is absorbed. For minE
(eff)
g < ~ω < maxE

(eff)
g ,

the energy is absorbed in the part of the volume hosting
somewhat localized states (either in the valence or in the
conduction band) whose energy lie between the minimum
and the maximum of the effective potentials and which

contribute to photon absorption. For ~ω > maxE
(eff)
g

the whole volume contributes. Note that the absorbed
power density around a given point r changes with ~ω in
a way which is reminiscent of the density of states. This
encodes the fact that several states may contribute to the
power density at a given point and given frequency ω.

IV. NUMERICAL BENCHMARK

A. Numerics

Indium concentration map — The local indium con-
centration X(r) as given by Eq. (1) can be expressed in
terms of convolution products

X =

gσ ∗
∑
i∈I

Xiδri

gσ ∗
∑
i∈I

δri

, (56)

where gσ(r) = exp(−|r|2/2σ). The convolution products
in Eq. (56) are conveniently computed numerically by the
use of the Fast Fourier Transform (FFT) [29]. Given an
almost cubic box of size L1×L2×L3, where L1, L2, L3 are
the nearest integer multiples of lattice constant lengths
along x1, x2 and x3 to a desired length L, we construct
a rectangular grid with discretization steps ∆x1, ∆x2

and ∆x3 significantly smaller than the lattice constants,
and commensurate with the cation lattice sites (i.e. that
lattice sites exactly fall on grid points). Based on this
spatial discretization grid, we can construct three arrays.
An array G for gσ evaluated at the grid points, an array
Λ for the indicator of the lattice of the Ga and In sites
(i.e., equal to one for lattice points ri and zero otherwise)
and an array I for the indicator of the In sites (which de-
pends on the realization of (Xi)i∈I). The discrete Fourier

transforms Ĝ = FFT[G], Λ̂ = FFT[Λ], and Î = FFT[I]
are computed with the FFT, and the indium concentra-
tion array evaluated on the grid, Xijk = X(rijk), is given
by

X =
FFT−1[ĜÎ]

FFT−1[ĜΛ̂]
, (57)

where the product of arrays is performed point wise.
This method is significantly faster than the naive
method consisting in summing Eq. (1) on the sampled
grid points as it benefits from the low complexity of
the FFT. Furthermore, the resulting map automatically
satisfies periodic boundary conditions. For alloys of
average indium concentration x, the wurtzite lattice
parameters are chosen following Vegard’s law, i.e., to be
a linear interpolation of the InN and GaN parameters
a = x aInN + (1 − x)aGaN and c = x cInN + (1 − x)cGaN
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TABLE II. Numerical parameters used in the simulations:
simulation box size L, finite element mesh step ∆x, number
of degrees of freedom DoF, number of eigenstates per band
M (only used for 1D and 2D benchmark), number of alloy
realizations N , and CPU speed-up between eigenstates and
landscape computation. The two different values of the speed-
up correspond to the use of the direct linear solver or the
iterative method GMRES.

Simulations L (nm) ∆x (Å) DoF M N Speed-up

1D Eig./WWL 200.0 0.5 4.0× 103 1000 100 178|178

2D Eig./WWL 40.0 3.0 2.1× 104 750 100 235|321

3D WWL 20.0 3.0 3.5× 105 - 50 -

(see Table I for values of the lattice parameters for InN
and GaN).

Finite element computation of eigenstates and localiza-
tion landscapes — The computation of the localization
landscapes and of the eigenstates [30] is achieved by
using the finite element method. Meshes are generated
with Gmsh [31] and we have used the finite element
solver GetDP [32, 33]. The band edges data (potentials
and effective masses) are interpolated on the nodal
points. The discretized linear system is solved either
by using a direct method or the iterative method of
generalized minimal residual (GMRES).

Computation of the absorption coefficient — The ab-
sorption coefficient, or equivalently C, is computed ei-
ther according to Eqs. (17), (38) or (43). For summing
Eq. (17) the Dirac masses are regularized as

δε(E
(c)
µ − E(v)

ν − ~ω) =
exp

[
− (E(c)

µ −E
(v)
ν −~ω)2

2ε2

]
√

2πε
, (58)

with an energy width ε = 5 meV (unless specified oth-
erwise) which we have experienced to be small enough
to resolve some sharp physically meaningful peaks (see
Sec. IV). The absorption coefficient is averaged over N
realizations of the alloy.

Numerical parameters — Material parameters used for
the computation are summarized in Table I. Numerical
parameters such as the size L of the box, and the dis-
cretization steps are summarized in Table II for the dif-
ferent simulations. The real part of the refractive index is
taken to be the experimentally measured refractive index
of GaN for simplicity [34].

B. Absorption spectra in 1D and 2D

We first consider one- and two-dimensional systems,
i.e., either a chain or a monolayer of InGaN with

randomly drawn Ga and In atoms. Since the parameters
given in Table I are relevant for three-dimensional
materials, we should not attempt to interpret our results
in terms of ”realistic” one- or two-dimensional materials.
Provided such materials could be made, the band gap
would be a priori different, etc. Furthermore, as noted
in Eq. (39), the prefactor in the absorption coefficient
is only valid in 3D. Nevertheless, we use the parameters
from Table I, and our only concern in the present
section is to assess the quality of our approximations,
Eqs. (38), and (43), against the exact formula based
on the computation of the eigenstates, Eq. (17), for
the spectral coupling density per unit (d-dimensional)
volume, C/|Ω|.

Figure 3(a) displays the spectral coupling density per
unit length averaged over N = 100 realizations of the
alloy chain. The indium concentration and the smearing
length are held fixed to x = 5% and σ = 2a, respec-
tively. The exact computation of the spectral coupling
density (denoted Eigenstates) can be decomposed into
three regimes:

(i) Above the band gap energy of GaN, E
(GaN)
g =

3.44 eV, E [C/|Ω|] exhibits an inverse square root behav-

ior, E [C/|Ω|] ∝ (~ω − E(GaN)
g )−1/2 characteristic of the

one-dimensional density of states for a homogeneous ma-
terial. This is to be expected since for sufficiently large
values of ~ω Weyl’s law applies. This can be interpreted
from the fact that the eigenstates at large enough energies
are weakly affected by the potential and are perturbed
plane waves.

(ii) Within an intermediate range of photon energy
2.5 eV < ~ω < 3.44 eV, the spectrum exhibits a plateau
with two peaks located at ~ω00 = 2.98 eV and ~ω02 =
3.19 eV (the indices 0 and 2 refer to the local ground and
second excited states in a well as will become clear be-
low). The plateau can be interpreted as the contribution
of transitions between states in the valence band and in
the conduction band whose energies are roughly between
the minimum and the maximum of each band potential.
In other words, this can be seen as the average broad-
ening width of the band edges due to the disorder. The
two peaks correspond to transitions from states in the
valence band to states in the conduction band which are
localized on isolated In atoms, and form sets of quasi-
degenerate eigenstates, as will be seen below. Note the
small standard deviation at the two peaks as indicated by
the shaded area, which is a signature of the robustness of
these quasi-degenerate eigenenergies from one realization
to the other, and comforts the idea that the transitions
are indeed between states localized on isolated In atom
wells. The peak of lowest energy, ~ω00 = 2.98 eV, corre-
sponds to a transition from the local ground state of an
isolated In-well in the valence band to the local ground
state of the same isolated In-well in the conduction band
[see the red and blue solid lines in the inset of Fig. 3(a)].
The second peak, at photon energy ~ω02 = 3.19 eV, cor-
responds to a transition between the local second excited
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FIG. 3. Average spectral coupling density per unit length, E [C/|Ω|], for one-dimensional InxGa1−xN alloys. (a) In-concentration
fixed x = 5%, and smearing length fixed σ = 2a. (b-d) Varying In-concentration x ∈ {5%, 10%, 15%} and fixed smearing length
(b) σ = a, (c) σ = 2a and (d) σ = 3a. The results were obtained by using the eigenstates based expression (Eig.), Eq. (17) , the
Wigner-Weyl expression (WW), Eq. (38), and the Wigner-Weyl localization landscape expression (WWL), Eq. (43), averaged
over N = 100 realizations of the alloy chain of length L = 200 nm. The shaded areas correspond to one standard deviation
around the average.

state of an isolated In-well in the valence band to the local
ground state of the same isolated In-well in the conduc-
tion band [see the dashed red line in the inset of Fig. 3(a)].
The first excited state of the isolated well in the valence
band does not couple significantly to the local ground
state in the conduction band due to the different parity
of the wave functions, and what would be the first excited
state in a local well in the conduction band is slightly de-
localized compared to that of the valence band due to
the difference in effective masses. There is no significant
coupling between those as compared to coupling between
local ground states. The inset in Fig. 3(a) pictures the
aforementioned states and we verify that the differences
between their respective eigenenergies indeed match the
two peaks energy in the spectrum.

(iii) Finally, for photon energies ~ω < 2.5 eV, we ob-
serve a rapid decay of E [C/|Ω|] with decreasing photon
energy, also called the Urbach tail. Transitions contribut-
ing to the Urbach tail correspond to low energy states,
respectively close to the minimum of the disordered con-

duction potential and the maximum of the disordered
valence potential. These are mainly occurring where In
atoms occupy several neighboring sites, thus generating
deep and broad wells. The probability of occurrence of
successive sites occupied by In atoms is exponentially
small with increasing number of consecutive sites, and
explains the somewhat exponential trend of the Urbach
tail.

For one-dimensional systems, we observe that the
approximations to C based on the Weyl law with the
original or effective potentials (denoted WW and WWL)
both agree with the exact result above the band gap of
GaN, as expected asymptotically. The plateau regime
and the Urbach tail are also captured, although the
Wigner-Weyl-landscape model is in closer agreement
with the exact computation in the Urbach tail in terms
of trend. However, both approximations fail to capture
the peaks which are characteristic of quasi-degenerate
states. The reason for this behavior can be understood
in the sense that the derived approximations use contin-
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FIG. 4. Average spectral coupling density per unit area, E [C/|Ω|], for two-dimensional InxGa1−xN alloys. (a-c) Comparison
between the eigenstates based formula [Eig., Eq. (17)] and the Wigner-Weyl law based on the localization landscape [WWL,
Eq. (43)] for varying In-concentration x ∈ {5%, 10%, 15%} and fixed smearing length (a) σ = a, (b) σ = 2a and (c) σ = 3a. (d)
Comparison between the usual Wigner-Weyl law [WW, Eq. (38)] and the Wigner-Weyl law based on the localization landscape
[WWL, Eq. (43)] for a fixed In-concentration x = 10%, and varying smearing length σ ∈ {a, 2a, 3a}. The results were obtained
by averaging over N = 100 realizations of the alloy of area L × L = 40 nm × 40 nm. The shaded areas correspond to one
standard deviation around the average. The vertical dashed lines indexed with a percentage corresponds to the band gap energy
obtained with the bowing formula, Eq. (5), for X set to the average concentration x. The legend in panel (a) is common to
panels (a-c).

uous, smoothly varying potentials or effective potentials.
The phase space Hamiltonian functions Hc(r,k) and
Hv(r,k), or their effective counterparts, are smooth rep-
resentation of the energy landscape in phase space in a
semi-classical picture. In order to capture the individual
peaks in the spectral coupling density, one would need
an approach in which the quantized flavor of the states
energies is, in some sense, preserved. A simple heuristic
to give a correction to the Wigner-Weyl-landscape model
and, for example, capture the peak associated to the
transitions between local-well ground states could be
the following: one could approximate the ground state
energy of a local well by using the rule of thumb [26]

E
(c)
µ ≈ (1 + d/4) minE

(eff)
c , where the minimum is taken

locally for the considered well (and similarly for E
(v)
ν ),

and then consider the probability density (histogram)

normalized by the wells volume of the approximated

energy differences (1 + d/4)(minE
(eff)
c −maxE

(eff)
v ) over

the domain Ω (not shown here). Figure 3(b-d) shows
the average spectral coupling density computed both
based on the eigenstates or by using the Wigner-Weyl-
landscape model for different values of the smearing
length σ, and for different average indium concentration
x. We observe the overall good agreement between the
exact calculation and the Wigner-Weyl-landscape model
for all the considered values of σ and x.

For two-dimensional systems, we observe that due
to the weaker variability of the potentials compared
to the one-dimensional case [see Eq. (4)], there is no
peak associated to transitions between quasi-degenerate
states. Figure 4 shows that the average spectral coupling
density increases monotonically with photon energy ~ω,
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TABLE III. Urbach energy EU for two-dimensional alloys de-
duced by fitting an exponential function α ∝ exp(~ω/EU ) to
the tail of the average spectral coupling density.

σ/a x (%) E
(Eig)
U (meV) E

(WWL)
U (meV)

1.0 5 48 ± 2 49 ± 3

1.0 10 57 ± 2 52 ± 3

1.0 15 56 ± 2 52 ± 3

2.0 5 27 ± 3 34 ± 3

2.0 10 41 ± 2 40 ± 3

2.0 15 46 ± 4 43 ± 3

3.0 5 21 ± 2 23 ± 3

3.0 10 20 ± 2 28 ± 3

3.0 15 27 ± 2 30 ± 3

to reach a constant value when ~ω → ∞ as expected
from the Weyl law in 2D. Note that the slow decay
and the possible oscillations of the spectral coupling
density with ~ω at high energy for the eigenstates
based computation [Fig. 4(a-c)] comes from the limited
number of eigenstates taken in the computation. We
have indeed observed that, for a computation with fewer
realizations, the high energy behavior becomes constant
for a large enough number of eigenstates taken into
account. The comparison between the eigenstates based
computation of the average spectral coupling density and
the Wigner-Weyl-landscape model in Fig. 4(a-c) shows
an overall good agreement over the whole spectrum
and for all the considered indium concentration x. The
agreement seems to be better for increasing values of
the smearing length σ. The Wigner-Weyl-landscape
model seems to slightly overestimate the Urbach tail for
σ = a. Figure 4(d) shows a comparison of the spectral
coupling density computed with the Wigner-Weyl and
Wigner-Weyl-landscape models for x = 10 % and
different values of σ. We observe that the Wigner-Weyl
model clearly overestimate the Urbach tail compared
to the Wigner-Weyl-landscape model. This gives a
clearer illustration, here in 2D compared to 1D, that the
Wigner-Weyl-landscape model indeed performs better
than the model based on the usual Weyl law.

C. Urbach energy

We obtain the Urbach energies (reported in Table III
for two-dimensional systems) by fitting an exponential
function in the Urbach tail both for the eigenstate-based
and the landscape-based computations. The fit is per-
formed by minimizing a least-square cost function

χ2 =
1

Nω − p

Nω∑
n=1

[
ln(E [α(~ωn)])− ln(αexp(~ωn))

Σ(~ωn)

]2

.

(59)

Here Nω is the number of discrete frequency points ωn
taken into consideration, E [α] is estimated by the empir-
ical average of the absorption coefficient obtained from
simulations, αexp(~ω) = α0 exp(~ω/EU ) is the Urbach
tail exponential model where α0 and EU are free param-
eters, p = 2 is the number of free parameters, and

Σ(~ωn) =

√
Var [α(~ωn)]

N

1

E [α(~ωn)]
(60)

is the uncertainty on the logarithm of the empirical av-
erage (

√
Var [α] /N is the uncertainty on the average)

where Var [α] is estimated by the empirical variance.
The uncertainty on the Urbach energy, EU , is estimated
from the diagonal element of the Hessian matrix of the
cost function corresponding to the parameter EU [35].

From Table III, we see that the Urbach energies E
(WWL)
U

obtained with the Wigner-Weyl-landscape model are in
very good agreement with that obtained with the rig-
orous model. We note that the Urbach energy tends
to increase for increasing indium concentration, which
is intuitively understandable since the disorder increases.
Moreover the Urbach energy tends to decrease with in-
creasing smearing length, which we can understand as
well since an increasing σ means a decreasing strength
(variance) of the conduction and valence potentials.

D. Absorbed power density

Figure 5 shows the reduced two-dimensional absorbed
power density

P̃(r, ω) =
∑
µν

〈χ(c)
µ |χ(v)

ν 〉
∗
χ(c)
µ

∗
(r)χ(v)

ν (r)

× δ
(
E(c)
µ − E(v)

ν − ~ω
)
, (61)

and its approximation [see Eq. (55)]

P̃WWL(r, ω) =
d vd

2(2π)d

[
2mr(r)

~2

]d/2 (
~ω−E(eff)

g (r)
)d/2−1

+
,

(62)
for different values of the photon energy ~ω. Note that
for the exact reduced power density P̃ we have used an
energy smearing width of ε = 20 meV. The reason for
choosing a rather large energy smearing width is that
the approximation P̃WWL is intrinsically smooth with
~ω while for a finite size system P̃ exhibits contribu-
tions at discrete photon energies. The chosen value is
arbitrary for the comparison but it reflects the intrin-
sic energy smearing of the effective potentials in this
case. We observe that the exact reduced power den-
sity, P̃, is localized in a small volume at low photon
energy [Fig. 5(a)] which corresponds to the contribu-
tion of local fundamental states. As the photon en-
ergy increases more delocalized states contributes and
the power density spreads over a larger volume to even-
tually become roughly uniform over the whole volume
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FIG. 5. (a-c) Absolute value of the reduced absorbed power density obtained with Eq. (61) for ε = 20 meV and (d-f) reduced
absorbed approximated by the Wigner-Weyl-localization landscape model, Eq. (62) for a two-dimensional In0.15Ga0.85N alloy,
with σ = 2a. The maps are shown for different values of the photon energy, (a,d) ~ω = 2.7 eV, (b,e) ~ω = 2.85 eV, (c,f)
~ω = 3.0 eV.

[Fig. 5(b-c)]. Similarly, the approximate power density

based on the localization landscape, P̃WWL, exhibits an
almost constant value in an increasingly larger domain
with increasing photon energy [Fig. 5(d-f)]. The fact
that the density is almost piecewise constant is a partic-
ularity of the spatial dimension d = 2. Indeed, for d = 2,

P̃WWL(r, ω) = 0 for ~ω < E
(eff)
g (r) and is proportional to

m(r) for ~ω < E
(eff)
g (r) (note that (~ω−E(eff)

g (r))0 = 1)
and which does not vary much in view of the close values
of the effective masses for InN and GaN. The interesting
feature of P̃WWL is that it predicts remarkably well the
volume in which the eigenstates contribute by compari-
son with the exact power density. The approximated den-
sity may be interpreted as a smoothing in energy space,
in some sense, of the exact power density.

V. 3D ABSORPTION

A. Absorption spectra

We now turn to three-dimensional systems for which
the computation of the eigenstates becomes unpracti-
cal for reasonable system sizes. Figure 6(a) displays
the absorption coefficient spectra obtained with the
Wigner-Weyl-landscape model for a few values of the
average indium concentration x and for σ = a, 2a

and 3a. Consistently with our observations for one-
and two-dimensional systems, the Urbach tail is less
pronounced for larger values of the smearing length
σ. Furthermore, the Urbach energy which controls the
decay of the Urbach tail is also smaller than the values
obtained for two-dimensional systems for the same value
of σ [compare Table III with Fig 6(b)]. This is due to
the lower variability of the potentials Ec and Ev with
the space dimension d [see Eq.(4)]. Consequently the
potentials are less confining. This is particularly true
for electrons in the conduction band. A calculation of
a few wave functions for one realization of the alloy
(not shown here) shows that the wave functions in the
conduction band are delocalized over the entire box and
quickly resemble plane waves with increasing energy
while the wave functions in the valence band remain
localized in local potential wells near the band edge.
These observations are in agreement with comparable
computations reported in the literature in the absence
of interface fluctuations in quantum well, or of the
electron-hole Coulomb interaction [10, 36].

Figure 6(b) shows the dependency of the Urbach en-
ergy with the average indium concentration x between
0 and 20 %. We observe that the Urbach energy in-
creases with the indium concentration and decreases
with increasing smearing length, as observed for two-
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dimensional alloys. It is instructive to compare the val-
ues of Urbach energies we have obtained in 2D and 3D,
with values obtained experimentally and numerically for
quantum wells in Ref. [9]. Piccardo and co-workers, by
using bias photocurrent spectroscopy [37], found values
of Urbach energies in the range between 15 and 25 meV
for indium concentration varying between 10 and 30%.
They also found that using a model based on the EMA,
that a value of σ ≈ 2a was appropriate to fit the ex-
perimental data. In view of Table III and Fig. 6(b),
for σ = 2a we have values of Urbach energies which are
about 40 meV in 2D and 7 meV in (bulk) 3D for these
indium concentrations. Considering that a quantum well
is a quasi two-dimensional system and also the effect of
piezo-electric field (which is absent in our calculation),
the fact that the values obtained in Ref. [9] fall between
the values we have obtained for 2D and 3D systems is
quite comforting. A more detailed comparison between
models and experiments is left for a future work.

B. Absorbed power density

The absorbed power density computed based on
Eq. (55) is shown on Fig. 7 for different photon energies
for a domain of 50 nm side length. At low enough pho-
ton energy, at the bottom of the Urbach tail [Fig. 7(a)],
we observe that only localized regions contribute to the
absorbed power. As the photon energy increases, an in-
creasingly larger volume contributes to the absorption
and with more intensity. This gives the intuitive picture
of an underlying energy landscape, the effective band gap
profile, which is filled up as the photon energy increases.
Furthermore, with increasing photon energy, more modes
contribute at a given point, a feature which is encoded

in the (~ω − E
(eff)
g )1/2 law, in Eq. (55), and which is

reminiscent of the density of states.

VI. CONCLUSION

In summary, we have derived a computationally
efficient model for light absorption in disordered semi-
conductor alloys. The model is based on an original
approach in phase-space and takes advantage of the
localization landscape theory. We have demonstrated
that the model gives accurate prediction for the ab-
sorption coefficient over the whole spectrum when
compared with the model based on the solution of the
Schrödinger equations. The computational speed-up has
been estimated for one and two-dimensional systems to
be about two orders of magnitude. Such a speed-up is
considerable, especially for three-dimensional systems
of relatively large size for which the use of standard
methods would be prohibitive.

The presented framework offers new directions to be
investigated. Allowing for fast computation of the ab-

sorption coefficient in 3D, the model could be compared
to light absorption experiment for bulk semiconductor
alloys like thick layers of InGaN for various indium
concentrations, or more exotic alloys such as perovskites.
Moreover, relatively large devices could be simulated
such as multiple disordered quantum wells.

Besides, it is well acknowledged that the electron-hole
Coulomb interaction can play a significant role in
absorption spectra, or more generally in the electronic
structure [10]. It would be of great theoretical and
numerical interest to analyze whether we could gener-
alize the presented theoretical approach in phase-space
accounting for the electron-hole interaction.

In the present paper, we have restricted ourselves to
uncorrelated alloys but the theoretical framework can
handle correlated atomic disorder as well. Exploring
the effect of spatial atomic species correlation on the
absorption spectrum, for example due to clustering [15],
or even more subtle correlations would be both of
fundamental and practical interest. Due to the limited
precision and efficiency of APT and TEM, atomic
correlations which may hardly be visible with the
aforementioned techniques could be complemented by a
careful analysis of the absorption tail, which we believe
should be sensitive to atomic correlations. If one could
rely on a precise modeling of the absorption spectrum,
in particular incorporating the Coulomb interaction,
deviations from the computed ideal case could be used
to assess statistical properties of the alloy based on its
physical impact on electronic properties.

Furthermore, an increasing interest as emerged in
recent years on non-local coupling between extended
excitonic states and the electromagnetic field, beyond
the dipole approximation, which may yield significant
effects both on the spectra and on the excitonic states
life time. Such a regime becomes relevant for high
refractive index and material exhibiting a large scale
disorder on a scale of a few nanometers [38]. It would be
interesting to see whether our approach can be adapted
to go beyond the dipole approximation.

Beyond the study of light absorption, the Wigner-
Weyl framework is quite general and it should apply to a
broader class of problems. The apparently obvious next
question to be addressed is that of luminescence phenom-
ena. Our framework should be easily adaptable to radia-
tive recombination, at least in the assumption of relaxed
electrons. Indeed, one may assume Fermi-Dirac statistics
for the relaxed electrons and holes near the band edges
and carry out the derivation presented in the paper by
weighting the density of states in phase space with Fermi-
Dirac distributions. Additionally, this would also allow
for the study of the effect of temperature on both absorp-
tion and luminescence spectra. Non-radiative recombina-
tions, such as Auger processes for example, are also likely
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FIG. 6. (a) Absorption coefficient as a function of photon energy ~ω for different values of the average indium concentration

x and of the smearing length σ. The shaded area correspond to ±2
√

Var [α] /N . (b) Urbach energy as a function of x for
different values of σ. The data are obtained based on the Wigner-Weyl localization landscape approach.

FIG. 7. Absorbed power density PWWL for a realization of the alloy for three values of ~ω: (a) ~ω = 2.8 eV, (b) ~ω = 2.85 eV, (c)
~ω = 2.9 eV. The results were obtained with Eq. (55) for a size of the computational domain L×L×L = 50 nm ×50 nm ×50 nm,
with element size ∆x = 3 Å, average indium concentration x = 15% and smearing length σ = 2a. The eighth top front corner
cube is removed to help visualize the inside of the volume. The color scale is common for the three values of ~ω to ease the
comparison.

to be modeled within the same framework at the expense
of coupling three densities of states in phase space in-
stead of two. Maybe more surprising, the problem of
phonon assisted transport may also be suitably modeled
by the Wigner-Weyl approach in view of the mathemat-
ical similarity between the electron-phonon interaction
and the electron-photon interaction although care should
be taken with the different wavelength regime.
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Appendix A: Validity of the disordered band
approximation

We would like to make a few remarks on the disordered
band approximation, in particular to motivate its rele-
vance for modeling InGaN. The method is inspired by the
so-called approximation of the envelope wave function,
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also known as the effective mass approximation (EMA),
for the modeling of quantum wells. In this context, effec-
tive Schrödinger equations are written for the different
carriers experiencing piece-wise constant or linear poten-
tials on scales of few nanometers, i.e., many lattice pa-
rameters. These potentials are constructed via the band
gaps of the involved semiconductor layers and potentially
electric fields [2, 3]. Although the method is largely val-
idated, and is in fact the state of the art for describing
and designing quantum well devices, the validity of the
EMA to model disordered semiconductors at the sub-
nanometer scale is not immediate. Indeed, why should
an alloy even preserve a crystalline band structure? An
enlightening answer was given by Popescu and Zunger,
who showed numerically that an effective band structure,
in the sense of a broadening and a deformation of the dis-
persion curves with increasing alloying concentration can
still be defined but only for some types of alloy [11, 12].
Depending on the atomic species involved in the alloy,
one can observe either a broadening of the band struc-
ture for a large range of alloying concentration, or the
apparition of impurity states inside the gap at low alloy-
ing concentration, to a full population of the gap and de-
struction of the band structure at higher concentrations.
InGaN belongs to the first category which motivates the
use of the disordered band approximation [11, 12]. Fur-
thermore, this approach has been used for modeling dis-
ordered quantum well devices with remarkable agreement
with experiment, provided the value of the smearing pa-
rameter is adequately chosen [9, 39].

The next question is the choice of the EMA parameters
and evaluating how well they will lead to a local disor-
dered potential representative of the alloy. This can be
done by (i) comparison with other models of disordered
semiconductor alloys, supposedly more accurate, or by
(ii) comparison of the resulting computations with some
observables of the system. In a number of cases, EMA
has been compared with density functional theory, such
as for Si quantum dots, for which an excellent agreement
is obtained between the two methods [40]. For nitride
alloys, comparisons between atomistic models and EMA
have also been made, with only small differences [41, 42].
It is, however, still difficult to assess these differences to
true deficiencies of either computations or to the choice
of parameters (e.g. the choice of the so-called bowing pa-
rameter describing the non-linear variation of the alloy
bandgap with alloy composition for the EMA (see e.g.
Caro et al. [43]). Turning to (ii), comparing with exper-
iment, the situation is also somewhat undecisive due to
uncertainties on samples quality and geometries [44]. For
instance, analysis of the Urbach tails in InGaN quantum
wells (QWs) reported by Piccardo [9] and David [10] are
significantly different. Both rely on the EMA for analysis.
David and co-workers include the Coulomb interaction to
obtain agreement with a single QW absorption data. In
contrast, Piccardo and co-workers rely on layer thickness
fluctuations to fit the larger Urbach tail of multiple QWs
samples, and the impact of Coulomb interaction might

be hidden by these fluctuations.
In any case, the use of the EMA is sufficient at this

point to generate a representative disordered potential
to evaluate the new computational approach developed
in the present paper. As observed in Secs. IV and V,
the final results depend significantly on the value of the
smearing length.

Appendix B: Momentum matrix element
factorization

By definition, the matrix element Mµν =

〈ψ(c)
µ |A0 · p̂ |ψ(v)

ν 〉 can be expanded as

Mµν = − i~A0 ·
[∫

Ω

u∗c(r)∇uv(r)χ(c)
µ
∗(r)χ(v)

ν (r) d3r

+

∫
Ω

u∗c(r)uv(r)χ(c)
µ
∗(r)∇χ(v)

ν (r) d3r

]
. (B1)

Assuming the envelope functions to be slowly varying
over the unit cell, the integration over Ω can be approx-
imated by a sum over unit cells Ωi centered on ri con-
tained in Ω where the envelope functions are considered
constant over each cell, i.e.,

Mµν = − i~A0 ·
∑
i∈L

[
χ(c)
µ
∗(ri)χ

(v)
ν (ri)

∫
Ωi

u∗c(r)∇uv(r) d3r

+ χ(c)
µ
∗(ri)∇χ(v)

ν (ri)

∫
Ωi

u∗c(r)uv(r) d3r

]
. (B2)

The integral in the second term in the above equation
vanishes as it is the scalar product of two unit cell Bloch
functions of different bands. The integral in the first term
is the momentum matrix element between uc and uv and
it does not depend on the specific unit cell Ωi since uc
and uv are lattice-periodic. Thus we have

−i~
|Ωi|

∫
Ωi

u∗c(r)∇uv(r) d3r = 〈uc| p̂ |uv〉 , (B3)

and

Mµν = 〈uc|A0 · p̂ |uv〉
∑
i∈L

χ(c)
µ
∗(ri)χ

(v)
ν (ri)|Ωi|

≈ 〈uc|A0 · p̂ |uv〉
∫

Ω

χ(c)
µ
∗(r)χ(v)

ν (r) ddr , (B4)

which justifies Eq. (15).

Appendix C: Homogeneous limit

We consider here the limit where either the aver-
age indium concentration x → 0 or where the smear-
ing length σ → ∞, the disordered conduction and va-
lence bands become constant, Ec(r) = Ec and Ev(r) =
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Ev, and so are the effective masses mc(r) = me and
mv(r) = −mh. In such cases, the envelope functions

reduce to plane waves χ
(c)
µ (r) = exp(ikµ · r)/

√
|Ω| and

χ
(v)
ν (r) = exp(ikν · r)/

√
|Ω|. Their scalar product be-

comes 〈χ(c)
µ |χ(v)

ν 〉 = δkµ,kν . The wave vectors are given

by kµ =
∑d
i=1 2πµi ei /L, where µ = (µ1, · · · , µd) ∈ Zd

is a multi-index, and similarly for kν . The eigenen-

ergies are given by E
(c)
µ = Ec + ~2|kµ |2/2me, and

E
(v)
ν = Ev−~2|kν |2/2mh. The spectral coupling density

then reads

C(~ω) =
∑
µ

δ

(
~2|kµ |2

2mr
+ Eg − ~ω

)

≈ |Ω|
(2π)d

∫
δ

(
~2|k|2
2mr

+ Eg − ~ω
)

ddk

=
dvd|Ω|
2(2π)d

[
2mr

~2

]d/2
(~ω − Eg)d/2−1

+ . (C1)

Here we have introduced the reduced effective mass
m−1
r = m−1

e +m−1
h , used the density of states in k-space

|Ω|/(2π)d and a change of variable E = ~2|k|2/2mr. The
factor vd = πd/Γ(d/2 + 1) is the volume of the unit ball
in dimension d and the + subscript denotes the positive
part function x 7→ x+ = max(x, 0). The absorption coef-
ficient in 3D is then given by Eq. (20) becomes

α(0)(ω) =
3v3e

2Ep
[

2mr
~2

]3/2
2(2π)2m0ε0ωc0n(ω)

(~ω − Eg)1/2
+ . (C2)

Appendix D: Marginal distributions of D(c)

We prove here the identity Eq. (28). First, by defini-
tion of D(c)(r,k, ε) we readily have∫ E

−∞
D(c)(r,k, ε)dε =

∑
µ

W
χ
(c)
µ

(r,k) Θ(E−E(c)
µ ), (D1)

where Θ is the Heaviside step function. Integrating the
above quantity over phase space yields∫∫ ∫ E

−∞
D(c)(r,k, ε) dε

ddr ddk

(2π)d
=

∑
µ

∫∫
W
χ
(c)
µ

(r,k)
ddr ddk

(2π)d
Θ(E − E(c)

µ ) . (D2)

Finally, the states χ
(c)
µ being L2-normalized and in virtue

of the property of the Wigner transform for the marginal
density [23] ∫

W
χ
(c)
µ

(r,k)
ddk

(2π)d
= |χ(c)

µ (r)|2 , (D3)

we have ∫∫
W
χ
(c)
µ

(r,k)
ddr ddk

(2π)d
= 1 . (D4)

Inserting the above equation in Eq. (D2) completes the
proof since∫∫ ∫ E

−∞
D(c)(r,k, ε) dε

ddr ddk

(2π)d
=
∑
µ

Θ(E − E(c)
µ )

= IDOS(c)(E) , (D5)

the last line being the definition of the IDOS. As a side
note, it is also straightforward to show that we have the
following relationships between the local quasi-density of
states in phases space and the density of states (DOS),
the local density of states (LDOS) and local density of
states in momentum space (MDOS) also known as the
spectral function for plane waves:∫∫

D(c)(r,k, E)
ddr ddk

(2π)d
=
∑
µ

δ(E − E(c)
µ )

= DOS(c)(E) , (D6)

∫
D(c)(r,k, E)

ddk

(2π)d
=
∑
µ

|χ(c)
µ (r)|2δ(E − E(c)

µ )

= LDOS(c)(r, E) , (D7)

and ∫
D(c)(r,k, E) ddr =

∑
µ

|χ̂(c)
µ (k)|2δ(E − E(c)

µ )

= MDOS(c)(k, E) . (D8)

In other words, all the usual densities of states can
be recovered as marginal distributions of the local quasi-
density of states in phase space since the latter inher-
its the properties on the marginal distributions of the
Wigner transform by construction.

Appendix E: The two-particle picture

We present in this appendix an alternative derivation
of Eq. (38), which gives a complementary physical picture
to the problem. First, we recast the inner product in
Eq. (17) as follows:

〈χ(c)
µ |χ(v)

ν 〉 =

∫
χ(c)
µ

∗
(r)χ(v)

ν (r) ddr

=

∫∫
χ(c)
µ

∗
(r)χ(v)

ν (r′) δ(r− r′) ddr′ddr

= 〈χ(c,v)
µν |δdiag〉 , (E1)

where the last bracket denotes a 2d-dimensional in-
ner product (in fact a duality bracket in a space
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of distributions). Here we have defined the state

|χ(c,v)
µν 〉 = |χ(c)

µ 〉⊗ |χ(v)
ν 〉
∗

whose wave function is given by

χ
(c,v)
µν (r, r′) = χ

(c)
µ (r)χ

(v)
ν

∗
(r′), and δdiag(r, r′) = δ(r− r′)

is the diagonal Dirac distribution. Equation (17) can
thus be recast as

C(~ω) =
∑
µ,ν

∣∣∣ 〈χ(c,v)
µν |δdiag〉

∣∣∣2 δ(E(c,v)
µν −~ω

)
= Aδdiag(~ω),

(E2)

with E
(c,v)
µν = E

(c)
µ −E(v)

ν . The doubling of variables sug-
gests to interpret Eq. (E2) as the so-called spectral func-
tion, Aδdiag

, associated to the distribution δdiag, which
corresponds to two particles found at the same position
r = r′, for the 2d-dimensional Hamiltonian Ĥ = Ĥc⊗ Î−
Î ⊗ Ĥv of independent particles. Indeed, since χ

(c)
µ and

χ
(v)
ν are eigenfunctions of Ĥc and Ĥv with eigenenergies

E
(c)
µ and E

(v)
ν , the product χ

(c,v)
µν (r, r′) = χ

(c)
µ (r)χ

(v)
ν

∗
(r′)

is an eigenfunction of the Hamiltonian Ĥ with eigenen-

ergy E
(c,v)
µν .

The spectral function Eq. (E2) can thus be interpreted
as the energy distribution associated to the two-particle
state δdiag evaluated at energy E = ~ω. In particular,
any moment of the energy in this state, 〈En〉, is given by

〈δdiag| Ĥn |δdiag〉 =

∫
EnAδdiag(E) dE . (E3)

The left-hand side of the above equation can also be ex-
pressed in phase-space by using the Wigner-Weyl formal-
ism. We denote the Wigner transform of a function ψ in
2d-dimension as

Wψ(r, r′,k,k′) =
1

(2π)2d

∫∫
ψ∗
(
r− x

2
, r′−x′

2

)
ψ
(
r +

x

2
, r′+

x′

2

)
exp

(
− ik · x−ik′ · x′

)
ddxddx′ . (E4)

Note that here, we have explicitly expressed the Wigner
transform in the 4d-dimensional phase space associated
to our problem, hence the variables r, r′, k and k′. The
Wigner transform of the diagonal state δdiag, which will
be useful below, can be easily computed and reads

Wδdiag
(r, r′,k,k′) = (2π)dδ(r− r′)δ(k + k′) . (E5)

The expectation value of an operator M̂ for a state ψ,

i.e. 〈ψ| M̂ |ψ〉 can be expressed in terms of the Wigner
transform of ψ and the Weyl transform M associated to
the operator M̂ as [45]

〈ψ| M̂ |ψ〉 =
1

(2π)2d

∫
R4d

Wψ(r, r′,k,k′)

×M(r, r′,k,k′) ddr ddr′ ddk ddk′ , (E6)

where the Weyl transform of the operator is given by

M(r, r′,k,k′) =
1

(2π)2d

∫∫ 〈
r− x

2
, r′−x′

2

∣∣∣∣ M̂ ∣∣∣∣r +
x

2
, r′+

x′

2

〉
exp

(
− ik · x−ik′ · x′

)
ddxddx′ . (E7)

Of particular interest in our study is the Hamiltonian
M̂ = Ĥ. The Weyl transform of the Hamiltonian Ĥ
reads

H(r, r′,k,k′) =
~2k2

2mc(r)
− ~2k′

2

2mv(r′)
+ Ec(r)− Ev(r′) .

(E8)
Hence in view of Eq. (E6) and Eq. (E5), the expectation
value of the energy in the state δdiag is

〈δdiag| Ĥ |δdiag〉 =

∫∫ [
~2k2

2mr(r)
+ Eg(r)

]
ddr ddk

(2π)d
.

(E9)
The above equation may seem at first sight problem-
atic since, mathematically speaking, the integral on the
right hand side clearly diverges. However, we must notice
that the left hand side also diverges as can be seen from

the definition of the diagonal Dirac distribution (a state
which is perfectly localized has a non-normalizable en-
ergy spectrum). To make our calculations rigorous, one
would need to regularize the diagonal Dirac distribution
or equivalently introduce a high energy cut off and study
an appropriate limit. Here, we are rather interested in
manipulating Eq. (E9) formally. We may rewrite the
right hand side as

〈δdiag| Ĥ |δdiag〉 =

∫
E

∫
E< ~2k2

2mr(r)
+Eg(r)<E+dE

ddr ddk

(2π)d

=

∫
E f(E) dE , (E10)
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where we have formally written

f(E) dE =

∫
E< ~2k2

2mr(r)
+Eg(r)<E+dE

ddr ddk

(2π)d
. (E11)

Equation (E10) means that the average energy can be
written as the integral of the energy variable against the
function f which plays the role of an energy probability
density and is given by the Lebesgue measure in phase

space of an elementary shell about ~2k2

2mr(r) + Eg(r) = E

as shown in Eq. (E11). This result is reminiscent of what
we have obtained with the local quasi-density of states
in phase space Eq. (34). Note that f is not the proba-
bility density of energy in the state δdiag but only an ap-
proximation inducted from the expectation value of the
energy. This is to be linked to the plateau function ap-
proximation in the point of view of the local quasi-density
of states in phase space. Finally, another approximation

can be obtain by replacing Eg by E
(eff)
g .
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