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We study how stable the Majorana-mediated spin transport in a quantum spin Kitaev model is
against thermal fluctuations. Using the time-dependent thermal pure quantum state method, we
examine finite-temperature spin dynamics in the Kitaev model. The model exhibits two character-
istic temperatures TL and TH , which correspond to energy scales of the local flux and the itinerant
Majorana fermion, respectively. At low temperatures (T � TL), an almost flux-free state is realized
and the spin excitation propagates in a similar way to that for the ground state. Namely, after
the magnetic pulse is introduced at one of the edges, the itinerant Majorana fermions propagate
the spin excitations even through the quantum spin liquid state region, and oscillations in the spin
moment appear in the other edge with a tiny magnetic field. When T ∼ TL, larger oscillations
in the spin moments are induced in the other edge, compared to the results at the ground state.
At higher temperatures, excited Z2 fluxes disturb the coherent motion of the itinerant Majorana
fermions, which suppresses the spin propagation. Our results demonstrate a crucial role of thermal
fluctuations in the Majorana-mediated spin transport.

I. INTRODUCTION

Recently, spin transport has been attracting much in-
terest. One of the examples is the spin current induced
by a polarized electric current in the ferromagnetic met-
als [1–8]. Another example is the spin current in the
magnetic insulators, where magnons carry spins without
the electric current [9–12]. In both cases, the spin cur-
rent flows in materials with magnetic orders. On the
other hand, it has been revealed that the spin transport
is also realized in quantum spin liquids (QSLs) [13–15],
where no magnetic order is realized due to strong quan-
tum fluctuations [16–22]. One of the typical examples
is provided by an antiferromagnetic S = 1/2 Heisenberg
chain. The anisotropic negative spin Seebeck effect in
a candidate material Sr2CuO3 indicates the spin current
mediated by spinons [23], which are magnetic elementary
excitations in this system.

Another interesting playground for QSLs is given by
the Kitaev model [24], which is composed of direction-
dependent Ising interaction between S = 1/2 spins on
the honeycomb lattice. In the model, quantum spins are
fractionalized into itinerant Majorana fermions and lo-
cal fluxes due to quantum many-body effects. The itin-
erant Majorana fermions have been observed as a half
quantized plateau in the thermal quantum Hall exper-
iments [25, 26] in a candidate α-RuCl3 [27]. Further-
more, it has been reported that the itinerant Majorana
fermions play a crucial role for the spin transport with-
out spin oscillations [13–15]. It is known that Majorana
and flux excitations have distinct energy scales, which
leads to interesting thermodynamic properties such as
the double peaks in the specific heat and the plateau
in the entropy [28–32]. Therefore it is highly desired to
clarify how stable such Majorana related phenomena are
against thermal fluctuations. This should be important
to realize spintronics devices with Majorana fermions.

To answer this question, we deal with the Kitaev model
with edges and consider the spin transport at finite tem-

peratures. By means of the time-dependent thermal pure
quantum (TPQ) state method [33–35], we examine the
dynamics of the system after the magnetic pulse is in-
troduced at one of the edges. Then, we discuss how
thermal fluctuations affect the Majorana-mediated spin
transport.

The paper is organized as follows. In Sec. II, we in-
troduce the Kitaev model on the honeycomb lattice and
explain the time-dependent TPQ method. In Sec. III,
we discuss how stable the spin propagation in the Ki-
taev model is against thermal fluctuations. A summary
is given in the last section.

II. MODEL AND METHOD

We consider the Kitaev model on a two-dimensional
honeycomb lattice, which is given by the following Hamil-
tonian as

HK = −J
∑
〈i,j〉x

Sxi S
x
j − J

∑
〈i,j〉y

Syi S
y
j − J

∑
〈i,j〉z

Szi S
z
j , (1)

where 〈i, j〉µ indicates the nearest-neighbor pair on the

µ(= x, y, z)-bonds. The x-, y-, and z-bonds are shown as
green, red, and blue lines in Fig. 1. Sµi is the µ component
of an S = 1/2 spin operator at the ith site and J is the
exchange coupling between the nearest-neighbor spins.

An important feature is that the Kitaev model has the
local conserved quantities. The operator Wp is defined
as

Wp = 26 · Sxp1S
y
p2S

z
p3S

x
p4S

y
p5S

z
p6 , (2)

where pi (i = 1, 2, · · · , 6) is the site in the plaquette p [see
Fig. 1(b)]. Since [HK ,Wp] = 0, [Wp,Wq] = 0 (p 6= q), and
W 2
p = 1, the operatorWp is a Z2 local conserved quantity.

Each eigenstate of the Kitaev model is classified by the
Hilbert space specified by a set {wp}, where wp(= ±1)
is the eigenvalue of Wp. Since the spin operator changes
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FIG. 1. (a) Kitaev model with armchair edges. Green, red,
and blue lines indicate x-, y-, and z-bonds, respectively. Its
bond length is a/

√
3. The static magnetic field hR is applied

in the right (R) region, and no magnetic field is applied in the
middle (M) region. Time-dependent pulsed magnetic field is
introduced in the left (L) region. (b) Plaquette p with sites
marked p1, p2, · · · , p6 shown for the operator Wp.

the sign of the corresponding eigenvalues wp for a cer-
tain state, the existence of the local conserved quantity
guarantees the absence of local magnetic moments 〈Sµi 〉
and long-range spin-spin correlations 〈Cµij〉 in the Kitaev

model, where Cµij = Sµi S
µ
j . The ground state is realized

in the space with wp = 1 for each plaquette, which can
be regarded as the flux-free space [24]. Besides the flux
degrees of freedom, the other remains: itinerant Majo-
rana fermions. It is known that the gapless dispersion
with the velocity v[= (

√
3/4)aJ ] appears in the itinerant

Majorana excitation in the flux-free space, where a is a
lattice constant. It is also known that the finite energy
is needed to create adjacent fluxes in the system [24].
The energy scales of the itinerant Majorana and the flux
excitations are distinct from each other. In the follow-
ings, we discuss how the energy difference affects the spin
transport at finite temperatures.

To study the spin transport in the Kitaev model,
we treat the system with armchair edges, as shown in
Fig. 1(a). We note that qualitatively the same behav-
ior discussed below can be observed also for the system
with zigzag edges. The system is composed of L, M,
and R regions, where the distinct magnetic fields are ap-
plied in the z direction. In the L region on the left edge, a
time-dependent pulsed magnetic field hL(t) is introduced
around t = 0. No magnetic field is applied to the M re-
gion, while the static magnetic field hR is applied to the
R region. The model Hamiltonian is given as

H(t) = H0 +H1(t), (3)

H0 = HK − hR
∑
i∈R

Szi , (4)

H1(t) = −hL(t)
∑
i∈L

Szi . (5)

We note that in the regions under the finite magnetic

field, the local operator Wp is no longer a conserved
quantity. For example, the local operator on the pla-
quette composed of the sites (5, 12, 13, 14, 7, 6) shown
in Fig. 1(a) does not commute with −hRSz7 . Therefore,
in general, this leads to the finite magnetizations in the
R region.

In the paper, we examine the real-time dynamics in the
model at finite temperatures after the magnetic pulse is
introduced in the L region. The expectation value at
time t for an operator Ô is given as

〈Ô(t)〉 =
1

Z0
Tr
[
Ô(t)e−βH0

]
, (6)

where β = 1/T , T is the temperature, Z0(= Tr
[
e−βH0

]
)

is the partition function and Ô(t) = U†(t)ÔU(t) with
the time-evolution operator U(t). At zero temperature
(T = 0), the localized Z2 fluxes freeze into the flux-
free state, and the Majorana mean-field approach should
work to evaluate the expectation values [13, 15, 36–38].
On the other hand, at finite temperatures, the above
method should be hard to treat both excitations with dis-
tinct energy scales. Thus, we use the TPQ state method
[33, 34], where local quantities are efficiently evaluated
without the trace calculations [39–45]. An important
point is that this numerical method takes several energy
scales into account on equal footing, and thereby has been
successfully used in several systems such as the Heisen-
berg model on frustrated lattices [33–35, 46–49] and the
Kitaev models [30, 50–55].

In the TPQ method, the expectation value (6) is de-
scribed by means of the TPQ state as

〈Ô(t)〉 = 〈ΨT |Ô(t)|ΨT 〉,
= 〈ΨT (t)|Ô|ΨT (t)〉, (7)

where |ΨT 〉 is the TPQ state at the temperature T and
|ΨT (t)〉 = U(t)|ΨT 〉. The time-evolution of the physical
quantities can be evaluated by the time-evolution of the
TPQ state [35].

Here, we briefly explain the TPQ method. A TPQ
state at T →∞ is simply given by a random vector,

|Ψ0〉 =
∑

ci|i〉, (8)

where {ci} is a set of random complex numbers satisfying∑
i |ci|2 = 1 and |i〉 is an arbitrary Hilbert basis. By

multiplying a certain TPQ state by the Hamiltonian, the
TPQ states at lower temperatures are constructed. The
kth TPQ state is represented as

|Ψk〉 =
(L−H0)|Ψk−1〉
||(L−H0)|Ψk−1〉||

, (9)

where L is a constant value, which is larger than the
maximum eigenvalue of the Hamiltonian H0. The corre-
sponding temperature is given by

Tk =
L− Ek

2k
, (10)
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where Ek(= 〈Ψk|H0|Ψk〉) is the internal energy. The
thermodynamic quantities such as entropy and specific
heat can be obtained from the internal energy and tem-
perature.

We repeat this procedure until Tk = T and obtain the
TPQ state |ΨT 〉. Then, we calculate the time-evolution
of the TPQ state |ΨT (t)〉 in terms of the Lanczos time-
evolution methods [56–61]. We can efficiently obtain

the expectation value 〈Ô(t)〉. When we discuss the real-
time dynamics by applying the pulsed magnetic field, it
is useful to consider a change in the quantities as,

∆O(t) = 〈Ô(t)〉 − 〈Ô〉0, (11)

where 〈· · · 〉0 is the expectation value for the static Hamil-
tonian H0.

When the TPQ method is applied to the finite clus-
ter, the obtained results are sensitive to its size and/or
shape. This is due to, at least, two effects. One of
them is that low energy properties in the thermodynamic
limit cannot be described correctly in terms of finite clus-
ters. Therefore, the large system size dependence of
the physical quantities appears at low temperatures al-
though the TPQ method reproduces the correct results
at higher temperatures. The other is the random de-
pendence in the initial TPQ state. This should become
negligible, by taking a statistical average of the results
for independent TPQ states. Nevertheless, we some-
times meet with difficulty in evaluating time-dependent
quantities, since each TPQ state is not an eigenstate
of the Hamiltonian. Namely, ill oscillations appear in
the physical quantities with respect to time even with-
out time-dependent perturbations, unless the quantities
are conserved ones. Although this oscillation should be
neglected in the statistical average, the sample depen-
dence is somewhat large even at high temperatures. To
avoid this problem, we construct two time-dependent
TPQ states from the common TPQ state as, |ΨT (t)〉 and
|Ψ0
T (t)〉 = U0(t)|ΨT 〉, where U0(t) is the time-evolution

operator for the system described by H0. Then, we calcu-
late 〈Ô(t)〉0 = 〈Ψ0

T (t)|Ô|Ψ0
T (t)〉 instead of 〈Ô〉0 and eval-

uate the change in the quantities (11), where unphysical
oscillations should be cancelled. This allows us to ob-
tain ∆O(t) efficiently and to discuss correctly how the
external field affects the Kitaev system at finite temper-
atures. We have confirmed that, in the 16-site cluster,
our TPQ results are in good agreements with the results
obtained by the finite-temperature exact diagonalization
(not shown). Even in the large cluster (N = 28), the
TPQ results at the lowest temperature T/J = 0.01 agree
well with the results at zero temperature obtained by the
Lanczos method, which will be shown later. Therefore,
we believe that the time-evolution of physical quantities
can be examined quantitatively by means of the TPQ
method.

In the present study, we mainly consider the Kitaev
model with N = 28, where N is the total number of
sites. The model is schematically shown in Fig. 1(a).
The static magnetic field in the R region is set to be

FIG. 2. (a) Specific heat C (blue line), entropy S (orange
line), and (b) internal energy E (blue line) and expectation
values of local conserved quantities 〈W 〉p (orange line) as a

function of T/J in the Kitaev system (N = 28) with the
armchair edges described by H0.

hR = 0.01J , which is smaller than the critical values hc
[36, 37, 62]. Before discussing the time evolution, we first
demonstrate equilibrium quantities of the Kitaev model.
Applying the TPQ method to the Hamiltonian H0 with
hR/J = 0.01 on the 28-site cluster with armchair edges,
we obtain the entropy S, specific heat C, internal energy
E, and expectation value 〈Wp〉. The results are shown
in Fig. 2. We clearly find double peaks in the specific
heat at TL/J ∼ 0.019 and TH/J ∼ 0.36, and shoulder
behavior in the entropy around T/J ∼ 0.1. It is also
found that E is largely changed around TH , while 〈Wp〉 is
changed around TL. These results are consistent with the
fact that TL and TH correspond to typical energy scales
of the local fluxes and the itinerant Majorana fermions,
respectively. The residual entropy originates from the
existence of the edge states in the cluster. As mentioned
above, low temperature properties are sensitive to the
cluster since low-energy excitations depend on the size
and/or shape. Nevertheless, the spin fractionalization
inherent in the Kitaev model can be captured even in
the 28-site system with edges. This allows us to discuss
how thermal fluctuations affect the spin propagation in
the Kitaev model qualitatively.
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FIG. 3. Real-time evolution of the changes in the local mag-
netizations ∆Szi in the system with hR/J = 0.01 after the
introduction of the pulsed magnetic field with A = 1 and
σ = 2/J . Solid and dashed lines represent the results at the
temperatures T/J = 0.01 and T/J = 0, respectively. For
clarity, ∆Szi (t) for the sites 11 and 14 are plotted on a scale
of 10 times.

III. RESULTS

Now, we study the real-time dynamics of the Kitaev
system at finite temperatures after the Gaussian mag-
netic pulse is introduced in the L region. The form of
the Gaussian pulse is given as

hL(t) =
A√
2πσ

exp

[
− t2

2σ2

]
, (12)

where A and σ are strength and width of the pulse. Here,
we set σ = 2/J and A = 1. Taking average over more
than hundred independent TPQ states, we calculate the
time-evolution of local physical quantities. It is known
that the spin transport through the Kitaev QSL region
is mediated by the Majorana fermions [13, 15]. To avoid
discussions for the reflection around the right edge, we
define the arrival time of oscillations triggered by the
magnetic pulse at x as t∗ = x/v, where x is the coordinate
of the ith site or the midpoint of the bond [see Fig. 1(a)].

Figure 3 shows the change in the local magnetizations
in the L, M, and R regions at T/J = 0.01. We note that
the cluster treated here has translational and mirror sym-
metries in the perpendicular direction to the x axis, and
four sites with a certain x-coordicate are topologically
equivalent. In the L region (site 8), no magnetic field
is applied at t → −∞, and thus no magnetic moment
appears. We find that the pulsed magnetic field induces
the magnetic moment ∆Sz8 (t) at the same time as the
pulse is introduced. On the other hand, no magnetic
moments are induced in the M region (site 11). This is
consistent with the fact that the existence of local con-
served quantities guarantees the absence of the magnetic
moments even after the magnetic pulse is introduced. In

FIG. 4. Real-time evolution of the change in the spin-spin
correlation in the M region at several temperatures. The re-
sults at zero temperature are obtained by the exact diagonal-
ization. Dashed vertical lines represent the time t∗ for the
corresponding bonds. The insets of (a) and (b) are corre-
sponding magnified graphs at −3 < tJ < 1 with the same
magnification.

the R region, the tiny static magnetic field hR is applied
and the magnetic moment appears with 〈Sz14〉 ∼ 0.092 at
t = −∞. We find that the spin oscillation is induced at
the site 14 around t ∼ 3/J . This means that the wave
packet triggered by the magnetic pulse in the L region
reaches the R region through the M region without spin
oscillations. The peculiar spin transport is mediated by
itinerant Majorana fermions [13]. We also apply the ex-
act diagonalization to this system and calculate the spin
oscillation at zero temperature. The obtained results are
shown as the dashed lines in Fig. 3. We find that the
spin oscillation for the ground state is slightly different
from that at T/J = 0.01. This should imply that few
excited fluxes influence the motion of the itinerant Ma-
jorana fermions.

To clarify how the Majorana-mediated spin transport
is modified at finite temperatures, we first focus on the
time evolution of the nearest-neighbor spin-spin corre-
lations Cµij(t) on the µ-bond. This quantity is propor-
tional to the bond energy, and thereby the oscillation in-
dicates the energy flow for the Majorana-mediated trans-
port [14]. Figure 4 shows the real-time evolution of the
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FIG. 5. Real-time evolution of the change in the local mag-
netization ∆Sz14(t) in the R region. The dashed vertical line
represents the time t∗14.

change in the spin-spin correlations in the M region. Note
that, in the M region, the spin moments 〈Szi (t)〉 = 0
(not shown). We find that at T = 0, the oscilla-
tions of ∆Cz3,10(t) and ∆Cz11,18(t) start at t ∼ −2.5J
and t ∼ −1.5J , respectively [see insets of Fig 4]. This
difference in time means that the energy injected by the
magnetic pulse in the L region in turn flows through the
M region, which is contrast to no oscillations in the mag-
netic moments [see Fig. 3]. For both bonds, the oscil-
lation is little changed at T/J < 0.01. On the other
hand, at T/J & 0.01, it is rapidly changed, and its in-
tensity monotonically decreases with increasing temper-
atures. This behavior seems a general feature in the cor-
related systems, where the propagation smears due to
thermal fluctuations.

By contrast, different behavior appears in the change
in the magnetic moment in the R region. The results
with several temperatures are shown in Fig. 5. At low
temperatures (T/J . 0.01), shoulder behavior in ∆Sz14
appears around t = t∗. Beyond T = TL, shoulder behav-
ior smears and the time evolution becomes monotonic.
The increase of |∆Sz14(t)| implies that spin oscillations
triggered by the magnetic pulse are enhanced by thermal
fluctuations. With further increasing temperatures, its
magnitude decreases and almost vanishes when T & TH .
This should originate from thermal fluctuations for both
Z2 fluxes and itinerant Majorana fermions.

Now, we discuss the oscillation of the local moment in
the R region in more detail, regarding |∆Sz14(t)| at t = t∗14
as its representative magnitude. Figure 6 shows the tem-
perature dependence of the quantity (orange circles). It
is found that, at zero temperature, Majorana-mediated
spin transport appears with |∆Sz14(t∗14)| ∼ 0.0022. This
value little changes when T/J . 0.01. With increas-
ing temperatures, |∆Sz14(t∗14)| increases and takes a max-
imum around T/J ∼ 0.03. Further increase of the tem-
perature decreases the value monotonically due to ther-
mal fluctuations. This nonmonotonic behavior reminds
us of the magnetic susceptibility of the bulk system [63–

FIG. 6. The orange circles represent ∆Sz14(t) at t = t∗14
and the blue line represents the magnetic susceptibility of the
N = 28 cluster (see the inset). The orange arrow represents
the result in the ground state obtained by the exact diago-
nalization. Three dashed vertical lines indicate TL/J , Tχ/J ,
and TH/J .

68].
Then, we consider a 28-site Kitaev cluster with the pe-

riodic boundary conditions along the x and y directions
[see the inset of Fig. 6]. Applying the TPQ method to this
cluster with the tiny uniform magnetic field h(= 0.01J)
in the z-direction, we obtain the static susceptibility

χ =
∑N
i S

z
i /(hN). We show the results with the solid

line in Fig. 6. One can see that the susceptibility be-
haves non-monotonically against the temperature and
shows a broad peak around T = Tχ(∼ 0.027J). This
non-monotonic behavior originates from two competing
effects. One is the thermal fluctuation, which tends to
suppress the susceptibility. The other is the existence of
the finite gap of the Z2 fluxes. Due to the spin fractional-
ization, one spin is represented by the flux and itinerant
Majorana fermion.

The flux becomes thermally activated at finite tem-
peratures, in particular around TL, which makes the spin
sensitive against the external field. Our results show that
the temperature dependence of the magnetic oscillations
induced by the magnetic pulse and the susceptibility are
essentially the same. This implies that, also for the spin
transport, the competition between the thermal fluctu-
ations and the thermal activation of Z2 fluxes plays a
role similar to the case of the susceptibility, leading to a
non-monotonic temperature dependence.

IV. CONCLUSION

We have investigated how stable the Majorana-
mediated spin transport in a quantum spin Kitaev model
is against thermal fluctuations. The finite-temperature
spin dynamics has been examined by applying the time-
dependent thermal pure quantum state method to the
Kitaev model. At low temperatures (T � TL), an al-
most flux-free state is realized and the spin excitation
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propagates similarly to that for ground state. When
T ∼ TL, larger oscillations in the spin moments are ob-
served, comparing with the results at the ground state.
At high temperature (T ∼ TH), both itinerant Majorana
fermions and localized Z2 fluxes strongly fluctuate ther-
mally, which suppresses the spin oscillations. We have
also confirmed that such a phenomenon appears even in
the Kitaev cluster with zigzag edges. Therefore, our re-
sults demonstrate a crucial role of thermal fluctuations
in the Majorana-mediated spin transport in the Kitaev
model.

We have found the enhancement of the spin oscillation
around T ∼ Tχ by considering the ferromagnetic Kitaev
model of a finite cluster. In future, it is important to elu-
cidate the case of the antiferromagnetic Kitaev model. In
addition, since the thermally activated fluxes also exist in

Kitaev clusters with different number of sites, thermally
enhanced spin transport should not be sensitive against
the sistem size, but it is also importtant to clarify how
robust this non-monotonic behavior is against the size
and whether it survives in more realistic setups with the
Heisenberg terms and/or disorders.
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