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Chiral anomaly or Adler-Bell-Jackiw anomaly in Weyl semimetals (WSMs) has a significant impact on the
electron transport behaviors, leading to remarkable longitudinal or planar electrical and thermoelectric transport
phenomena in the presence of electromagnetic gauge fields. These phenomena are consequences of the imbal-
anced chiral charge and energy induced by chiral anomaly in the presence of non-orthogonal external fileds,
namely E ·B 6= 0 or B · ∇T 6= 0 (E,B, and∇T are the electric field, magnetic field, and thermal gradient
respectively). We here propose another two fascinating transport properties, namely, the nonlinear planar Nernst
effect and nonlinear planar thermal Hall effect induced by chiral anomaly in the presence of B · ∇T 6= 0 in
WSMs. Using the semiclassical Boltzmann transport theory, we derive the analytical expressions for the chiral
anomaly induced nonlinear Nernst and thermal Hall transport coefficients and also evaluate the fundamental
mathematical relations among them in the nonlinear regime. The formulas we find in this current work are con-
sistent with that predicted for the nonlinear anomalous electrical and thermoelectric effects induced by Berry
curvature dipole recently. Additionally, in contrast to the recent work, by utilizing the lattice Weyl Hamiltonian
with intrinsic chiral chemical potential, we find that the chiral anomaly induced nonlinear planar effects can
exist even for a pair of oppositely tilted or non-tilted Weyl cones in both time reversal and inversion broken
WSMs. The chiral anomaly induced nonlinear planar effects predicted here along with the related parameter
dependencies are hence possible to be realized in realistic WSMs in experiment.

I. INTRODUCTION

Topological Weyl semimetals (WSMs) accommodating
Weyl fermions have drawn tremendous attention due to their
fascinating topological properties [1–7]. In a WSM, the Weyl
nodes, which are defined as the positions in momentum and
energy space where non-degenerate bands linearly touch with
each other, always appear in pairs with well-defined but op-
posite chiralities [8]. Each node of the pairs individually act
as the source (+ chirality) or sink (− chirality) of the Berry
curvature [9], which can be viewed as the effective magnetic
field in momentum space. In the absence of external mag-
netic fields, many topological transport phenomena induced
by the nontrivial Berry curvature have been discussed in the
literature in the linear regime of WSMs. Examples include the
anomalous Hall, Nernst and thermal Hall effects [10–20], etc.
Recently, it has been shown that the Berry curvature dipole
(BCD), which generates nonlinear anomalous thermoelectric
responses in time-reversal (TR) symmetric but inversion sym-
metry (IS) broken two-dimensional (2D) systems [21–31],
can also manifest itself in three-dimensional (3D) WSMs and
shows interesting electrical and optical effects in the nonlinear
response regime [32–34].

A remarkable topological aspect in WSMs is the chiral
anomaly [35–37], which, in the presence of parallel electro-
magnetic fields (E · B 6= 0), leads to the non-conservation
of the chiral charge. The chiral anomaly in WSMs gives rise
to several intriguing magnetotransport phenomena, including
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the negative longitudinal magnetoresistance [37–42] and the
planar Hall effect [43–50], which have been well studied in
both theories and experiments. Nevertheless, their counter-
parts in the nonlinear regime remain barely discussed so far.
It has recently been proposed that the nonlinear planar Hall ef-
fect (NPHE) induced by the chiral anomaly can exist in tilted
Weyl semimetals, originating from the combined effect of the
Berry curvature related anomalous velocity and the modified
carrier density induced by the chiral anomaly [51, 52]. The
chiral anomaly in this newly proposed nonlinear Hall effect
belongs to the conventional electrical chiral anomaly, which
requires the simultaneous presence of a non-orthogonal elec-
tric and magnetic fields.

Analogously, the presence of co-planar thermal gradient
and magnetic field, i.e. B · ∇T 6= 0, can also result in the
chiral charge pumping and the non-conservation of the en-
ergy densities in WSMs. This is the so-called thermal chiral
anomaly. Not only the thermal chiral anomaly generated mag-
netotransport behaviors have been theoretically studied [53]
in Weyl materials but also a giant enhancement on thermal
conductivity induced by thermal chiral anomaly has been ob-
served experimentally in topological bismuth-antimony alloys
(Bi1−xSbx) [54]. However, both of these works fall within
the linear response regime. Here in this work, we propose an-
other two fascinating planar thermoelectric effects in the non-
linear response regime that are induced by the thermal chiral
anomaly, namely, nonlinear planar Nernst effect (NPNE) and
nonlinear planar thermal Hall effect (NPTHE). To the best of
our knowledge, these two chiral anomaly induced nonlinear
planar effects proposed in this work, have not yet been dis-
cussed and can be probed experimentally.

In this work, using the semiclassical Boltzmann transport
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approach with a relaxation time approximation, we derive the
general expressions for the nonlinear planar Nernst and pla-
nar thermal Hall effect induced by the thermal chiral anomaly
(Eqs. (7), (9)). By doing Sommerfeld expansion in the low-
temperature regime, we also obtain the fundamental relations
among the chiral anomaly induced nonlinear planar thermo-
electric transport coefficients. We find that in the nonlinear re-
sponse regime (∝ (∇T )2), the chiral anomaly induced NPNE
and NPHE coefficients are directly proportional to each other
while NPTHE and NPHE coefficients are connected by a
derivative relationship (Eq. (13)). The fundamental formulas
derived in this work remarkably reproduce relations identi-
cal to those predicted recently for the BCD induced nonlinear
anomalous thermoelectric transport coefficients in the absence
of magnetic field [31].

Using the general expressions of the nonlinear planar ther-
moelectric effects, we predict the behavior of these transport
coefficients in both TR and IS broken WSMs using low en-
ergy linearized Weyl Hamiltonian as well as the lattice Weyl
Hamiltonian. We consistently find that at chemical potentials
away from the Weyl nodes, the chiral anomaly induced NPNE
and NPTHE coefficients are proportional to (kBT )0µ−2 and
(kBT )2µ−3 respectively, agreeing well with the nonlinear
analog of the Wiedemann-Franz law and Mott relation derived
in this work. Specifically, based on our numerical calculations
via the lattice Hamiltonian with finite intrinsic chiral chemi-
cal potential, we find that the nonlinear planar transport co-
efficients can be non-zero even when the Weyl nodes are op-
positely tilted or not tilted at all, in contrast to what has been
found in a recent work [51]. The finite chiral chemical po-
tential along with the lattice regularization naturally generate
an asymmetric Fermi surface near the Weyl nodes in WSMs,
resulting in non-zero net value of the Fermi surface contribu-
tions. Consequently, the results obtained via lattice model in
this work, can be taken as a justifiable theoretical prediction
in favor of the feasibility of probing of the nonlinear planar ef-
fects induced by chiral anomaly in realistic materials. The be-
havior of the newly proposed chiral anomaly induced NPNE
and NPTHE effects predicted in this work can also be directly
tested in experiments, e.g. via the frequency lock-in measure-
ment under frequency-dependent thermal gradient, in the TR
symmetry broken as well as IS broken Weyl systems.

The rest of the paper is organized as follows: In Sec. II,
we start with the semiclassical Boltzmann transport formal-
ism, and in part A, we derive the expressions for the chiral
anomaly induced nonlinear planar transport charge and heat
currents for the configuration E = 0,B · ∇T 6= 0; then we
derive the fundamental relations among the chiral anomaly in-
duced nonlinear planar transport coefficients via Sommerfeld
expansion in part B. In Sec. III, we apply our analytically
derived equations to the linearized Weyl Hamiltonian as well
as the lattice Weyl Hamiltonian, and numerically check the
parameter dependencies for the nonlinear planar Nernst and
thermal Hall effects. Finally we end with a brief summary
and conclusion in Sec. IV.

II. SEMICLASSICAL BOLTZMANN TRANSPORT
FORMALISM MODIFIED BY BERRY CURVATURE

The dynamics of the non-equilibrium distribution func-
tion f(k, r, t) for Bloch electrons is phenomenologically de-
scribed by the following Boltzmann transport equation,(

∂

∂t
+ ṙ · ∇r + k̇ · ∇k

)
f(r, k, t) = Icoll

[
f (r , k , t)

]
(1)

where the right hand side represents a collision term which
incorporates the effects of electron interaction and impurity
scattering. The Berry curvature effect can be introduced into
the above Boltzmann equation through the semiclassical equa-
tions of motion for the carriers [9, 55, 56], given as below,

ṙ = D
[
v +

e

~
E ×Ω +

e

~
(v ·Ω)B

]
k̇ = D

[
− e

~
E − e

~
v×B − e2

~2
(E ·B)Ω

] (2)

whereD is the shorthand forD(B,Ω) = (1+e(B·Ω)/~)−1,
the phase volume factor revealed in the presence of non-
zero Berry curvature Ω and magnetic field B. Here, v =
~−1∂εk/∂k is the carrier group velocity coming from the
band dispersion εk. The second and third terms in the ṙ equa-
tion give rise to the anomalous Hall effect and the chiral mag-
netic effect respectively, while the third term in the k̇ equation
proportional to (E·B) is the source of chiral anomaly in Dirac
and Weyl semimetals.

In this work, we are interested in the steady-state solu-
tions to the Boltzmann transport equation in a configuration
ofE = 0 but non-zero magnetic fieldB and thermal gradient
−∇T . Plugging Eq. (2) into Eq. (1), the Boltzmann transport
equation can be rewritten as,

D

[
v +

e

~
(v ·Ω)B

]
∇rfr,k = −fr,k − feq

τ
(3)

where we have invoked the relaxation time approximation
with τ being the phenomenal scattering time. We want to
stress that, a more complete analysis should involve both the
inter-node and intra-node scattering times for WSMs in the
above equation. However, the leading contribution to the non-
linear responses in WSMs studied in this work can be found
to arise from the inter-node scattering relaxation (see the Ap-
pendix). For simplicity, we here consider a single effective
scattering time as applied in the recent works [11, 57], which
will not qualitatively affect our results and conclusions in
WSMs as shown in following sections.

The equilibrium Fermi-Dirac distribution function is given
as feq = 1/(eβ(εk−µ) + 1), for which at zero temperature
we have feq = Θ(µ − εk), and ∂feq/∂εk = −δ(µ − εk)
(= −δ(k− kF )/|∂εk/∂k|). To obtain non-linear thermoelec-
tric responses second order in thermal gradient, we are inter-
ested in the correction terms δfk = (fr,k − feq) which can
be formulated as δfk =

∑
n f

n
k with fnk ∝ (∇T )n. The first
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two correction terms are found as below,

f1k = τD
εk − µ
T

(
v +

e

~
(v ·Ω)B

)
∇T ∂feq

∂εk

f2k = τD
εk − µ
T

(
v +

e

~
(v ·Ω)B

)
∇T ∂f

1
k

∂εk

(4)

Note that, f1k ∝ τ while f2k ∝ τ2. We should mention, that the
orbital magnetic moment is ignored here in this work for sim-
plicity, as its effect on the chiral anomaly induced nonlinear
responses is found to be negligible in recent works [51, 52].
With the help of the above equations, we will derive the equa-
tions for the chiral anomaly induced nonlinear planar Nernst
effect and nonlinear planar thermal Hall effect in what fol-
lows.

A. Chiral anomaly induced nonlinear planar Nernst effect and
nonlinear planar thermal Hall effect

Using the semiclassical equations of motion for the elec-
trons, the charge current can be written as [9, 58],

j = −e
∫

[dk]ṙfk +
ekB∇T

~
×
∫

[dk]Ωksk (5)

where sk = −feqlogfeq−(1−feq)log(1−feq) is the entropy
density. In a more generalized format, the non-equilibrium
distribution function fk can be applied to sk to generate the
higher order (over linear order) responses [29, 30]. Therefore,
in the presence of thermal gradient and magnetic field, the
generalized charge current can be rewritten as,

j =− e
∫

[dk]D−1
[
v +

e

~
(v ·Ω)B

]
fk −

e∇T
~T
×∫

[dk]Ω

[
(εk − µ)fk + β−1log(1 + e−β(εk−µ))

] (6)

A linear planar thermopower contribution (∝ (∇T )) can be
extracted from the first term in the above equation, as has been
studied recently for Dirac and Weyl semimetals [59]. The
second term in the above equation, on the hand, describes
the purely anomalous Nernst effect independent of magnetic
field in the linear response regime. However, the second term
can support nonlinear effects when the higher order correction
terms of fk are considered. Here in this paper, we are inter-
ested in the higher order responses induced by thermal chi-
ral anomaly (i.e., the coplanar thermal gradient and magnetic
field) via the contributions coming from the perturbed correc-
tion terms of the distribution function for carriers (δfk). After
some algebra with Eq. (6), the second order (∝ (∇T )2) planar
Nernst response induced by chiral anomaly can be expressed
as,

jN =
e2τ

~2

∫
[dk]

(εk − µ)2

T 2

∂feq
∂εk

(∇T ×Ω)[
(v ·Ω)(B · ∇T )− (B ·Ω)(v · ∇T )

] (7)

where the superscript ‘N ’ implies for the nonlinear contribu-
tion. Note that, the above equation is τ−dependent, while in
expanding Eq. (6) with the help of Eq. (4), we can get addi-
tional second order responses proportional to τ2 orB2. These
additional terms, which in principle can be distinguished from
the above contribution in experiment by their different scal-
ings in either τ or B, are not the interest of this work and are
ignored here. As shown by the above equation, the charge
current vanishes either if ∇T = 0 or B = 0. The first term
(∝ (B · ∇T )) inside the square bracket in Eq. (7) is purely
induced by chiral anomaly, and an effective chiral anomaly
induced contribution to the nonlinear planar Nernst current
can be obtained from the second term. It is worth noting
that, there is also an effective contribution proportional to
(B × ∇T ) contained in the second term inside the square
bracket in Eq. (7) to the nonlinear Nernst current, which iden-
tically vanishes in the configuration of (B||∇T ) and is not
the interest of this work.

Analogously, we should also expect the existence of non-
linear planar thermal Hall effect induced by the thermal chi-
ral anomaly in response to the coplanar thermal gradient and
magnetic field (B · ∇T ). In the presence −∇T , the total
transport thermal Hall current in a generalized format is given
by [60],

jQT =− k2BT

~
∇T ×

∫
[dk]Ωk

[
β2 (εk − µ)

2
fk +

π2

3

− In2 (1− fk)− 2 Li2 (1− fk)

] (8)

Here, the superscript ‘Q’ and subscript ‘T ’ represent for ‘heat
current’ and ‘thermal contribution’ respectively. Following a
similar analogy as discussed above for the nonlinear planar
Nernst effect (Eq. (6)-(7)), the chiral anomaly induced planar
thermal Hall current in second order of thermal gradient (∝
(∇T )2) is found as,

jQ,NT = −eτT
~2

∫
[dk]

(εk − µ)
3

T 3

∂feq
∂εk

(∇T ×Ωk)[
(v ·Ω)(B · ∇T )− (v · ∇T )(B ·Ω)

]
(9)

where we focus on the second-order nonlinear response which
is linear in τ , quadratic in thermal gradient and linear in mag-
netic field. Note that, we retain only the leading contributions
to jQ,NT in Eq. (9), where the other correction terms of or-
ders of magnitudes much smaller than the leading term are
omitted (valid in the limit of µ � kBT ) [31]. Both the non-
linear planar Nernst (Eq. (7)) and thermal Hall effect (Eq. (9))
are dependent on the derivative of the Fermi distribution func-
tion with respect to energy (∂fk/∂εk), rendering these two
nonlinear effects induced by chiral anomaly being Fermi sur-
face quantities, similar as the BCD induced nonlinear effects
[21, 29, 31]. The chiral anomaly induced nonlinear currents
jN and jQ,NT can not survive under the presence of either time
reversal symmetry or inversion symmetry, due to the symme-
try properties of quantities Ωk, vk, εk in Eqs. (7), (9).
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Note that, apart from a different weight component (εk −
µ)3/T 3, the nonlinear planar thermal Hall current described
above appears in a similar format as that of the nonlinear pla-
nar Nernst current in Eq. (7). This fact allows us to acquire
their remarkable connections to the nonlinear planar Hall co-
efficient induced by chiral anomaly by Sommerfeld expansion
in the low temperature regime, which will be soon discussed
in the following part.

B. Nonlinear analog of Wiedemann-Franz law and Mott
relation in the presence of magnetic field

In the regime of linear response, the fundamental relations
among the thermoelectric transport coefficients (i.e., the co-
efficients of electric Hall effect, Nernst effect and thermal
Hall effect) are encapsulated by the well-known phenomeno-
logical Wiedemann-Franz law and Mott relations [61, 62].
Very recently, the nonlinear analog of these two fundamen-
tal relations have been found in totally different forms for the
BCD induced nonlinear anomalous transport phenomena in
the time reversal symmetric systems [31]. However, the rela-
tions among the planar transport coefficients induced by chiral
anomaly remain unknown.

Here in this work, we focus on the configuration ∇T =
∇xT x̂,B = Bxx̂ + Byŷ, namely the thermal gradient and
magnetic field lying within the xy−plane and forming an an-
gle θ such that B · ∇T = B∇xT cos θ. As has been dis-
cussed in previous section, both the terms proportional to
(B · ∇T ) and (B ×∇T ) can be obtained through Eqs. (7)
and (9). Within the configuration of∇T and B given above,
we can extract the currents coming from the (thermal) chiral
anomaly as being proportional to ∝ B∇xT cos θ. Without
losing any generality, we will focus on the chiral anomaly
induced nonlinear planar currents along y−direction in this
present setup, which can be given by jCNyxx = αyxx(∇xT )2

and jQ,CNyxx = lyxx(∇xT )2 (superscript ‘CN’ indicates the
chiral anomaly induced nonlinear contribution). The conduc-
tivity αyxx, lyxx are then respectively calculated as

αyxx = cα

∫
[dk]

∂feq
∂εk

Ω̃α
kB cos θ

lyxx = cl

∫
[dk]

∂feq
∂εk

Ω̃l
kB cos θ

(10)

where the coefficient cα =
e2k2Bτ

~2 , cl = − ek
2
Bτ
~2 and the corre-

sponding modulated Berry curvatures Ω̃α
k and Ω̃l

k are respec-
tively defined as

Ω̃α
k =

(εk − µ)2

k2BT
2

Ωzk

[
vk ·Ωk − vxΩxk

]
Ω̃l

k =
(εk − µ)3

k2BT
2

Ωzk

[
vk ·Ωk − vxΩxk

] (11)

Here the subscripts in cα,l and the superscripts in Ωα,lk im-
ply the quantities are related to nonlinear Nernst effect (α) or
nonlinear thermal Hall effect (l), respectively. For the sake

of simplicity, we have suppressed the index for the magnetic
field component in αyxx, lyxx in Eq. (10), given that we are
only considering the component of the magnetic field paral-
lel to thermal gradient. Note that, the aforementioned linear
thermopower (Ref. [59]) that may arise from the first term in
Eq. (6), along with the other possible linear magnetotransport
behaviors induced by the thermal chiral anomaly (Ref. [53])
in this current scenario, explicitly show different angular and
field dependencies from that of the chiral anomaly induced
nonlinear transport coefficients described by Eq. (10). Hence,
these features can in principle be used to distinguish the chiral
anomaly induced nonlinear planar effects discussed here from
other similar linear or nonlinear effects in experiments.

To analyze the relationship among the transport coefficients
of the chiral anomaly induced nonlinear planar transport phe-
nomena (namely, the nonlinear planar Nernst and thermal Hall
effects, and the nonlinear planar Hall effect), let us first recall
the chiral anomaly induced nonlinear planar Hall conductivity
[51]. Following a similar analogy, the chiral anomaly induced
nonlinear planar Hall conductivity σyxx can be written as,

σyxx = cσ

∫
[dk]

∂feq
∂εk

Ω̃k,σB cos θ (12)

where cσ = e4τ
~3 and the corresponding modulated Berry cur-

vature Ω̃k,σ is defined as Ω̃k,σ = Ωzk
[
vk ·Ωk− vxΩxk

]
. Here

a configuration with E = Ex̂,B = Bxx̂ + Byŷ for the
chiral anomaly induced nonlinear planar Hall effect has been
considered.

In light of the results given by Eqs (10)−(12), it is straight-
forward to derive the relations among the three chiral anomaly
induced thermoelectric transport coefficients using the Som-
merfeld expansion in low temperature regime [31, 62]. By
considering only the leading order terms for the expansions in
terms of temperature, we find

αyxx =
π2k2B
3e2

σ0
yxx +O(T 2)

lyxx = −7π4k4BT
2

15e2
∂σ0

yxx

∂µ
+O(T 4)

(13)

where σ0
yxx is the chiral anomaly induced nonlinear planar

Hall conductivity at zero temperature (in Eq. (12)). Different
from the conventional Wiedemann-Franz law and Mott for-
mula (i.e., κ = LTσ and α = eLT∂σ/∂µ, respectively, with
L being the Lorentz number) in the linear regime [61, 62],
the role of the derivative with respect to chemical potential is
now interchanged in the above relations describing the chiral
anomaly induced nonlinear responses. To be more specific,
in contrast to the linear regime, where the Nernst coefficient
is proportional to the derivative of the Hall coefficient along
with a T -dependent proportionality factor (α = eLT∂σ/∂µ),
in the nonlinear regime, these two chiral anomaly induced
nonlinear transport coefficients are directly proportional to
each other and the corresponding proportionality factor is T -
independent (first line in Eq. (13)). On the other hand, un-
like the Wiedemann-Franz law describing the linear responses
where the thermal Hall and charge Hall coefficients are pro-
portional to each other (κ = LTσ), the counterpart of this
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relation in the nonlinear regime shows that the thermal Hall
coefficient is proportional to the first-order derivative of the
Hall coefficient with respect to chemical potential (second
line in Eq. (13)). Additionally, in contrast to the regime
of linear response, the proportionality factor is T 2- instead
of T -dependent in the nonlinear analog of the Wiedemann-
Franz law (second line in Eq. (13)). It is also striking that
αyxx, lyxx, σyxx here follow the similar relations as found
for the transport coefficients of the BCD induced nonlinear
anomalous thermoelectric effects restricted by time reversal
symmetry [31]. Rather than appearing as a more conventional
deviation from the conventional Wiedemann-Franz law and
Mott relation, the introduced derivative in the Wiedemann-
Franz law and the removed derivative in the Mott relation pre-
dicted here (Eq. (13)) are attributed to the chiral anomaly re-
lated intrinsic nonlinearity.

In this section, we have derived the equations for the chiral
anomaly induced nonlinear planar Nernst and thermal Hall ef-
fects in the presence of a coplanar thermal gradient and mag-
netic field (B·∇T 6= 0), and have also obtained their relations
in a low temperature regime. In what follows, we apply these
equations to the WSMs using a linearized Weyl Hamiltonian
as well as a lattice Weyl Hamiltonian.

III. NONLINEAR PLANAR THERMOELECTRIC
TRANSPORT IN WEYL SEMIMETALS

A. linearized low-energy model for single Weyl cone

The linearized low-energy effective Weyl Hamiltonian for
a single Weyl node can be given as [63],

H = ~vFRs(kz − sQ)σ0 + s~vF (k − sQẑ) · σ (14)

where s = ±1 indicates the chirality of the Weyl node,Rs, 2Q
respectively represent the tilting strength and the separation
of the Weyl nodes in momentum space , σ0 and σ are 2 ×
2 Pauli matrices. According to the degree of tilt around the
Weyl node, we have type-I (|Rs| < 1) and type-II (|Rs| > 1)
Weyl cones. The eigenenergy for Eq. (14) is given by εsk =

~vF (Rsk̃z ±
√
k2⊥ + k̃2z) with k⊥ =

√
k2x + k2y, k̃z = kz −

sQ, and the Berry curvature is calculated as

Ωs
k = ∓s k − sQẑ

2|k − sQẑ|3 (15)

which is impervious to the tilt parameter. Regarding the Weyl
node separation 2Q in momentum space, it only shifts the dis-
tribution of the Berry curvature in momentum space without
any modification and won’t affect any physical property in the
single Weyl node model. Hence, we can hereafter set Q = 0
for the following analysis without affecting any results in this
current work. With the help of eigenenergy and Berry cur-
vature, we can calculate the corresponding nonlinear planar
Nernst coefficient αyxx and thermal Hall coefficient lyxx for
the given Weyl Hamiltonian in Eq. (14). Note that, in the con-
figuration of a coplanar magnetic field and thermal gradient

(a) (b)

(c) (d)

FIG. 1. (Color online) Modulated Berry curvature (a) Ω̃α
k and (b) Ω̃l

k

projected in the kx− kz plane for non-tilted Weyl cone described by
Hamiltonian given in Eq. (14) respectively. Panel (c) and (d) dis-
play the similar projections as in (a), (b) but for a Weyl cone with
tilt strength Rs = 0.4. The black dashed lines indicate the zero-
temperature Fermi surface at µ = 0.2 vF ~ for the Weyl cone and
the colors indicate the magnitude of the modulated Berry curvature
nearby the Fermi surface, which is now normalized by their corre-
sponding maximum in each panel. The other parameters used here
are n = 1, s = 1, vF = 1eV , kx,z ∈ [−0.16π, 0.16π], a finite tem-
perature T = 50K (i.e., β = 230(eV )−1) is applied here.

lying in x − y plane, the applied magnetic field is perpendic-
ular to the direction of the tilt strength as well the momentum
separation of the Weyl cones.

In Fig. 1, we show the kx-kz plane projection of the mod-
ulated Berry curvature Ω̃k,α(l) without/with tilt. As shown in
Fig. 1, a finite tilt can not only shift the Fermi surface (black
dashed lines) along kz-axis, it also results in an asymmetric
distribution of the modulated Berry curvature (indicated by
the colors) with respect to the Fermi surface. Because of this,
a finite tilt strength leads to a non-zero net contribution on
the Fermi surface and thus, is indispensable for the nonlin-
ear planar transport coefficients to be non-zero. Note that, to
better track the tilt induced changes of the distribution of the
modulated Berry curvature Ω̃k,α(l) nearby the Fermi surface,
they are now normalized by their own maximum value in each
panel of Fig. 1.

Based on Eq. (12) and (14), we can now straightforwardly
calculate the zero-temperature chiral anomaly induced non-
linear Hall effect (CNHE) coefficient σ0

yxx. We found σ0
yxx =

c′σRs/µ
2 (c′σ , the modified constant factor), consistent with

what has been obtained in Ref. [51]. Note that, σ0
yxx is lin-

early tilt-dependent, so are the coefficients αyxx, lyxx accord-
ing to Eq. (13). It will be interesting to numerically check
the chemical potential dependency of αyxx, lyxx for a lin-
earized Weyl Hamiltonian. In Fig. 2, we plot the nonlin-
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(a)

(b)

FIG. 2. (Color online) Nonlinear planar Nernst coefficient αyxx and
thermal Hall coefficient lyxx for a tilted Weyl cone (Rs = 0.5vF )
plotted as a function of chemical potential µ in panel (a) and (b) re-
spectively. The circled lines represent for the numerical results at
different temperatures based on Eq. (10) while the horizontal solid
blue lines indicate the analytical (as well as zero-temperature) pre-
dictions for αyxx, lyxx using Eq. (13). Note that, for the sake of
a better demonstration of the chemical potential dependencies, we
have multiplied µ2, µ3 to αyxx, lyxx respectively. The inset shows
that the nonlinear planar transport coefficients are linearly dependent
on the tilt strength of the Weyl cones. The other parameters used here
are the same as that of Fig. 1.

ear planar thermoelectric transport coefficients αyxx, lyxx as
a function of the chemical potential in panel (a), (b) respec-
tively. The circled lines are numerical results at different tem-
peratures based on Eq. (10), while the horizontal blue solid
lines are based on the analytical results in Eq. (13) (along
with σ0

yxx = c′σRs/µ
2). At chemical potentials away from

the Weyl node (µ > 0.2vF ), both µ2αyxx (top panel) and
µ3lyxx (bottom panel) are convergently proportional to a con-
stant at different temperatures, indicating the chemical poten-
tial dependency of αyxx ∝ µ−2, lyxx ∝ µ−3 respectively.
The insets in Fig. (2) show us a linear dependence on the tilt
strength for αyxx and lyxx with different chemical potentials
(indicated by the colors) in the top and bottom panels respec-
tively, consistent with σ0

yxx ∝ Rs as we analytically obtained
earlier.

(a)

(b)

FIG. 3. (Color online) Nonlinear planar Nernst coefficient αyxx and
thermal Hall coefficient lyxx for a tilted Weyl cone (Rs = 0.5vF )
plotted as a function of temperature in panel (a) (vs (kBT )) and (b)
(vs (kBT )

2) respectively. The circles represent for the numerical
results at different chemical potentials based on Eq. (10), while the
corresponding black solid lines indicate the analytical predictions by
Eq. (13). The zero slops and finite constant slops in panel (a) and (b)
respectively imply αyxx ∝ (T )0 and lyxx ∝ (T )2. The insets show
the logarithm plot of αyxx and lyxx with several lower chemical po-
tentials in top and bottom panel, respectively.

We also numerically check the behavior of the nonlinear
transport coefficients αyxx, lyxx as a function of temperature,
as shown in the top and bottom panel in Fig. (3) respectively.
As predicted by the analytical expression approximated in low
temperature regime given in Eq. (13), it is evidently shown in
Fig. 3 that αyxx ∝ T 0 (top panel) while lyxx ∝ T 2 (bot-
tom panel) at chemical potentials away from the Weyl node
(µ > 0.2vF ). The black solid lines corresponding to each
chemical potential are based on the analytical expression in
Eq. (13). The logarithm plot for αyxx(T ), lyxx(T ) with some
lower chemical potentials are also presented in the inset of
top and bottom panel, respectively. The deviations appearing
at relatively higher temperatures or lower chemical potentials
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in Fig. 2 and Fig. 3 can be attributed to the omitted higher or-
der terms in Eq. (13). When dealing with chemical potential
closer to the Weyl cones, we must count in the contributions
from the higher order terms for σyxx, αyxx and lyxx to obtain
the more correct descriptions.

So far, we have numerically calculated the nonlinear pla-
nar Nernst and thermal Hall coefficients (Eq. (10)) as well as
checked their nonlinear analog of the Wiedemann-Franz law
and the Mott formula (Eq. (13)), using a simple low-energy
effective Weyl Hamiltonian (Eq. (14)). Within this context,
to get the finite (nonzero) chiral anomaly induced nonlinear
planar response functions, the Weyl cones in each pair are re-
quired to be tilted along non-opposite axial directions. This
is indicated by the Eq. (13) along with the analytical results
for CNHE with σ0

yxx = c′σRs/µ
2 [51]. In the next section

via the lattice model, we find that with finite chiral chemical
potential, the Weyl node pairs tilted in opposite direction with
respect to each other can still lead to a non-zero value for non-
linear planar Nernst and thermal Hall effects. Interestingly,
we also find that finite nonlinear response functions can even
exist when the Weyl cones are not tilted at all due to the lattice
regularization. This result is contrary to what was found for
chiral anomaly induced non-linear planar Hall effect based on
low energy effective model in Ref. [51].

B. Lattice model for a pair of oppositely titled Weyl cones

As have been pointed out in the recent theoretical studies
on 3D topological Dirac and Weyl semimetals [34, 64], there
are some significant features that can not be captured by the
low-energy linearized model Hamiltonian with respect to the
realistic materials, especially for that originate from the Fermi
surface contributions. Therefore, it will be necessary to look
at the chiral anomaly related nonlinear planar response func-
tions using the lattice model.

In this section, we work on a lattice model describing a pair
of tunable Weyl nodes to prob the nonlinear planar thermo-
electric effects induced by the thermal chiral anomaly, and the
Hamiltonian is given as the following [65],

H(k) = N0((k))σ0 +N(k) · σ,
Nx(k) = 2t′x sin kx, Ny(k) = 2t′y sin ky,

Nz(k) = (m− 2tx cos kx − 2ty cos ky − 2tz cos kz),

N0(k) = 2t1 cos (φ1 − kz) + 2t2 cos (φ2 − 2kz).

(16)

It is straightforward to check that the above Hamiltonian is
both time reversal symmetry broken and inversion symmetry
broken, i.e., T H(k)T † 6= H(−k), andPH(k)P† 6= H(−k)
with P = σx and T = K with K the anti-Hermitian complex
conjugation operator. A pair of Weyl nodes can be found lo-
cated at (0, 0,±k0) in momentum space with k0 satisfying
2tz cos k0 = m − 2tx − 2ty for Eq. (16). In effect, the term
N0(k) can generally lift the inversion like and particle-hole
like symmetries of N(k) · σ by modulating the energies and
tilt of the Weyl nodes [65]. By tuning the tilting term N0(k),
or explicitly the parameters t1, t2, the above lattice Hamil-
tonian can effectively describe Weyl systems with different

(a)

(b)

FIG. 4. (Color online) (a) Schematic band structures for the lattice
Hamiltonian in Eq. (16). The tilt strength and the intrinsic energy
for each Weyl node are described by R±, E± respectively. The left
panel in (a) represent a pair of Weyl nodes with opposite tilt strength
(R+ = R−) at same energies (E+ = E−), while the right panel in
(a) shows a pair of Weyl nodes with opposite tilt at different energies
E+ = −E1 = δE. (b) The distribution of modulated Berry curva-
ture Ω̃k,σ on Fermi surfaces of lattice Weyl Hamiltonian (Eq. (16))
with left: t1 = 0.5t, δE = 0, middle: t1 = 0, δE = 1.6t and
right: t1 = 0.6t, δE = 1.6t at Fermi energy µ = 0.9t, 0, 0.4t, re-
spectively. Shown by the middle and right panel in (b) respectively,
in the presence of finite δE, the net contribution of the modulated
Berry curvature on the Fermi surface is non-zero even though the
Weyl cones are not tilted or oppositely tilted.

types of Weyl nodes. For example, both two Weyl cones be-
long to type-I or type-II Weyl cone, or one of the Weyl cones
belongs to type-I while the other belongs to type-II, which
corresponds the so-called hybrid Weyl semimetal [65, 66]. It
is obvious that the chiral anomaly induced nonlinear planar
response functions (i.e., αyxx, lyxx) will be finite for a hy-
brid Weyl system of a pair of Weyl nodes with different tilt
strengths, i.e., R+ 6= −R−. To get a clear vision of the effect
of band regularization on the chiral anomaly induced nonlin-
ear planar effects, we center us upon the Weyl systems with a
pair of type-I Weyl cones tilted in opposite direction, by set-
ting t2 = 0 in Eq. (16) hereafter in this paper.

Without loss of generality, we can choose the parameters
m, tx, ty such that k0 = π/2. Thus the term N0(k) approach-
ing to the Weyl nodes at (0, 0,±k0) can be rewritten as

N0(k′) = sδE + 2t1s
√

1− (δE/2t1)2k′z (17)

provided the phase factor φ1 = π+sin−1 [δE/(2t1)](t1 6= 0).
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(a)

(b)

FIG. 5. (Color online) Similar plots as Fig. 2 for lattice Weyl Hamil-
tonian in Eq. (16) describing a pair of nontilted Weyl cones (t1 = 0)
with different chiral chemical potentials δE = 0, 0.2t, 0.8t. Both
αyxx (top) and lyxx (bottom) show an evident peak when chemical
potential goes cross the Weyl nodes, and they identically vanish when
δE = 0 (dotted lines). The red and blue triangles in panel (a) (panel
(b)) represent αyxx ( lyxx) at chemical potentials above the top Weyl
node lying at E = 0.2t, 0.8t respectively. The corresponding inset
in the top and bottom panel showing roughly horizontal dependen-
cies for Weyl nodes with relatively small δE (blue and black trian-
gles), reveals the chemical potential dependence αyxx ∝ µ−2 and
lyxx ∝ µ−3 respectively. Note that, comparing to the red triangle
data points in the inset plots, the black triangle data correspond to
the Weyl nodes with δE = 0.2t and tilt strength t1 = 0.24t. The
other parameters used here are same as that in Fig. 4.

Here s = ±1 indicating the opposite chiralty of the Weyl
nodes, and k′ is the momentum measured from the position
of Weyl nodes. It is obvious that the hybrid Weyl Hamiltonian
in Eq. (16) now depicts a pair of Weyl nodes with effective
tilt strength R̃s = 2t1s

√
1− (δE/(2t1))2 and chiral chem-

ical potential 2δE, respectively. As schematically shown in
Fig. 4 (a), the two Weyl cones are now oppositely tilted with
R+ = −R−. In the case of zero chiral chemical potential
i.e., E+ = E− = 0 (left panel in Fig. 4 (a)), the contribu-
tion of the modulated Berry curvature (indicated by the col-
ors) on the Fermi surfaces around each Weyl node are well

(a)

(b)

FIG. 6. (Color online) Similar plots as Fig. 3 for lattice Weyl Hamil-
tonian given in Eq. (16) describing a pair of oppositely tilted Weyl
nodes with finite chiral chemical potential δE = 0.8t. The effec-
tive tilt strength R̃s = 0, 0.1, 0.3, 0.8 respectively corresponds to
parameter t1 = 0.4t, 0.413t, 0.5t and 0.9t. The temperature ranges
from 10K to 200K for both panels. As shown in the top panel,
αyxx remains finite approaching to zero temperature and tend to be a
constant with increasing temperatures, i.e., αyxx ∝ T 0. Contrarily,
lyxx in the bottom panel vanishes at zero temperature and linearly
depend on (kBT )

2, i.e., lyxx ∝ T 2. The chemical potential here is
µ = −0.4t, and the other parameters used here are the same as that
in Fig. 4.

cancelled with each other, as shown by the left panel in Fig. 4
(b). When considering a finite chiral chemical potential i.e.,
E+ 6= E− (shown by right panel, Fig. 4 (a)), the net value
of the modulated Berry curvature on the Fermi surface can
be non-zero either with zero tilt (middle panel, Fig. 4 (b)) or
opposite tilt (right panel, Fig. 4 (b)) for the Weyl cones. Ev-
idently, for a 3D lattice Weyl system, the unequal energies of
the Weyl nodes (or finite chiral chemical potential) naturally
introduce an asymmetric Fermi surface with the help of the
lattice regularization. This in turn gives rise to nonzero net
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value for the nonlinear transport coefficients [Eq. (10)], which
are purely Fermi surface quantities. We want to point out that,
this feature depicted by the right panel with R+ = −R− 6= 0
(but not the middle panel, R+ = R− = 0) in Fig. 4 (b)
can actually be revealed within the regime of linearized low-
energy Hamiltonian model by considering an effective chem-
ical potential µ̃ = µ + Es. For instance, the aforemen-
tioned zero-temperature NPHE coefficient σ0

yxx becomes fi-
nite (

∑
s c
′
σRs/µ̃

2 6= 0) assuming R+ = −R− 6= 0 and
E+ 6= E−.

Using the equations (Eqs. (7), (9), (10)) formalized by
semiclassical Boltzmann transport approach in Sec. II, we can
similarly obtain the different parameters’ dependencies for the
chiral anomaly induced nonlinear planar response functions
for the lattice Hamiltonian.

In Fig. 5, we plot the nonlinear planar transport coefficient
αyxx, lyxx for the lattice Weyl Hamiltonian in Eq. (16) with
zero tilt strength (t1 = 0, R̃s = 0) as a function varying with
chemical potentials. Due to the divergently large Berry cur-
vature (so does the modulated Berry curvature) around the
Weyl nodes, both αyxx and lyxx show an evident enhance-
ment in magnitude whenever the Fermi energy corsses the
Weyl nodes at µ = ±δE, as shown in Fig. 5. In the non-
tilted Weyl systems, a finite chiral chemical potential tends to
be determinant for αyxx, lyxx to be non-zero, as can be seen in
Fig. 5. When the chemical potential lies relatively away from
the Weyl nodes, the relations αyxx ∝ µ−2 while lyxx ∝ µ−3

found for the single Weyl node earlier (Fig. 2) still hold for
the lattice Weyl system, as expected. For instance, for the
data points within the chemical potential range implied by the
triangles in Fig. 5, the above relationships can be directly re-
vealed by the inset plot of µ2αyxx and µ3lyxxx versus µ in the
top and bottom panel in Fig. 5 respectively.

We can also check how the temperature affects the nonlin-
ear planar Nernst and thermal Hall coefficients for the lattice
Hamiltonian model of the 3D WSMs. By plotting αyxx, lyxx
as a function of (kBT ), (kBT )2, we get the temperature de-
pendencies αyxx ∝ T 0 and lyxx ∝ T 2 as respectively dis-
played in Fig. 6 (a), (b). Note that, the coefficient αyxx, lyxx
for the non-tilted Weyl node pair (R̃s = 0) with finite chiral
chemical potential (δE = 0.8t) are also non-zero (consistent
with Fig. 5), and they follow the similar temperature depen-
dencies, as shown by the black circled and black squared line
in the top panel and bottom panel in Fig. 6 respectively. The
nonlinear planar Nernst coefficient αyxx remains finite even
at the zero temperature limit (T → 0) while the nonlinear
planar thermal Hall coefficient lyxx vanishes when tempera-
ture approaches to zero. Consequently, these µ-dependencies
and T -dependencies numerically found here (in Fig. 5, 6) for
the chiral anomaly induced nonlinear planar transport coeffi-
cients via the lattice Weyl Hamiltonian model (Eq. (16)), also
agree well with the fundamental relations derived as the non-
linear analog of the Wiedemann-Franz law and Mott formula
given in Eq. (13). We want to mention that, the data would be
smoother if the resolutions for the grid points in momentum
space are refined in the numerical calculations.

In this section, we have focused on the lattice model de-
scribing a pair of Weyl cones tilted in opposite direction with

respect to each other as well as located at different energies.
We find that the location of the Weyl nodes at different en-
ergies naturally introduce an asymmetric Fermi surface and
therefore, rendering the net contributions to the nonlinear pla-
nar Nernst and thermal Hall coefficients from the two oppo-
sitely tilted Weyl cones to be nonzero. The nontrivial results
we found using a lattice Weyl Hamiltonian in this section
indeed restore the possibility to testify the nonlinear planar
Nernst and thermal Hall effects induced by the thermal chiral
anomaly and prob their related parameter dependencies in the
realistic 3D WSMs in experiment.

IV. SUMMARY AND CONCLUSION

By utilizing the semiclassical Boltzmann transport ap-
proach, we investigate the second order (in terms of the ther-
mal gradient ∇T ) nonlinear planar Nernst and thermal Hall
effects (Eq. (11)) in 3D WSMs, which can be viewed as the
manifestations of chiral anomaly withB ·∇T 6= 0. In the low
temperature regime, we also derive the fundamental relations
among the chiral anomaly induced nonlinear planar transport
coefficients via the Sommerfeld expansions. Interestingly, the
chiral anomaly induced nonlinear transport phenomena vio-
late the well-known Wiedemann-Franz law and Mott relation
derived in the linear response regime [61, 62]. Instead, the
nonlinear analog of these two celebrated equations found in
the present work (Eq. (13)) are remarkably consistent with
that predicted for the BCD induced nonlinear transport phe-
nomena in Ref. [31].

We have numerically checked our results using both the
low energy effective Weyl Hamiltonian as well as the lat-
tice Weyl Hamiltonian. Compared to the simple linearzied
Weyl Hamiltonian models, the lattice models generally ac-
quire band structures more closely related to the realistic
WSMs, because of the natural band regularization and irre-
producible overlap regions between the Weyl nodes. We find
that, to get a non-zero nonlinear planar response induced by
chiral anomaly, the configurations of the pairs of Weyl nodes
of opposite chiralities are not limited to those tilted in the
same directions, consistent to what has been found in a recent
work for the nonlinear planar Hall effect [51]. In contrast to
Ref. [51], we show that, pairs of non-tilted or oppositely tilted
Weyl cones can also support nonzero chiral anomaly induced
NPNE and NPTHE in Weyl materials. We have also given
concrete prescriptions for experimentally distinguishing the
effects discussed in the present work from other similar linear
and non-linear effects that may also arise in this scenario. The
novel non-linear effects in WSMs induced by chiral anomaly
in the presence of E = 0 and B · ∇T 6= 0 and the fun-
damental relations among them remarkably different from the
conventional Wiedemann-Franz law and Mott relations can be
checked experimentally in realistic WSMs.
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Appendix: Contributions of intra-node and inter-node
scatterings to the nonlinear thermoelectric effects

In this appendix, we investigate the contributions of intra-
node and inter-node scatterings to the chiral anomaly induced
nonlinear Nernst and thermal Hall effects. With the relaxation
time approximation, the collision term for WSMs in Eq. (1)
in the main text can be described by the following equation,
where both the intra-node (τa) and inter-node (τv) relaxation
times are involved,

Icoll(fsr,k) = −
fsr,k − fseq

τa
−
fsr,k − feq

τv
(A.1)

Here s = ±1 represent the chirality of the Weyl node, fseq
and feq indicate the local (with respect to the Weyl node s)
and global equilibrium state achieved via intra-node and inter-
node scattering processes, respectively. To proceed, instead of
the more detailed expansions as given in Eq. (4) in the main
text, here we apply the following relations,

fsr,k = feq + [−∂εkfeq(r, k)]δεsk,

fseq = feq + [−∂εkfeq(r, k)]δµs,
(A.2)

where δεsk is the energy difference caused by the external
fields, and δµs = µs − µ implies the chemical potential im-
balance for Weyl node s. Consequently, substituting the above
equations into the steady-state Boltzmann transport equation
in Eq. (3), we obtain,[

− ev(B ·Ω)/~ +
e

~
(v ·Ω)B

]εk − µ
T
∇T =

−δε
s
k − δµs

τa
− δεsk

τv

(A.3)

Here only the terms linear in magnetic field are shown on the
left hand side, and the factor [−∂εkfeq(k)] is canceled for
both sides.

It is not hard to get aware that, 〈fsr,k〉s = fseq and 〈δεsk〉s =

δµs, where 〈. . . 〉s denotes the average over all the possible
electron states with respect to Weyl node s [see Eq. (7) in
Ref. [67]]. Taking the average for the both sides of Eq. (A.3),
the chemical potential imbalance is found as

δµs = τvc0(∇T ·B)〈Ω · v εk − µ
T
〉s (A.4)

where c0 is constant factor. Here we only focus on the gen-
eral format for δµs hence the detailed expression for the av-
erage in Eq. (A.4) will not be discussed. In general, we have
1/τv � 1/τa for WSMs. Thus it is physically allowed to
make the approximation δεsk/τv ≈ δµs/τv for the second
term on the right hand side in Eq. (A.3). As a result, the
distribution function deviation δfk = fsr,k − feq in presence
of thermal gradient can be obtained based on Eqs. (A.2-A.4),
written as,

δfk = [−∂εkfeq(k)]
[
δµs − τa

δµs

τv
+ τaṙeff

]
(A.5)

where ṙeff =
[
v−ev(B ·Ω)/~+ e

~ (v ·Ω)B
]

is the effective
velocity under magnetic field. Obviously, the first term in the
above equations comes from the chiral anomaly induced chi-
ral chemical potential, which is generated by the thermal gra-
dient and explicitly depends on the inter-node scattering time
τv . There is also a chiral anomaly related but τa-dependent
contribution, as well as a fully chiral anomaly-irrelevant con-
tribution dependent on τa. These results are consistent to what
have been obtained in recent works [67, 68].

As can be seen from Eqs. (6-9) in the main text, it is the
δfk that lead to the nonlinear thermoelectric responses. For
WSMs with τv � τa, we have δfk ≈ [−∂εkfeq(k)]δµs, i.e.,
the chiral anomaly induced chiral chemical potential makes
the leading contribution to the nonlinear responses as given in
Eq. (7, 9) in the main text.
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