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Hyperbolic lattices are a revolutionary platform for tabletop simulations of holography and quan-
tum physics in curved space and facilitate efficient quantum error correcting codes. Their underlying
geometry is non-Euclidean, and the absence of Bloch’s theorem precludes the straightforward ap-
plication of the often indispensable energy band theory to study model Hamiltonians on hyperbolic
lattices. Motivated by recent insights into hyperbolic band theory, we initiate a crystallography
of hyperbolic lattices. We show that many hyperbolic lattices feature a hidden crystal structure
characterized by unit cells, hyperbolic Bravais lattices, and associated symmetry groups. Using the
mathematical framework of higher-genus Riemann surfaces and Fuchsian groups, we derive, for the
first time, a list of example hyperbolic {p, q} lattices and their hyperbolic Bravais lattices, including
five infinite families and several graphs relevant for experiments in circuit quantum electrodynamics
and topolectrical circuits. This dramatically simplifies the computation of energy spectra of tight-
binding Hamiltonians on hyperbolic lattices, from exact diagonalization on the graph to solving a
finite set of equations in terms of irreducible representations. The significance of this achievement
needs to be compared to the all-important role played by conventional Euclidean crystallography in
the study of solids. We exemplify the high potential of this approach by constructing and diagonal-
izing finite-dimensional Bloch wave Hamiltonians.

Hyperbolic geometry plays a paramount role at the
frontier of both theoretical and experimental physics.
It underlies holographic descriptions of strongly coupled
systems and models for quantum chaos, quantum grav-
ity, and quantum entanglement [1–4]. It is fundamental
to modern computational many-body techniques [5–11]
and forms the basis for powerful quantum error correct-
ing codes [12–16]. Recent experimental realizations of
hyperbolic lattices [17–19] in circuit quantum electrody-
namics (QED) [20–24] and topolectrical circuits [25–30]
have set the stage for the quantum simulation of curved
space physics using discrete geometries [31–42]. The cor-
responding non-Euclidean graphs are suited to be imple-
mented in various other topological photonics platforms
[43]. These cutting-edge efforts complement important
previous experimental simulations of curved space using
optical metamaterials [44–50], ultracold quantum gases
[51–61], electromagnetic waveguides [62], trapped ions
[63], and other platforms [64, 65].

Stimulated by these intimate connections to outstand-
ing open problems in physics, strong interest in the
properties of hyperbolic space resurged in the last two
decades. However, while many important results have
been obtained since the 19th century [66–70], several crit-
ical questions about hyperbolic space that are relevant
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to physicists remain unanswered. Most strikingly, per-
haps, due to the absence of Bloch’s theorem, the energy
spectrum of a single particle hopping on a hyperbolic lat-
tice can only be obtained by exact numerical diagonaliza-
tion of the Hamiltonian. This preempts any treatment
of macroscopically large systems even in the noninteract-
ing limit. One way around this issue is to concentrate
on long-wavelength excitations, where a continuum ap-
proximation can capture several features of the discrete
spectrum [33]. To also resolve excitations with higher en-
ergies, an alternative approach is to study Bloch waves
on hyperbolic tessellations, which leads to the hyperbolic
band theory of Ref. [37]. In order to develop a complete
band structure theory for hyperbolic lattices that can
capture all single-particle eigenstates, on the other hand,
it is mandatory to first identify the crystallographic sym-
metries of the lattice and then construct wavefunctions
from their representations [71]. In this work, we address
the first part of the problem and outline a Bloch wave
theory to answer aspects of the second part.

The hyperbolic lattices we consider are of {p, q} type,
which means that they are tessellations of the plane by
regular p–gons such that each lattice site has coordina-
tion number q. For (p − 2)(q − 2) = 4, such lattices are
tilings of the Euclidean plane by regular polygons, which
can only be achieved by triangles, squares, and hexagons,
corresponding to the solutions {3, 6}, {4, 4}, and {6, 3},
see Fig. 1. On the other hand, for (p − 2)(q − 2) > 4,
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FIG. 1. We consider {p, q} lattices, which are made from reg-
ular p-gons such that the coordination number of each lattice
site is q. The well-known triangular ({3, 6}), square ({4, 4}),
and hexagonal ({6, 3}) lattices (first row) constitute tessella-
tions of the Euclidean plane. Hyperbolic lattices, defined by
(p− 2)(q− 2) > 4, are tessellations of the hyperbolic plane of
constant negative curvature. We show three examples (second
row), with hyperbolic space represented by the Poincaré disk
model, reviewed in Sec. I, where the non-Euclidean metric is
such that the distance between any two neighboring sites in
a hyperbolic lattice is equal. Lattice sites are connected by
geodesic lines, which are circular arcs that (when extended)
intersect the disk boundary orthogonally. The circular nature
of geodesics in the {7, 3} and {8, 3} lattices is less easily visible
compared to the {8, 4} lattice, but nonetheless present.

we obtain a tessellation of the hyperbolic plane which
we call a hyperbolic lattice. Some examples are shown in
Fig. 1. Obviously, there are infinitely many integer solu-
tions p and q to this inequality, implying striking lattice
properties. For instance, hyperbolic lattices can have any
p–fold rotation symmetry, in stark contrast to Euclidean
lattices. The high connectivity of such lattices also im-
plies that their number of sites grows exponentially in the
graph diameter (which is the shortest number of steps to
get from one end of the lattice to the other). To embed
these lattices into hyperbolic space, i.e. assign a complex
coordinate to each lattice site, we use the Poincaré disk
model, which is reviewed in Sec. I.

The immense value of crystallography in the theory of
solids stems from the ability to utilize crystal symmetries
to divide macroscopic numbers of lattice sites into unit
cells that are arranged in a well-known manner in a Bra-
vais lattice. In fact, in a bottom-up approach, we may
construct every two-dimensional Euclidean lattice from
a finite set of points {z(1), . . . , z(N)}, called the unit cell,
which is repeated periodically in a Bravais lattice speci-
fied by two primitive translation vectors a1 and a2. (We
are restricting ourselves to symmorphic space groups here
for simplicity.) Every lattice site is then uniquely defined
by a pair of numbers (a,n), where a ∈ {1, . . . , N} is the

  

FIG. 2. In this work, we develop the formalism how to apply
the crystallographic notions of unit cell and Bravais lattice
to hyperbolic lattices. Here we give an example. Top left.
The unit cell of the {10, 3} lattice consists of ten lattice sites
(marked red). The associated analogue of the Wigner–Seitz
cell or fundamental domain is the decagon of the {10, 5}
lattice (shown in orange). Bottom left. Therefore, the {10, 5}
lattice constitutes the Bravais lattice of the {10, 3} lattice.
Right. By filling the decagons of the {10, 5} lattice with the
ten sites of the unit cell, we obtain all sites of the {10, 3}
lattice.

position inside the unit cell, and n = (n1, n2) ∈ Z2 lo-
cates the unit cell within the Bravais lattice at position
n1a1 + n2a2. An analogous construction applies to Eu-
clidean lattices in higher dimensions, and it is a famous
result that the number of distinct Euclidean Bravais lat-
tices is finite in every dimension. In two and three dimen-
sions, there are 5 and 14 Bravais lattices, respectively.

Once the unit cell and Bravais lattice of a given Eu-
clidean lattice are identified, the single-particle eigen-
states can be constructed from representations of the
translation operators T̂n of the Bravais lattice, mapping
the origin to n1a1 + n2a2. Due to Bloch’s theorem, all
of these representations are one-dimensional and labeled
by crystal momenta q = (q1, q2), which have as many
components as there are primitive translation vectors,
yielding N energy bands. It is important to realize that
Bloch’s theorem, although convenient in the construction
of the eigenstates, is not a necessary piece. If the trans-
lations T̂n were not mutually commuting, then their rep-
resentations would not all be one-dimensional. Still we
could find these representations, label them by certain
quantum numbers, and use this structure to construct N
energy bands. A well-known example is, of course, the
eigenstates of a particle in a three-dimensional spheri-
cally symmetric potential, where states are labeled by
the usual quantum numbers (n, `,m), with the dimension
of each eigenspace or representation being 2` + 1, since
three-dimensional rotations generally do not commute.

In order to solve the spectral problem for hyperbolic
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lattices, it is therefore crucial to first generalize the con-
cepts of unit cell and Bravais lattice to hyperbolic lat-
tices. Only as the second step we need to worry about
the representations of the generators of the Bravais lat-
tice. It may not be obvious that the first step can be
taken at all. The central result of this work is to provide,
for the first time, a comprehensive list of infinitely many
and experimentally relevant examples of {p, q} lattices
with their unit cells and corresponding Bravais lattices.
In Fig. 2 we illuminate the example of the {10, 3} lattice,
with a unit cell of ten sites, whose Bravais lattice is the
{10, 5} lattice. As expected, the generators of the hyper-
bolic Bravais lattice, which are constructed explicitly in
Sec. III C, do not commute. More examples of {p, q} lat-
tices and their unit cells and Bravais lattices are collected
in Tables III and IV.

Finally, let us have a glimpse at the Bloch wave band
structure that is implied by the crystallography presented
in this work. The tight-binding Hamiltonian we would
like to diagonalize is

Ĥ = −
∑
i,j

Aij â
†
i âj , (1)

where the sum runs over the sites of the lattice, â†i is
the creation operator of a particle at site i, and Aij is
the adjacency matrix of the hyperbolic lattice. (A is
the matrix with entry 1 if i and j are connected by an
edge, and zero otherwise.) Following the idea of Ref.
[37], we further assume that some eigenstates transform
as one-dimensional representations under the generators
of the Bravais lattice and, therefore, are simply Bloch
waves. Roughly speaking, when going from one unit cell
to the other, Bloch waves ψk(zi) pick up a phase factor
eikµ , see Fig. 3 for an illustration on the example of the
{10, 3} lattice discussed earlier. The number of indepen-
dent momentum components of such a Bloch wave is 2g,
where g ≥ 2 is the unique genus of a Riemann surface
that can be covered by the fundamental domain, see Sec.
III. Projecting the operator âi to the space spanned by
Bloch waves, we arrive at the problem of diagonalizing
the Bloch wave Hamiltonian

ĤBW = −
∑
k

N∑
a,a′=1

Āaa′(k)â†kaâka′ , (2)

with Ā(k) the N × N adjacency matrix of the unit cell
endowed with periodic boundary conditions, whose edges
are labeled by entries 1 and eikµ in a well-specified man-
ner. The eigenvalues of the matrix Ā(k) yield N energy
bands that constitute the Bloch wave spectrum of the
given {p, q} lattice. An example band structure is shown
in Fig. 3, with the corresponding matrix Ā(k) given by
Eq. (60). The construction of Bloch wave Hamiltonians
and their spectra are discussed in Sec. V B.

We emphasize that every Bloch wave is a solution to
the tight-binding problem on the hyperbolic lattice and
thus yields a valid eigenenergy. We merely lack the in-
formation on the fraction of eigenstates that transform

  

FIG. 3. In hyperbolic band theory, Bloch waves pick up
a phase factor eikµ when going from one unit cell to the
other, or, equivalently, when traversing the boundary of the
fundamental domain. Left. Continuing the example of the
{10, 3} lattice from Fig. 2, we endow the unit cell with peri-
odic boundary conditions and obtain a graph with ten sites
and coordination number 3 (red circles). The ten edges of
the fundamental domain (orange) give rise to five naive mo-
mentum components, (k1, k2, k3, k4, k5), only four of which
are independent. (A similar redundancy occurs in the Eu-
clidean hexagonal lattice, see Sec. III B.) Right. We show
the band structure of the associated Bloch wave Hamilto-
nian in four-dimensional momentum space along the k =
(k1, k2, k3, k4)T = k(1, 1, 1, 1)T direction as a function of k.
Strikingly, position space and momentum space do not have
the same dimension for hyperbolic Bloch waves.

under a higher-dimensional representation. Some first
steps towards a complete classification of irreducible rep-
resentations and hence a Bloch theorem for hyperbolic
Bravais lattices have been taken in Ref. [72] for finite pat-
terns of {8, 8} type. One remarkable finding is that for
many choices of such finite patterns, all irreducible rep-
resentations are one-dimensional and hence Bloch wave
theory is exact. On the other hand, instances where
two-dimensional representations play a role could also be
identified.

The main result of this paper is to provide a concrete
list of example {p, q} lattices with their unit cells and
Bravais lattices, including several cases for genus g = 2, 3
and five infinite families. To the best of our knowledge,
no such list has been collected before, and we are con-
vinced that it will fundamentally alter the perspective on
hyperbolic lattices in future theoretical and experimen-
tal work. We give a comprehensive introduction to the
mathematical toolbox required to work with hyperbolic
crystallography in practice. We expect these concepts
from topology and geometry, although covered in math-
ematics textbooks, to be less known to the wider physics
community. In particular, our construction is strongly
built on the notion of patterns on higher-genus Riemann
surfaces from Ref. [73]. Our identification of hyperbolic
Bravais lattices parallels the study of periodic boundary
conditions on the hyperbolic plane of Ref. [74].

This paper is organized as follows. We first review hy-
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perbolic geometry and the Poincaré disk model in Sec. I.
We then discuss the notion of patterns on higher-genus
Riemann surfaces in Sec. II, which, in particular, allows
us to identify all potential regular hyperbolic Bravais lat-
tices. In Sec. III, we construct the generators of hyper-
bolic Bravais lattices and study the associated Fuchsian
groups. In Sec. IV, we discuss a selection of {p, q} lat-
tices with their unit cells and Bravais lattices. In Sec.
V, we apply our findings to tight-binding Hamiltonians
on infinite hyperbolic lattices. In App. A, we describe
a method to efficiently generate large lattices. Further
technical details are collected in Apps. B–E and refer-
enced in the main text.

I. HYPERBOLIC GEOMETRY

In this section, we introduce the Poincaré disk model
of hyperbolic space and discuss its distance preserving
maps. Using hyperbolic trigonometry, we construct reg-
ular hyperbolic polygons, which are the basic building
block of our crystallography.

For the study of hyperbolic lattices, we employ the
Poincaré disk model of hyperbolic space [1, 69], which
consists of all points in the unit disk D = {z ∈ C, |z| < 1}
equipped with the hyperbolic metric

ds2 = (2κ)2 dx2 + dy2

(1− |z|2)2
. (3)

Herein, κ is the curvature radius, which sets the rele-
vant length scale in hyperbolic space. The corresponding
constant negative curvature is K = −κ−2. We denote
z = x+ iy = reiφ. The hyperbolic distance between two
points z, z′ ∈ D is given by

d(z, z′) = κ arcosh
(

1 +
2|z − z′|2

(1− |z|2)(1− |z′|2)

)
. (4)

The angle between two intersecting lines in D is given by
the usual Euclidean angle. The geodesics of the Poincaré
disk model are circular arcs that intersect the boundary
of D orthogonally. This includes straight lines through
the origin.

The isometries of D are the maps that preserve the
hyperbolic distance. They may either preserve or change
orientation. The orientation preserving ones are given by
fractional linear transformations

z 7→Mz :=
az + b

b∗z + a∗
(5)

with complex numbers a and b satisfying |a|2 − |b|2 = 1.
Identifying M with the SU(1, 1)-matrix

M =

(
a b
b∗ a∗

)
, (6)

the orientation preserving-maps form the group

P = PSU(1, 1) = SU(1, 1)/{±1}. (7)

In the following, we denote the unit element of P by
1P . The statement X = 1P means X = ±1 in the two-
dimensional representation of Eq. (6). Note that if we
embedded the hyperbolic lattice into the Poincaré upper-
half plane H instead, the group of orientation preserving
isometries would be PSL(2,R), which is isomorphic to P.

A typical orientation reversing map in the plane is
given by complex conjugation, z 7→ z∗. The group of
all orientation reversing isometries of D is given by linear
fractional transformations

z 7→ az∗ + b

b∗z∗ + a∗
, (8)

and so is also isomorphic to P. Thus, every isometry
of the Poincaré disk can be uniquely decomposed into
an orientation-preserving one that is either combined or
not combined with the map z 7→ z∗. Formally, the full
isometry group of D is, therefore, the semi-direct prod-
uct P n Z2. An analogous, but potentially more famil-
iar situation arises for the Euclidean orthogonal group
O(2) = SO(2) n Z2, as every element from O(2) can
be uniquely written as a proper rotation from SO(2)
that is either combined or not combined with a reflec-
tion (x, y) 7→ (x,−y).

The central building blocks of the crystallography pre-
sented in this work are regular geodesic polygons. A
polygon is called regular if its internal angles are equal
and its side lengths are equal. It is called geodesic if its
vertices are connected by (uniquely determined) geodesic
lines. The circumradius, or simply radius hereafter, of
the polygon is the distance from the center to any of its
vertices. In the Euclidean plane, the internal angles of
a regular p-gon sum up to (p − 2)π, whereas the radius
can be of arbitrary size. In contrast, in the Poincaré
disk, the internal angles can have any value, as long as
they sum up to a number smaller than (p − 2)π, while
the radius is uniquely determined by the values of the
angles. Generally, smaller internal angles imply larger
radii. An extreme example is a polygon with all internal
angles approaching zero, so that the vertices of this poly-
gon approach the boundary of D. In the {p, q} lattice,
the internal angles of each p-gon are 2π/q. Consequently,
to give another useful example, a decagon in the {10, 3}
lattice has smaller radius, and thus smaller area, than a
decagon in the {10, 5} lattice, as can be seen in Fig. 2.

We now compute the characteristic lengths of regular
p-gons in {p, q} lattices. It is important to notice that
we can express lengths either in terms of hyperbolic dis-
tances, given by Eq. (4) with the natural unit of length
being κ, or in terms of their coordinates in the Poincaré
disk, with the natural length scale given by the disk ra-
dius, which we set to unity. Denote the vertices of the
polygon by zj = r0e

i(2πj/p+δ), j = 1, . . . , p, with δ an
arbitrary phase. Then the radius r0 of the polygon in
units of the disk radius is given by

r0 =

√
cos(πp + π

q )

cos(πp −
π
q )
. (9)
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C
B

A

FIG. 4. Regular hyperbolic polygon, exemplified here by the
central octagon of the {p, q} = {8, 8} lattice. The hyperbolic
lengths A,B,C enclose a right triangle with interior angles
π/p (red shaded), π/2, and π/q. They obey the relations of
hyperbolic trigonometry in Eqs. (10) and (11). The Euclidean
distance between the origin and the vertices is r0 from Eq.
(9), with C = d(r0, 0). The polygon intersects the positive
real axis orthogonally at a ∈ D, with a given by Eq. (12) and
A = d(a, 0). The orange lines are parametrized by Eq. (13).

The corresponding hyperbolic radius is C = d(r0, 0).
Two other lengths of interest are the shortest hyperbolic
distance from the center of the polygon to an edge, de-
noted A, and the hyperbolic side length, denoted 2B, see
Fig. 4. Then A,B,C form a hyperbolic right triangle
with internal angles π/p, π/q, and π/2, and the rules of
hyperbolic trigonometry yield the relations

cos
(π
p

)
=

tanh(A/κ)

tanh(C/κ)
, (10)

sin
(π
p

)
=

sinh(B/κ)

sinh(C/κ)
. (11)

If the polygon is oriented such that A lies along the pos-
itive real axis, and accordingly z1 = r0e

iπ/p is the first
vertex, then Eq. (10) implies that the edge intersects
the positive real axis at a real coordinate a ∈ D, with
A = d(a, 0), determined by

cos
(π
p

)
=

tanh[2 artanh(a)]

tanh[2 artanh(r0)]
. (12)

Note that tanh[2 artanh(x)] = 2x/(1 + x2). Equations
(10)-(12) reproduce the Euclidean result for a, r0 � 1,
because the hyperbolic metric in Eq. (3) becomes flat
for |z| � 1.

We conclude this section with a parametrization of the
geodesic arcs that comprise the edges of a regular hyper-
bolic p-gon. Denote the p sides by

Cµ =
{

(c− ρeiθ)ei2π(µ−1)/p, θ ∈ [−θ0, θ0]
}

(13)

with µ = 1, . . . , p. The parameters c, ρ, θ0 are determined
by c−ρ = a and c−ρe−iθ0 = z1 = r0e

iπ/p. This is solved
by

ρ =
a2 − 2ar0 cos(π/p) + r2

0

2r0 cos(π/p)− 2a
, (14)

c = a+ ρ, sin(θ0) =
r0

ρ
sin(π/p). (15)

The value of the internal angles (2π/q) is arbitrary and
enters through r0. In principle, q could be noninteger-
valued, although this situation does not arise in the ap-
plications considered here. The formulas derived in this
section are also valid for odd values of p, say, for a regular
hyperbolic 7-gon.

II. PATTERNS

In this section we discuss the concept of patterns,
which are finite hyperbolic graphs embedded into closed
Riemann surfaces, and which determine the size and
shape of the unit cell of hyperbolic lattices. For this pur-
pose we first recall the classification of Riemann surfaces
M via their number of holes. We then describe how to
determine which patterns can be drawn onto which sur-
faces and identify those patterns that cover the surface
with a single face, because they are particularly impor-
tant for hyperbolic crystallography.

Let M be a two-dimensional connected Riemannian
manifold. We call M a Riemann surface in the fol-
lowing. The uniformization theorem states that ev-
ery such surface M is conformally equivalent to a sur-
face with constant curvature being either +1, 0, or −1.
(This means that, when expressed in so-called isother-
mal coordinates, the Riemannian metric takes the form
ds2 = Ω(x)(dx2 + dy2), where Ω(x) is such that the cur-
vature is constant.) If M is simply connected, i.e. has ”no
holes”, it is thus equivalent to either the sphere S2, the
complex plane C, or the Poincaré disk D. If M has holes,
which can only happen for curvature 0 and −1, then it
is either equivalent to a torus with genus g = 1 (curva-
ture 0), or it is a hyperbolic surface (curvature −1) of the
form D/Γ, where Γ is a so-called Fuchsian group, intro-
duced in Sec. III C. If the hyperbolic surface is compact,
it is fully characterized by its number of holes, which
coincides with its genus g ≥ 2. Every compact hyper-
bolic Riemann surface can, therefore, be thought of as a
surface with at least two holes.

Following Ref. [73], we define a {p, q} pattern on a
closed Riemann surface M as a tessellation of M by reg-
ular p-gons such that the coordination number of each
vertex is q. Closed here means that M has no boundary,
and therefore such a pattern is necessarily a q-regular
graph without boundary. Examples are shown in Figs. 5
and 6. The dual pattern is obtained by putting a vertex
onto each face of the original pattern. It is easy to see
that the dual pattern is then a {q, p} pattern on M .
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a)

c)

b)

d)

FIG. 5. Euclidean patterns on the torus of genus g = 1. Fig-
ures a) and b) show {4, 4} patterns, c) and d) show {6, 3} pat-
terns, which are tessellations of the torus by regular squares
and hexagons with the appropriate coordination number. In
stark contrast to hyperbolic surfaces, a torus can be tessel-
lated with an arbitrary number of faces of an Euclidean pat-
tern. Indeed, if (F,E, V ) is a solution of Eq. (16) with
χ = 2(1 − g) = 0, then every integer multiple thereof also
has χ = 0 and so also can tessellate the torus. The pattern
in a) is made from 100 squares and 100 vertices, the pattern
in c) from 72 hexagons and 144 vertices. The patterns in b)
and d) are special, because they use only one face. For the
{4, 4} pattern this requires one vertex, for the {6, 3} pattern
it requires two vertices, see Eq. (21).

Every {p, q} pattern on a closed surface satisfies

pF = 2E = qV, (16)

where F , E, V are the number of faces, edges, and ver-
tices of the pattern, respectively. It is easy to prove this
relation: Denote the adjacency matrix of the pattern
by a, then

∑
i,j aij = 2

∑
〈i,j〉 1 = 2E and

∑
i,j aij =

q
∑
i 1 = qV . The equality to pF follows from going to

the dual graph, which has the same number of edges, but
faces exchanged for vertices. The Euler characteristic χ
of the pattern is given by

χ = F − E + V. (17)

If χ is even, then the pattern can be embedded into an
orientable surface M of genus g [73] with

χ = 2(1− g). (18)

On the other hand, if χ is odd, then the pattern can be
embedded into a non-orientable surface M , but this case
will not be of relevance to us.

Given a solution (F,E, V ) of Eq. (16), we can generate
more solutions by multiplying the first solution by an ar-
bitrary integer. Crucially, for hyperbolic {p, q} patterns,
the number of faces F and the genus g ≥ 2 of the sur-
face are not independent. This can be understood purely
algebraically or, possibly more intuitively, geometrically.

  

FIG. 6. Hyperbolic {8, 8} pattern on a surface of genus
g = 2. This pattern corresponds to the minimal solution
(F0, E0, V0) = (1, 4, 1) of Eq. (16) for p = q = 8. We use four
different colors to visually distinguish the four edges. We can
construct this pattern by gluing together two tori from Fig.
5b) and merging the vertices from each torus into one vertex.
Importantly, this pattern uses only one face. We could not
draw two faces of a {8, 8}-pattern onto this surface. Indeed,
since the minimal solution has χ = 2(1−g) = −2, the doubled
solution (2F0, 2E0, 2V0) can only be embedded into a surface
with χ = −4 or genus g = 3. Similar restrictions on the num-
ber of faces for a given surface of genus g ≥ 2 apply to all
hyperbolic {p, q} patterns.

Algebraically, multiplying a solution (F,E, V ) of Eq.
(16) by an integer n yields a pattern with (nF, nE, nV )
on a surface with characteristic nχ. For g ≥ 2 this cor-
responds to a surface of higher genus than the original
one. Increasing the number of faces is thus equivalent
to increasing the genus for hyperbolic patterns. For Eu-
clidean patterns, with g = 1 and χ = 0, on the other
hand, the number of faces is not restricted. We show
some instructive examples in Figs. 5 and 6.

Geometrically, it is clear that the combined area of
the faces of the pattern needs to match the area of the
closed Riemann surface. In the Euclidean case, the size of
squares or regular hexagons is arbitrary, and a matching
is possible for any number of faces. For regular hyperbolic
polygons in a {p, q} pattern, on the other hand, the area
of a single polygon is fixed to A(p, q) = (p − 2)π − p 2π

q .

The area of the hyperbolic surface is 4π(g − 1) via the
Gauß–Bonnet theorem, and so we arrive at the necessary
condition

FA(p, q) = 4π(g − 1), (19)

which relates F and g. This condition is satisfied if
(F,E, V ) solves Eq. (16).

For every {p, q}, there exists a minimal solution
(F0, E0, V0) with smallest number of faces F0 (and there-
fore smallest E0 and V0). To find the minimal solution,
start with F0 = 1 and check whether pF0 is divisible by
2 and q, and, if not, increase F0 by one unit. We restrict
admissible minimal solutions to even values of χ, thus
orientable surfaces, multiplying by two if the algorithm
described above yields an odd χ. We present a selection
of minimal solutions in Table I.

Among the minimal solutions of patterns, the ones
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{p, q} F0 E0 V0 χ0 g0

{6,3} 1 3 2 0 1

{7, 3} 12 42 28 −2 2

{8, 3} 6 24 16 −2 2

{9, 3} 4 18 12 −2 2

{10, 3} 3 15 10 −2 2

{11, 3} 12 66 44 −10 6

{12, 3} 2 12 8 −2 2

{13, 3} 12 78 52 −14 8

{14, 3} 3 21 14 −4 3

{p, q} F0 E0 V0 χ0 g0

{4,4} 1 2 1 0 1

{5, 4} 8 20 10 −2 2

{6, 4} 4 12 6 −2 2

{7, 4} 8 28 14 −6 4

{8, 4} 2 8 4 −2 2

{9, 4} 8 36 18 −10 6

{10, 4} 4 20 10 −6 4

{11, 4} 8 44 22 −14 8

{12,4} 1 6 3 –2 2

{p, q} F0 E0 V0 χ0 g0

{4, 5} 10 20 8 −2 2

{5, 5} 4 10 4 −2 2

{6, 5} 5 15 6 −4 3

{7, 5} 20 70 28 −22 12

{8, 5} 10 40 16 −14 8

{9, 5} 20 90 36 −34 18

{10,5} 1 5 2 –2 2

{11, 5} 20 110 44 −46 24

{12, 5} 10 60 24 −26 14

TABLE I. Selection of minimal solutions (F0, E0, V0) to Eq. (16) with even χ0 = F0−E0 +V0 for q = 3, 4, 5. For a given {p, q},
the list gives the smallest genus g0 such that a {p, q}-pattern with F0 faces, E0 edges and V0 vertices can be drawn onto an
orientable surface of genus g0. Every integer multiple of (F0, E0, V0) also yields a {p, q} pattern, but on a surface with higher
genus. (An exception is the Euclidean case with χ0 = 0, where the number of squares or hexagons that can be used to cover
a torus is arbitrary.) We highlight in boldface solutions that constitute a pattern with a single face, since these correspond to
potential regular Bravais lattices.

with F0 = 1 stand out. If a {p, q} pattern can be em-
bedded into a closed surface with only one face, then this
implies that we can consistently define periodic boundary
conditions on the associated regular p-gon with interior
angles 2π/q. This connection has been explained in detail
in Ref. [74]. Every solution with F0 = 1 satisfies

(F0, E0, V0) = (1, p/2, p/q), (20)

hence p must be even and must satisfy p ≥ q. It is easy
to see that four infinite families of such patterns are

{4g, 4g} : (F0, E0, V0) = (1, 2g, 1),

{2(2g + 1), 2g + 1} : (F0, E0, V0) = (1, 2g + 1, 2),

{4(2g − 1), 4} : (F0, E0, V0) = (1, 2(2g − 1), 2g − 1),

{6(2g − 1), 3} : (F0, E0, V0) = (1, 3(2g − 1), 2(2g − 1)),
(21)

where g ≥ 1 is the genus of the embedding surface. These
families obviously generalize the square and hexagonal
lattices, {4, 4} and {6, 3}, to higher genus. One can show
that every solution with F0 = 1 and even χ is contained
in one of the two families: (i) Either q is a multiple of 4,
then the associated pattern is of type

{4m(2n+ 1), 4m}, (22)

or (ii) q is odd, so that the pattern is of type

{2(2m+ 1)(2n+ 1), 2m+ 1}. (23)

In both cases, m ≥ 1 and n ≥ 0 are integers, and the
genus is g = (2n + 1)m − n. For (m,n) = (g, 0) and
(m,n) = (1, g−1), we recover the four patterns from Eq.
(21). For a given g, more than the four patterns in Eq.
(21) may exist. We summarize the solutions for g = 2, 3
in Table II.

{p, q} F0 E0 V0 χ0 g0

{8, 8} 1 4 1 −2 2

{10, 5} 1 5 2 −2 2

{12, 4} 1 6 3 −2 2

{18, 3} 1 9 6 −2 2

{12, 12} 1 6 1 −4 3

{14, 7} 1 7 2 −4 3

{20, 4} 1 10 5 −4 3

{30, 3} 1 15 10 −4 3

TABLE II. All possible {p, q} patterns that can be drawn on
orientable compact surfaces of genus g = 2, 3 with a single face
(i.e. such patterns are solutions to Eq. (16) with F0 = 1). The
number of these solutions varies with g. For instance, there
are four admissible patterns for g = 4, 6, but six solutions for
g = 5.

The fact that a {4g, 4g} pattern can be drawn onto
a surface of genus g ≥ 1 using one face and one vertex
gives an elegant way to construct higher-genus surfaces
by taking a single hyperbolic 4g-gon in the Poincaré disk
(with interior angles 2π/(4g)) and identifying opposite
edges to obtain a closed manifold. For g = 1, identifying
opposite sides of a square yields a torus, while for g = 2,
identifying opposite sides of an octagon yields a genus-
2 surface, and so on. The octagon case is visualized in
Fig. 7. If we wish to equip a hyperbolic p-gon (with
interior angles 2π/q) with periodic boundary conditions
by identifying certain edges, then this is possible if and
only if the corresponding {p, q} pattern can be drawn
onto a closed surface using only a single face. This shows
how the solutions with F0 = 1 are crucial for identifying
a periodic pattern in general hyperbolic lattices. We il-
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1) 2)

3) 4)

5) 6)

FIG. 7. Identifying opposite sides of an octagon yields a closed
genus-2 Riemann surface. We show one possible set of steps to
arrive at this well-known result. We only consider the topol-
ogy and, therefore, are free to deform the surface in any way.
1) Opposite edges of the octagon which are to be identified are
represented by the same color. 2) Gluing together the blue
edges, we obtain a prism with triangular base. 3) Identifying
the red edges, we obtain a torus with a rectangular window.
The sides of the window are the yet unidentified green and
pink edges. 4) Gluing together the green edges, we arrive at
a torus with a tunnel on its surface. The entrance and exit of
the tunnel are the pink edges. 5) Topologically, this is equiv-
alent to a torus with two chimneys. 6) Eventually, identifying
the pink rims of both chimneys, we obtain a surface with two
handles.

luminate this setup with examples in the next sections.
Finally, we note that we need not necessarily identify
opposite edges of the p-gon. Other side-pairings are pos-
sible, but not relevant for our considerations [66, 67].

III. HYPERBOLIC CRYSTALLOGRAPHY

In this section, we generalize the basic notions of Eu-
clidean crystallography to the hyperbolic case. For this
purpose, we first discuss unit cells and Bravais lattices in
symmorphic space groups. We formulate the translation
groups in the square and hexagonal lattice in a fashion
that generalizes to higher genus. We then present the
discrete symmetry and translation groups for hyperbolic
lattices with regular Bravais lattices of the types {4g, 4g}
and {2(2g + 1), 2g + 1}. We close this section with a re-
mark on the order of the point group in hyperbolic lat-
tices.

  

FIG. 8. Euclidean Bravais lattices have two independent gen-
erators of translations. This implies that momentum space
in Euclidean Bloch wave theory is two-dimensional. Left. In
the {4, 4} lattice, translations are generated by the two prim-
itive translations γ1 and γ2 from Eq. (28). Both operations
commute, which can be written as γ1γ

−1
2 γ−1

1 γ2 = 1. The
latter relation represents the fact that going (right) around
a vertex four times brings one back to where one started.
Right. In the {6, 3} lattice, three generators γ1, γ2, γ3 can be
defined naively, see Eq. (31). However, only two of them are
independent, since γ1γ

−1
2 γ3 = 1. The remaining two satisfy

γ1γ
−1
2 γ−1

1 γ2 = 1 as in the square lattice case.

A. Unit cell and Bravais lattice

We first recall the crystallographic notions of unit cell
and Bravais lattice. For a detailed introduction we refer
to Ref. [71]. Given a discrete set of points Λ = {zi} that
constitutes the lattice, there exists a maximal group G
acting on the coordinates that leaves the lattice invari-
ant, called the space group. We assume in the following
that this space group is symmorphic [71]. The lattice
can then be split into unit cells and a Bravais lattice in
the following manner. Each site zi ∈ Λ can be uniquely
written as

zi = γz(a), (24)

where z(a) is an element from a reference unit cell D =
{z(1), . . . , z(N)} ⊂ Λ, which consists of a finite number of
sites, and where γ is an element from a discrete transla-
tion group Γ ⊂ G, which is the symmetry group of the
Bravais lattice. Roughly speaking, a translation is a sym-
metry transformation without fixed point. The split in
Eq. (24) allows us to uniquely write the index of zi as
i = (γ, a), where γ and a specify the location of zi in
the Bravais lattice and unit cell, respectively. For such
a split to exist, Γ needs to be a normal subgroup of G,
which follows from the assumption that G is symmorphic.
The corresponding quotient group G = G/Γ is the point
group of the lattice.

As an example of how to construct a lattice with
a given unit cell and Bravais lattice, consider the Eu-
clidean {4, 4} lattice in Fig. 8. We decorate a sin-
gle ”fundamental” square with a finite number of sites,
D = {z(1), . . . , z(N)}, each site placed within the same
square. Since the fundamental square can cover a torus,
we could endow it with periodic boundary conditions by
identifying opposite sides, and the unit cell would now
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be embedded on a torus. On the other hand, instead of
covering a torus with a single face, we may also use the
fundamental square to tessellate the Euclidean plane. In
this alternative point of view, when leaving one square by
applying one of the primitive translation vectors of the
square lattice, say γ1, we do not enter the same square,
but rather enter the neighboring square. We iterate this
translation procedure, using all sides of the fundamental
domain. In this way, we tessellate the Euclidean plane
with repetitions of D and the resulting periodic set of
sites {zi} is a Euclidean lattice with unit cell D and Bra-
vais lattice {4, 4}.

Clearly, if we started with a fundamental hexagon of
the {6, 3} lattice in the previous example, we would have
obtained a lattice in the Euclidean plane with Bravais
lattice {6, 3}, see Fig. 8. It is then very natural to ask
whether starting from a fundamental pB-gon we obtain a
lattice whose Bravais lattice is {pB, qB} for some qB. This
expectation turns out to be true, but not every pair of
integers (pB, qB) qualifies for a potential Bravais lattice.
In fact, the construction described in the previous para-
graph relies on assigning consistent periodic boundary
conditions to the fundamental polygon. This is possible
if and only if (pB, qB) allows for a solution of Eq. (16)
with F0 = 1, i.e. the fundamental domain can cover a
closed surface with a single face. Obviously, this con-
dition is satisfied for the Euclidean examples {4, 4} and
{6, 3}. In the hyperbolic case, we see that only certain
{pB, qB} lattices, such as the infinite families {4g, 4g} or
{2(2g+ 1), 2g+ 1}, constitute valid Bravais lattices. Re-
markably, there are infinitely many Bravais lattices in the
hyperbolic plane. We demonstrate the construction of the
{8, 3} lattice by decorating the fundamental octagon of
the {8, 8} Bravais lattice in App. A. The idea is outlined
in Fig. 9.

A Bravais lattice will be called regular if its fundamen-
tal domain is a regular polygon, and so is a {pB, qB} lat-
tice for some pB and qB. This is a severe constraint. For
instance, the internal angles of the fundamental polygon
may not all be equal, while still yielding a valid Bravais
lattice. We will see, however, that many examples that
are important for experiments and applications fall into
the class of regular Bravais lattices.

B. Euclidean case

In the next few paragraphs, we return to the Euclidean
example from the previous section and explicitly con-
struct the translations that facilitate the tessellation of
the Euclidean plane. It is well-known that Euclidean lat-
tices in two dimensions are constructed from five Bravais
lattices and 17 possible space groups, the latter called
wallpaper groups in this context [71]. The five Bravais
lattices can be characterized by their two primitve trans-
lation vectors, a1 and a2. Let θ denote the angle be-
tween a1 and a2. Among the five Bravais lattices, only
the square lattice and hexagonal lattice are regular, i.e.

  

FIG. 9. Left. The {8, 8} lattice, shown in orange, is a hy-
perbolic Bravais lattice with g0 = 2. The eight edges of its
central octagon define four generators of translations, which
we call γ1, γ2, γ3, γ4. Each face of the {8, 8} lattice is reached
from the central polygon by applying a product of the four
generators and their inverses. The Euclidean analogue of this
construction is shown in Fig. 8. Right. The unit cell of the
{8, 3} lattice has 16 sites (red dots). The corresponding Bra-
vais lattice is the {8, 8} lattice, with the fundamental octagon
shown in orange. By applying on the original 16-site unit
cell each of the generators γ1, γ2, γ3, γ4 of the {8, 8} lattice
and their inverses once, we generate 8 × 16 = 128 new sites
(blue dots). Iterating this procedure we eventually generate
the whole {8, 3} lattice, see Fig. 13.

|a1| = |a2|, with θ = 90◦ and θ = 120◦, respectively. The
remaining three (oblique, rectangular, centered rectangu-
lar) have |a1| 6= |a2| and so are not regular. As elucidated
before, the appearance of the {4, 4} and {6, 3} lattices as
regular Bravais lattices in the Euclidean plane is deeply
rooted in the fact that these lattices can cover a genus-
one torus with a single face.

Let us explicitly construct the translation group Γ for
the {4, 4} Bravais lattice. For a 2 × 2 matrix M , we
define its action on z ∈ C, denoted Mz, through the
generalization of Eq. (6) by(

a b

c d

)
z :=

az + b

cz + d
, (25)

assuming, of course, that M is such that the denominator
is nonzero. The square lattice shall be aligned as in Fig.
8. We choose the side length or lattice constant to be
a0 = 1. Every translation of the fundamental square is
generated by the maps

z 7→ γ1z = z + 1, (26)

z 7→ γ2z = z + i, (27)

corresponding to the two primitive translation vectors
a1 = 1 and a2 = i in complex notation, and matrices

γ1 =

(
1 1

0 1

)
, γ2 =

(
1 i

0 1

)
. (28)

Clearly, the two operations commute, γ1γ2 = γ2γ1, which
can be written as

γ1γ
−1
2 γ−1

1 γ2 = 1. (29)
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We call γ1 and γ2 the generators of the translation group.
Every translation connecting one point of the Bravais lat-
tice to another can be written as a suitable product of
γ1, γ2, and their inverses. Consequently, Eqs. (28) spec-
ify a particular representation of the translation group
Γ of the {4, 4} lattice. The abstract presentation of the
same group reads

Γg=1 = 〈γ1, γ2 | γ1γ
−1
2 γ−1

1 γ2 = 1〉 ' Z2. (30)

Here we use the standard notation 〈A,B, . . . |X = Y =
· · · = 1〉 for a group generated by some A,B, . . . and their
inverses that satisfy the constraints X = Y = · · · = 1.
An element of Γ, which is a certain ordered product of
the generator and their inverses, is called a word. The
group Γg=1, of course, is isomorphic to Z2.

Next we construct the translation group Γ for the Eu-
clidean {6, 3} Bravais lattice. The lattice shall be aligned
as in Fig. 8. Translations through the sides of the
hexagon are generated by z 7→ γµz = z + eµ, with lat-
tice constant a0 = 1, primitive vectors e1 = 1, e2 =
eiπ/3, e3 = e2iπ/3 and translation generators

γ1 =

(
1 e1

0 1

)
, γ2 =

(
1 e2

0 1

)
, γ3 =

(
1 e3

0 1

)
. (31)

Note that we have e1 − e2 + e3 = 0 and so

γ1γ
−1
2 γ3 =

(
1 (e1 − e2 + e3)

0 1

)
= 1. (32)

Hence the number of independent generators is two, not
three, just as for the {4, 4} lattice. The translation group
of the {6, 3} lattice is thus given by

Γ{6,3} = 〈γ1, γ2, γ3 | γ1γ
−1
2 γ3 = γ1γ

−1
2 γ−1

1 γ2 = 1〉
= 〈γ1, γ2 | γ1γ

−1
2 γ−1

1 γ2 = 1〉 = Γg=1. (33)

Since γ3 can be expressed in terms of γ1 and γ2, every
word in γ1,2,3 is also a word in γ1,2. The two Euclidean
translation groups are, therefore, isomorphic and fully
characterized by the genus g = 1.

The two Euclidean lattices discussed here are the spe-
cial case of g = 1 for the genus-g lattices {4g, 4g} and
{2(2g + 1), 2g + 1} analyzed in the following. Although
similarities between the Euclidean and hyperbolic cases
remain, the most striking difference for g ≥ 2 is the fact
that the generators γµ no longer commute. The proper
framework to discuss these non-commuting translations
is the language of Fuchsian groups.

C. Fuchsian groups

A discrete subgroup of P = PSU(1, 1) is called a Fuch-
sian group. It is very natural to expect symmetry groups
of hyperbolic lattices to be Fuchsian groups [1, 66, 67, 70].
Indeed, under a symmetry transformation of the lattice,

two neighboring sites zi and zj , separated by a hyper-
bolic distance d(zi, zj) = d0 that is determined by p and
q, should be mapped to two neighboring points separated
by the same hyperbolic distance. Since P is precisely
the group of transformations that preserve the hyper-
bolic distance, the symmetry group must be made from
elements of P. On the other hand, clearly only a discrete
set of transformations will leave the lattice invariant.

The full space group of the hyperbolic {p, q} lattice is
given by the triangle group

∆(p, q, 2) = 〈 x, y, z | x2 = y2 = z2 = (xy)p

= (yz)q = (zx)2 = 1 〉. (34)

The geometric meaning of the generators x, y, z is not
important for this work. Suffice to say that this group
contains a reflection along a symmetry axis and thus
orientation-reversing elements, hence is not a subgroup
of P, but more generally referred to as non-Euclidean
crystallographic group [67, 70]. On the other hand, we
can consider the quotient ∆+(p, q, 2) = ∆(p, q, 2)/Z2

of transformations modulo this reflection, which con-
sists of orientation-preserving automorphisms and thus
is a Fuchsian group. Equivalently, the full space
group is given by the semi-direct product ∆(p, q, 2) =
∆+(p, q, 2) n Z2. Due to this simple nature of the fac-
tor Z2, we will often ignore the reflection symmetry. We
refer to ∆+(p, q, 2) ⊂ P as proper triangle group. It has
the presentation

∆+(p, q, 2) = 〈 A,B | Ap = Bq = (AB)2 = 1P 〉, (35)

with A = xy, B = yz. A particular representation of the
generators A and B through P-matrices is given by

A =

(
eiα/2 0

0 e−iα/2

)
, (36)

B =
1

1− r2
0

(
eiβ/2 − r2

0e
−iβ/2 r0(1− eiβ)ei

(α−β)
2

r0(1− e−iβ)e−i
(α−β)

2 e−iβ/2 − r2
0e

iβ/2

)
(37)

with r0 from Eq. (9) and

α =
2π

p
, β =

2π

q
. (38)

Geometrically, A is a rotation by α through the center
of a face (here chosen to be the origin), whereas B is a
rotation by β through a vertex (here chosen to be z1 =
r0e

iα/2).
The elements of a Fuchsian group are classified as el-

liptic, parabolic, or hyperbolic if their trace is less than,
equal to, or greater than 2. A typical elliptic element is
given by the rotation matrix

R(φ) =

(
eiφ/2 0

0 e−iφ/2

)
(39)
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with φ 6= 0. Indeed, under R(φ) we have z 7→ eiφz and φ
is the angle of rotation. Elliptic elements have one fixed
point, which here is the center of the rotation. A typical
hyperbolic element is given by the matrix

T (τ) =

(
cosh(τ/(2κ)) sinh(τ/(2κ))

sinh(τ/(2κ)) cosh(τ/(2κ))

)
(40)

with τ > 0. The significance of the parameter τ can be
understood from applying T (τ) to the origin z = 0. We
have

0 7→ T (τ)0 = tanh(τ/(2κ)). (41)

Now note that Eq. (4) implies d(z, 0) = (2κ)artanh(|z|).
Consequently, under T (τ), the origin is mapped to the
coordinate on the real axis that is at hyperbolic distance
τ from the origin. This finding, together with the form
of T (τ) that closely resembles a Lorentz transformation,
motivates us to call T (τ) a boost transformation, and τ
the boost parameter or rapidity. Importantly, like every
hyperbolic element of a Fuchsian group, boosts do not
have fixed points. In this sense, they generalize Euclidean
translations to the hyperbolic case. The generators A and
B can be expressed in terms of rotations and boosts via

A = R(α), (42)

B = R(α/2)T (τ0)R(β)T (−τ0)R(−α/2), (43)

with τ0 = (2κ) artanh(r0).
We are now in a position to characterize the translation

groups associated to Bravais lattices in hyperbolic space.
We define a Fuchsian translation group Γ as a torsion
free Fuchsian group. Torsion free means that no element
γ from Γ satisfies γn = 1 for some suitable integer n. In
our case, this is ensured by Γ being strictly hyperbolic,
which means that all elements are hyperbolic. Obviously,
∆+(p, q, 2) is not a Fuchsian translation group, because
the generators A and B satisfy Ap = 1 and Bq = 1.

Let us pause here for a word on notation. The intrinsic
properties of a {p, q} lattice are fully specified by the in-
tegers p and q. This includes, for instance, the value of r0

in Eq. (9), the hyperbolic distance d0 = d(zi, zj) between
any two neighboring points zi and zj , or the parameters
of the regular geodesic p-gon {Cµ, µ = 1, . . . , p} with
internal angles 2π/q in Eq. (13). In what follows, we
will discuss {p, q} lattices and their associated {pB, qB}
Bravais lattices. To distinguish these two, we denote pa-
rameters of the Bravais lattice by a subscript B, which
indicates that we need to replace {p, q} → {pB, qB} in
the corresponding formula.

It is rather easy to construct a representation of the
Fuchsian translation group Γ for the regular {pB, qB}
Bravais lattice. We restrict ourselves to the {4g, 4g}
and {2(2g + 1), 2g + 1} Bravais lattices in the follow-
ing. From Eq. (16) it follows that solutions with F0 = 1
necessarily have even pB. The fundamental domain is a
regular pB-gon, with internal angles βB, and with edges
parametrized by Cµ,B from Eq. (13). (An example of

the fundamental polygon of the {8, 8} Bravais lattice is
shown in Fig. 4.) We center the fundamental polygon at
the origin and align it such that C1,B intersects the posi-
tive real axis orthogonally. Opposite sides of the polygon
are identified. The first generator of Γ, γ1, is a boost that
translates one fundamental polygon through side C1,B to
the neighboring polygon on the right. Consequently, the
transformation

γ1 = T (τ1) (44)

shifts the center of the original polygon to the center
of the neighboring polygon, which again lies on the real
axis. Hence the boost parameter is given by τ1 = 2AB

with AB from Eq. (10). This yields the explicit form

γ1 =
1√

1− σ2

(
1 σ

σ 1

)
(45)

with σ =
√

(cosαB + cosβB)/(1 + cosβB) and αB =
2π/pB, βB = 2π/qB. The full set of generators γµ re-
sults from conjugating this boost with a rotation by αB

and reads

γµ = R((µ− 1)αB)γ1R(−(µ− 1)αB) (46)

with µ = 1, . . . , pB/2. Since pB is even, the generators
are well-defined.

The Fuchsian translation group of the regular Bravais
lattice is given by

Γ{pB,qB} = 〈γ1, . . . , γpB/2 | X{pB,qB} = 1P〉, (47)

with X{pB,qB} a constraint. For practical purposes, this
constraint is often unimportant, since the representation
of the generators in terms of the matrices γµ in Eq. (46)
automatically satisfies the constraint. We derive this con-
straint in Appendix B. The important outcomes of this
analysis are (i) that only 2g of the generators are inde-
pendent and (ii) that X{pB,qB} only depends on g and is
given by

Xg = γ1γ
−1
2 · · · γ2g−1γ

−1
2g γ

−1
1 γ2 · · · γ−1

2g−1γ2g. (48)

Intuitively, this condition means that going (right)
around a vertex 4g times brings one back to where one
started. Hence, the Fuchsian translation group

Γg = 〈 γ1, . . . , γ2g | Xg = 1P 〉 (49)

is fully determined by the genus g = g0 of the Bravais
lattice.

D. Point groups

Having identified the Fuchsian translation group Γ, the
point group is given by G = ∆(p, q, 2)/Γ, with ∆(p, q, 2)
from Eq. (34) being the full space group of the hyper-
bolic lattice. Since ∆(p, q, 2) has a trivial Z2 factor, the
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same is true for G, and we could define the point group
of orientation-preserving transformations G+ = G/Z2.
Since this is not common in crystallography, however,
we work with G in the following. We denote the or-
der (number of elements) of G by |G|. The number
|G| = |∆(p, q, 2)/Γ| is also called the index of Γ in
∆(p, q, 2).

In mathematical terms, Γg is the surface group of a
closed Riemann surface M with genus g, i.e. it is iso-
morphic to the first homotopy group of the surface,
Γg ' π1(M). The order of the point group then follows
from the following proposition (8.3) of Ref. [73]. Let P
be a {p, q}-pattern on a closed surface M , and let Γ ⊂
∆(p, q, 2) be an associated subgroup such that Γ ' π1(M).
Then the index of Γ in ∆(p, q, 2) is |G| = 2pF , where F
is the number of faces of P . This allows us to determine
the size of the point group, which, since the number of
finite groups of certain size is limited, often determines
the point group G and closed surface M . The factor of 2
corresponds to the Z2-factor in G = G+ nZ2. Examples
of point groups that arise for hyperbolic lattices are given
in the next section.

IV. REGULAR HYPERBOLIC BRAVAIS
LATTICES

In this section, we discuss hyperbolic {p, q} lattices
with regular {pB, qB} Bravais lattices. Such a discus-
sion involves, for a given suitable p and q, specifying the
location of sites in the unit cell and the corresponding
integers pB and qB. The size of the unit cell is denoted
by N .

We limit the presentation to those cases where the Bra-
vais lattice is either of the form {4g, 4g} or {2(2g+1), 2g+
1}, and we call g the genus of the Bravais lattice for short.
(More accurately, however, it is the genus of the closed
Riemann surface that can embed the unit cell with pe-
riodic boundary conditions.) Within this restricted set,
several remarkable infinite families arise that are relevant
for experiments with hyperbolic lattices and applications
such as hyperbolic band theory. Furthermore, for g = 2
and g = 3, we show that besides the members of these
infinite families, a few exceptional cases exist, a behavior
that potentially extends to higher genera.

The examples collected in this section have been found
through a systematic search, but via a case-by-case study.
Hence, although we believe that the list within the re-
strictions specified is rather complete, we cannot exclude
that we missed outliers. Given the novelty of having a list
of experimentally relevant examples, we believe that such
a potential incompleteness can be tolerated. Our search
method is described in Appendix E. For future work, it
will be exciting to specify criteria which are both neces-
sary and sufficient for a {p, q} lattice to have a regular
Bravais lattice of the above kind.

{p, q} {pB, qB} N

{4g, 4g} {4g, 4g} 1

{2g + 1, 2(2g + 1)} {2(2g + 1), 2g + 1} 1

{2(2g + 1), 2g + 1} {2(2g + 1), 2g + 1} 2

{4g, 4} {4g, 4g} 2g

{2(2g + 1), 3} {2(2g + 1), 2g + 1} 2(2g + 1)

TABLE III. We identify five infinite families of {p, q} lattices
whose Bravais lattices are regular {4g, 4g} or {2(2g+1), 2g+1}
lattices. The number of corresponding sites in the unit cell
is denoted by N . The construction of these families, namely
the placement of the unit cell inside the fundamental domain
of the Bravais lattice, is shown in Figs. 10 and 11.

A. Infinite families

We first discuss five infinite families of {p, q} lattices
and their according regular Bravais lattices. They are
constructed from systematically placing unit cell sites in
the fundamental polygons of either the {4g, 4g} or the
{2(2g + 1), 2g + 1} Bravais lattices. Here systematically
means that the placing naturally extends to arbitrarily
large genus g. Furthermore, the well-known Euclidean
cases are recovered in the limit g = 1. The five families
are listed in Table III. We have explicitly verified the
entries in this table for all g ≤ 8, which is much beyond
what is experimentally relevant. It is very plausible that
their construction applies to g > 8. Therefore, we will
continue to call these families ”infinite”.

The first family is obtained by placing a single unit cell
site (N = 1) into the center of each face of the {4g, 4g}
Bravais lattice, see Fig. 10. Applying the Fuchsian trans-
lation group to this single site, we generate the dual lat-
tice of the Bravais lattice, which is again the {4g, 4g}
lattice. In the Euclidean case, this generates the {4, 4}
lattice from the {4, 4} regular Bravais lattice. The size
of the point group, due to F0 = 1 for {p, q} = {4g, 4g}, is
|G| = 2p. The corresponding point group is the dihedral
group Dp, consisting of rotations by 2π/p and reflections
along a symmetry axis.

The second family is obtained in a similar fashion by
placing a single unit cell site (N = 1) into the cen-
ter of each face of the {2(2g + 1), 2g + 1} Bravais lat-
tice. The {p, q} lattice obtained in this manner is the
{2g + 1, 2(2g + 1)} lattice, see Fig. 10. For g = 1, this
construction generates the triangular {3, 6} lattice from
the {6, 3} lattice. Since {p, q} = {2g + 1, 2(2g + 1)} im-
plies F0 = 2, the size of the point group is |G| = 4p, and
the point group is the dihedral group D2p.

The third family is generated by placing two unit cell
sites (N = 2) on two neighboring vertices of the funda-
mental polygon of the {2(2g + 1), 2g + 1} Bravais lat-
tice. Applying the Fuchsian translation group, we ar-
rive at the {2(2g + 1), 2g + 1} lattice, see Fig. 10. In
the Euclidean example, we generate the hexagonal {6, 3}
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FIG. 10. The {4g, 4g} and {2(2g+ 1), 2g+ 1} Bravais lattices
give rise to the first three infinite families in Table III in a
simple fashion. By placing a single site into the center of
the fundamental polygon, we generate the dual {4g, 4g} (left
column) and {2g+1, 2(2g+1)} lattices (middle column) with
a unit cell of size N = 1. Furthermore, the {2(2g + 1), 2g +
1} lattice is generated from the {2(2g + 1), 2g + 1} Bravais
lattice by placing the two unit cell sites onto vertices of the
fundamental polygon (right column). All three constructions
directly generalize the Euclidean case (g = 1) to higher genus.

lattice from the {6, 3} lattice. The point group of the
{p, q} = {2(2g+ 1), 2g+ 1} lattice is, again, the dihedral
group Dp. It is well-known that the triangular lattice is
the sublattice of the hexagonal lattice. How this result
generalizes to the hyperbolic case is discussed in App. C.

The fourth family generalizes the Euclidean case in a
way less obvious than the previous examples. Given the
fundamental 4g-gon of the {4g, 4g} Bravais lattice, we
place N = 2g unit cell sites on the centers of its first
2g edges, see Fig. 11. This generates the {4g, 4} lat-
tice with coordination number 4. For g = 1, we obtain
the {4, 4} lattice from the {4, 4} Bravais lattice, mutu-
ally rotated by an angle of π/4, with a non-minimal unit
cell. Indeed, in the Euclidean case, we could identify the
smaller squares as the fundamental domain and so ob-
tain a unit cell with one site. This is because the {4, 4}
lattice is itself a Bravais lattice. In the hyperbolic case
with g > 1, the {4g, 4} lattice is a Bravais lattice only if
g is odd so that we can write g = 2g′−1. In this case, we
can identify a smaller fundamental domain for a Bravais
lattice of genus g′, as is explained in the caption of Fig.
11, whereas for even g this is not possible. The order of
the point group is |G| = 2pF0 with F0 = 1 (F0 = 2) for
g odd (even). In the first case, the point group is the
dihedral group Dp.

The fifth family is obtained from the {2(2g+1), 2g+1}
Bravais lattice. By placing N = 2(2g + 1) unit cell sites,
at radius r0, facing the edges of the fundamental polygon
of the Bravais lattice, we obtain the {2(2g+ 1), 3} lattice

  

FIG. 11. Top row. The infinite family of {4g, 4} lattices has
a unit cell of 2g sites (red dots), which are placed in the edge
centers of the fundamental polygon of their {4g, 4g} Bravais
lattice. If g is odd we can write g = 2g′ − 1. In this case,
the lattices are themselves {4(2g′ − 1), 4} Bravais lattices of
genus g′ and a smaller unit cell can be identified. For even g,
on the other hand, such a reduction is not possible. Bottom
row. The infinite family of {2(2g + 1), 3} lattices has a unit
cell of 2(2g + 1) sites (red dots) that are facing the edges of
the fundamental polygon of their {2(2g + 1), 2g + 1} Bravais
lattice. If 2g + 1 is a multiple of 3, we can write 2g + 1 =
3(2g′ − 1) and the lattices are {6(2g′ − 1), 3} Bravais lattices
with a reduced unit cell and smaller fundamental domain. For
other values of g, again, such a reduction is not possible.

with coordination number 3, see Fig. 11. The {10, 3}
lattice discussed in Fig. 2 falls into this family. The Eu-
clidean case corresponds to placing a smaller hexagonal
lattice into a larger hexagonal Bravais lattice, and, again,
in this case a smaller unit cell can be identified because
the {6, 3} lattice is itself a Bravais lattice. In the hyper-
bolic case, as is explained in the caption of Fig. 11, this
is only possible if 2g + 1 is a multiple of 3. The order of
the point group is |G| = 2pF0 with F0 = 1 (F0 = 3) for
g a multiple of three (else). For F0 = 1, the point group
is the dihedral group Dp.

B. Exceptional cases for g = 2 and g = 3

The list of all {p, q} lattices for g = 2 and g = 3 with a
regular Bravais lattice of type {4g, 4g} or {2(2g+1), 2g+
1} is presented in Table IV. The five infinite families from
Table III yield ten of the entries, but four entries are ex-
ceptional, because they do not fall into the infinite fam-
ilies. In the future, it will be important to study the
”exceptional” cases for g > 3 and see if they generalize
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{p, q} {pB, qB} V0 g0 N g

{8, 3} {8, 8} 16 2 16 2

{8, 4} {8, 8} 4 2 4 2

{4, 8} {8, 8} 2 2 2 2

{8, 8} {8, 8} 1 2 1 2

{10, 3} {10, 5} 10 2 10 2

{10, 5} {10, 5} 2 2 2 2

{5, 10} {10, 5} 1 2 1 2

{12, 4} {12, 12} 3 2 6 3

{4, 12} {12, 12} 1 2 2 3

{12, 12} {12, 12} 1 3 1 3

{7, 3} {14, 7} 28 2 56 3

{14, 3} {14, 7} 14 3 14 3

{14, 7} {14, 7} 2 3 2 3

{7, 14} {14, 7} 1 3 1 3

TABLE IV. List of hyperbolic {p, q} lattices with regular
{4g, 4g} or {2(2g+1), 2g+1} Bravais lattices of genus g = 2, 3.
The number of unit cell sites is denoted by N . The values of
V0 and g0 correspond to the minimal solution of Eq. (16) for
given (p, q), thus (N, g−1) is an integer multiple of (V0, g0−1).
The unit cells and fundamental domains of these lattices are
shown in Figs. 10, 11, and 12.

to infinite families or whether they are genuinely excep-
tional.

For Bravais lattices of genus g = 2, the {8, 3} and {4, 8}
lattices are exceptional, see Fig. 12. The {8, 3} lattice, as
also discussed in Fig. 9, has a 16-site unit cell inside the
fundamental octagon of the {8, 8} Bravais lattice. The
number of unit cell sites matches V0 = 16 obtained from
Eq. (16) for (p, q) = (8, 3). The order of the point group
follows from F0 = 6 to be |G| = 2 · 48. The ensuing
pattern tessellates the so-called Bolza surface and the
point group coincides with the full automorphism group
of the latter, which is known explicitly. The {4, 8} lattice
has a unit cell of two sites that are placed on specific
edges of the fundamental octagon of the {8, 8} Bravais
lattice. Again, the number of unit cell sites matches the
prediction V0 = 2 from Eq. (16) for (p, q) = (4, 8). The
size of the point group with F0 = 4 is |G| = 2 · 16.

The exceptional cases for g = 3 Bravais lattices are
the {7, 3} and {4, 12} lattices, see Fig. 12. The unit cell
of the {7, 3} features 56 sites. The underlying Bravais
lattice is the {14, 7} lattice. Note that the number of
unit cell sites is twice the value of V0 = 28 obtained for
(p, q) = (7, 3) from Eq. (16), and accordingly, g = 3 is
larger than the minimal solution g0 = 2. The embedding
Riemann surface is the so-called Klein quartic with full
automorphism group of order |G| = 2 · 168, which coin-
cides with the point group here due to F = 24. For the
{4, 12} lattice, the two unit cell sites are located on spe-
cific edges of the fundamental dodecagon of the {12, 12}

  

FIG. 12. Among the 14 hyperbolic lattices listed in Table IV,
four do not fall into one of the five infinite families from Ta-
ble III. These four exceptional cases are shown here together
with their unit cell (red dots) and fundamental domain of the
Bravais lattice (orange polygon). The {8, 3} lattice and its
unit cell have also been discussed in Fig. 9.

Bravais lattice. Again, the number of unit cell sites is
twice the value of V0 = 1 obtained from Eq. (16) from
(p, q) = (4, 12). The size of the point group follows from
F = 6 and is given by |G| = 2 · 24.

V. ENERGY SPECTRA OF TIGHT-BINDING
HAMILTONIANS

In this section, we apply the crystallographic division
of hyperbolic lattices into unit cells and Bravais lattices
to address the problem of determining the energy spec-
tra of tight-binding Hamiltonians. After discussing the
general case, we specify to Bloch waves and the compu-
tation of their energy bands. The construction crucially
relies on the possibility to uniquely write a lattice site
zi, as in Eq. (24), as a product of a Fuchsian trans-
lation, γ ∈ Γg, and a site from a reference unit cell,

z(a) ∈ {z(1), . . . , z(N)}, namely

zi = γz(a). (50)

A canonical way to enumerate the infinite, but discrete,
set of Fuchsian translations γ is described in App. A.
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A. Tight-binding Hamiltonians on infinite lattices

In this section, we apply hyperbolic crystallography to
dramatically simplify the spectral problem for the tight-
binding Hamiltonian Ĥ from Eq. (1) on infinite hyper-
bolic lattices. The Schrödinger equation in coordinate
representation is given by

−
∑
j

Aijψ(zj) = Eψ(zi) (51)

for every site i, with the sum on the left extending over all
lattice sites of the infinite lattice, and Aij the adjacency
matrix. We introduce a function A(z, z′) such that

Aij = A(zi, zj). (52)

In the following, we consider an infinite hyperbolic {p, q}
lattice, denoted Λ, with regular {pB, qB} Bravais lattice
being either the {4g, 4g} or {2(2g + 1), 2g + 1} lattice.

We divide Λ into patches of unit cells, each surrounded
by a fundamental polygon of the Bravais lattice, and
choose a reference unit cell D = {z(1), . . . , z(N)} ⊂ Λ.
In Eq. (51), we write zi = γz(a) as in Eq. (50). Further-
more, every neighboring site of zi must be of the form
γγ′z(b), with some γ′ ∈ Γ and b ∈ D. Hence we arrive at

−
∑
γ′∈Γ

∑
b∈D

A(z(a), γ′z(b))ψ(γγ′z(b)) = Eψ(γz(a)). (53)

Crucially, although written as an infinite sum over ele-
ments of Γ, only q terms on the left-hand side of this
equation are nonzero, with A(z(a), γ′z(b)) = 1. The non-
vanishing contributions correspond to those γ′ ∈ Γ that
yield a neighboring site of zi. It is straightforward to
determine these q group elements for each z(a), as they
must satisfy d(γγ′z(b), γz(a)) = d(γ′z(b), z(a)) = d0, with
nearest-neighbor distance d0. Here we used the invari-
ance of the hyperbolic distance under isometries.

The Hamiltonian for the infinite lattice is invariant
under a simultaneous Fuchsian translation of all sites,
i.e. zi → γzi with γ ∈ Γ. This implies that the choice
of the reference unit cell, i.e. the value of γ, cannot
affect the solution of Eq. (53). Formally, define the
group action Γ on the Hilbert space of wave functions
as (Tγψ)(z) = ψ(γ−1z). Then an overall factor Tγ−1 can
be extracted from Eq. (53) and we arrive at

−
∑
γ′∈Γ

∑
b∈D

A(z(a), γ′z(b))ψ(γ′z(b)) = Eψ(z(a)), (54)

which is equivalent to setting γ = 1P . Equation (54) is
one of the central results of this work, and the key ap-
plication of hyperbolic crystallography to tight-binding
Hamiltonians. We accomplished to reduce the eigenvalue
problem in Eq. (51), which needs to be solved for the in-
finite number of graph sites zi, to a set of N coupled
equations for the unit cell sites z(a). Each of these equa-
tions features only a finite number of nonvanishing terms.

This reduction needs to be compared to the significance
of Euclidean crystallography in studying Euclidean lat-
tice models, where the band structure is typically ob-
tained from a few lines of calculation after the unit cell
has been identified.

As with every symmetry in quantum mechanics, the
”translation invariance” of the Hamiltonian implies that
its eigenfunctions belong to irreducible representations
(irrep) of Γ. Assume that these irreps are labeled by
k, and that ψk is a wave function in the corresponding
eigenspace of dimension d(k) ≤ ∞ over C with energy Ek.
If φkm(z), m = 1, . . . , d(k), is a basis of the eigenspace,
then we write

ψk(z) =

d(k)∑
m=1

cm(z)φkm(z), (55)

and the coefficients cm transform linearly under Γ as
γ : cm 7→

∑
m′ Dmm′(γ)cm′ with a matrix D(γ) satis-

fying D(γ1γ2) = D(γ1)D(γ2). Writing c
(a)
m = cm(z(a))

we arrive at

−
∑
γ′∈Γ

∑
b∈D

d(k)∑
m′=1

A(z(a), γ′z(b))Dmm′(γ
′)c

(b)
m′ = Ec(a)

m .

(56)

The corresponding number of linear coupled equations

for the coefficients c
(a)
m that determine the energy Ek

is N × d(k). Together, equations (54) and (56) consti-
tute the first step towards computing the eigenvalues and
band structure of the tight-binding Hamiltonian Ĥ.

B. Bloch wave theory

In this section, we sketch the implications of Eq. (56)
for one-dimensional representations (d(k) = 1). We find
that in this case k → k = (k1, . . . , k2g)

T . The corre-
sponding eigenfunctions ψk(z) are Bloch waves and lead
to an intriguing band structure. A detailed study of the
related Bloch wave theory for hyperbolic lattices will be
presented elsewhere.

For Euclidean lattices, the translation group Γg=1 '
Z2 is Abelian and so all irreducible representations are
one-dimensional (Bloch’s theorem). We label Euclidean
translations by n ∈ Z2 and have

ψ
(Eucl)
k (γnx) = eik·nψ

(Eucl)
k (x) (57)

with the crystal momentum k labeling the irreducible
representations. For hyperbolic lattices, Γg is non-
Abelian and so not all irreducible representations are one-
dimensional. On the other hand, it is natural to expect
that some eigenfunctions ψ(z) of Ĥ transform according
to a one-dimensional representation, i.e. satisfy

ψk(γµz) = eikµψk(z), (58)



16

with generalized crystal momentum k = (k1, . . . , kpB/2)
and the index µ = 1, . . . , pB/2 counting the number of
momentum components. We refer to functions ψk(z) sat-
isfying Eq. (58) as Bloch waves. They are also called au-
tomorphic forms with respect to the group Γg ⊂ P. Note
that the condition Xg = 1 from Eq. (48) is automatically
satisfied for Bloch waves. Importantly, the number of in-
dependent momentum components of k is 2g. Hence, for
hyperbolic Bloch waves (g > 1), the dimension of coor-
dinate and momentum space differ.

The eigenvalue Ek of a Bloch wave with momentum
k is obtained from Eq. (56) by inserting D(γµ) = eikµ .
This results in a Schrödinger equation that can be written

as

−
∑
b∈D

Āab(k)c(b) = Ekc
(a). (59)

For every k, the possible eigenvalues Ek of Bloch waves
follow from diagonalizing the k-dependent N × N ma-
trix Ā(k). We call the single-particle Hamiltonian ĤBW

constructed from Ā(k) in Eq. (2) the Bloch wave Hamil-
tonian.

As a nontrivial example, we compute the matrix Ā(k)
for the ten-site unit cell of the {10, 3} lattice shown in
Fig. 3 in the introduction. We have

Ā(k) =



0 1 0 0 0 eik1 0 0 0 1

1 0 1 0 0 0 eik2 0 0 0

0 1 0 1 0 0 0 eik3 0 0

0 0 1 0 1 0 0 0 eik4 0

0 0 0 1 0 1 0 0 0 eik5

e−ik1 0 0 0 1 0 1 0 0 0

0 e−ik2 0 0 0 1 0 1 0 0

0 0 e−ik3 0 0 0 1 0 1 0

0 0 0 e−ik4 0 0 0 1 0 1

1 0 0 0 e−ik5 0 0 0 1 0


. (60)

The generators of the {10, 5} Bravais lattice satisfy
γ1γ
−1
2 γ3γ

−1
4 γ5 = 1P , see Appendix B, which implies k5 =

−(k1−k2 +k3−k4). For any given k = (k1, k2, k3, k4), it
is straightforward to determine the eigenvalues of Ā(k).
An example band structure is shown in Fig. 3 in the
introduction.

VI. FINITE-SIZED SYSTEMS AND
EXPERIMENTAL RELEVANCE

The results presented in this work concern infinitely
extended hyperbolic lattices, where the translation sym-
metry is associated to the infinite Fuchsian group of the
Bravais lattice. However, both from an experimental and
theoretical perspective, finite-sized systems are impor-
tant descendants. Experimentally, only a finite number
of vertices can be realized and we need to understand
how well finite-sized graphs are captured by the crys-
tallography outlined here. On the theoretical side, only
finite systems can be used for computational many-body
techniques such as exact diagonalization. It is thus im-
perative to quantify to which extent infinite hyperbolic
{p, q} lattices can be modeled by finite hyperbolic {p, q}
graphs.

Both demonstrations of hyperbolic lattices in circuit
quantum electrodynamics [17] and topoelectric circuits

[19] utilized a flake geometry, consisting of bulk sites with
coordination number q and boundary sites with coordina-
tion number < q. We expect the bulk sites to be captured
by the crystallography outlined in this work, but not the
boundary sites. Crucially, the ratio between boundary
and bulk sites converges to a finite number of order O(1)
even for very large lattices. As a result, the contribution
of modes localized on the boundary onto any observable
is always significant. Such experiments are, therefore, not
suited to probe the intrinsic bulk properties of hyperbolic
lattices as described by the crystallography here. It is,
however, possible to a posteriori isolate or remove the
boundary contribution to an observable such as the en-
ergy spectrum if a theoretical model for the latter exists.
Such an approach was carried out in Refs. [32, 75] for the
Hofstadter butterfly—although performed on numerical,
not experimental data. It was found that some features
of the distinct bulk and boundary contributions can be
identified in this manner.

We emphasize that the omnipresence of the boundary
in any planar, finite-sized hyperbolic graph is a genuine
feature of hyperbolic lattices. Nonetheless, our work re-
veals two ways how an experimental simulation of infi-
nite hyperbolic space can be achieved in topoelectrical
circuits, because they need not be planar graphs.

(1) Near-term implementation goal. Bloch wave
physics of infinite lattices can be emulated by realizing
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circuits as the one shown in Fig. 3 for the ten sites of
the unit cell of the {10, 3} lattice. Each site has a co-
ordination number of three. When signals pass certain
edges, they pick up a complex phase eiφ(k) corresponding
to the crystal momentum k = (k1, k2, k3, k4). To realize
such a lattice, a tunable complex-phase element needs
to be developed such that φ(k) can be varied externally.
The resulting measured spectrum will agree with the one
derived from hyperbolic band theory, i.e. Eq. (60), in
the non-interacting limit. By construction, such a circuit
only realizes the one-dimensional representations of the
translation group. However, by introducing nonlinear,
nonreciprocal, or non-Hermitean topoelectric circuit ele-
ments, more complex situations can be simulated [27].
First steps towards realizing this near-term goal have
been made and will be reported elsewhere.

(2) Long-term implementation goal. The {p, q} pat-
terns discussed in this work truly represent finite hyper-
bolic lattices with periodic boundary conditions and thus
are ideal candidates to realize genuine hyperbolic bulk
systems. It has been found theoretically in Ref. [75] that
spectra on {p, q} patterns (for fixed p and q) with increas-
ing number of vertices V ∼ O(100) − O(1000) quickly
converge to a well-defined limit that can be taken as the
infinite system limit. Hence realizing a {p, q} pattern
with a few hundred sites in experiment would constitute
an excellent emulation of hyperbolic space. This number
of sites is not unrealistic for topolectrical circuits that
can be scaled easily, but the highly non-planar nature
of the adjacency graph places these setups beyond what
is experimentally feasible right now. We believe, how-
ever, that this obstacle will eventually be overcome and
that {p, q} patterns will play a pivotal role in the sim-
ulation of hyperbolic space in the future. Importantly,
experimental realizations of {p, q} patterns would in-
clude all eigenstates, typically transforming in both one-
and higher-dimensional representations of the translation
group. Any deviations between predictions from Bloch
wave theory and measured data then indicates an effect
resulting from the higher-dimensional representations.

Our discussion of (2) revealed that {p, q} patterns are
already at this stage a very valuable computational tool
for the study of bulk hyperbolic physics. Their numerical
implementation in combination with exact diagonaliza-
tion allows us to perform a well-defined infinite system
limit as the number of vertices V → ∞, which corre-
sponds to the genus g →∞. This technique was applied
to obtain the pure bulk contribution to the Hofstadter
butterfly spectrum on hyperbolic lattices in Ref. [75].

VII. SUMMARY AND OUTLOOK

In this work, we have developed a crystallography for
infinite hyperbolic {p, q} lattices. By utilizing the notion
of patterns on Riemann surfaces, we identified regular
{pB, qB} lattices that constitute Bravais lattices. We then
explicitly constructed examples of {p, q} lattices whose

Bravais lattices are of this type and discussed the asso-
ciated unit cells. Among the examples are five infinite
families and a handful of exceptional cases for genus two
and three, many of which we expect to be relevant for
advancing our understanding of hyperbolic lattices in fu-
ture studies. To the best of our knowledge, no such list
of hyperbolic lattices and their Bravais lattices existed
before. The explicit formulas for Fuchsian translation
groups constructed in this work bridge the gap between
abstract mathematics and concrete calculations, and will
be crucial in practical applications. The present work,
therefore, lays the foundation for applying powerful con-
cepts of solid state physics, such as crystal momentum or
Bloch waves, to hyperbolic lattices.

A number of pressing questions are raised by the re-
sults presented here. Here, as an outlook, we point out
two of them.

(1) Classification of {p, q} lattices. In the present
work, we only searched for hyperbolic lattices with reg-
ular Bravais lattices. We do not know whether every
{p, q} lattice has a regular Bravais lattice. Given the
small set of lattices we identified from our systematic
search, we expect that large classes of {p, q} lattices have
irregular Bravais lattices. For instance, such a Bravais
lattice can have a fundamental domain that is a polygon
whose internal angles are not all equal. This expecta-
tion is also supported by the Euclidean case, where only
two out of five Bravais lattices are regular. Furthermore,
even within the set of regular Bravais lattices, we only
discussed those of type {4g, 4g} or {2(2g + 1), 2g + 1},
because their Fuchsian translation group Γg is easily con-
structed. On the other hand, more regular Bravais lat-
tices such as {4(2g−1), 3} and {6(2g−1), 3} follow from
F0 = 1. We found that some {p, q} lattices seem to fea-
ture these Bravais lattices, but leave a conclusive study
for future investigation.

(2) Representation theory. Equation (56) constitutes
the first step towards solving the spectral problem for
the tight-binding Hamiltonian on an infinite hyperbolic
lattice, i.e. determining the single-particle energy band
structure. We have outlined how one-dimensional repre-
sentations of the group Γg lead to Bloch wave theory for
hyperbolic lattices. It will be extremely exciting to study
higher-dimensional representations of spatial isometries
in the future. First important results in this direction
have been obtained in Ref. [72]. Therein, all possible
finite-sized patterns (or clusters) of the {8, 8} Bravais
lattice with up to Vmax = 25 sites have been determined
together with their ensuing translation groups Γ′ ⊂ Γg,
which are normal subgroups of the Fuchsian group of
the infinite {8, 8} lattice. If the factor group Γ/Γ′ for
a given pattern is an Abelian group, then all its repre-
sentations are one-dimensional and Eq. (58) is true for
all eigenstates—hyperbolic band theory is exact on these
patterns. If, on the other hand, Γ/Γ′ is a non-Abelian
group, then higher-dimensional representations typically
occur. A remarkable finding of Ref. [72] is that a sizeable
fraction of groups Γ/Γ′ is Abelian. Importantly, regard-
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less of the commutation properties of Γ/Γ′, every Bloch
wave with a suitable k is a solution to the Schrödinger
equation (51) on the hyperbolic lattice or pattern, and
hence studying the one-dimensional representations is al-
ways important.
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Appendix A: Generating finite hyperbolic lattices

In this section, we show how to efficiently and system-
atically create large hyperbolic lattices by applying the
Fuchsian translation group to a single unit cell.

One way of computing the coordinates of a large, regu-
lar hyperbolic tessellation of the Poincaré disk is to start
with a single p-gon and apply products of the genera-
tors A and B of the proper triangle group ∆+(p, q, 2)
in Eq. (35). This method is conceptually simple and
can be applied for any {p, q} lattice. However, since el-
ements from ∆+(p, q, 2) have fixed points, this method
suffers the drawback that lattice sites are duplicated sev-
eral times with every iteration. Therefore, at the end of
the procedure, the duplicated sites need to be identified

and eliminated, which can be numerically challenging as
the sites accumulate close to the Poincaré disk boundary
for large lattices. In addition, creating the lattice this
way does not immediately yield a systematic labeling of
sites.

An alternative and efficient way of computing the co-
ordinates of large hyperbolic lattices is implied by the
results presented here. For this, we first need to digress
to discuss the nature of elements of the Fuchsian trans-
lation group Γg. Every element of Γg is a product of
the generators γµ, µ = 1, . . . , pB/2, and their inverses.
Since it would be cumbersome to always mention the in-
verses separately, we utilize that (γµ)−1 = γpB/2+µ and
will hereafter refer to γµ with µ = 1, . . . , pB as the gen-
erators.

Every γ ∈ Γg is then a word of specific length n in
the generators γµ, i.e. a product of n generators with a
well-defined order. For a word of length n we write

γ = γµ1
· · · γµn (A1)

with µi ∈ {1, . . . , pB}. The n-tuple or vector ~µ =
(µ1, . . . , µn) specifies the element γ. Thus the discrete,
but infinite set of nontrivial Fuchsian translations can be
labeled by integer vectors ~µ of arbitrary length n ≥ 1,
and the discrete index i in Eq. (50) corresponds to a
discrete index (a, ~µ).

To determine the number of words of length n within a
group that is generated by a finite number of generators
is called the word problem for the group. The number
of naive products of length n is pnB in our case, but the
number of words of length n is smaller. First, whenever
the combination γµγ

−1
µ = 1 appears, the word size is re-

duced. Second, constraints like Xg = 1 in Γg lead to
further reductions. As an example, for the {8, 8} Bra-
vais lattice with eight generators, we have γ1γ

−1
2 γ3γ

−1
4 =

γ−1
4 γ3γ

−1
2 γ1 and other resulting relations, and the num-

ber of words of length n = 1, 2, 3 is 8, 56, 392, whereas
the number of naive products is 8n = 8, 64, 512. In
practice, solving the word problem is not difficult when
using the particular representation of the generators γµ
from Eq. (46).

Let us now describe our algorithm to create hyper-
bolic lattices. Assume the {p, q} lattice has a unit cell
of size N with coordinates {z(1), . . . , z(N)} ⊂ D and a
regular {pB, qB} Bravais lattice. We define the nth gen-
eration lattice as the set of all points that are generated
by applying words of length up to n in the generators of
Γ{pB,qB} to the unit cell. The 0th generation is just the
unit cell, the 1st generation contains the unit cell and
and all points obtained from applying each generators
once, hence (pB + 1)N total sites, and so on. In Fig.
13 we show, as an example, how the {8, 3} lattice, with
16-site unit cell and {8, 8} Bravais lattice, is generated
in this manner. The lowest eigenvalue of the adjacency
matrix is found to be larger than −3 (with coordination
number q = 3 in the example) for all n. This gap is a
characteristic feature of hyperbolic lattices and surfaces
and is expected to converge to a nonzero value for large
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-2.817-2.770-2.666-2.414

FIG. 13. We show how to efficiently create large samples of the {8, 3} lattice, without repetitions of sites, by applying the
Fuchsian translation group Γ2 to the 16-site unit cell. The nth generation consists of all points that are obtained by applying
words in the generators of Γ2 of length up to n ≥ 0. The corresponding number of sites in the nth generation is 16 (n = 0),
144 (n = 1), 1040 (n = 2), and 7312 (n = 3). The plots at the bottom show the corresponding eigenvalues εj of the adjacency
matrix. The spectrum of the latter is contained in the interval (−3, 3). The lowest eigenvalue (highlighted red in each plot)
has a sizable gap from −3, a characteristic feature of hyperbolic lattices.

n [18, 33, 76, 77].

Let us comment on a fine point regarding the num-
ber of independent generators. Clearly, the group Γg is
independent of pB and always has 4g independent gen-
erators. Nevertheless, when generating a {p, q} lattice
whose Bravais lattice is the {2(2g + 1), 2g + 1} lattice,
one can choose to either work with the 4g independent
generators or to use all 4g+ 2 generators. What changes
is the number of words of length n that can be composed
from these generators, and hence the number of sites in
the nth generation lattice, but the procedure is not af-
flicted otherwise. Using all 4g + 2 generators has the
advantage of obtaining a radially symmetric lattices in
each generation, which may be favorable in applications.

Appendix B: Fuchsian translation groups

The constraintX{pB,qB} = 1 in Eq. (47) generalizes the
Euclidean cases from Eqs. (29) and (32) in an interest-
ing manner to higher genera. We first consider {4g, 4g}
Bravais lattices with g ≥ 2. In this case, the generator
γ1 has the simple form

γ
{4g,4g}
1 =

1√
1− r2

0,B

√1 + r2
0,B

√
2r0,B

√
2r0,B

√
1 + r2

0,B

 , (B1)

with r0,B =
√

cos(αB). The remaining γµ follow from
Eq. (46). For g = 2, we have

X{8,8} = γ1γ
−1
2 γ3γ

−1
4 γ−1

1 γ2γ
−1
3 γ4, (B2)

which generalizes to

X{4g,4g} = γ1γ
−1
2 · · · γ2g−1γ

−1
2g γ

−1
1 γ2 · · · γ−1

2g−1γ2g (B3)

for any g ≥ 2.
For the {2(2g + 1), 2g + 1} Bravais lattices with g ≥ 2

we have

γ1 =
1√

1− r2
0,B

 1 + r2
0,B r0,B

√
3 + r2

0,B

r0,B

√
3 + r2

0,B 1 + r2
0,B

 .

(B4)

Since the fundamental polygon has pB = 4g + 2 sides,
there are, naively, two more generators than for the
{4g, 4g} Bravais lattice. However, both lattices tessel-
late surfaces of genus g and the number of independent
generators should be equal. The issue is resolved, as in
the case of the hexagonal {6, 3} lattice, by the fact that
the translation γ2g+1 is not independent of the remaining
γ1, . . . , γ2g. We have

γ1γ
−1
2 · · · γ

−1
2g γ2g+1 = (−1)g+11. (B5)

The remaining 2g independent generators satisfy the
same constraint as for the {4g, 4g} lattice, i.e. we have

X{2(2g+1),2g+1} = X{4g,4g}, (B6)



20

and, therefore,

Γ{2(2g+1),2g+1} = Γ{4g,4g}. (B7)

Appendix C: Sublattice structure

An interesting analogy to the Euclidean case can be
observed in the third family in Table III. Placing a single
site (N = 1) on a vertex of the fundamental polygon of
the {2(2g + 1), 2g + 1} lattice, we generate the {2g +
1, 2(2g + 1)} lattice instead. This implies that the sites
of the {2g+1, 2(2g+1)} lattice form the sublattice of the
bipartite {2(2g+1), 2g+1} lattice. In the Euclidean case,
we obtain the well-known fact that the {3, 6} triangular
lattice is the sublattice of the {6, 3} honeycomb lattice.
However, a subtle difference arises in the hyperbolic case.
While the {3, 6} lattice coincides with the next-to-nearest
neighbor graph of the {6, 3} lattice, which we define here
by connecting any two sites of the {6, 3} lattice that are
separated by two adjacent edges, this is not true for g >
1, because not all sites that are separated by two adjacent
edges have the same hyperbolic distance. We visualize
the hyperbolic case for g = 2 in Fig. 14.

Appendix D: Distance spectrum

In order to decide whether a given unit cell D =
{z(1), . . . , z(N)} and regular {pB, qB} Bravais lattice gen-
erate the infinite {p, q} lattice, denoted Λ{p,q}, we have
to show that

Γ{pB,qB}D
!
= Λ{p,q}, (D1)

where Γ{pB,qB} is the Fuchsian translation group of the
Bravais lattice. In the remainder of this section we write

Λ := Λ{p,q}, Γ := Γ{pB,qB}, Λ′ := ΓD, (D2)

and Eq. (D1) becomes Λ′
!
= Λ.

Verifying Eq. (D1) may sound simple, as one merely
needs to check that every zi ∈ Λ′ is contained in Λ,
and vice versa. However, in practice, no parametriza-
tion of the coordinates of the full hyperbolic lattice Λ
exists, rather only powerful algorithms to construct a fi-
nite subset of it. Furthermore, it is impossible in practice
to compute Λ′, which is an infinite set and would require
applying the generators infinitely often. Rather, one ap-
plies finite-length words in the generators γµ to D. Due
to the exponential proliferation of words, typical feasible
word lengths range from 2 to 5, although this number
depends on p and q. So, in practice, we can only access
a finite subset of either side of Eq. (D1), and neither of
these subsets is strictly contained in the other.

To show that Eq. (D1) is true, we need to confirm that

(1) Λ′ does not contain additional sites that are not in
Λ. (That is Λ′ ⊂ Λ)

FIG. 14. The bipartite {2(2g + 1), 2g + 1} lattice can be di-
vided into two {2g + 1, 2(2g + 1)} lattices. This well-known
fact from Euclidean lattices, where the {3, 6} triangular lat-
tice is the sublattice of the {6, 3} honeycomb lattice, gener-
alizes to hyperbolic lattices of higher genus. Here we show
the case of g = 2, with the {10, 5} lattice indicated by the
gray geodesics, and a selection of sites of the two sublattices
marked red and blue. One of the {5, 10} sublattices is indi-
cated by blue geodesics.

(2) No sites in Λ′ are doubled.

(3) No sites of Λ are left out in Λ′: This means that,
for any site zi ∈ Λ, we can make Λ′ large enough
so that zi ∈ Λ′. (That is Λ ⊂ Λ′.)

We imply here that we can only compute large, but finite
samples Λ′. By making these samples large enough and
verifying (1) and (3), we obtain reliable evidence that
Eq. (D1) is true. Note that condition (2) is additional;
it shows that Γ is a normal subgroup and that the unit
cell D has been identified correctly, i.e. the split in Eq.
(24) is unique.

The practical solution to verifying (1) and (2) con-
sists in identifying the distance spectrum as a unique fin-
gerprint of any hyperbolic {p, q} lattice. Given the hy-
pothetical infinite lattice Λ, we compute the list of val-
ues d(zi, zj), where i, j runs over all distinct lattice sites.
Crucially, only a certain discrete set of numbers appears
in this list, which is fully specified by p and q. We call
this list the distance spectrum. The first entry is given
by the nearest-neighbor distance

d0 = d(r0, r0e
2πi/p). (D3)

Some examples are shown in Table D. Given a sufficiently
large finite subset of either Λ or Λ′, we can compute their
truncated distance spectra. (The finite subset needs to
be reasonable, i.e. contain at least one pair of nearest
neighbors, next-nearest neighbors, etc.) We call the dis-
tance spectrum obtained from the finite sample of Λ the
reference spectrum, and ignore its difference from the full
(infinite) distance spectrum δ{p,q} in the following.
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{7, 3} {8, 3} {9, 3}

d0/(2κ) 0.283128 0.363520 0.409595

d1/(2κ) 0.496385 0.641645 0.409596

d2/(2κ) 0.606789 0.806689 0.726012

d3/(2κ) 0.753167 0.860706 0.927539

d4/(2κ) 0.887104 0.970155 1.02404

TABLE V. Distance spectra for the {7, 3}, {8, 3}, and {9, 3}
lattices. We display the first low-lying five entries. The dis-
tance spectrum acts as a unique fingerprint of the hyperbolic
lattice and can be used to decide whether a set of points
Λ′ = {zi} could be a subset of the infinite {p, q}-lattice.
The first entry, d0, is the hyperbolic distance between nearest
neighbors.

To verify (1), we then compute the distance spectrum
of Λ′. It probes the local surrounding of every single site
zi ∈ Λ′. If there was any site z̃i ∈ Λ′ that is not part of Λ,
then the numbers d(z̃i, zj) appearing in the distance spec-
trum of Λ′ would not be contained in δ{p,q}. In practice,
we find that this test is very sensitive to detecting lattice
sites that should not be there, with deviations showing
up in the first few entries of the distance spectra. In con-
trast, if two lattices seem to match, i.e. Λ = Λ′, the first
deviating entries in their truncated distance spectra of
large samples show up at the hundredths or thousandths
position, giving strong evidence that (1) is true. As a
byproduct, by computing the distance spectrum of Λ′,
we can show that no sites are doubled, i.e. (2) is true,
by verifying that there is no entry d(zi, zj) = 0 in the
distance spectrum. (The latter is computed for i 6= j,
and so should not contain zeros.)

The efficiency of the method of comparing distance
spectra stems from the fact that the agreement of the
distance spectra of Λ′ and Λ is a necessary condition
and, therefore, incompatible (or wrong) Bravais lattices
yield a negative result and can be excluded even for small
sample lattices. Let us also point out that one can decide
whether a given {pB, qB} lattice can be the Bravais lattice
of a given {p, q} lattice without the precise knowledge of
the unit cell D. Since the Fuchsian translation group Γ
is a subgroup of the symmetry group of the {p, q} lattice,
we have

ΓS ⊂ Λ (D4)

for every subset S ⊂ Λ. By choosing a sufficiently large
S (such that D ⊂ S), we obtain equality in Eq. (D4).
However, S 6= D violates (2) and so will create zero-
entries in the distance spectrum of ΓS.

Let us now comment on condition (3), which is less
straightforward to check. Assuming that (1) and (2)
hold, the validity of (3) ensures that the unit cell has
enough elements to generate the whole lattice Λ. Indeed,
if we removed a few sites z(a) from D, conditions (1) and
(2) would still be satisfied, but, nonetheless, Λ 6= Λ′. This

implies a method how to test (3): Assume our choice of
D = {z(1), . . . , z(N)} satisfies (1) and (2). Condition (3)
can only be violated if there is a lattice site z(N+1) /∈ D
such that the union D ∪ {z(N+1)} still satisfies (2). Rea-
sonable choices for z(N+1) are limited in practice. In all
cases we identified, the unit cell is either made from a
connected graph, i.e. every z(a) in D is nearest neighbor
to at least one z(b) in D, or the sites from D are taken
from the central p-gon of the {p, q} lattice. Thus we only
need to consider the finite set

D′ = {zi ∈ Λ : d(zi, z
(a)) = d0 for some z(a) ∈ D}

∪ {r0e
2πin/peiχ, n = 1, . . . , p}. (D5)

The phase eiχ is for adjusting the overall rotation of the
lattice within the unit cell and is easily found in each
case. If condition (2) fails for the enlarged unit cell D ∪
{z(N+1)} for every z(N+1) ∈ D′, then D is big enough
to generate the whole lattice Λ. (Since z(N+1) ∈ Λ, it
is trivial that Γz(N+1) satisfies (1).) We carried out this
test of condition (3) for all lattices discussed here and
found that no sites are missing in the listed unit cells.

An alternative way to test for condition (3) is to use
a finite set of elements from Γ to generate, starting from
D, one p-gon and all its neighboring p-gons of the Λ-
lattice. This implies, iteratively, that all polygons of Λ
can be generated by applying elements from Γ. This
method can be applied to almost all cases, except, for
instance, the {7, 3} lattice with a very big unit cell. Note
that the condition X = 1P ensures that, after applying
sufficiently many generators from Γ, we eventually obtain
closed p-gons.

Appendix E: Systematic search for unit cells and
Bravais lattices

Assume we are given a {p, q} lattice Λ{p,q} and want
to determine its unit cell and Bravais lattice. Assume
further that the Bravais lattice is a regular {pB, qB} lat-
tice. A number of necessary conditions are implied by
this, which can be used for a systematic search of hyper-
bolic lattices and their regular Bravais lattices. For this,
note that every generator γµ of the Bravais lattice maps
a center of a Bravais lattice face to a center of a Bra-
vais lattice face. Put differently, γµ maps a vertex of the
(dual) {qB, pB} lattice Λ{qB,pB} to a vertex in Λ{qB,pB}.
Since the Bravais lattice is rotation symmetric about the
centers of its faces, it is natural to expect that each center
of a Bravais lattice face is also the center of some face of
the {p, q} lattice. Consequently, every site of the {qB, pB}
lattice is also a site of the (dual) {q, p} lattice. We thus
formulate the dual lattice criterion that, if {pB, qB} is the
Bravais lattice of {p, q} under the above conditions, then

Λ{qB,pB} ⊂ Λ{q,p}. (E1)

Although just a necessary condition to match partners
{p, q} and {pB, qB}, it yields a very efficient and selective
search algorithm.
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A first consequence of Eq. (E1) is that the distance
spectrum of {qB, pB} is contained in the distance spec-
trum of {q, p}. In particular, this is true for the hy-
perbolic nearest-neighbor distance in the {qB, pB} lattice
given by

d0{qB,pB} = d(r0B, r0Be
2πi/qB). (E2)

Hence we arrive at the necessary condition

d0{qB,pB} ∈ δ{q,p}. (E3)

For a given (pB, qB), it is numerically straightforward to
identify all potential solutions (p, q) from Eq. (E3), as
for sufficiently large p and q, the smallest entry d0{q,p}
on the right-hand side becomes too large for the inclusion
to be valid.

A second consequence of Eq. (E1) follows from the fact
that the {p, q} lattice is left invariant under rotations by
2π/p around the centers of its faces. If such a rotation
point is also the center of a face of the Bravais lattice,
then we expect it to leave the Bravais lattice invariant.
Hence it must be a rotation by an integer multiple of

2π/pB. We conclude that

2π

p
= n

2π

pB
(E4)

or

pB = n · p (E5)

with an integer n ≥ 1.
Taken together, conditions (E3) and (E5) yield a small

number of possible candidate {p, q} lattices for a given
Bravais lattice {pB, qB}. The possible values for p are
bounded from above by p ≤ pB, and the maximal values
for q that need to be considered are effectively limited
from above by Eq. (E3). After the candidate values for
(p, q) have been found, we apply the distance spectrum
method described in App. D to probe if the {pB, qB} lat-
tice is truly the Bravais lattice of the {p, q} lattice. This
involves finding the correct unit cell, which is restricted
by a combination of symmetry considerations and the
value of V0. All the examples in Tables III and IV have
been obtained with this search algorithm.
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