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To describe a spin- 1
2

particle on the Bloch sphere with a radial magnetic field and topological states

of matter from the reciprocal space, we introduce C square (C2) as a local formulation of the global
topological invariant. For the Haldane model on the honeycomb lattice, this C2 can be measured
from the Dirac points through circularly polarized light related to the high-symmetry M point(s).
For the quantum spin Hall effect and the Kane-Mele model, the Z2 topological number robust to
interactions can be measured locally from a correspondence between the pfaffian and light. We
address a relation with a spin pump and the quantum spin Hall conductance. The analogy between
light and magnetic nuclear resonance may be applied for imaging, among other applications.

I. INTRODUCTION

Topological states of matter find various applications
in physics and quantum transport due to their protected
edge modes and surface states [1–3] which are related to
the bulk of the system via a topological quantized invari-
ant C [4]. Circularly polarized light represents a pow-
erful tool to detect topological properties of band struc-
tures [5–10]. This topological number can be measured
from the photo-currents integrated in the whole Brillouin
zone and circular dichroism [8, 9] with a correspondence
to the conductivity [4]. Here, we elaborate on the local
definition of the global invariant C2 from the geometry.
We show its relevance for spin- 12 particles and topolog-
ical states of matter related to the quantum anomalous
[3, 11] and to the quantum spin Hall effects [12–14] on
the honeycomb lattice at half-filling [15]. For the Haldane
model [11], circularly polarized light can equally measure
C2 from the time evolution of the inter-band transition
probability resolved locally in the Brillouin zone. The
conductivity is also revealed from the Berry curvatures at
the Dirac points. Through a protocole analogous to the
nuclear magnetic resonance, we also show how light can
detect the Z2 topological Chern number locally [12, 16]
for the quantum spin Hall effect when the conductivity
is zero. The formalism describes the topological states
from the geometry starting with a radial magnetic field
on the Riemann, Poincaré, Bloch S2 sphere.

In the reciprocal space, we introduce lattice models
described through the Hamiltonian H =

∑
kH(k) and

H(k) = −d(k) · σ. Here, the spin- 12 is built from the
2 × 2 Pauli matrices such that σ = (σx, σz, σz). The
d vector, written as (dx, dy, dz) in the cartesian basis,
corresponds to a radial magnetic field in the parameter
space associated to the Bloch sphere of quantum spins 1

2 :

d(k) = d(ϕ, θ) = d(cosϕ sin θ, sinϕ sin θ, cos θ), (1.1)

where d = |d|, θ is the polar angle and ϕ the azimuthal
angle in spherical coordinates. One important class of
topological models is associated to the Haldane model
on the honeycomb lattice [11]. The Hamiltonian here
acts on the Hilbert space {|a〉; |b〉} formed with the two
sublattices A and B of the honeycomb lattice (see Fig.
1), which allows an analogy with the spin- 12 and a dipole

[15]. The two inequivalent Dirac points K and K ′ in the
Brillouin zone correspond to the north and south poles
respectively traducing the mass inversion ±m or inver-
sion of the direction of the magnetic field at these special
points [17]. In the Haldane model, evaluating the second-
nearest neighbors’ hopping terms in Fig. 1 around K
and K ′, the mass is equal to m = d = 3

√
3t2 where t2e

iφ

refers to the second nearest-neighbour hopping term and
φ = π/2 corresponds to a Peierls phase [11].

For a wave-vector k = f(ϕ, θ), the eigenstates can be
written similarly as the spin- 12

|ψ+〉 =

(
cos θ2e

−iϕ2

sin θ
2e
iϕ2

)
, |ψ−〉 =

(
− sin θ

2e
−iϕ2

cos θ2e
iϕ2

)
.

(1.2)
The topological Chern number, defined globally from the
Brillouin zone, on the sphere S2 reads [17]

C =
1

2π

∫ 2π

0

∫ π

0

Fϕθdϕdθ, (1.3)

with the Berry curvature F = ∇×A [18] such that Fϕθ =
(∂ϕAθ − ∂θAϕ). The Berry connection A = i〈ψ|∇|ψ〉
plays a similar role as the vector potential in electromag-
netism and momentum in quantum mechanics. For the
lower energy eigenstate |ψ+〉 corresponding to the occu-
pied band in the honeycomb lattice model at half-filling,
Aϕ(θ) = cos θ

2 , Fϕθ(θ) = sin θ
2 and C = 1. For a spin- 12 ,

C is a Z number equal to 0,±1 in agreement with the
Poincaré-Hopf theorem. To derive locally the topological
responses of the system, we introduce smooth fields.

These smooth fields A′ can be built from the anal-
ogy to electromagnetism [19]. The sphere with C = 1
can be seen, from Stokes’ theorem, as two regions (hemi-
spheres) linked through an interface (boundary) corre-
sponding to the polar angle θc. The smooth fields on the
north (θ < θc) and south (θ > θc) hemispheres take the
precise forms A′ϕ(θ < θc) = Aϕ(θ) − Aϕ(0) = − sin2 θ

2

and A′ϕ(θ > θc) = Aϕ(θ) − Aϕ(π) = cos2 θ2 [17]. The

fields Aϕ(0) = 1
2 and Aϕ(π) = − 1

2 are uniquely defined
at the poles of the sphere and importantly they are stable
towards smooth deformations of the sphere as a cylinder
or ellipse, such that the global topological information
can be transported at the poles and at any angle θc:

C = Aϕ(0)−Aϕ(π) = A′ϕ(θ > θc)−A′ϕ(θ < θc). (1.4)
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Figure 1. Honeycomb lattice with sub-lattices A and B form-
ing the spin- 1

2
(or dipole) Hilbert space. The topological Hal-

dane model arises when including the hopping term t2e
iφ on

a link through the bi vectors with here φ = π
2

. Brillouin zone
defined through the vectors g1 and g2. The circularly polar-
ized lights from the K and K′ Dirac points form a linearly
polarized wave at the high-symmetry M point.

This formula is also applicable in the case of entan-
gled spheres which will develop fractional topology [17].
The topological number can be viewed as a charge or
monopole induced by the magnetic field which produces
a discontinuity of A′ϕ(θ) at θ = θc, such that the sphere
turns into a donut or a cup. Eq. (1.4) leads to

C2 = A′2ϕ (θ > θc)+A′2ϕ (θ < θc)−2A′ϕ(θ > θc)A′ϕ(θ < θc).
(1.5)

II. TOPOLOGICAL RESPONSES

Here, we derive useful correspondences between global
and local topological properties from the poles of the
sphere and the Dirac cones of the honeycomb lattice.

At the K point of the Brillouin zone in Fig. 1, the
tight-binding model gives rise to the Dirac Hamiltonian
H(K) = vF (pxσx + pyσy). Close to the K ′ point, sim-
ilarly H(K ′) = vF (pxσx − pyσy) where vF = 3ta

2 is the
Fermi velocity of graphene with t the nearest-neighbour
hopping amplitude and a the lattice spacing. Here, p
refers to a small wave-vector deviation from a Dirac
point, k = K + p and similarly for the K′ point. The
description around the Dirac points here assumes values
of 0 < t2 < 0.2t with a sufficiently large density of states
around these points [20]. Hereafter, we will show that
the informations at the Dirac points are in fact related
to the high-symmetry M point from the lattice.

We introduce the angle ϕ̃ such that px + iζpy =
|p|eiζϕ̃. The azimuthal angle ϕ on the Bloch
sphere is now related to the polar angle ϕ̃ associ-
ated to the cone geometry around a Dirac point.
In the Haldane model, for θ → 0 we iden-
tify −(dx, dy, dz) = −d(cosϕ sin θ, sinϕ sin θ, cos θ) =

(vF |p| cos ϕ̃, vF |p| sin ϕ̃,−m) such that ϕ̃ = ϕ ± π and

tan θ = vF |p|
m . Around the south pole, we can modify

ϕ→ −ϕ and m→ −m when θ → π corresponding to the
K ′ point. The two Dirac cones are now centered around
the two poles with a radius related to vF |p|. Related to
the spin- 12 particle, we have the identities ∂H

∂px
= vFσx

and ∂H
∂(ζpy)

= vFσy, with ζ = ±1 at the K and K’ points.

Swapping from spherical to cartesian coordinates, now
we evaluate the Berry curvature [4, 18, 21] on the lattice

Fpxpy (θ) = i
(〈ψ−|∂pxH|ψ+〉〈ψ+|∂pyH|ψ−〉 − (px ↔ py))

(E− − E+)2
,

(2.1)
with ∂px = ∂

∂px
and ∂py = ∂

∂py
. Here, E+ = −d and

E− = +d are the energies of the lower and upper bands
related to |ψ+〉 and |ψ−〉. From the correspondence be-
tween eigenstates in the lattice model and those of the
sphere in Eqs. (1.2), for θ → 0 approaching the K point

Fpxpy (θ) =
v2F
2d2

cos θ. (2.2)

Close to K ′ on the lattice, we have Fpx−py (θ + π) =
v2F
2d2 cos(θ + π) = −Fpxpy (θ + π) when θ + π → π. These
relations result in the identity:

m2

v2F

(
Fpxpy (0)± Fpx±py (π)

)
= Aϕ(0)−Aϕ(π) = C.(2.3)

This implies that the quantum Hall conductivity [4, 21]
related to Aϕ(0)−Aϕ(π) on the sphere [17] is also defined
from the Berry curvatures at the two Dirac points on the
lattice through the identification Fpxpy (0) = Fpxpy (K)
and Fpxpy (π) = Fpxpy (K ′). The local information en-
coded in the Berry fields at the Dirac points on the lat-
tice is accessible in ultra-cold atoms [22]. Eq. (2.3) also
implies that the quantity Fpxpy (0)±Fpx±py (π) can be di-
rectly measured locally from the photo-induced currents
when coupling to circularly polarized light [8–10].

Here, we remind that from the Ehrenfest theorem, we
can also evaluate the pseudo-spin averaged magnetization
〈σz(θ)〉 = 〈ψ+|σz|ψ+〉 = cos θ = 2Aϕ such that C can
be measured when driving from north to south pole in

time since 〈σz(0)〉 − 〈σz(π)〉 = −
∫ π
v

0
∂〈σz(t)〉

∂t dt with the
angle θ = vt [23–25]. This also leads to another local
interpretation of C2 for a spin- 12

2C2 − 1 = −〈σz(0)〉〈σz(π)〉. (2.4)

As we show below, the quantity C2 can be measured
locally from the inter-band transition probabilities both
for a spin- 12 and for the topological lattice model. This
quantity is in fact related to a local topological marker
in momentum space in terms of the Berry connections:
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I(θ) =

〈
ψ+

∣∣∣∣ ∂H∂px
∣∣∣∣ψ−〉〈ψ− ∣∣∣∣ ∂H∂px

∣∣∣∣ψ+

〉
+

〈
ψ+

∣∣∣∣ ∂H∂py
∣∣∣∣ψ−〉〈ψ− ∣∣∣∣ ∂H∂py

∣∣∣∣ψ+

〉
= 2v2F

(
cos4

θ

2
+ sin4 θ

2

)
. (2.5)

For a spin- 12 particle, we can identify σx = 1
vF

∂H
∂px

and

σy = 1
vF

∂H
∂py

related to inter-band ‘dipole’ transitions.

This equality takes an identical form at both poles
since ζ2 = +1 and for one sphere I(0) = I(π). From
Eq. (1.5) and the geometry, this results in

I(θ)

2v2F
=
(
2A′ϕ(θ < θc)A′ϕ(θ > θc) + C2

)
. (2.6)

Close to the poles, we have the following relation with
the square of the energetics 2A′ϕ(θ < θc)A′ϕ(θ > θc) =

−v
2
F |p|

2

2m2 . At the two poles, we obtain

I(0) + I(π)

4v2F
= C2. (2.7)

Now, we show that I(θ) is precisely measured when cou-
pling to circularly polarized light.

III. CIRCULARLY POLARIZED LIGHT AND
TIME

We define the vector potential A associated to the light
field such that Ax = A0 cosωt and Ay = ∓A0 sinωt
with ± for the right-handed (+) and left-handed (−)
polarizations respectively according to the Jones repre-
sentation of vectors. The light-matter coupling induces a
dipole-light Hamiltonian δH± = A0e

±iωt|a〉〈b|+h.c. with
σ+ = |a〉〈b| and σ− = |b〉〈a| producing inter-band transi-
tions [10]. The resonance situation is obtained from the

transformation |b〉 = e∓i
ωt
2 |b′〉 and |a〉 = e±i

ωt
2 |a′〉 such

that Eb − Ea = ±~ω for the (±) polarization. Via the
Fermi golden rule, we obtain the inter-band transition
rates:

Γ±(ω) =
2π

~
|〈ψ−|δH±|ψ+〉|2 δ(Eb − Ea ∓ ~ω). (3.1)

Around the K point, we have Eb − Ea = E− − E+ =
2m = ~ω and around the K ′ point we have Eb − Ea =
E+ − E− = −2m = −~ω. For frequencies ω > 0, one
light polarization resonates with one Dirac point as long
as we are in the topological phase. For θ → 0 and π,

Γ±(θ, ω) =
2π

~
A2

0

(
I(θ)

2v2F

)
δ(Eb − Ea ∓ ~ω), (3.2)

with ~ = h
2π the Planck constant. Here, we underline

that Eq. (3.2) is also valid at the high-symmetry M
point between K and K ′ from the properties of the lattice
model only [26] using the fact that I(θ) is invariant under
ky → −ky or ϕ→ −ϕ; see Appendix A. This is equivalent
to define

I
(π

2

)
= I(M) =

C2

2
(2v2F ). (3.3)

At the M point, each light polarization contributes to

a prefactor C2

2 and the superposition of the two light
polarizations is equivalent to a linearly polarized wave
along x direction (see Fig. 1).

It is now judicious to introduce the frequency-

integrated rates
∫ +∞
0

Γ±(θ, ω)dω = 1
2

∫ +∞
−∞ Γ±(θ, ω)dω =

Γ±(θ)
2 with the identifications θ = 0 = K and θ = π = K ′.

The interesting observation here is that the local quantity

∆Γ =
1

2π

(
Γ+(K) + Γ−(K ′)

2

)
=

1

~2
A2

0C
2, (3.4)

is measurable from circularly polarized light. The factor
C2 in the transition rates, defined locally from Eq. (2.7),
was not precisely identified in the literature previously.
This formula can find applications for driven spin models
where A represents a rotating magnetic field in the xy
plane as in nuclear magnetic resonance (NMR).

This result can be verified when calculating the
inter-band transition probability or spin-flip probability
P(ω̃, t) = |〈ψ−|ψ+(t)〉|2 in real time at the K or K ′ Dirac
point, with here ω̃ = ω − 2m. Preparing the system at
time t = 0 in |ψ+〉, from Eq. (1.2) we find

P(ω̃, t) =
4A2

0

(~ω̃)2
C2 sin2

(
1

2
ω̃t

)
. (3.5)

The evolution of the (normalized) lowest-band popu-
lation in real time then satisfies accordingly N+(t) =
|〈ψ+(t)|ψ+(t)〉|2 = N+(0) − P(ω̃, t) = 1 − P(ω̃, t). This
mediates inter-band transitions, in agreement with the
Rabi formula for NMR and applications to quantum Hall
systems [27], where we observe an additional topological
prefactor coming from the effect of the radial magnetic
field for topological Bloch bands. If we select the light
frequency at resonance ω̃ = ω− 2m

~ → 0, P(ω̃, t) = ∆Γt2

when Γ±(θ, ω) are evaluated at θ → 0 and θ → π. When

sweeping on light frequencies, we find dN+

dt = −π∆Γ .
Inter-band transition probabilities in time are observable
with current technology as in ultra-cold atoms [28]. Re-
lated to possible applications of circularly polarized light
in imaging, the Fourier transform of the signal gives rise
to resonant δ-peaks.

We can equally calculate the photo-induced current for
the light polarization ±. The currents j± = ±j±eϕ turn
along the azimuthal unit vector in different directions
such that [10]:

j±,ζ(t) =
1

2~
A0e

iωt

(
∂H

∂(ζpy)
∓ i ∂H

∂px

)
+ h.c. (3.6)

We remind that ζ = ±1 at the K and K ′ Dirac points
respectively. The photocurrents produce a similar result
as ∆Γ from the Fermi golden rule, but for the currents
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one must then define |Γ+(K) − Γ−(K ′)|. This response
is related to Fpxpy (K) − Fpx−py (K ′) and gives a similar

result as ∆Γ with |C| instead of C2. We have |C| = C2

for a topological state with C = 1 such that dN+

dt2 and dN+

dt
are always definite negative. The inter-band transition
probabilities measured locally in the reciprocal space are
then related to the induced photo-currents.

These relations show that changing of polarization is
equivalent to change ϕ → −ϕ and therefore this is also
equivalent to change of Dirac point since this transfor-
mation implies that py → −py.

IV. QUANTUM SPIN HALL EFFECT, LIGHT
RESPONSE AND I(θ) FUNCTION

Here, we generalize the analysis to two spheres de-
scribed by the two HamiltoniansH1(k) = −d1(k)·σ1 and
H2(k) = d2(k) · σ2 with d1x = d2x, d1y = d2y, d1z = m1

and d2z = m2. The situation with m1 = m2 = m
finds applications in the Kane-Mele model on the honey-
comb lattice [12] with spin-orbit coupling where 1, 2 cor-
respond to the two spin-polarizations of a spin- 12 . Asym-
metric masses m1 6= m2 can occur in a bilayer struc-
ture [29]. For each sphere α = 1, 2, the pseudospin- 12
is built from the Pauli matrices acting on the Hilbert
space {aα; bα} associated to the occupancy on a sub-
lattice of the honeycomb lattice. Going from sphere 1
to 2 is equivalent to change the role of the lower and
upper energy eigenstates in Eq. (1.2) and to adjust the
topological numbers as C1 = +1 and C2 = −1. This
modifies A′ϕ(θ > θc) → −A′ϕ(θ > θc) = − cos2 θ2 and

A′ϕ(θ < θc) → −A′ϕ(θ < θc) = sin2 θ
2 translating the Z2

symmetry. Generalizing Eq. (2.5) for each sphere, the
light measures the spin Chern number Cs =

∑
α C

2
α =

C1 −C2 = +2 [16] locally from the Dirac points whereas
the quantum Hall conductivity measures

∑
α Cα = 0.

From an analysis in real time, we show in Appendix B
that Cs can be measured from the inter-band transition
probabilities and the photo-induced currents.

To establish a correspondence with the Pfaffian for
the Kane-Mele model [30], we can simply identify the
two lowest filled energy bands on the lattice with eigen-
states |ui(k)〉 for i = 1, 2 to the Bloch sphere description.
We have |u1(k)〉 = |ψ+(θ, ϕ)〉 and |u2(k)〉 = |ψ−(θ, ϕ)〉.
Time-reversal symmetry Θ modifies the spin magnetiza-
tion τz → −τz, defined as τz = 1

2 (σ1z−σ2z), and k→ −k

in the Hamiltonian such that ΘH1(k)Θ−1 = H2(−k)
and ΘH2(k)Θ−1 = H1(−k). We can evaluate the Pfaf-
fian Pfij = εij〈ui(k)|Θ|uj(k)〉 on the sphere identifying
Θ|ui(k)〉 = εij |uj(−k)〉∗. Within our definition of the
Brillouin zone, the transformation k→ −k is equivalent
to ky → −ky such that Pf12 = 〈ψ+(0)|ψ+(π)〉∗. The
zeros of the Pfaffian at the poles of the sphere are then
related to the perfect quantization of the light response

1

2v2F
(I1(θ) + I2(θ)) = Cs − P (k)2. (4.1)

Here, Ii(θ) is generalized from Eq. (2.6) for each spin po-
larization and we identify Pf12 = Pf21 = P (k) = sin θ.

We also verify the equivalent form P (k) = vF |p|
m close

to the Dirac points from the eigenstates on the lattice.
Measuring the light responses at the Dirac points cor-
responds to detect the Z2 spin Chern number from the
zeros of the Pfaffian. Here, we show that the local light
response is stable towards general perturbations such as
a Rashba spin-orbit interaction making a link with a Z2

quantum spin pump.
From the discussion around Eq. (2.4), we can also

relate the local spin magnetizations to the topological Z2

number:

〈τz(0)〉 − 〈τz(π)〉 = −
∫ π

v

0

∂〈τz(t)〉
∂t

dt = Cs. (4.2)

Within the quantum spin Hall phase, the topological
charges C1 = +1 and C2 = −1 will remain identi-
cal and similarly for the local spin magnetizations and
the light responses. We can formulate this conclusion
more quantitatively writing a two-spheres’ wave-function
|ψ〉 =

∑
kl ckl(θ)|Φk〉1⊗|Φl〉2 [17] with a choice of Hilbert

space related to Eq. (1.2), |Φ+〉 =

(
e−i

ϕ
2

0

)
and

|Φ−〉 =

(
0
ei
ϕ
2

)
. Here, |Φ+〉 and |Φ−〉 refer to pro-

jections on sub-lattice A or B for a spin polarization.
The function ckl(θ) = c1k(θ)c2l (θ) with k, l = ± is in-
dependent of ϕ close to the poles because all ϕ angles
are equivalent. Then, this gives rise to the identities
〈ψ|τz|ψ〉 = |c+−|2 − |c−+|2 = A1

ϕ − A2
ϕ. Introducing

the gauge invariant quantities Aiϕ(0) − Aiϕ(π) = Ci for
i = 1, 2 we verify the validity of Eq. (4.2) with Cs = +2.
The robustness of Cs [16] comes from the fact that as
long as we stay therein the topological insulator phase
the coefficients c−− and c++ remain zero at the poles
of the sphere or at the Dirac points on the lattice. The
robustness of the light response is implicitly driven from
Stokes’ theorem in Eq. (1.4). Including a Hubbard in-
teraction the local light responses remain quantized in a
many-body sense in the topological phase(s) until quan-
tum phase transitions such as Mott phases [10, 31]. Ad-
ditional information is shown in Appendix C.

Here, we show the correspondence with a Laughlin
cylinder geometry. The cylinder acts in the reciprocal
space of the lattice model with periodic boundary con-
ditions in kx direction. If we define the Berry curva-
ture F = 1

2er along the radial direction on the sur-
face of the cylinder then we can adjust its height to
H = 2 such that the topological number reproduces C =
1
2π

∫H
0
dz
∫ 2π

0
dϕF · er = 1 for the Haldane model. Re-

lated to the Brillouin zone, the z variable is defined such
that H = 2 refers to the distance 4π

3
√
3a

between K and K ′

along ky direction. The vector potential can be defined
as Aϕ(z) = z

2 such that at the north disk Aϕ = + 1
2 and

at the south disk Aϕ = − 1
2 . From the spherical coordi-

nates z = cos θ, then Aϕ(θ) = cos θ
2 producing the same
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smooth fields on the cylinder A′ϕ(z > 0) = A′ϕ(θ < θc)
and A′ϕ(z < 0) = A′ϕ(θ > θc) with here θc = π

2 . For
the Kane-Mele model, we have two cylinders such that
F1 = F and F2 = −F.

To activate the spin pump we apply an electric field E
parallel to the polar angle, from north to south pole on
the sphere, acting on a charge q such that from Newton
equation θ(t) = vt with v = qE

~ in Eq. (4.2). From the
Parseval-Plancherel theorem [17], this produces trans-
verse currents on the two spheres related to the smooth
fields J1

⊥ = J⊥(θ) = e
tA
′
ϕ(θ < θc) and J2

⊥ = −J⊥(θ).
To relate with the light response, we navigate such that
θ ∈ [0;π] in a time T = h

2qE producing a spin cur-

rent J1
⊥ − J2

⊥ = 2q2

h CsE. The factor 2 specifies that
a charge −q also navigates in opposite direction. On
the cylinder, we have the same spin current from the
smooth fields identification. If we introduce a voltage
drop on the cylinders EH = (Vt − Vb) we verify the for-
mation of edge modes at the boundaries with the disks,

J1
⊥ − J2

⊥ = Gs(Vt − Vb) and Gs = q2

h Cs.

V. CONCLUSION

We have introduced a local marker from the reciprocal
or momentum space to the global invariant C2 with
direct applications for spin- 12 particles and topological
lattice models related to the light-matter coupling. We
have also shown that the quantum Hall conductivity can
be related to the Berry curvatures locally at the Dirac
points on the honeycomb lattice. In particular, Eq.
(2.3) allows fractional C = 1

2 values corresponding to

a halved conductivity e2

2h associated to one Dirac point
on an hemisphere, in agreement with experiments on
surfaces of three-dimensional topological insulators [32]
and topological bilayer systems [17]. These predictions
may find further applications in quantum materials
[14, 33] and ultra-cold atoms [34] related to develop-
ments in spintronics and light-induced quantized local
responses. As further perspectives, we highlight here
that the formalism may equally describe topological
superconducting wires [35] and three-dimensional Weyl
semi-metals [36].
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Appendix A: I(θ) Function From The Lattice

Here, we show a derivation of I(θ) at the M point on
the lattice related to the light response. Correspnding to
Fig. 1, if we use the Bravais lattice vectors u1 = −b2 =
a
2 (3,
√

3) and u2 = b1 = a
2 (3,−

√
3), we can write the

graphene Hamiltonian at the M point in the form

H(M) = wσ+ + h.c., (1.1)

with

w = t

(
1 +

2∑
i=1

e−ik·ui

)
, (1.2)

and kMx = 2π
3a , kMy = 0.

We can justify the choice of local gauge in Eq. (1.2)
as follows. Within our definition of the Brillouin zone,
at this M point since ky = 0, the Hamiltonian should be
invariant under the symmetry ky → −ky which implies
that the term d2σy in the formulation of Fu and Kane
[26] should be defined to be zero. The Hamiltonian at

this M point should be equivalent to d1σx = d1P̂ , with
d1 = 1

2 (w + w∗) and with P̂ defined to be the parity
operator defined in a middle of a bond in a unit cell in
real space, corresponding then to interchange A ↔ B
sublattices through the transformation x→ −x or kx →
−kx. This M point in the middle of K and K ′ is in fact
special from the classification of Z2 topological insulators
since sgn(d1) = −1 within our definitions of w whereas at
the other high symmetry points, we find sgn(d1) = +1.
These definitions are also in agreement with the fact that
the light-matter response is invariant under ϕ→ −ϕ.

This results in

∂w

∂kx
= −it(2ux)sgn(d1) = (3ita). (1.3)

Here, sgn(d1) = −1 traduces that the eigenvalue of the
σx or parity operator on the lattice takes a negative value
at this specific point, as in the definition of the Z2 topo-
logical invariant formulated by Fu and Kane. In a similar
way,

∂w

∂ky
= 0. (1.4)

Then, we obtain〈
ψ+

∣∣∣∣ ∂H∂kx
∣∣∣∣ψ−〉〈ψ− ∣∣∣∣ ∂H∂kx

∣∣∣∣ψ+

〉
= 4v2F cos4

θ

2
.(1.5)

Here, we take into account the δ(Eb−Ea∓ ~ω) function
in Eq. (3.1) such that either wσ+ or wσ− contributes
for a given light polarization. Since the sine and cosine
functions are equal at θ = π

2 , it allows us to verify that
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this quantity at the M point is also equal to I(θ). At
the M point, then from Eq. (1.2) we have〈

ψ+

∣∣∣∣ ∂H∂kx
∣∣∣∣ψ−〉〈ψ− ∣∣∣∣ ∂H∂kx

∣∣∣∣ψ+

〉
= I(θ), (1.6)

for all values of t2. We also have the correspondence

I(M) =
I(0)

2
=
I(π)

2
, (1.7)

in the light response.
These equations are also in agreement with the fact

that the addition of the electric fields around the two
Dirac points produces a response along x direction at
the M point, similarly as a linearly polarized wave:

E = E+ + E− = 2ei
π
2A0ωe

−iωtex.

For a given light polarization, from the geometry, the
response of the system will be halved compared to the
Dirac points because ∂w

∂ky
= 0.

Appendix B: Light Response in the Quantum Spin
Hall Effect

Here, we study the light responses in the Kane-Mele
model at the Dirac points from the rotating frame.

In the vicinity of the K-point, the Hamiltonian acting
on a flavor α = 1, 2 (or equivalently spin polarization)
reads:

H±α (k) =

(
−dαz(K) A0e

±iωt + vFΠ
∗

vFΠ +A0e
∓iωt +dαz(K)

)
(2.1)

with Π = px + ipy = |p|eiϕ̃α = ∓|p|eiϕ.
Here, ∓ refers to the sphere 1 and sphere 2 respectively,

ϕ̃α is the polar angle defined around the Dirac cone, ϕ the
polar angle on the Bloch sphere. We have redefined d1z =
m1 and d2z = −m2 in accordance with the definitions of
d1 and d2. To identify the rotating frame, we re-define
|a′α〉 = e∓i

ωt
2 |aα〉 and |b′α〉 = e±i

ωt
2 |bα〉 associated to the

rotation operator U(t) = e∓i
ωt
2 σz .

The effective Hamiltonian close to the K Dirac point
takes the form

H±eff,α(k) = UH±α (k)U−1 ± ~ω
2
σz (2.2)

=

(
−dαz(K)± ~

2ω αvF |p|e−iϕe∓iωt +A0

αvF |p|eiϕe±iωt +A0 +dαz(K)∓ ~
2ω

)
where α = ∓ in the matrix corresponds to α = 1, 2,
respectively.

1. Sphere 1 At Resonance

We assume d1z = m1 > 0 and ω > 0 such that at the K
point, only the right-handed light polarization resonates

with the sphere 1 through the equality m1 = ~ω
2 . We also

fix the angle ϕ = −ωt to discuss small detuning effects
from the Dirac points for sphere 1. We study the lowest
order response in A0 and in |p|.

Suppose we prepare the system in the lowest-energy
band of the Haldane model in the ground state |ψ1+〉
at time t = 0 where we keep the specific form |ψ1+〉 =
cos θ2 |a

′
1〉+sin θ

2 |b
′
1〉 assuming θ → 0 close to the K-point.

We allow smooth deviations of the angle θ from the Dirac
point to emphasize that we have a continuum of states.
Then, solving the eigenstates in the rotating frame, we
find the probability to be in the upper state |b′1〉 at time
t

|〈b′1|ψ1+(t)〉|2 = −A′(θ < θc) cos2
(

(A0 − vF |p|)t
~

)
(2.3)

+A′(θ > θc) sin2

(
(A0 − vF |p|)t

~

)
.

This quantity refers to the transition probability at the
K-point and taking formally θ = 0 agrees with the for-
mula for the nuclear magnetic resonance. On the other
hand, keeping the forms of the smooth fields allows us
to link with the topological properties as well. Defining
N1

+(t) = 〈ψ1+(t)|ψ1+(t)〉, this implies

dN1
+

dt2
= −C1(A0 − vF |p|)2

~2
. (2.4)

For the sphere 1 at the north pole we have A′(θ > θc) =
C1 = +1 if we move the boundary θc → 0.

Close to the K ′ Dirac point, the left-handed light po-
larization now is at resonance for the same angle ϕ = −ωt
and for the same light frequency m1 = ~ω

2 . If we eval-

uate |〈a′1|ψ1+(t)〉|2, we obtain a similar formula as Eq.
(2.3) with cos2 θ2 ↔ sin2 θ

2 since the inversion of the mass
dαz(K) = −dαz(K ′) is equivalent to modify the role of
|a′1〉 and |b′1〉.

2. Light Response For Sphere 2

When the sphere 1 is at resonance, for states in the
vicinity of the K Dirac point such that A0 � vF |p|,
then the sphere 2 is described by the time-independent
matrix

H±eff,2(k) =

(
−d2z(K)±m1 A0

A0 +d2z(K)∓m1

)
.

(2.5)
Below, we introduce the mass asymmetry δm = (m2 −
m1). At the K-point, the sphere 2 dominantly couples
to the − light-polarization. Preparing the initial state as
|ψ2−〉 at time t = 0 with |ψ2−〉 = |b′2〉 and taking into
account the time-evolution of this 2× 2 matrix gives the
transition probability

|〈a′2|ψ2−(t)〉|2 =
A2

0

δm2 +A2
0

cos2
θ

2
sin2

(√
δm2 +A2

0t

~

)
.

(2.6)
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Now, for sphere 2, we have the identification A′ϕ(θ >

θc) = − cos2 θ2 and also A′ϕ(θ > θc) = C2 if we move θc →
0. Including the contribution from the K ′ point due to
the + light polarization, then the transition probabilities
for sphere 2 become symmetrically equal to

|〈a′2|ψ2−(t)〉|2 =
A2

0

δm2 +A2
0

(−C2) sin2

(√
δm2 +A2

0t

~

)
.

(2.7)
For the sphere 2, due to the inversion between lowest and
upper bands compared to sphere 1, C1 becomes −C2 in
that formula such that −C2 > 0. We emphasize here
that |Ci| occurs in the inter-band transition probabili-
ties in the rotating frame. Developing the formula at
short times, the transition probabilities are independent
of the mass asymmetry δm traducing the robustness of
the topological phase towards this perturbation.

For the Kane-Mele model, since we have defined d1 and
d2 as opposite and radial vector fields on the sphere, this
requires to define the polar angles around the K Dirac
point as ϕ̃1 = ϕ±π and ϕ̃2 = ϕ for each spin polarization.
Since the physical energy spectrum is independent of ϕ,
these choices are applicable. This implies that when we
fix ϕ = −ωt for sphere 1 at resonance then deviations
from the poles on sphere 2 lead to small corrections in
the matrix vF |p|e±2iωt.

For the Kane-Mele model, the light responses of the
two spheres will be additive. Another way to interpret
this result is as follows. The + light polarization will
resonate with sphere 1 at the K point and with sphere
2 at K ′ which corresponds to change py → −py for
sphere 2 in j+(K ′) compared to j+(K). Similarly, the
− light polarization will resonate with sphere 1 at K ′

and with sphere 2 at K which corresponds to modify
py → −py in j−(K) for sphere 2 compared to j−(K ′).
This change of py → −py in the formulas for the sphere 2
then gives the following structure from the Fermi golden
rule |Γ1

+(K) − Γ1
−(K ′) − Γ2

+(K ′) + Γ1
−(K)|, related to

the currents, providing a physical understanding for the
occurrence of C1 − C2 in the light response.

Appendix C: Interaction Effects and Spin Pump

Here, we discuss the protection of the photo-induced
response at the poles in the presence of interactions as
long as we stay in the topological insulating phase and
the relation with a Z2 spin pump.

We assume here an interaction in real space which can
also involve nearest-neighbors on different sublattices,
and we study the most dominant interaction channel(s)
from the topological ground state. We start from the
ground state situation with the two lower energy bands
occupied at half-filling (one related to each sphere). Lo-
cally, at the two Dirac points, we have two classes of
interaction. At the K point, the ground state satisfies
the projection equalities N̂a

1 |GS〉 = 1 and N̂ b
2 |GS〉 = 1

with N̂ b
1 |GS〉 = 0 = N̂a

2 |GS〉. From the quantum spin- 12

definition we have the operator related to the number of
particles written in terms of the projectors

N̂ i
1 =

1

2

(
1± σ1

z

)
, N̂ i

2 =
1

2

(
1± σ2

z

)
. (3.1)

Here, i = a and i = b refer to the polarisation (pro-
jection) on a given sublattice A or B of the honeycomb

lattice. We have the identification N1(K) = 〈N̂a
1 〉 = 1

and similarly N1(K ′) = 〈N̂ b
1〉 = 1 for the lower band re-

lated to sphere 1. The dominant Hubbard interaction at
the K Dirac point is of the form at low energy

HInt = λ
(
N̂a

1 N̂
b
2

)
. (3.2)

Similarly at the K ′ point, the dominant interaction is
between N̂ b

1N̂
a
2 . The interaction terms at the K and K ′

points projected on the ground state then take the form

HInt = −λ
4
σ1
zσ

2
z +

λ

4
(1± σ1

z ∓ σ2
z). (3.3)

For the Kane-Mele model, this produces a ferromagnetic
Ising interaction and Semenoff masses at the poles.

We can include HInt in the matrix representation at
the poles of the two spheres and compare the energetics of
different spin states {|a1a2〉; |a1b2〉; |b1b2〉; |b1a2〉}. At the
north pole, then we verify that |a1b2〉 remains the ground
state as long as λ < min(2m1, 2m2) with d1z = m1 and
d2z = m2. At the south pole, |b1a2〉 also remains the
ground state as long as λ < min(2m1, 2m2). Assuming
that λ satisfies this prerequisite, then we can argue the
stability of the topological response from the correspon-
dence

Cα =
〈σαz (0)〉 − 〈σαz (π)〉

2
, (3.4)

and therefore of the light-response through the identifi-
cation

(Cα)2 =
1

4

(
〈σαz (0)〉2 + 〈σαz (π)〉2 − 2〈σαz (0)〉〈σαz (π)〉

)
(3.5)

=
1

4v2F
(Iα(0) + Iα(π)) ,

with Iα(θ) as in Eq. (2.5) for a sphere α. This also
implies that Aαϕ(0) − Aαϕ(π) is unchanged and similarly
for the Berry curvatures defined in Eq. (2.3). As long
as the structure of the lower and upper bands remains
identical the light responses will keep a similar form if
we shift the resonance frequency with λ.

Since the light response at the poles corresponds ef-
fectively to measure C1 − C2, either as C2

1 + C2
2 in the

original frame or as C1 + |C2| in the rotated frame, we
emphasize here that this can also be re-interpreted as a
spin pump measurement driving from north to south pole
in the adiabatic limit. Indeed, we may define

τz =
1

2

(
σ1
z − σ2

z

)
(3.6)
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such that τz = ±1 at the poles of the sphere corresponds
to the spin magnetization if α = 1, 2 refers to the spin
polarization of an electron. In this way, we have

Cs = C1 − C2 = 〈τz(0)〉 − 〈τz(π)〉

= −
∫ π

v

0

∂〈τz(t)〉
∂t

dt (3.7)

with the identification between polar angle on the sphere
and time such that θ = vt. We identify a link between
the responses at the poles of the sphere and an effective
spin pump.

We can also include interaction effects between differ-
ent Dirac points (if we also include the on-site Hubbard

interaction in real space):

H′Int = λ′
(
N̂a

1 (K)N̂a
2 (K′) + N̂ b

1(K′)N̂ b
2(K)

)
. (3.8)

The energy Ea1b2 + Eb1a2 associated to the states |a1b2〉
at north pole and |b1a2〉 at south pole will increase by
2λ′ such that

Ea1b2 + Eb1a2 = −2(m1 +m2) + 2λ+ 2λ′. (3.9)

The ground state at the two poles remains unchanged as
long as 1

2 (Ea1b2 +Eb1a2) < {Ea1a2 ;Eb1b2} implying then
(λ+ λ′) < min(2m1, 2m2).

Therefore, we verify that the light response at the poles
is protected (at least) as long as the effective interaction
λ + λ′ is typically smaller than the energy band gap at
the poles.
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