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We study the influence of an in-plane magnetic field and Coulomb interactions on the physics of
quantum spin Hall insulators, like those in InAs/GaSb and HgTe/CdTe quantum wells. Using a
Hartree-Fock mean-field theory approximation, we calculate phase diagrams as functions of the band
gap, band hybridization, and magnetic field strength. We show that when the band hybridization
is weak, the system is unstable against the formation of density wave states. As the strength of the
in-plane magnetic field increases, the density-wave region of the phase diagram expands and distinct
density-wave states appear. We discuss possible experimental implications of our results.

I. INTRODUCTION

The quantum spin Hall (QSH) insulator is a topolog-
ically nontrivial state of matter characterized by gap-
less helical edge states protected by time-reversal sym-
metry [1, 2]. It was first realized in HgTe/CdTe quan-
tum wells [3, 4], and later also in other systems like
InAs/GaSb quantum wells [5–7]. Theoretically the
physics of QSH insulators is captured by the Bernevig-
Hughes-Zhang (BHZ) model [3], which is a single-particle
theory that ignores interactions and works well in the
limit of strong band hybridization. Interactions become
important when the BHZ model band hybridization pa-
rameter A is small, as can be appreciated by considering
the limit A → 0, where coherence between conduction
and valence bands, or exciton condensation, occurs spon-
taneously when the band gap is smaller than the exciton
binding energy [8–15]. Recent experiments [16–18] have
shown excitonic behavior in InAs/GaSb quantum wells.
The interplay between interactions and topology can lead
to interesting new phases near the QSH phase transition
[19–22], which have so far been only lightly explored.

In this paper we study how an in-plane magnetic field
modifies the phase diagram studied in Ref. 22, which con-
tains time-reversal symmetry-breaking electron nematic
phases. Due to the spatial separation between electron
and hole layers, an in-plane magnetic field shifts the con-
duction and valence bands in opposite directions in mo-
mentum space. Intuitively this opposite shift effectively
increases the band gap and reduces the hybridization be-
tween the electron and hole bands. When interactions
are neglected, an in-plane magnetic field drives the sys-
tem into a semi-metallic state. Using a Hartree-Fock
mean-field theory, we show that the nematic states in-
stead break translational symmetry and become density-
wave states. At stronger tunneling an in-plane magnetic
field can drive the system through a variety of different
phases, including quantum anomalous Hall states with
and without density-wave order.

This paper is organized as follows: In Section II we
formulate the mean-field theory we use to describe inter-
action effects, and explain how we allow the possibility of

translational symmetry breaking. In Section III we sum-
marize our results by presenting phase diagrams that de-
pend on three parameters: band gap, hybridization, and
the strength of in-plane magnetic field. Finally in Sec-
tion IV we discuss the relationship between our work and
potential future experiments, and its relationship to exci-
tonic density-wave states that have been identified, often
controversially, in bulk three-dimensional crystals.

II. MEAN-FIELD THEORY

We use a four-band BHZ model [3, 5] to describe the
InAs/GaSb quantum wells. The field operators are four-
component spinors ψk = (ac↑k, av↑k, ac↓k, av↓k)T , where
c and v denote the conduction and valence bands, and
↑ and ↓ denote two opposite spins. The single-particle
physics of the system under an in-plane magnetic field is
described by the modified BHZ Hamiltonian [21, 23]

HBHZ =
∑
k

ψ†k

(
h↑(k) 0

0 h↓(k)

)
ψk, (1)

where the two 2× 2 matrices h↑ and h↓ can be explicitly
expressed as

h↑(k) =

(
~2

2me
(k − Q

2 )2 +
Eg

2 A(kx + iky)

A(kx − iky) − ~2

2mh
(k + Q

2 )2 − Eg

2

)
,

h↓(k) =

(
~2

2me
(k − Q

2 )2 +
Eg

2 −A(kx − iky)

−A(kx + iky) − ~2

2mh
(k + Q

2 )2 − Eg

2

)
.

(2)

me and mh are the effective masses of electrons and holes,
Eg is the band gap, A is the strength of hybridization
between the conduction and valence bands, and Q is
the momentum shift due to the in-plane magnetic field.
Without the magnetic field, Q = 0 and h↑, h↓ are time-
reversal partners:

h↑(k) = h∗↓(−k). (3)
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When an in-plane magnetic field B = Bŷ is applied to
electron and hole layers separated by an interlayer dis-
tance d, the conduction and valence bands are shifted in
momentum by ∓Q = ∓(eBd/~)x̂ by Peierls substitution.
The in-plane magnetic field breaks the time-reversal sym-
metry of the system and induces orbital moments. The
electrons and holes interact via the Coulomb interaction

HI =
1

2S

∑
bb′ss′

∑
kk′q

Vbb′(q)a
†
bsk+qa

†
b′s′k′−qab′s′k′absk,

(4)
where S is the area of the two-dimensional system, b, b′

and s, s′ are band and spin indices respectively, Vcc(q) =
Vvv(q) = V (q) = 2πe2/εq is the intralayer Coulomb inter-
action, Vcv(q) = Vvc(q) = U(q) = V (q) exp(−qd) is the
interlayer Coulomb interaction at interlayer distance d,
and ε is the dielectric constant of the surrounding three-
dimensional material.

Anticipating the possibility of translational symmetry
breaking [21] along the direction of Q, we divide momen-
tum space into slabs separated by Q. Then apart from
the band and spin indices (b, s), the basis states are la-
beled by an integer n and a quasi-momentum k (|k| <
|Q|/2) that lies within the first quasi-one-dimensional
Brillouin zone. Together n and k refer to the plane-wave
state with momentum nQ + k.

We use a Hartree-Fock mean-field theory to describe
the Coulomb interaction. The Hartree term is

ΣH =
1

S

∑
bb′
ss′

∑
nn′n′′
kk′

Vbb′((n
′ − n)Q)

×ρb
′s′ n′′+n′−n

b′s′ n′′ (k′) a†bsn′kabsnk,

(5)

where the density matrix ρ is defined relative to the
density matrix with valence bands filled and conduction
bands empty:

ρbsnb′s′n′(k) = 〈a†b′s′n′kabsnk〉 − δbb′δbvδss′δnn′ . (6)

For n′ = n, the Hartree term accounts for the electro-
static potential energy difference 4πe2nxd/ε between the
electron and hole layers, where

nx =
1

S

∑
snk

ρcsncsn(k) = − 1

S

∑
snk

ρvsnvsn(k) (7)

is the exciton density. The Fock term

ΣF = − 1

S

∑
bb′
ss′

∑
nn′n′′
kk′

Vbb′((n
′′ − n)Q + k′ − k)

×ρb
′s′ n′′+n′−n

bs n′′ (k′)a†b′s′n′kabsnk.

(8)

accounts for the exchange interaction. Together, the sys-
tem is described by the mean-field Hamiltonian

HMF = HBHZ + ΣH + ΣF . (9)

Below we express lengths and energies in terms of char-
acteristic scales a∗B = ε~2/me2 and Ry∗ = e2/2εa∗B ,

where m = memh/(me + mh) is the reduced effec-
tive mass. This model approximates InAs/GaSb quan-
tum wells if we choose me = 0.023me,mh = 0.4m0,
and ε = 15 [24], which implies that a∗B = 36.5 nm
and Ry∗ = 1.3 meV. We assume the interlayer dis-
tance d = 0.3 a∗B ≈ 10 nm. For an in-plane mag-
netic field of strength B = 1 T, the momentum shift
Q = 0.606 (a∗B)−1. For simplicity in Eq. (2) we neglect
the particle-hole asymmetry which does not affect the
ground state physics, and perform numerical calculations
with me = mh = 2m.

III. PHASE DIAGRAMS

Given Eg, A and Q, the ground state of the system can
be obtained by solving the Hartree-Fock equations self-
consistently and finding the lowest-energy solution. The
Q = 0 case has been studied in detail in Ref. 22, and the
phase diagram is reproduced in Fig. 1(a). At A = 0 the
number of particles in the conduction and valence bands
are conserved separately. When the bare energy gap Eg

is reduced below the 1s exciton binding energy, the exci-
tons condense and coherence is established spontaneously
between the conduction and valence bands. This order
survives at finite A, where it breaks rotational symme-
try by establishing coherence between s-conduction and
p-valence electrons, and also breaks time-reversal symme-
try by doing so in a spin-dependent manner. In Fig. 1 we
refer to this state as the nematic insulator state. At large
A, single-particle physics dominates and the system un-
dergoes a topological phase transition between the QSH
and normal insulators as Eg varies. At moderate values
of A, the transition between QSH and normal insulators
occurs via an intermediate quantum anomalous Hall state
(QAH) state with broken time-reversal symmetry and a
nonzero Chern number [26].

When an in-plane magnetic field is applied, the QSH
state is no longer protected by time-reversal symmetry.
In the simplified BHZ Hamiltonian (1) we use here, the
two spins are decoupled and a spin Chern number can be
defined to distinguish QSH and normal insulators [27].
In the more general case where spin is not a good quan-
tum number, it has been shown that [28–30] the spin
Chern number can remain well-defined as a robust topo-
logical invariant. For this reason the QSH-normal insu-
lator transition still exists. In order to distinguish these
two cases we refer to the finite-B QSH state as a time-
reversal symmetry-breaking (TRSB) QSH state [29].

At small hybridization A the momentum-shifted con-
duction and valence bands tend to establish coherence
by breaking translational symmetry to achieve better
Fermi surface nesting, forming density wave (DW) states
with wavevector Q. We find that at small but finite A
the energetically preferred state is one in which pair-
ing is between opposite spins, so the order parameter
is ρcs1

vs̄0(0) where s̄ denotes the spin opposite to s. At
A = 0 the density matrix element ρbs1

b′s̄0 is nonzero only for
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FIG. 1. Phase diagrams in (A,Eg) planes at several fixed magnetic fields: (a) Q = 0; (b) Qa∗
B = 0.6; (c) Qa∗

B = 1.2; (d)
Qa∗

B = 1.8. Solid and dotted lines distinguish first-order and continuous phase transitions. The gray dots in (d) specify the
parameter values used to calculate the individual phase properties presented in Figs. 2 and 3. For adjacent InAs and GaSb
quantum wells with thicknesses dInAs = dGaSb = 10 nm. we the hybridization strength [25] A = 0.37 eV Å = 0.78 a∗

BRy∗. This
value is labeled by blue diamonds on the horizontal axes. Smaller values of A are accessible by inserting a layer of AlSb. The
energy gap Eg can be tuned experimentally by applying vertical electric field. For HgTe/CdTe quantum wells with thickness
dHgTe = 7 nm, the hybridization strength A = 3.65 eV Å = 7.7 a∗

BRy∗, outside the most interesting region of the phase diagrams.
The properties of the different phases identified here are described in the main text.

b = c, b′ = v. When the band-hybridization parameter A
is non-zero, on the the other hand, it is nonzero for any b
and b′, although the exciton condensate order parameter
(b = c, b′ = v) is always much larger than the other three
(b = b′ = v, b = b′ = c, and b = v, b′ = c) density-matrix
elements. When the magnetic field is weak, the DW state
exists only near A = 0 and undergoes a first-order phase
transition to the nematic insulator state, which does not
have finite-Q pairing, as A increases (see Fig. 1(b)). The
nematic insulator phase is characterized by the order pa-
rameter ρcs0

vs̄0(0); the coherence that is established does
not accomodate the momentum-space shifts of the con-
duction and valence bands. We retain the term nematic
insulator used at Q = 0 even though rotational symme-
try has already been explicitly broken by the in-plane

magnetic field.

The boundary between the magnetic-field-stabilized
DW state and the nematic insulator state moves rapidly
to the right as the magnetic field strength increases, even-
tually squeezing the nematic insulator state out of the
phase diagram as shown in Fig. 1(c). Near the DW
phase boundary neighboring the TRSB-QSH and QAH
phase regions, two new phases appear [31] that also break
translational symmetry along the x̂-direction. These two
states are connected to the TRSB-QSH and QAH states
via continuous phase transitions, and we label them as
QSH/DW and QAH/DW states respectively, for reasons
that will become clear later. Like the DW state, both the
QSH/DW and QAH/DW states have order parameters
of the form ρbs1

b′s̄0(0). Unlike the DW state, however, the
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FIG. 2. Spatial distribution of the charge density (in units
of −e) in the electron layer ne at Qa∗

B = 1.8 and (i) Eg =
0.1Ry∗, A = 0.3 a∗
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BRy∗ (QAH/DW, green); (iii) Eg = −0.4Ry∗, A =
0.5 a∗

BRy∗ (QSH/DW, blue).

largest pairing terms in the QSH/DW state are between
conduction and conduction, and valence and valence
bands, yielding order parameters ρvs1

vs̄0(0)(= ρcs0
cs̄1̄(0)). The

QAH/DW state has different up-to-down and down-to-

up spin pairings: ρb↓1b′↑0 6= ρb↑1b′↓0, with one, say ρb↓1b′↑0,
resembling the DW state with the largest element ap-

pearing at b = c, b′ = v, and the other (ρb↑1b′↓0) resem-

bling the QSH/DW state with the largest element at
b = b′ = v. The transitions between the DW, QAH/DW
and QSH/DW states are all first-order transitions.

As Q continues to increase, the three density-wave
regions keep expanding and the QAH region shrinks
as shown in Fig. 1(d). While the transitions between
the TRSB-QSH, QAH and normal insulator states stay
largely unchanged, the phase boundaries slowly move to-
wards larger A and smaller Eg as Q increases, consistent
with the intuition that the momentum shift between con-
duction and valence bands effectively increases the band
gap and weakens the band hybridization.

For A = 0, the ground states are true exciton con-
densates and ordering does not lead to charge-density
variations in either layer even if it occurs at Q 6= 0. For
A 6= 0, the situation changes. The charge densities in the
electron and hole layers (in units of −e) are related to
the density matrices ρ by

ne(r) =
1

S

∑
snn′k

ρcsncsn′(k)e−i(n
′−n)Q·r,

nh(r) =
1

S

∑
snn′k

ρvsnvsn′(k)e−i(n
′−n)Q·r.

(10)

At A = 0, the only nonzero n′ 6= n density-matrix
elements in Eq. (10) are ρvs ncs̄ n+1, so the charge den-

sity is uniform in each layer. When A 6= 0, ρbs nbs n±1
still vanishes because only opposite spins in neighbor-
ing Brillouin zones are coupled. However, ρbs nbs n±2 can
be nonzero when A 6= 0, so the charge density in each
layer oscillates periodically in space, with periodicity
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FIG. 3. Wilson loop calculations at (a) Eg = 1Ry∗, A =
0.9 a∗

BRy∗ (normal insulator); (b) Eg = 0.1Ry∗, A =
0.8 a∗

BRy∗ (QAH); (c) Eg = −0.4Ry∗, A = 0.9 a∗
BRy∗

(TRSB-QSH); (d) Eg = 0.1Ry∗, A = 0.3 a∗
BRy∗ (DW);

(e) Eg = 0.1Ry∗, A = 0.6 a∗
BRy∗ (QAH/DW); (f) Eg =

−0.4Ry∗, A = 0.6 a∗
BRy∗ (QSH/DW).

π/Q. Fig. 2 shows the charge density distribution in
the electron layer of the three density-wave states. We
see that the QSH/DW state has larger spatial charge
density fluctuations than the other density-wave states,
as expected because of its conduction-to-conduction and
valence-to-valence band couplings. In our calculation
with me = mh, the charge density in the hole layer is ex-
actly the opposite of that in the electron layer due to the
particle-hole symmetry present for this parameter choice.
In the general me 6= mh case there is partial cancellation
between the charge densities in the two layers, resulting
in a weak total charge density oscillation in space.

The topological properties of these phases can be stud-
ied by performing Wilson loop calculations [32, 33]. Our
results are shown in Fig. 3. For each kx, we calcu-
late the product D(kx) of the Berry connection matrices
Fm,n
i,i+1 = 〈umi |uni+1〉 along ky, where i labels steps along
ky and m,n label occupied states. We then calculate
the phase angles θ(kx) of the eigenvalues of the matrix
D(kx). The topological properties of the system can be
read from the winding behavior of the phase angles. For
example, the Chern number is equal to the net num-
ber of times (upwards minus downwards) the evolution
curves of θ cross a constant reference line parallel to the
kx-axis. The results show that the phase angles of the
normal insulator (Fig. 3(a)) and DW (Fig. 3(d)) states
always stay near zero, so these two states are both topo-
logically trivial. In the QAH state (Fig. 3(b)) one of the
spins undergoes band inversion, and the phase angle θ
jumps by 2π as kx sweeps from −Q/2 to Q/2. Interest-
ingly, the Wilson loop of the QAH/DW state (Fig. 3(e))
shows very similar winding behavior as the QAH state.
We conclude that both the QAH and QAH/DW states
are topologically nontrivial, characterized by Chern num-
ber |C| = 1. For the TRSB-QSH state (Fig. 3(c)) the two
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FIG. 4. Phase diagram (a) in (A,Q) plane at fixed Eg = 0.5Ry∗; (b) in (Q,Eg) plane at fixed A = 0.6 a∗
BRy∗.

decoupled spin bands are both inverted and the Wilson
loops exhibit nontrivial but opposite winding along kx,
resulting in zero total Chern number. In the QSH/DW
state (Fig. 3(f)), however, the two spins are coupled via
density-wave order, and the degeneracy at kx = ±Q/2
is lifted. Despite certain similarity to that of the QSH
state, the Wilson loop of the QSH/DW state suggests
that the system is topologically trivial [34]. In fact, the
QSH/DW state we find is very similar to the topologi-
cal charge density wave state discovered in Ref. 21, ex-
cept that in Ref. 21 the density-wave order parameter
is between the same spins, whereas we find the system
has lower energy when the coupling is between opposite
spins. It is the coupling between different spins that lifts
the degeneracy at kx = ±Q/2 and gives rise to a trivial
Wilson loop as shown in Fig. 3(f).

The evolution of phase diagrams with Q opens up the
possibility of tuning between different phases by apply-
ing an in-plane magnetic field. Fig. 4 shows two phase
diagrams in which the in-plane field parameter Q is along
one axis. Fig. 4(a) shows the phase diagram in the (A,Q)
plane at fixed Eg = 0.5Ry∗. At small A, increasing the
magnetic field turns the nematic insulator phase into the
DW phase. At large A, the magnetic field drives the QSH
state into the normal insulator state. The QAH state
shows up at intermediate A. Fig. 4(b) shows the phase
diagram in (Q,Eg) plane at fixed A = 0.6 a∗BRy

∗. At
large positive Eg, the system stays in the normal insula-
tor state. At small or negative Eg, the system starts from
the QAH or QSH state and ends up in one of the three
density-wave states as the magnetic field gets stronger.

IV. DISCUSSION

This paper describes a study of the influence of in-
plane magnetic fields on the many-electron ground states
of two-dimensional electron gas systems with a conduc-

tion band in one layer hybridized with a valence band in
a nearby layer. The interesting regime is one in which
the spatially indirect gap is smaller than the correspond-
ing exciton binding energy. At temperatures much lower
than the characteristic energy scale Ry∗ ∼ 15 K, exci-
tons can be viewed as weakly interacting bosons, which
have two-dimensional superfluid ground states that are
accurately described by mean-field theory, at least on
the boson side of the BEC-BCS crossover [35–37]. When
hybridization is added these states evolve into nematic
states. The role of an in-plane field is to associate a
momentum boost with inter-layer tunneling processes,
and to convert nematic weak-hybridization states into
density-wave states that break translational symmetry
and dominate our phase diagrams. Because of the close
relationship between exciton condensates and our ne-
matic and density-wave states, we expect mean-field the-
ory to be accurate at small values of the hybridization A.
As the hybridization strength increases, the physics of ex-
citon condensation competes with single-particle physics
that prefers a different band hybridization pattern. It is
this competition that yields the rich phase diagram we
find. The phase diagrams we present in this work are
for temperature T = 0. The critical temperatures of the
states in our phase diagrams are controlled by the stiff-
ness energy kBTc ∼ πρ/2 where the stiffness ρ is given in
the limit of weak hybridization by ρ ∼ ~2n/M [38] with
carrier density n and exciton mass M = me +mh.

The phase diagrams we construct as a function of the
energy gap Eg and the hybridization strength A can in
principle be tested experimentally by fabricating devices
containing interfaces between InAs and GaSb, or other
materials combinations with appropriate band lineups,
and using dual gates to tune Eg at fixed electron density.
In the InAs/GaSb case the hybridization strength A can
be reduced by inserting an AlSb barrier layers [17, 18]
between the InAs and GaSb layers. Our study builds
on earlier work [22] which studied the influence of in-
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teractions on the phase transition between ordinary and
quantum spin Hall insulators in the absence of a magnetic
field, and on work [21] which studied InAs/GaSb inter-
faces in the presence of a perpendicular field but did not
identify all competing ordered phases. Some related ex-
perimental progress has already been reported in recent
transport experiments by Du and collaborators [16–18].
Our rich theoretical phase diagrams suggest that there is
much more to discover.

In a non-interacting electron theory, an in-plane mag-
netic field closes the hybridization gaps that appear for
Eg < 0 and converts the neutral system from insulators
into semimetals. The magnetic field strength needed to
close the gap increases with the strength of the hybridiza-
tion parameter A. When interactions are included, the
ground state remains insulating at all magnetic fields, by
breaking translational symmetry to establish coherence
between electron and hole states that have been boosted
to different momenta. The observation of a gap under a
strong in-plane magnetic field in experiment [16, 18] is
likely to be of many-body origin, and can be attributed
to the density-wave states studied here. In the parameter
range studied in this work, the semimetal state is never
stable against the formation of density waves. More di-
rect evidence for density-wave states could come from
transport measurements that show nonlinear current-
voltage characteristics [39–42].

Charge density wave states are often observed experi-
mentally in bulk three-dimensional narrow gap semicon-

ductors or semimetals in which conduction band minima
and valence band maxima occur at different wavevec-
tors. Recent examples include TiSe2 and Ta2NiSe5 [43–
46]. There is typically some debate about the origin of
charge density-wave states in this type of system. We
take the view that they can almost all be regarded as
exciton-insulators [47], in the same sense as the charge
density wave states studied in this paper can be regarded
as exciton-insulators. The use of this terminology to clas-
sify the type of charge density wave state is meant to sug-
gest that if only the band gap of the system could be var-
ied, the ordered state would appear when the minimum
energy of the excitonic collective modes, always present
below the interband particle-hole continuum, vanishes.
The bilayer hybridized electron-hole systems studied in
this paper have the advantage that the key microscopic
parameters of excitonic charge-density-wave systems, the
energy gap and the ordering wavevector, can indeed be
varied. Their experimental study therefore has the po-
tential to draw a clear line connecting this type of charge
density wave to ideal exciton condensates.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation through the Center for Dynamics and Con-
trol of Materials: an NSF MRSEC under Cooperative
Agreement No. DMR-1720595.

[1] C. L. Kane and E. J. Mele, Quantum spin Hall effect in
graphene, Phys. Rev. Lett. 95, 226801 (2005).

[2] C. L. Kane and E. J. Mele, Z2 topological order and the
quantum spin hall effect, Phys. Rev. Lett. 95, 146802
(2005).

[3] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum
spin Hall effect and topological phase transition in HgTe
quantum wells, Science 314, 1757 (2006).

[4] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buh-
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