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We study the topological gap labeling of general 3D quasicrystals and we find that every gap in
the spectrum is characterized by a set of the third Chern numbers. We show that a quasi-periodic
structure has multiple Brillouin zones defined by redundant wavevectors, and the number of states
below a gap is quantized as an integer linear combination of volumes of these Brillouin zones. The
associated quantum numbers to characterize energy gaps can be expressed as third Chern numbers
by considering a formal relationship between an adiabatic charge pumping under cyclic deformation
of the quasi-periodic potential and a topological nonlinear electromagnetic response in 6D band
insulators.

I. INTRODUCTION

Quasicrystals are non-periodic but long-range ordered
systems found in a wide variety of physical systems
including metallic alloys[1–5], photonic quasicrystals[6–
11], ultra cold-atom systems [12–14] and twisted two-
dimensional (2D) materials. [15–19] Despite the increas-
ing importance of quasicrystalline systems, the theoreti-
cal description of their physical properties is limited by
the lack of the Bloch theorem. In periodic crystals, the
energy spectrum is quantized into the Bloch bands with
equal numbers of states, which corresponds to the area
of the Brillouin zone (BZ). Therefore each energy gap is
characterized by an integer, which is the number of the
bands below the gap. In contrast, it is supposed that
quasicrystals do not have such a quantum unit to count
the number of states, but rather the spectrum splits to
a set of infinitely many bands (the Cantor set) as the
infinite-period limit of a periodic system.

In our previous works [16, 20], we studied spectral
quantization of general 2D quasi-periodic systems and
showed that the gap labeling is actually possible in the
following sense. Specifically, the energy spectrum of a
quasicrystal is characterized by multiple BZs defined with
redundant wavevectors, and the number of states below
the gap is always quantized as an integer linear combi-
nation of the areas of these BZs. The quantum num-
bers to characterize energy gaps were shown to be topo-
logical invariants expressed as the second Chern num-
bers, by considering a mapping between 2D quasicrystals
and four-dimensional quantum Hall insulators. Topolog-
ical characterization of energy gaps in quasicrystals was
also studied in different contexts for in one-dimensional
(1D)[21–32] and two-dimensional (2D) quasiperiodic sys-
tems [33–41], while the gap labeling of three dimensional
(3D) quasicrystals is yet to be explored.

In this paper, we extend the argument for 2D [16, 20]
to 3D, and show that the spectrum of a 3D quasicrystal is
quantized by the third Chern numbers, which correspond
to electromagnetic response in six-dimensional (6D) insu-
lator. We consider a general 3D quasicrystalline system
with the number of reciprocal lattice vectors greater than
the number of the spatial dimensions. Specifically, it is
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FIG. 1. Fundamental Brillouin zones in a 3D quasiperiodic
system with four reciprocal lattice vectors, b1, b2, b3, b4

described by the Hamiltonian in a 3D space,

H =
p2

2m
+U(r),

U(r) =
∑

m1,...,mN

Um1,...,mN ei
∑N

i=1 mibi ·r, (1)

where m1, ...,mN are integers and bi (i = 1, 2, ..., N) are a
set of redundant reciprocal lattice vectors (N > 3). Then,
we can define multiple Brillouin zones by taking three
distinct vectors bi, bj and bk from N reciprocal lattice
vectors, as illustrated in Fig. 1 for the case of N = 4.
There are N!/[(N − 3)!3!] distinct Brillouin zones with
generally different volumes of V∗

i jk
= bi · (bj × bk). We

claim that, when the energy spectrum has a gap, the
electron density below the gap is quantized as

ne =
1

(2π)3

∑
i jk

C(3)
i jk

V∗i jk, (2)
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where C(3)
i jk

is the third Chern number calculated from

the occupied states. As we have N!/[(N − 3)!3!] choices
of (i, j, k), every single gap is characterized by a set of
N!/[(N − 3)!3!] third Chern numbers. The statement can
be proved by considering a formal relationship between
an adiabatic charge pumping under cyclic deformation of
the potential and a topological electromagnetic response
in a fictitious 6D band insulator.[42]

This paper is organized as follows. In Sec. II, we
present a general description of the electromagnetic re-
sponse of the (6+1)D system using an effective action
formalism. In Sec. III, we consider an adiabatic pump-
ing in the 3D quasicrystal and a mapping to the 6D sys-
tem. With the aid of the formula obtained in Sec. II
and the dimensional reduction technique, we will finally
obtain the result Eq. (2). A brief conclusion is given
in Sec. IV. Throughout the paper, we use the natu-
ral unit ~ = c = e = 1 and the Minkowski metric
ηµν = diag(−1,+1, ...,+1).

II. ELECTROMAGNETIC RESPONSE OF
(6+1)D SYSTEMS

In this section, we describe a topological nonlinear re-
sponse of a generic 6D band insulator in an electromag-
netic field, and express the response coefficient with a
third Chern number. The problem was also studied by
the semiclassical approach. [42, 43] Here we use the Eu-
clidean path integral formalism, by extending the argu-
ment for (4+1)D systems [44] to (6+1)D. The effective
action Seff in (6+1)D is defined as

eiSeff =

∫
Dc†Dc e−S−Sint (3)

where

S =
∫

dτ
∑
k

c†
k
(τ)

( ∂
∂τ
− h(k)

)
ck(τ) (4)

=
∑
kn

c†
kn

(
iωn − h(k)

)
ckn, (5)

Sint =
∑
qω

Aµ(q, ω)Jµ(−q,−ω). (6)

Here, τ = −it is imaginary time and Aµ(q, ω) =
(A0,A) is an external electromagnetic four-potential with
wavenumber q and frequency ω. The one-particle Hamil-
tonian is represented by h(k), and c†

kn
and ckn are Grass-

mann numbers of an electron with Bloch wavenumber k
and Matsubara frequency ωn. The current Jµ = (J0,J )
is expressed as

J0(q, ω) = −
∑
kn

c†
k+q,ωn+ω

ck,ωn (7)

J (q, ω) = −
∑
kn

∇kh(k)c†
k+q,ωn+ω

ck,ωn . (8)

For the (6+1)-dimensional insulator, the effective ac-
tion contains a topological term called the third Chern-
Simons term,

Seff =
C(3)

192π3

∫
A ∧ dA ∧ dA ∧ dA, (9)

with

C(3) =
π3

105

∫
d7l
(2π)7

εµνρστλδ tr G(∂µG−1)G(∂νG−1)

×G(∂ρG−1)G(∂σG−1)G(∂τG−1)G(∂λG−1)G(∂δG−1), (10)

where lµ = (iω, l) is the frequency-momentum vector and
G(l) = (iω − h(l))−1 is the one-particle Green’s function.

The detailed derivation of Eqs.̃(9) and (10) is presented
in Appendix A. We obtain the topological nonlinear re-
sponse to an external electromagnetic field Aµ as

jµ =
δSeff

δAµ

=
C(3)

48π3
εµνρστλδ∂νAρ∂σAτ∂λAδ . (11)

The coefficient C(3) in Eq. (10) is expressed as the third
Chern number of the non-abelian Berry connection in the
6D Brillouin zone (BZ). Specifically, it is written as

C(3) =
1

48π3

∫
BZ

tr f ∧ f ∧ f , (12)

where f is the Berry curvature defined by

f =
1

2
fi j dk i ∧ dk j

f αβi j = ∂ia
αβ
j − ∂ja

αβ
i − i[ai, aj]

αβ,

aαβi = i 〈αk| ∂i |βk〉 , (13)

and the indices α, β represent the occupied bands. The
derivation of Eq. (12) is described in Appendix B. The
C(3) is a topological number which is invariant under con-
tinuous deformations without closing an energy gap.

Alternatively, the C(3) of Eq. (12) can be written as

C(3) =
i

48π3

∫
BZ

tr[dP ∧ PdP]3

=
i

48π3

∫
BZ

d6k ε i jklmn

× tr
[
(∂iP)P(∂jP)(∂kP)P(∂lP)(∂mP)P(∂nP)

]
,

(14)

where P =
∑
α∈occ |αk〉 〈αk| is the projection operator

to the occupied states below the gap. This expression
is convenient for practical calculations since the gauge
fixing of the wavefunctions is not needed.
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III. TOPOLOGICAL NUMBERS IN 3D
QUASI-PERIODIC SYSTEMS

A. Adiabatic quantum pumping

Let us consider a 3D quasicrystalline system expressed
by Eq. (1), and calculate the adiabatic charge pumping
under a cyclic change of the potential U(r). We introduce
phase parameters φ1, ..., φN to the potential as

U(r; φ1, ..., φN ) =
∑

m1,...mN

Um1,...,mN ei
∑N

i=1 mi (bi ·r−φi ),

(15)

and consider a cyclic process where φi, with a certain i, is
adiabatically increased from 0 to 2π. In a periodic case
with N = 3, the process corresponds to just a parallel
translation of the potential U(r) by a real-space lattice
period ai where ai · bj = 2πδi j . Eq. (15) is a general-
ization to quasiperiodic systems, while it is not gener-
ally expressed as a simple translation. If the potential
U(r) is a summation of independent periodic potentials
U1(r),U2(r), · · · not sharing the same bi, in particular, a
change of φi is equivalent to a relative sliding of a Un with
respect to the rest Um’s. In 2D, this corresponds to inter-
layer sliding in moiré multilayer systems. [16, 19, 40, 41]

We define ∆Pi as the change of the electric polariza-
tion during a single cycle from φi = 0 to 2π. When the
spectrum has an energy gap, ∆Pi is given by

∆Pi = 2π
∂ne
∂bi

, (16)

where ne is the electron density below the energy gap.[20]
Eq. (16) can be proved by the following consideration.
When a specific reciprocal lattice vector bi is infinitesi-
mally changed to bi + δbi, this leads to a change to the
potential U at a point r which is equivalent to a phase
change by δφi = −δbi · r. This causes a polarization
change by

∆Pi
δφi
2π
= ∆Pi

(−δbi · r)

2π
. (17)

Now, we consider a closed curved surface S, and let Ne

be the number of electrons inside S. When bi is changed
to bi + δbi, the number of electrons passing through S is

δNe =

∫
S

δbi · r

2π
∆Pi · dS

=

∫
Ω

div

(
δbi · r

2π
∆Pi

)
dV =

Ω

2π
∆Pi · δbi, (18)

where Ω is the volume enclosed inside of S. Noting that
the electron density is defined as ne = Ne/Ω, we obtain
Eq. (16).

B. Mapping to a (3 + N)-dimensional system

The adiabatic charge pumping in 3D quasicrystal dis-
cussed above can be described in an alternative approach

considering an electromagnetic response in a (3 + N)-
dimensional system. By using the mapping, we will show
that the transferred charge in the pumping is interpreted
as integer-quantized response current in 6D[42], and it
finally leads to the zone quantization rule, Eq. (2). The
formulation is basically an extension of the argument for
2D quasicrystal [20] to 3D.

We consider a (3+N)D system in (x, y, z,w1,w2, ...,wN )

space, which is continuous in x, y, and z directions and
discrete in wi(i = 1, 2, ..., N) directions with lattice spac-
ing ai. For the wi-direction, we assume nearest-neighbor
tight-binding coupling ti between adjacent layers. We ap-
ply a uniform magnetic field Bxi, Byi and Bzi perpendic-
ular to xwi-plane, ywi-plane and zwi-plane, respectively.
We take the vector potential as A =

∑N
i=1(Bxi x + Byiy +

Bziz)ei, where ei is the unit vector in the wi-direction.
Since the Hamiltonian is periodic in any of the

wi-directions, the wavefunction can be written as
Ψ(x, y, z,w1,w2, ...,wN ) = ψ(x, y, z)ei

∑
i kiwi , where ki is the

Bloch wave number defined in −π/ai ≤ ki ≤ π/ai. The
(3+N)D Schrödinger equation is reduced to the 3D equa-
tion as[ p2

2m
−

N∑
i=1

2ti cos (bi · r + φi)
]
ψ(r) = Eψ(r), (19)

where

bi = aiBi = ai(Bxi, Byi, Bzi), (20)

φi = kiai . (21)

This is nothing but a 3D quasi-periodic system consid-
ered in the previous seciton. Higher harmonic terms in bi
can be incorporated by including further-range hoppings
in wi direction in the original (3 + N)D model.

Now we consider an electronic response of the (3+N)D
system to a weak external electric field Ei applied in the
wi direction. The Ei adiabatically changes the wavenum-
ber ki as dki/dt = −Ei, where the factor −1 is the charge
of an electron in natural unit. In the corresponding 3D
equation, Eq. (19), it is equivalent to an adiabatic po-
tential change by shifting φi, which was considered in
the previous section. A cyclic change from φi = 0 to 2π
corresponds to a translation of ki by the Brillouin zone
width, 2π/ai, which takes a time T = (2π/ai)/Ei.

We assume that the Fermi energy is in an energy gap
in the (3 + N)D system. The response electric current
induced by Ei is obtained by calculating those for 6D
subspaces (x, y, z,wi,wj,wk), and taking a sum over inde-
ces j, k(, i). According to Eq. (11), the response current
in the 6D subspace is given by

j(6D) =
C(3)
i jk

8π3
Ei(Bj ×Bk). (22)

The corresponding 3D current density per layer is given
by j(3D) = j(6D)aiajak , leading to

j(3D) =
C(3)
i jk

(2π)2T
bj × bk . (23)
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The total polarization change in a cyclic process is ∆Pi =

j(3D)T . Taking summations over j and k, we obtain

∆Pi =
1

(2π)2

∑
jk

C(3)
i jk

bj × bk . (24)

By applying Eq. (24) to Eq. (16), we finially obtain the
result

ne =
1

(2π)3

∑
i jk

C(3)
i jk

bi · (bj × bk), (25)

which is Eq. (2). The result is analogous to 2D quasicrys-
tal where ne is quantized by the second Chern number
[20], and also to 1D quasicrystal quantized by the first
Chern number [9]. In a d dimensional quasicrystal with
N reciprocal lattice vectors, there are N!/[(N − d)!d!] in-
dependent d-th Chern numbers.

The calculation for the Chern numbers requires the
Brillouin zone, and practically it can be achieved by con-
sidering a commensurate approximant,[16, 20] where the
periodicities of bi(i = 1, 2, ..., N) have a common super
unit cell. If we take an approximant with a sufficiently
large unit cell, the Brilloin zone volume becomes small,
and the integrand of Eq. (14) becomes almost indepen-
dent of k. In this limit, the integration over the 6D Bril-
louin zone is reduced to just a multiplication by the Bril-
louin zone volume.

The gap characterization scheme presented here is ap-
plicable to general 3D quasiperiodic systems such as qua-
sicrystalline alloys[1–5] and 3D photonic quasicrystals[7,
8, 10] as long as the spectrum has an energy gap. These
systems can be described by a set of basis vectors more
than three [45], and hence the potential U(r) can be ex-
pressed in the form of Eq. (1).

The implementation of our gap labeling method for a
given 3D quasicrystal is summarized as follows. First,
we take a Fourier transform of the given quasiperiodic
potential U(r), and determine the fundamental recipro-
cal vectors b1, b2, · · · , bN . Then we slightly deform these

wave vectors to obtain a commensurate approximant
which has a finite unit cell.[16, 20] For the approximant,
the Hamiltonian is given as a function of parameters
(kx, ky, kz, φ1, · · · , φN ), where k(3D) = (kx, ky, kz) is the
Bloch momentum in the BZ of the commensurate approx-
imant, and φi’s are the phases in Eq. (15) which move
from 0 to 2π. We choose three non-overlapping labels
i, j, k from 1, · · · , N and consider the Bloch eigenstates in
a 6D parameter space k(6D) = (kx, ky, kz, φi, φ j, φk) with

the rest of φl’s fixed. The third Chern number C(3)
i jk

is

calculated by applying Eq. (12) to the 6D Bloch states.

We can obtain all of integers C(3)
i jk

by performing the same

procedure for all the combinations of i, j, k.

IV. CONCLUSION

We have provided a topological concept to character-
ize energy gaps in 3D quasicrystals. We found that the
electron density below the gap is quantized as an integer
linear combination of volumes of multiple Brillouin zones,
which are defined by redundant reciprocal lattice vectors.
Then we showed that these integers can be expressed as
the third Chern numbers by considering a mapping be-
tween the 3D quasicrystal and a (3+N)D band insulator.
Specifically, we showed that an adiabatic charge pumping
in a potential phase change can be viewed as a projec-
tion of the nonlinear electromagnetic response in 6D sub-
spaces in (3+N)D system, which is shown to be described
by the third Chern numbers. The gap characterization
scheme presented here is applicable to general 3D qua-
sicrystalline systems having redundant periodicities more
than the number of the spatial dimensions.
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Appendix A: Derivation of Eq. (9) and (10)

Here we show that the effective action Seff of a 6D band insulator under an eletromagnetic field [Eq. (3)] includes
the term of Eq. (9) with Eq. (10). We concentrate on the term proportional to A4 in Seff , and define the four-point
function Πµρτδ(x, y, z,w) as

Seff =
1

4!

∫
d7x

∫
d7y

∫
d7z

∫
d7wΠµρτδ(x, y, z,w)Aµ(x)Aρ(y)Aτ(z)Aδ(w).

Then Πµρτδ(x, y, z,w) can be represented by

iΠµρτδ(x, y, z,w) =

∫
Dc†Dc Jµ(x)Jρ(y)Jτ(z)Jδ(w) e−S∫

Dc†Dc e−S
.
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FIG. 2. One-loop Feynman diagram that contributes to Fδτρµ(k, q, p). The solid and wavy lines correspond to electron and the
external electromagnetic field, respectively.

Since the current Jµ(x) satisfies the continuity equation ∂µJµ = 0, Πµρτδ(x, y, z,w) must satisfy

∂

∂xµ
Π
µρτδ(x, y, z,w) =

∂

∂yρ
Π
µρτδ(x, y, z,w) =

∂

∂zτ
Π
µρτδ(x, y, z,w) =

∂

∂wδ
Π
µρτδ(x, y, z,w) = 0.

This requirement suggests that the term,

Π
µρτδ(x, y, z,w) = sεµνρστλδ

∂

∂yν
δ(y − x)

∂

∂zσ
δ(z − x)

∂

∂wλ
δ(w − x) + · · ·

should be included in Πµρτδ(x, y, z,w), where s is a certain constant. This term is specific to the (6 + 1)D system as it
has 7 indices. Taking the Fourier transform of Πµρτδ(x, y, z,w), we obtain

Π
µρτδ(r, p, q, k) =

∫
d7xe−irx

∫
d7ye−ipy

∫
d7ze−iqz

∫
e−ikwΠµρτδ(x, y, z,w)

= (2π)7δ(r + p + q + k)Π̃µρτδ(p, q, k), (A1)

where

Π̃
µρτδ(p, q, k) = −isεµνρστλδpνqσkλ + · · · . (A2)

The constant s is given by

s =
1

7!
εµνρστλδ

∂

∂pν
∂

∂qσ
∂

∂kλ
iΠ̃µρτδ(p, q, k)

����
p=q=k=0

. (A3)

The four point function iΠ̃µρτδ(p, q, k) has contributions from 3! Feynman diagrams. One of them is illustrated in
Fig. 2, and others are obtained by permutation. We can explicitly perform path integrals, giving

iΠ̃µρτδ(p, q, k)

=

∫
Dc†Dc Jµ(−p − q − k)Jρ(p)Jτ(q)Jδ(k) e−S∫

Dc†Dc e−S

=Fδτρµ(k, q, p) + Fδρτµ(k, p, q) + Fτδρµ(q, k, p) + Fτρδµ(q, p, k) + Fρτδµ(p, q, k) + Fρδτµ(p, k, q), (A4)

where we define

Fδτρµ(k, q, p) = −
∫

d7l
(2π)7

tr G(l)
∂G−1(l)
∂lδ

G(l + k)
∂G−1(l + k)

∂lτ
G(l + k + q)

∂G−1(l + k + q)
∂lρ

G(l + k + q + p)
∂G−1(l)
∂lµ

,

and the minus sign originates from the fermion loop. In the calculation, we used the expression

Jµ(q, ω) =
∑
k,n

c†
k+q,ωn+ω

∂G−1

∂kµ
ck,ωn .
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By applying Eq. (A4) to Eq. (A3), we finally obtain

s = −
3!

7!

∫
d7l
(2π)7

εµνρστλδ tr G(∂µG−1)G(∂νG−1)G(∂ρG−1)G(∂σG−1)G(∂τG−1)G(∂λG−1)G(∂δG−1).

Appendix B: Derivation of Eq. (12)

Let us show that the coefficient C(3) in Eq. (10) is expressed as the third Chern number as in Eq. (12). The derivation
is closely analogous to Ref. [44], which investigated the classification of (4+1)D time reversal invariant topological
insulators in terms of the 2nd Chern number and (4+1)D Chern-Simons theory. Here we extend the argument to
(6+1)D.

First, we show that any continuous deformation of h(k) does not change Eq. (10). When h(k) is infinitesimally
changed to h(k) + δh, the Green’s function G is changed to G + δG. The change in each factor G(∂µG−1) in Eq. (10)
makes the same contribution to the change in Eq. (10), giving

δC(3) = 7 ×
π3

105

∫
d7l
(2π)7

εµνρστλδ tr δ
(
G(∂µG−1)

)
G(∂νG−1)G(∂ρG−1)G(∂σG−1)G(∂τG−1)G(∂λG−1)G(∂δG−1),

where the change of the factor G(∂µG−1) is given by

δ
(
G(∂µG−1)

)
= −G∂µ(G−1δG)G−1.

Integrating by parts, we obtain δC(3) = 0.
Without loss of generality, the chemical potential can be defined to be zero. Since any gapped Hamiltonian h(k)

can be continuously deformed into the simple Hamiltonian h0(k), that is the form

h0(k) = εG
∑

1≤α≤M

|αk〉 〈αk| + εE
∑

M+1≤α′

|α′k〉 〈α′k|

= εGPG(k) + εEPE (k),

where PG(PE ) is the projection operator of ground states (excited states), α = 1, 2, ...M are occupied bands, and
α′ = M + 1, ... are unoccupied bands. Here, εG(εE ) is the energy of the ground states (excited states) and satisfies
εG < 0 < εE . Therefore, it is sufficient to prove Eq. (12) for the simple Hamiltonian h0(k). In this case, the one-particle
Green’s function is written as

G(k, ω) =
1

iω − εGPG(k) − εEPE (k)
=

PG(k)

iω − εG
+

PE (k)

iω − εE
.

(B1)

The derivatives of G−1(k, ω) are calculated as

∂G−1

∂k0
(k, ω) = 1,

∂G−1

∂k i
(k, ω) = −εG

∂PG

∂k i
(k) − εE

∂PE

∂k i
(k) = (εE − εG)

∂PG

∂k i
(k), (i = 1, 2, 3, 4, 5, 6).

By using this, Eq. (10) can be written as

C(3) =
π3

105

∫
d7k
(2π)7

εµνρστλδ tr G(∂µG−1)G(∂νG−1)G(∂ρG−1)G(∂σG−1)G(∂τG−1)G(∂λG−1)G(∂δG−1)

= 7 ×
π3

105

∫
d7k
(2π)7

ε i jklmn tr G(∂0G−1)G(∂iG−1)G(∂jG−1)G(∂kG−1)G(∂lG−1)G(∂mG−1)G(∂nG−1)

=
π3

15

∑
abcdef=G,E

∫
d7k
(2π)7

ε i jklmn tr
Pa(∂iPG)Pb(∂jPG)Pc(∂kPG)Pd(∂lPG)Pe(∂mPG)Pf (∂nPG)

(iω − εa)2(iω − εb)(iω − εc)(iω − εd)(iω − εe)(iω − ε f )
(εE − εG)

6. (B2)

From the identities PG + PE = 1 and PGPE = PEPG = 0, we have

PE
∂PG

∂k i
=
∂PG

∂k i
PG, PG

∂PG

∂k i
=
∂PG

∂k i
PE .
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Hence the trace in Eq. (B2) can be nonzero only when (a, b, c, d, e, f ) = (G, E,G, E,G, E) or (E,G, E,G, E,G), giving

C(3) =
π3

15

∫
d7k
(2π)7

ε i jklmn tr
PG(∂iPG)PE (∂jPG)PG(∂kPG)PE (∂lPG)PG(∂mPG)PE (∂nPG)

(iω − εG)4(iω − εE )3
(εE − εG)

6

+ tr
PE (∂iPG)PG(∂jPG)PE (∂kPG)PG(∂lPG)PE (∂mPG)PG(∂nPG)

(iω − εG)3(iω − εE )4
(εE − εG)

6

= −
π3

15

∫
d7k
(2π)7

ε i jklmn (εE − εG)
7

(iω − εG)4(iω − εE )4
tr(∂iPG)PE (∂jPG)(∂kPG)PE (∂lPG)(∂mPG)PE (∂nPG)

= −
π3

15

∫ +∞

−∞

idω
2π

∫
dk
(2π)6

ε i jklmn (εE − εG)
7

(iω − εG)4(iω − εE )4
tr(∂iPG)PE (∂jPG)(∂kPG)PE (∂lPG)(∂mPG)PE (∂nPG)

=
−i

48π3

∫
d6kε i jklmn tr(∂iPG)PE (∂jPG)(∂kPG)PE (∂lPG)(∂mPG)PE (∂nPG). (B3)

Finally, we write this equation in terms of the Berry curvature. Using the Berry connection,

aαβi = i 〈αk|
∂

∂k i
|βk〉 ,

the Berry curvature is expressed by

f αβi j = ∂ia
αβ
j − ∂ja

αβ
i − i[ai, aj]

αβ

= i
(〈
∂iαk

��∂j βk〉
−

〈
∂jαk

��∂iβk〉)
+ i

(
〈αk|∂iγk〉

〈
γk

��∂j βk〉
−

〈
αk

��∂jγk〉
〈γk|∂iβk〉

)
= i

(〈
∂iαk

��∂j βk〉
−

〈
∂jαk

��∂iβk〉)
− i

(
〈∂iαk|γk〉

〈
γk

��∂j βk〉
−

〈
∂jαk

��γk〉
〈γk|∂iβk〉

)
= i

(〈
∂iαk

��∂j βk〉
−

〈
∂jαk

��∂iβk〉)
− i

(
〈∂iαk| PG

��∂j βk〉
−

〈
∂jαk

�� PG |∂iβk〉
)

= i
(
〈∂iαk| PE

��∂j βk〉
−

〈
∂jαk

�� PE |∂iβk〉
)
.

Thus we have

fi j =
∑
αβ

|αk〉 f αβi j 〈βk|

= i
(
(∂iPG)PE (∂jPG) − (∂jPG)PE (∂iPG)

)
.

By using this, Eq. (B3) is transformed to

C(3) =
1

23
×
−i

48π3

∫
d6kε i jklmn tr

(
−i fi j

)
(−i fkl)(−i fmn)

=
1

23
×

1

48π3

∫
d6kε i jklmn tr fi j fkl fmn

=
1

48π3

∫
BZ

tr f ∧ f ∧ f .
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erostructure,” Phys. Rev. B 101, 041113 (2020).

42 Ioannis Petrides, Hannah M Price, and Oded Zilber-

http://dx.doi.org/10.1038/nmat1799
http://dx.doi.org/10.1038/nmat1799
http://dx.doi.org/ 10.1103/PhysRevA.72.053607
http://dx.doi.org/ 10.1103/PhysRevA.72.053607
http://dx.doi.org/10.1364/OE.17.001844
http://dx.doi.org/10.1364/OE.17.001844
http://dx.doi.org/10.1364/OE.18.020512
http://dx.doi.org/ 10.1103/PhysRevLett.109.106402
http://dx.doi.org/ 10.1103/PhysRevLett.109.106402
http://dx.doi.org/10.1038/nphoton.2012.343
http://dx.doi.org/10.1038/nphoton.2012.343
http://dx.doi.org/10.1103/PhysRevX.6.011016
http://dx.doi.org/10.1103/PhysRevX.6.011016
http://dx.doi.org/10.1038/s41567-021-01229-9
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevB.93.245113
http://dx.doi.org/10.1103/PhysRevB.93.245113
http://dx.doi.org/10.1103/PhysRevB.103.155410
http://dx.doi.org/10.1103/PhysRevB.104.035306
http://dx.doi.org/10.1103/PhysRevB.101.041113
http://dx.doi.org/10.1103/PhysRevB.101.041410
http://dx.doi.org/10.1103/PhysRevB.101.041410
http://dx.doi.org/ 10.1103/PhysRevB.101.041112
http://dx.doi.org/ 10.1103/PhysRevResearch.4.013028
http://dx.doi.org/ 10.1103/PhysRevResearch.4.013028
http://dx.doi.org/ 10.1103/PhysRevB.94.205437


9

berg, “Six-dimensional quantum hall effect and three-
dimensional topological pumps,” Phys. Rev. B 98, 125431
(2018).

43 Ching Hua Lee, Yuzhu Wang, Youjian Chen, and Xiao
Zhang, “Electromagnetic response of quantum hall sys-
tems in dimensions five and six and beyond,” Physical

Review B 98, 094434 (2018).
44 Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang,

“Topological field theory of time-reversal invariant insula-
tors,” Phys. Rev. B 78, 195424 (2008).

45 Steurer Walter and Sofia Deloudi, Crystallography of qua-
sicrystals: concepts, methods and structures, Vol. 126
(Springer Science & Business Media, 2009).

http://dx.doi.org/10.1103/PhysRevB.78.195424

	 Topological gap labeling with third Chern numbers in three-dimensional quasicrystals 
	Abstract
	introduction
	Electromagnetic response of (6+1)D systems
	Topological numbers in 3D quasi-periodic systems
	Adiabatic quantum pumping
	Mapping to a (3+N)-dimensional system

	conclusion
	Acknowledgments
	Derivation of Eq. (9) and (10) 
	Derivation of Eq. (12)
	References


