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The valley degree of freedom in two-dimensional materials provides an opportunity to extend the
functionalities of valleytronics devices. Very short valley lifetimes demand the ultrafast control of
valley pseudospin. Here, we theoretically demonstrate the control of valley pseudospin in WSe2
monolayer by single-cycle linearly polarized laser pulse. We use the asymmetric electric field con-

trolled by the carrier-envelope phase (CEP) to make the valley polarization between K and K
′
-point

in the Brillouin zone (BZ). Time-dependent density functional theory with spin-orbit interaction re-
veals that no valley asymmetry and its CEP dependence is observed within the linear-optical limit.
In the nonlinear-optical regime, linearly polarized pulse induces a high degree of valley polarization
and this polarization is robust against the field strength. Valley polarization strongly depends and
oscillates as a function of CEP. The carrier density distribution forms nodes as the laser intensity
increases, our results indicate that the position of the carrier density in the BZ can be controlled
by the laser intensity. From the analysis by the massive Dirac Hamiltonian model, the nodes of the
carrier density can be attributed to the Landau-Zener-Stückelberg interference of wave packets of
the electron wave function.

I. INTRODUCTION

Mechanical exfoliation of atomically thin layers by
scotch tape from van der Waals bulk crystals has opened
up new opportunities for the design of nanoscale quan-
tum materials [1, 2]. Specifically, the realization of mono-
layer graphene in 2004 [3] has ignited extensive research
efforts on two-dimensional (2D) layered materials. 2D
materials exhibit unique mechanical, optical, and elec-
tronic properties compared to their bulk counterparts [4].
Owing to their extraordinary physical properties, the
study of 2D monolayers has now been established as
an emerging field. For instance, one can find numer-
ous reports on graphene [5], silicene [6], transition metal
dichalcogenides (TMDC) [7], and phosphorene [8]. 2D
materials have a wide range of applications in the field
of electronics and an evolving field of optoelectronics.
They feature strong light-matter interaction [4], ultrafast
broadband optical response [9], and large optical nonlin-
earity [10], thus have a great potential for optoelectronic
applications such as photodetectors, tunneling and imag-
ing devices [2, 4, 11].

2D materials are classified as magnetic and nonmag-
netic semiconductors, topological insulators, metals, and
half metals. Within a wide class of 2D materials fam-
ily, materials with broken inversion symmetry, such as
TMDC monolayers, which have received recent atten-
tion [12]. The lack of inversion symmetry in TMDC
monolayer induces a novel Zeeman type spin splitting
which results in two degenerate yet inequivalent valleys
in the band structure [13–16]. Valleys are local minima
that correspond to different crystal momenta in the re-
ciprocal space. Spin-orbit coupling (SOC) lifts the spin
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degeneracy in both valleys and the opposite spin angu-
lar momenta appear in two valleys owing to the time-
reversal symmetry. Thus, the spin-valley locking and the
interplay of two inequivalent valleys give rise to valley-
dependent optical selection rules [17]. Manipulation of
valley pseudospin thus becomes a central theme in the
field of valleytronics. Several methods have been pro-
posed to achieve transient valley polarization such as op-
tical excitations [18–20], by applying an external mag-
netic field and magnetic proximity effect induced by the
substrate [21–23]. However, due to the several practical
limitations and very short valley lifetimes 103-106 fem-
toseconds (fs) [24], ultrafast control of valley selection on
fs time scales is in urgent need.

Experimental demonstration of intense terahertz pulse
driven sub-cycle control of valley dynamics has opened a
way to manipulate the valley pseudospin that is switch-
able within few fs [25]. Moreover, some theoretical works
have also shown the ultrafast control of valley excitation
on fs timescale [26–31]. Recently, valley polarization us-
ing few-cycle linearly polarized pulses with the controlled
carrier-envelope phase (CEP) has also been proposed by
using the density matrix approach [32].

In this work, we investigate the linearly polarized
single-cycle laser pulse control of valley pseudospin in
WSe2 monolayer employing real-time time-dependent
density functional theory (RT-TDDFT). The use of lin-
early polarized pulses to induce valley polarization dif-
ferentiate the present study from the previous works
where circularly polarized light is used to induce pop-
ulation imbalance between two valleys. Secondly, the
RT-TDDFT can describe electron dynamics under in-
tense laser field without any empirical parameters [33].
We have developed the program for the electron and
electro-magnetic field dynamics, open-source package
Scalable Ab-initio Light-Matter simulator for Optics and
Nanoscience (SALMON) [34, 35], which employs the
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RT-TDDFT. We have implemented the SOC with non-
collinear local spin density [36–38] to the SALMON ver-
sion 2.0 to describe the spin-dependent electron dynam-
ics.

Laser intensity and carrier-envelope phase (CEP) de-
pendence of the valley polarization is studied. Linearly
polarized single-cycle pulse induces a high degree of val-
ley polarization. Moreover, the valley polarization is ro-
bust against the field strength although it oscillates as
a function of CEP. We found that the distinct node for-
mation of carrier density in the Bloch phase space in-
duced by the quantum interference at strong fields (≥
1011 W/cm2). Our results demonstrate the single opti-
cal cycle control of valley pseudospin by linear polarized
laser pulses.

II. THEORETICAL FORMALISM

A. RT-TDDFT

We use the 2D approximation method that describes
the electron dynamics and light propagation in extremely
thin layers at normal incidence [39, 40]. Here, we briefly
describe the theoretical formalism for this method.

The polarization and propagation directions for light
pulses are taken along the x axis and z axis, respectively.
Also, we assume that the thin layer is in the xy plane. We
consider only the x component of vector fields and omit
the label “x”. By using the Maxwell equations, we can
describe the propagation of macroscopic electromagnetic
fields in the form of the vector potential A(z, t) as,

1

c2
∂2A(z, t)

∂t2
− ∂2A (z, t)

∂z2 =
4π

c
J(z, t), (1)

where J(z, t) is the macroscopic current density in a thin
layer. For an atomic monolayer material, the macro-
scopic electric current density in Eq. (1) can be expressed
as

J (z, t) ≈ δ(z)J2D(t), (2)

where J2D(t) is 2D current density of the monolayer. We
deal with it as a boundary value problem where reflected
(transmitted) fields can be determined by the connection
conditions at z = 0. From Eq. (2), we obtain the conti-
nuity equation of A(z, t) at z = 0 as follows

A(z = 0, t) = A(t)(t) = A(i)(t) +A(r)(t), (3)

where the A(i), A(r), and A(t) are the incident, reflected,
and transmitted fields, respectively. From the Maxwell
equation (1) and Eq. (2), we get the basic equation of
the 2D approximation method,

dA(t)

dt
=
dA(i)

dt
+ 2πJ2D

[
A(t)

]
(t). (4)

Here, J2D

[
A(t)

]
(t) is the 2D current density that is de-

termined by the vector potential at z = 0 and it is equal
to A(t)(t).

By using the velocity gauge [41], the time-dependent
Kohn-Sham (TDKS) equation using Bloch orbitals
ub,k(r, t) which is a two-component spinor with b being
the band index and k the 2D crystal momentum of the
thin layer, is described as,

i~
∂

∂t
ub,k(r, t) =

[ 1

2m

(
−i~∇+ ~k +

e

c
A(t)(t)

)2

−eϕ(r, t) + v̂
k+ e

~cA
(t)(t)

NL + vxc(r, t)
]
ub,k(r, t),

(5)

where the scalar potential ϕ(r, t) includes the Hartree
potential from the electrons and the local part of the
ionic pseudopotentials and we have defined vkNL ≡
e−ik·rv̂NLe

ik·r, where v̂NL is the nonlocal part of the ionic
pseudopotential. vxc(r, t) is the exchange-correlation
potential. The SOC is incorporated through the j-
dependent nonlocal potential v̂NL [38]. The Bloch or-
bitals ub,k(r, t) are defined in a box containing the unit
cell of the 2D thin layer sandwiched by vacuum regions.
The 2D current density J2D

[
A(t)

]
(t) in Eq. (4) is derived

from the Bloch orbitals as follows:

J2D(t) = − e

m

∫
dz

∫
Ω

dxdy

Ω

occ∑
b,k

u†b,k(r, t)

×
[
−i~∇+ ~k +

e

c
A(t)(t) +

m

i~

[
r, v̂

k+ e
~cA

(t)(t)

NL

]]
ub,k(r, t),

(6)

where Ω is the area of the unit cell and the sum is taken
over the occupied orbitals in the ground state. In the 2D
approximation method, coupled Eq. (4) and Eq. (5) are
simultaneously solved in real time.

The excited electron population is defined as,

ρk(t) =
∑
c,v

∣∣∣∣∫
Ω

d3r u∗v,k(r, t)uGS
c,k+ e

~c x̂A(t)(t)(r)

∣∣∣∣2 , (7)

where v and c are the indices for the valence and con-
duction bands, respectively, and uGS

b,k(r) = ub,k(r, t = 0)
is the Bloch orbital in the ground state.

RT-TDDFT calculations are performed using
SALMON version 2.0. The lattice constant of WSe2

monolayer is set to a = b = 3.32 Å. The adiabatic
local density approximation with Perdew-Zunger func-
tional [42] is used for the exchange-correlation. A slab
approximation is used for the z axis with the distance
of 20 Å between the atomic monolayers. The dynamics
of the 24 valence electrons are treated explicitly while
the effects of the core electrons are considered through
norm-conserving pseudopotentials from the OpenMX
library [43]. The spatial grid sizes and k-points are opti-
mized according to the converge results. The determined
parameter of the grid size is 0.21 Å while the optimized
k-mesh is 15 × 15 in the 2D Brillouin zone (BZ).
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B. Two-band model

In order to understand the physical mechanism behind
the RT-TDDFT results, we perform model calculations
using a minimal band model [15, 44, 45]. The model
Hamiltonian including the second order coupling for the
low energy physics around K or K ′ point is described as
below:

Hτ [k] =

(
∆
2 τat̃k

τat̃k −∆
2

)
+a2k2

(
γ1 γ3

γ3 γ2

)
+

(
0 0
0 τsλ

)
,

(8)
where τ = +1 (−1) corresponds to the K (K ′) point, a
is the lattice constant, ∆ is the bandgap, t̃ is the hop-
ping parameter, λ is the spin-orbit splitting of the valence
band and k is relative to τK. Here we consider only the
electron motion along the x axis and omit the y direction
(ky = 0). The parameters γ1 and γ2 represent the break-
ing of the electron-hole symmetry. The parameter γ3 is
responsible for the band asymmetry. These parameters
are determined by fitting the calculated band structure
by SALMON. The first and second terms are the massive
Dirac Hamiltonian and its second order correction term,
respectively. The third term is the spin-orbit coupling
Hamiltonian and s = ±1 is the spin index.

By diagonalizing the Hamiltonian, we have the con-
duction and valence wavefunctions at the ground state:

φτck =

 √
Ωτk+ατk

2Ωτk

sτk

√
Ωτk−α

τ
k

2Ωτk

 , φτvk =

 √
Ωτk−α

τ
k

2Ωτk

−sτk
√

Ωτk+ατk
2Ωτk

 ,

(9)
where ατk = (Hτ

11[k] − Hτ
22[k])/2 and Ωτk =√

(ατk)2 + (Hτ
12[k])2. Here sτk = sgnHτ

12[k] is the sign
factor of the off-diagonal element.

The electron dynamics in the presence of the electric
field E(t) is described by

i~
d

dt
ψτk(t) = Hτ

[
k +

e

~c
A(t)

]
ψτk(t), (10)

where ψτk(t) = (ψτk1 (t), ψτk2 (t))T is the time-dependent
wavefunction and A(t) is the vector potential (it satisfies
E(t) = −(1/c)dA(t)/dt). The initial value of the wave-
function is taken as follows:

ψτk(t = 0) = φτvk. (11)

The excitation probability from the valence band to the
conduction band is written as

P τ (t) =
1

Nk

∑
k

|〈φτck|ψτk(t)〉|2 , (12)

where the sum is taken over a certain region of the k-
point sampling around k = 0. Nk is the number of the
sampling points.

To get an intuitive understanding for the transition,
we describe below an approximate evaluation of Eq. (12)

using the Landau–Zener theory ignoring the second and
third terms in the Hamiltonian of Eq. (8). We note that
the Landau–Zener theory is a semi-classical approxima-
tion and can be justified when the applied electric field is
sufficiently strong. The valence and conduction eigenen-
ergies are given by

εck = +Ω(k), εvk = −Ω(k), Ω(k) ≡
√

∆2

4
+ a2t̃2k2.

(13)
In this paper, we utilize a single-cycle pulse for all the
calculations. In such cases, we can assume that the
Landau–Zener transitions occur twice at the times t1 and
t2 (t2 > t1) for each k point, at which the vector potential
crosses k as follows:

k +
e

~c
A(t1,2) = 0. (14)

The tunnelling probability at t1 and t2 may be written
as PLZ and 1− PLZ, respectively, where

PLZ = exp

(
−2π

∆2

4~v

)
, v =

2e

~
|E(t1)| at̃. (15)

By considering the phase factor due to the adiabatic time
evolution, we have

P (t) ∼ 4PLZ(1− PLZ) sin2

[∫ t2

t1

dtΩ
(
k +

e

~c
A(t)

)]
.

(16)
The interference that originates from two transitions at
t1 and t2 is known as the Landau-Zener-Stckelberg in-
terference. The cancellation condition by the Landau-
Zener-Stckelberg interference is given as,∫ t2

t1

dtΩ
(
k +

e

~c
A(t)

)
= 0. (17)

Although the Landau-Zener-Stckelberg theory provides
a simple and intuitive understanding for excitation pro-
cesses, we should note that it provides results of quanti-
tative accuracy for a limited parameter region.

III. RESULTS AND DISCUSSION

Fig. 1(a) shows the monolayer of WSe2 along with the
first BZ. WSe2 is a layered structure where W atoms are
sandwiched between the top and bottom Se layers in a
hexagonal lattice. The six corners of hexagonal BZ con-
tain two inequivalent high symmetry K and K

′
points

at the edges owing to the honeycomb crystal structure.
The real space armchair direction of WSe2 belongs to Γ -
M while zigzag correspond to Γ -K in reciprocal space.
Fig. 1 (b) shows the dispersion of the bands (Conduc-
tion band minimum (CBM) - Valence band maximum
(VBM)) as a function of the wavevector k in the whole

BZ. The band contour at K (K
′
) points is a triangle and

this so-called trigonal warping indicates the anisotropic
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FIG. 1. (a) WSe2 monolayer along with the first BZ. The relevant polarization directions, armchair (Γ -M in reciprocal space),
and zigzag (Γ -K) are labeled by arrows. (b) 2D WSe2 energy map of (CBM-VBM) as a function of the wavevector k in the
hexagonal BZ, and (c) WSe2 band structure along high symmetry directions. The red and blue dots correspond to Sz = ↑ and
Sz = ↓ respectively. Electric field and vector potential of single-cycle 10 fs long linearly polarized laser dependence at various
CEP, (d) ϕ = 0 (e) ϕ = π

4
and (f) ϕ = π

2
.

carrier distributions in the WSe2 monolayer. The elec-
tronic band structure of the WSe2 is shown in Fig. 1(c).

WSe2 has a direct bandgap of 1.25 eV at K (K
′
) and due

to the lack of inversion symmetry, all bands are split by
the intrinsic SOC except at the time-reversal invariant
Γ and M point. Thus, owing to time-reversal symmetry
and strong SOC, the top of the valence band of WSe2 is
spin up (spin down) in the K (K

′
) valley. The energy de-

generate valleys have a large VBM spin splitting of ∼0.45
eV that agrees well with previous studies [14–16].

Long pulses containing several optical cycles resemble
a continuous wave where maxima of electric field concur-
rence with the zero of the vector potential. In contrast,
ultrashort pulses containing few optical cycles, the con-
dition (maxima of E(t) = 0 of A(t)) can be controlled by
CEP (ϕ). ϕ is the relative phase of the pulse envelope and
the oscillating electric field which plays a significant role
in the pulse waveform for ultrashort laser pulses. Thus,
we are taking advantage of ϕ to manipulate the valley
polarization by using a laser pulse of single optical cy-
cle. To explore the ϕ dependence on valley pseudospin,
we apply linearly polarized pulses parallel to armchair
(Γ -M) and zigzag (Γ -K) directions. We use the vector

potential of the following waveform,

A(i) (t) = −cEmax

ω
f (t) cos

{
ω

(
t− TP

2

)
+ ϕ

}
(18)

where ω is the average frequency, Emax is the maximum
amplitude of the electric field, ϕ is CEP, and TP is the
pulse duration. The pulse envelope function is of cos4

shape for the vector potential given as

f(t) =

{
cos4

(
π t−TP /2TP

)
0 ≤ t ≤ TP

0 otherwise
. (19)

We use the frequency of 0.4 eV, the pulse length is set to
TP = 10 fs and the total computation time is twice the
pulse length, and the time step size is set to 5×10−4 fs.
Fig. 1(d-f) shows the electric field and vector potential
dependence on ϕ. At ϕ = 0, the peak of the electric
field coincides with the zero of vector potential. For ϕ =
π
4 vector potential has a nonzero value at the peak of
the pulse envelope while at ϕ = π

2 the electric field has
positive and negative peaks with the nonzero value of
vector potential.

We start from the field polarized along the Γ -M direc-
tion. The band contour along with the electronic band
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FIG. 2. Temporal development of excitation energies for various intensities at CEP (a) ϕ = 0 (b) ϕ = π
4

and (c) ϕ = π
2

.
Applied pulsed electric field and Induced electric current density as a function of time at CEP (d) ϕ = 0 (e) ϕ = π

4
and

(f) ϕ = π
2

. For a clear comparison, the results of weak pulses are rescaled up by multiplying with numerous factors.

structure (see Fig. 1(b, c) displays no asymmetry in Γ -
M direction. Thus, we do not expect valley polarization
for the field polarized along the Γ -M direction. Note
that for confirmation, valley population at the end of a
single-cycle is checked at different ϕ, the valley popula-
tion is found to be indifferent at both K and K

′
valley

(not shown here). Hence valley polarization does not ex-
ist for the field polarized along Γ -M because of the lattice
symmetry in that direction. On the other hand, owing
to trigonal wrapping, the polarization parallel to Γ -K
experiences different band curvature with respect to K
and K

′
point. Hence, the field polarized along the Γ -K

may experience strong asymmetries that can lead to the
possibility of generating valley polarization. Therefore,
from now on we will focus on the Γ -K direction.

Fig. 2(a-c) shows the excitation energy for various laser
intensities at ϕ = 0, π

4 , and π
2 respectively calculated by

the RT-TDDFT. Excitation energy is defined as the dif-
ference of the energy density integrated over the unit cell
that include three atoms at time t and that in the ground
state. For weak intensity (109 and 1010 W/cm2), the ex-
citation energy is pronounced during the irradiation of
the pulsed electric field and turns out to be zero as soon
as the pulse ends because the electronic state goes back
to its ground state. On the other hand, the excitation en-

ergy at the intense field (> 1010 W/cm2) is substantially
large and does not vanish even after the pulse ends. Exci-
tation energy has a more interesting dependence on the ϕ
that is independent of the laser intensity. For ϕ = 0 and
π
4 the electric field has one maxima that are present in
the first half cycle of the pulse thus the excitation energy
is dominant in the first half and reduces in the other half
cycle. In contrast, the electric field at ϕ = π

2 has two
field maxima (positive and negative) and the excitation
energy is even higher in the second half than the first
half cycle. In addition, at the given intensity the total
excitation energy has the order of ϕ = π

2 > ϕ = π
4 >

ϕ = 0.
Before going to the detailed discussion on valley po-

larization, the time profile of the incident electric field
and the induced electric current density by RT-TDDFT
at multiple ϕ is shown in Fig. 2(d-f). The current den-
sity depends on the electric field amplitude as well as
on the ϕ. But regardless of the field amplitude and ϕ,
the current is not in phase with the incident electric field
representing the typical semiconducting optical response
of WSe2 monolayer. The current density at the weak
electric field (I = 109 W/cm2) indicates the linear opti-
cal response due to a similar time profile to the pulsed
electric field. As the field amplitude increases, the cur-
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rent starts to depart from the linear response and the
distortion in current density becomes very visible at the
intensity I = 1012 W/cm2, an indication of the strong
nonlinear response of electrons. The behavior of the ex-
citation energy and current density indicates that valley
asymmetry will have a strong dependence on the inten-
sity and ϕ.

We further investigate the distribution of k-resolved
electron populations of the conduction band. Valley pop-
ulation calculated by the RT-TDDFT method has been
shown in Fig. 3 at various intensities and ϕ at the end
of the pulse using Eq. (7). First, we discuss the effect
of intensity on the valley population. Starting from a
very weak intensity of 1×109 W/cm2, we find an equal

population at K and K
′
point, moreover, ϕ dependence

is also not realized in the valley population. Hence no
valley asymmetry is present within the limit of linear op-
tics. As we increase the intensity to 1×1010 W/cm2, the

difference in the population at K and K
′
point starts to

arise. Further increase in intensity not only increases the
difference in the population at two valleys but also the
carrier density starts to shift around K and K

′
points.

The intensity dependence can be understood in a sim-
ple manner, as the laser interacts with the WSe2 mono-
layer, electrons start to tunnel from VBM to CBM. At
weak intensity, the tunneling from VBM to CBM is very
weak and it becomes stronger with the increase in in-
tensity. The formation of nodes in carrier density distri-
bution at intense laser fields is observed around K(K

′
)

point. Furthermore, the difference in valley population
also strongly depends on ϕ. As we described above, at
ϕ = 0, vector potential is zero at the maxima of the
electric field owing the laser field couple equally to both
valleys regardless of the intensity. As the ϕ is varied, the
value of the vector potential at the field peaks changes
that control the population difference between two val-
leys. The results of the k-resolved population reveal that
the valley asymmetry by linearly polarized pulses is a
nonlinear optical phenomenon.

To explore the valley asymmetry as a function of ϕ, val-
ley polarization is calculated by the RT-TDDFT, shown
in 4 (a). Valley polarization is defined as,

VP= 2
ρn,K − ρn,K′

ρn,K + ρn,K′
(20)

where ρn,K(ρn,K′ ) is obtained by integrating the electron
population in a so-called triangle area whose size corre-
sponds to the same spin area around K(K

′
) point. Note

that electron population switches to the opposite valley
when the vector potential changes its sign from negative
to positive for ϕ > π. The valley polarization for weak-
est intensity I = 1×109 W/cm2 is zero for all CEP con-
firm the fact that the valley polarization is absent within
the linear-optical limit. By increasing the intensity, we
enter in the nonlinear regime and the substantial valley
polarization is observed for I = 1×1010 W/cm2. The val-
ley polarization increases gradually with ϕ and reaches

its maximum value at ϕ = π
2 , shows a typical sine wave

curve. The valley polarization increases more and also in-
verted its sign with the further increase in intensity. The
maximum valley polarization is achieved for the strongest
intensity of 1×1012 W/cm2 and the valley polarization is
almost twice as compared to 1×1010 W/cm2. Valley po-
larization is robust against field strength but in all cases
oscillate as a function of CEP. Although, the valley po-
larization is much smaller than the one-photon optical
excitation with circularly polarized pulses. Nonetheless,
a sine-like curve as shown in Fig. 4(a) indicates that the
valley polarization induced by linearly polarized pulse
can be realized experimentally.

As shown in Fig. 3, the carrier density starts to shift
around K(K

′
) point and the carrier density distribution

starts to forms nodes at strong field intensities. This laser
intensity dependence indicates that the position of the
carrier density in the BZ can be controlled with laser in-
tensity. Fig. 4(b) shows the shift in the carrier density as
a function of the vector potential amplitude and intensity
at ϕ = π/2. Shift in the carrier density is obtained by
calculating the spreading area of excitation from mean
position of the carrier density to K point in the BZ.
The vector field amplitude has a linear dependence on
the shift of carrier density. By increasing the intensity,
more nodes in the carrier population start to appear and
this may refer to stronger quantum interferences of wave
packets. This will be explained in detail in the last sec-
tion.

To go through the valley polarization details, we
have drawn the band resolved charge and spin-
decomposed carrier population calculated by the RT-
TDDFT. Fig. 5(a) shows the temporal evolution of
charge and spin-resolved population of intensity 1×1010

W/cm2 at ϕ = π
2 . The main concerned bands involved

in this process are CBM-1 and CBM-2 that represent
the spin-orbit splitted lower and upper energy conduc-
tion band respectively. Three-time steps are chosen as,
around the first and second maxima of the electric field
and at the end of the pulse. CBM-2 has the same spin as
VBM thus at 4.0 fs the electrons are excited to CBM-2
at K(K

′
). One can see that at 7.0 fs which is the second

half of the pulse, more electrons are excited and we note
the asymmetry in the population at that point. The ex-
cited electron population becomes small when the laser
field ends at 10 fs because most of the electrons go back
to their ground state due to very weak intensity. Spin is
also confined at K and K

′
points. The charge and spin-

resolved population of intensity 1×1011 W/cm2 is shown
in Fig. 5(b) at ϕ = π

4 (where we find the maximum valley
asymmetry). Charge and spin dynamics are the same as
found at 1×1010 W/cm2 intensity nevertheless the ex-
cited electrons reside in the CBM-2 even the pulse ends.
At the most intense case of the 1×1012 W/cm2 field,
we find highly nonlinear interaction and electrons spread
more widely throughout the Brillouin zone as shown in
Fig. 5(c). The delta (∆) points at CBM close to K(K

′
)

with opposite spin (see Fig. 1(c)) plays an important role
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FIG. 3. Distribution of k-resolved electron populations in the first BZ of the conduction band at the end of a single optical cycle
pulse. Electron population is summed over the entire conduction band, at various CEP and intensities. Electron population
along Γ-K direction at I = 1×109 W/cm2 field for CEP (a) ϕ = 0 (b) ϕ = π

4
and (c) ϕ = π

2
. (d–f) is the same as (a–c) for I

= 1×1010 W/cm2, (g–i) for I = 1×1011 W/cm2 while (j–l) is for I = 1×1012 W/cm2.

at this strong intensity. ∆-point acts as an intermediate
point which facilitates the intervalley transfer of excited
electrons to lower and upper conduction bands. Thus,
unlike the other cases, the charge along with the spin
is not limited to CBM-2 and multiple conduction bands
start to contribute in valley polarization.

The spin polarization of excited charge carriers is
shown in Fig. 5(d). Overall the spin polarization (N↑
- N↓) is negligible and independent of intensity and ϕ,
except small spin starts to appear at I = 1×1012 W/cm2.
Degree of spin polarization (N↑- N↓)/(N↑+ N↓) follow the

same behavior as valley polarization which shows that
spin polarization is also an observable along with valley
polarization.

The valley polarization results calculated by the two-
band model as a function of ϕ are shown in Fig. 6(a).
Two band model qualitatively reproduces the overall
trends of valley polarization with RT-TDDFT results.
The origin of the carrier density nodes at higher intensi-
ties and the phase change of the valley polarization with
respect to intensity can be explained by the two-band
model. Based on the massive Dirac model, the phase ap-
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FIG. 4. (a) Valley polarization as a function of CEP at multiple intensities. (b) Shift in the carrier density as a function of the
vector potential amplitude and intensity.

FIG. 5. Charge and spin-decomposed carrier population of concerned conduction bands named as CBM-1 and CBM-2 at
different time steps for (a) I = 1×1010 W/cm2, (b) I = 1×1011 W/cm2 and (c) I = 1×1012 W/cm2. (d) Spin polarization of
excited charge carriers as a function of CEP.

pearing in the Landau–Zener formula is referred to Stck-
elberg phase as described in Eq. (16) and Eq. (17). The
recurring Landau-Zener transitions driven by an oscilla-
tory external field produces an excitation density matrix
with an opposite sign which causes the interference of the

wave packets. Thus the carrier density nodes appearing
at high intensity may refer to the Stckelberg interference
where the excitation probability becomes zero at a cer-
tain k.

Fig. 6(b) shows the intensity dependence of the val-
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FIG. 6. Massive Dirac Hamiltonian two-band model results (a) Valley polarization as a function of CEP at multiple intensities.
(b) Valley polarization as a function of intensity at ϕ = π/2. Excitation probabilities at (c) 1×1010 W/cm2, (d) 8×1010 W/cm2

and (e) 1×1011 W/cm2.

ley polarization at ϕ = π
2 . Valley polarization has a

very complex behavior regarding the phase change. Thus
to find the origin of the phase change, we have shown
the excitation probability in Fig. 6(c-e). The excita-
tion probability of P (K + k) > P (−K + k) at 1×1010

W/cm2, as we increase intensity, P (−K+k) starts to in-
crease, and the excitation probability roughly the same
at 8×1010 W/cm2. Further increase in intensity results
P (K+k) < P (−K+k) and this brings the phase change
of the valley polarization. Overall, the Stckelberg in-
terference first takes place at the positive k-region, and
asymmetry is observed at the peak caused by the interfer-
ence. The peak at the negative k-region follows at higher
intensities and causes stronger interference of wave pack-
ets.

Finally, it is worth commenting that the valley po-
larization induced by the linearly polarized light mainly
depend on the two factors. Firstly, the asymmetry in the
band structure plays the main role to generate valley po-
larization. The band contour displays no asymmetry in
the Γ-M direction. Thus, even by varying the CEP, no
valley polarization is achieved in this direction. On the
other hand, the field polarization parallels to Γ-K expe-
riences different band curvature with respect to K and
K

′
point which results in the valley polarization in WSe2

monolayer. Secondly, CEP plays a critical role to create
valley polarization in Γ-K direction. For ϕ = 0, because
the vector potential A(t) = 0 at the maxima of E(t),
therefore we do not observe any asymmetry even if there

is a band asymmetry. On the other hand, for example,
at ϕ = π

2 , the vector potential A(t) has finite negative
value at both maxim’s of E(t), thus large asymmetry of
excitation because of the band asymmetry is observed.

IV. CONCLUSION

In conclusion, we investigated the single cycle pulse
control of valley pseudospin in the WSe2 monolayer. The
intensity and CEP dependence of the pulsed electric field
is varied to investigate the mechanism of valley polariza-
tion. Linearly polarized pulse along armchair and zigzag
directions are applied.

Valley polarization remains zero within the linear opti-
cal limit for both polarization directions. In the nonlinear
regime, no valley asymmetry and its CEP dependency is
realized for the field polarized along the armchair direc-
tion while the polarization parallels to the zigzag direc-
tion experience strong asymmetries. The valley polariza-
tion is small at weak intensities but it increases with the
increase in intensity and substantial valley polarization is
achieved. The valley polarization is robust against field
strength but it strongly depends on the CEP.

We showed that in the strong-field regime the electron
dynamics display quantum interference that gives rise to
distinct node formation. More importantly, the position
of the carrier density is strongly dependent on laser in-
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tensity which indicates the possibility to control the elec-
tron momentum in BZ. Two band model indicates that
the carrier density nodes appearing at high intensity may
refer to the Stückelberg interference.

Our results provide the opportunity to manipulate
the valley pseudospin and optical field control of elec-
tron dynamics faster than electron-electron scattering
and electron-phonon scattering.
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[32] Á. Jiménez-Galán, R. E. Silva, O. Smirnova, and
M. Ivanov, Sub-cycle valleytronics: control of valley po-
larization using few-cycle linearly polarized pulses, Op-
tica 8, 277 (2021).

[33] T. Otobe, M. Yamagiwa, J.-I. Iwata, K. Yabana,
T. Nakatsukasa, and G. Bertsch, First-principles elec-
tron dynamics simulation for optical breakdown of di-
electrics under an intense laser field, Physical Review B
77, 165104 (2008).

[34] M. Noda, S. A. Sato, Y. Hirokawa, M. Uemoto,
T. Takeuchi, S. Yamada, A. Yamada, Y. Shinohara,
M. Yamaguchi, K. Iida, et al., Salmon: Scalable ab-initio
light–matter simulator for optics and nanoscience, Com-
puter Physics Communications 235, 356 (2019).

[35] Salmon official, http://salmon-tddft.jp.
[36] U. Von Barth and L. Hedin, A local exchange-correlation

potential for the spin polarized case. i, Journal of Physics
C: Solid State Physics 5, 1629 (1972).

[37] T. Oda, A. Pasquarello, and R. Car, Fully unconstrained
approach to noncollinear magnetism: application to
small fe clusters, Physical review letters 80, 3622 (1998).

[38] G. Theurich and N. A. Hill, Self-consistent treatment of
spin-orbit coupling in solids using relativistic fully sepa-
rable ab initio pseudopotentials, Physical Review B 64,
073106 (2001).

[39] S. Yamada, M. Noda, K. Nobusada, and K. Yabana,
Time-dependent density functional theory for interaction
of ultrashort light pulse with thin materials, Physical Re-
view B 98, 245147 (2018).

[40] S. Yamada and K. Yabana, Determining the optimum
thickness for high harmonic generation from nanoscale
thin films: An ab initio computational study, Physical
Review B 103, 155426 (2021).

[41] G. F. Bertsch, J.-I. Iwata, A. Rubio, and K. Yabana,
Real-space, real-time method for the dielectric function,
Physical Review B 62, 7998 (2000).

[42] J. P. Perdew and Y. Wang, Accurate and simple ana-
lytic representation of the electron-gas correlation energy,
Physical review B 45, 13244 (1992).

[43] I. Morrison, D. Bylander, and L. Kleinman, Nonlocal
hermitian norm-conserving vanderbilt pseudopotential,
Physical Review B 47, 6728 (1993).

[44] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reich-
man, Bright and dark singlet excitons via linear and
two-photon spectroscopy in monolayer transition-metal
dichalcogenides, Physical Review B 92, 085413 (2015).
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