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Based on the transmission coefficient of tunneling electrons, we have presented tunneling current
and conductivity across a square-potential barrier for both graphene and α-T3 lattices under a
linearly-polarized off-resonant dressing field. The presence of such a dressing field introduces an
anisotropy factor in the energy dispersion of tunneling electrons so that the cross section of a
Dirac-cone appears as elliptical. Consequently, the field-polarization controlled major axis of the
ellipse will be misaligned with the normal direction of a barrier layer in the tunneling system,
which exhibits an asymmetric Klein-paradox for an off-normal-direction tunneling. The resulting
tunneling current in this system is calculated by using a transmission coefficient and a longitudinal
group velocity (different from a longitudinal momentum) of electrons. By presenting numerically
calculated tunneling conductivity modified by a laser dressing field, we demonstrate a significant
enhancement of electrical conductivity by external laser-field intensity, which is expected to be
crucial in application of ultrafast optical modulation of opto-electronic devices for photo-detection
and fiber-optic communication.

I. INTRODUCTION

The α−T3 model represents an innovative and unusual type of Dirac materials in which their atomic structure leads
to a pseudospin-1 Dirac-Weyl model Hamiltonian for electrons and an additional energy band which is completely
flat and symmetric with respect to the valence and conduction bands corresponding to the upper and lower parts of
the Dirac cone in graphene. [1–5] This type of energy bandstructure results in a variety of truly unique and previously
unknown electronic, [6] topological, [7] collective, [8, 9] optical [10, 11] and magnetic properties [12–16] of α − T3

model.

The atomic composition of an α − T3 lattice consists of a regular graphene-like honeycomb lattice with additional
fermionic atoms at the center of each hexagon, which are referred to as hub atoms in contrast to the rim atoms located
at each of six hexagonal vertices. Here, the ratio between the hub-rim and rim-rim electron hopping coefficients
defines a parameter α with its limiting values α = 0 for graphene and α = 1 for a dice lattice [17, 18]. One of the
first realizations of a crystal lattice with a non-dispersive flat energy band in derivations of the bandstructure dates
back to nearly a decade ago [19, 20]. At the present time, there has already been copious and convincing evidence for
experimental confirmation and successful-fabrication efforts in producing different types of α−T3 materials, in which
the most well-known cases include a three-layer structure of SrTiO3/SrIrO3/SrTiO3 lattices with a cubic crystal
symmetry, [4] Lieb and Kagome lattices with additional atoms at the edges [21–26], and a number of other planar
materials [27–29] as well.

On the other hand, Floquet engineering [30–33] appears as a crucial tool for the modification of principal electronic
properties of a planar structure [34, 35] or the surface states in a three-dimensional material [36–39] by employing an
off-resonance dressing field with its frequency substantially higher than the characteristic energies of a system, such as
the Fermi energy. Encouraged by rapid technological advancements in intense lasers and microwave field sources, lots
of new field-induced phenomena in recently discovered low-dimensional structures, especially Dirac materials, have
been demonstrated both theoretically and experimentally. [40, 41] Physically, a strong off-resonance field applied to a
two-dimensional material enables the appearance of so-called dressed states, i.e., a quantum-mechanically composite
involving both irradiated electrons and the applied field. Such a quantum composite acquires tunable electronic
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properties controlled by the strength of an external laser field. [42] Moreover, the laser-dressing field can also induce
new or significantly modify existing fundamental quantum effects in the target system. [43–46]

The type as well as major dynamical properties of these dressed states are mainly manipulated by the polarization
of external dressing field, e.g., circular-polarized light is known for opening or varying an existing energy gap, [47–50]
while linearly-polarized field can induce an anisotropy [51] in optical response of irradiated materials. The theoretical
study of laser-induced anisotropy in opto-electronic properties of graphene and a dice lattice is the focus of current
research. Specifically, we will concentrate on the tunneling-transport properties of a system with light-induced tunable
anisotropy of its electronic states. [52, 53]

The electronic properties of highly anisotropic Dirac fermions was first predicted theoretically by using the first-
principles computations and then confirmed experimentally [54] based on angle-resolved photoemission spectroscopy of
epitaxial graphene modulated by an island superlattice, [55] a Bi-square net of SrMnBi2, [56] an organic conductor, [57]
and a B2S honeycomb monolayer [58]. Such kind of materials has revealed unique features of an exceptional Dirac-
material family as long as engineering a local directional asymmetry [55] can be introduced into the system. Since
these materials with anisotropic dispersions are available and implemented within an electronic device, most of their
electronic and collective properties have been addressed thoroughly, including plasmons [59, 60] whose frequency
depends on the direction of wave vector, as well as angle-dependent screening and transport. [61–64] Meanwhile,
specific attention has also been put onto materials with a tilted Dirac cone and having either a zero or finite bandgap,
which exhibit a unique out-of-plane anisotropy [61, 65–68] and even include recently fabricated 8-Pmmn borophene
as well as single-element materials presenting two ionic sublattices. [69–74]

Historically, Klein paradox, a complete and unimpeded tunneling of incoming charged carriers through a square-
potential barrier with arbitrary height and width, has become one subject unique to all gapless Dirac cone materi-
als. [75] This phenomena is attributed to the relativistic type of graphene Hamiltonian and the existence of chirality in
its electronic wave functions. Interestingly, Klein tunneling was demonstrated extensively in graphene, a dice lattice
and all types of interpolating α − T3 even under a tilted potential barrier. [6, 76–79] Furthermore, Klein paradox is
found persisting for an anisotropic Dirac cone. However, in this case, it occurs only at a finite angle of incidence and
is referred to as an asymmetric Klein tunneling. [80, 81] Technically, however, various types of potential barriers, e.g.,
inhomogeneous and non-uniform spatial profiles of a potential and junctions, could be easily realized in graphene or a
nanoscale-width nanoribbon by introducing a spatially-distributed gate voltage. [82–84] As a part of graphene-based
optoelectronic device, [85–87] studying electron conductance through these different barrier arrangements, as well as
revealing involved physics mechanism for ballistic transport, [88–91] or trapped electronic states [92] are paramount
for quantitatively predicting the current level and characterizing the performance of an electric switch.

The remaining part of this paper is organized as follows. In Sec. II, we review some of important properties
of optically modulated Dirac electrons with tunable-elliptical energy dispersions of electrons irradiated by linearly-
polarized light, including the calculation of transmission of electrons and demonstrating the so-called asymmetric
Klein tunneling associated with a non-head-on electron incidence. Based on computed transmission results, we arrive
at an expression for the tunneling conductivity of electrons over a square potential barrier in Sec. III and provide
a detailed investigation on how this conductivity relies on the crucial material and external irradiation parameters,
e.g., the irradiation-induced anisotropy factor aα(λ0) in the energy dispersion of electrons and the misalignment angle
between the direction of light polarization and the normal direction of a barrier layer. These new features are not
known from previously considered cases for isotropic particles. The final conclusions are drawn in Sec. IV.

II. ASYMMETRIC KLEIN TUNNELING RESULTING FROM ELLIPTICAL DIRAC DISPERSIONS

The energy dispersion of electrons in a crystal usually appears spherical around a highly-symmetric valley such as
the Γ point, within the first Brillouin zone. However, in the presence of strong laser-electron interaction, this energy
dispersion is modified and becomes anisotropic, e.g., an elliptical one with a long-axis parallel to the polarization
direction of an incident laser field. If the long-axis of the elliptical energy dispersion appears misaligned with the
normal direction of the square-barrier layer in a tunneling structure, we expect to find that the tunneling conductivity
will vary with this misalignment angle. Therefore, the first step for computing tunneling and conductivity in our system
is to derive anisotropic dressed states of electrons under a linearly-polarized dressing field and to full understand how
this anisotropy depends on the intensity of an applied optical field in different Dirac materials. Even though we only
consider in this paper graphene (α→ 0) and a dice lattice (α→ 1) as two extreme limiting cases for the α−T3 model,
it would be useful to present a comprehensive description for the induced anisotropy by a linearly-polarized dressing
field in all α− T3 materials.

For a two-dimensional (2D) α− T3 material, the low-energy Hamiltonian takes the form
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Ĥα(k | τ, φ) = ~vF

 0 kτ− cosφ 0
0 0 kτ− sinφ
0 0 0

+H.c. , (1)

where the geometry phase φ = tan−1 α is directly related to the relative hopping parameter α, and kτ± = kτx ± ikτy
are obtained from components of the electron wave vector k = {kx, ky}. Once an optical dressing field with a linear
polarization is applied, the components of k introduced in the Hamiltonian in Eq. (1) are modified according to a

canonical substitution, i.e. ki → ki − eA(L)
i (t), where the transient vector potential A(L)(t) of this linearly-polarized

light is given by

A(L)(t) =

[
A

(L)
x (t)

A
(L)
y (t)

]
=
E0

ω

[
cosβ
sinβ

]
cos(ωt) , (2)

with E0 representing the electric field amplitude, ω is the frequency of light, and β stands for the polarization angle
of light made with the x axis. Moreover, in the presence of both the dressing field and an electrostatic finite-width
square barrier V (x) = V0 Θ(x) Θ(WB − x), the non-interacting Hamiltonian in Eq. (1) becomes

Ĥτ0(φ |x, y) = −vF Ŝ(φ) ·
[
i~∇τ + eA(L)(t)

]
+ V (x) , (3)

where Θ(x) is the Heaviside step function, V0 and WB are barrier height and thickness respectively, ∇(τ) ≡
{τ∂/∂x, ∂/∂y}, and the two φ-dependent matrices Ŝ(φ) = {Ŝx(φ), Ŝy(φ)} are defined as

Ŝx(φ) =

 0 cosφ 0
cosφ 0 sinφ

0 sinφ 0

 , (4)

Ŝy(φ) = i

 0 − cosφ 0
cosφ 0 − sinφ

0 sinφ 0

 . (5)

Here, even if the potential V (x) only remains piecewise-constant, the translational symmetry of the system is still
maintained and, therefore, we can simplify our eigenvalue equation using {∂/∂x, ∂/∂y} → i {kx, ky} and assuming
the wave function in the form of Ψ(x, y) v eikx xeiky y. Consequently, the energy dispersions obtained from the
Hamiltonian in Eq. (3) for the dressed states keep the flat band Eγ=0

α (λ0,k) = 0 under the dressing field, while two
anisotropic Dirac-cone dispersions are given by

E γ=±1
α (λ0,k) = ±~vF

√
k2
x + [aα(λ0) ky]2 ≡ ±~vF k fα(θk, λ0) , (6)

which appear as an ellipse in the (x, y)-plane. Here, the angular factor in Eq. (6) is calculated as

fα(θk, λ0) = cos2 θk +
[
J2

0 (2λ0) cos2(2φ) + J2
0 (λ0) sin2(2φ)

]
sin2 θk , (7)

where J0(x) stands for the zeroth-order Bessel function of the first kind. In addition, we know that, for fixed θk, the
anisotropic factor f(θk, λ0) in Eq. (7) depends on α or phase φ and it reaches a maximum for φ = 0 (graphene) but a
minimum for φ = π/4 (dice lattice). In particular, the anisotropy employed in Eq. (6) takes the form

aα(λ0) = 1− λ2
0

8
[5 + 3 cos(4φ) ] , (8)

which is always less than one (isotropy with fα(θk, λ0) ≡ 1) if the irradiation intensity λ0 ∝ E2
0 6= 0 and reveals how

the strength of a dressing field modifies the interaction property of α−T3 materials. For example, we find from Eq. (8)
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a relatively larger anisotropy with a0(λ0) = 1− λ2
0 for graphene but a smaller anisotropy with a1(λ0) = 1− λ2

0/4 for
dice lattice.

The anisotropic dispersions E γ=±1
α (λ0,k) = ±~vF

√
k2
x + [aα(λ0) ky]2 = ±~vF k fα(θk, λ0) for electron dressed states

in the presence of a linearly-polarized off-resonant field is obtained using the Floquet-Magnus expansion technique.
Mathematically, it is a high-frequency perturbation expansion with respect to the interaction Hamiltonian in powers
of (1/~ω), which works particularly well in the off-resonance limit ~ω � evFE0/ω. Eventually, this allows for an
approximate solution whenever the exact diagonalization of an interaction matrix becomes impossible or at least it
greatly simplifies the calculation.

The dressed states, corresponding to linearly-polarized irradiation, was first presented for graphene in Ref. [53] and
for a dice lattice and α − T3 materials in Ref. [52]. The most important features in the obtained dispersions is their
anisotropy and the fact that they are totally independent of time. This is an exact result under the Floquet-Magnus
expansion, which is not based on any approximation.

The corresponding wave function for graphene was derived in Ref. [53]. Except for a general eiE0t/~ factor, the
calculated wave function for a linearly-polarized light field acquires additional exp [±iλ0 sin(ωt)] terms. However, it
is straightforward to show that the phase of the oscillations in these terms never changes substantially, and therefore
could be neglected. Consequently, the considered electromagnetic wave can be treated as a purely dressing field which
can be neither absorbed nor emitted by conduction electrons.

Our model for the electron dressed states is based on the off-resonant limit condition ~ω0 � E∗F , i.e., the photon
energy is much larger than any characteristic energies of our material (both graphene and a dice lattice), and we use
perturbation theory to calculate the energy dispersions of these states. The off-resonant limit could be achieved solely
by the high frequency of the dressing field for a wide range of the light intensity. Moreover, we would like to indicate
that the multi-photon transitions considered in Ref. [93] is a clearly resonant phenomena which is incompatible with
our off-resonant field limit. Since the single-photon energy ~ω0 of a dressing field is much larger than the Fermi energy
of electrons, the assumption that multiple photons with energy n~ω0 could participate in the process of creating dress
states becomes much less realistic. Furthermore, the condition ~ω0 � E∗F for the off-resonant field limit is also the
mathematical condition for excluding the multi-photon contributions to the dressed states.

For measuring charge transport through potential barriers, a feasible experimental realization with a gated square
barrier has demonstrated strong evidence for Klein tunneling in a Dirac-cone material [94–96] (specifically, it was
done for graphene but could now be repeated for a dice lattice as well). In this experiment, the density inside the
top-gated region is set by both a back gate and top gate voltages without a substantial restriction on the doping
level of electrons. In the experimental setup, an array of tapered electrodes were mounted on the upper side of the
graphene sheet, while the interface side of the arrangement consists of several silicon-based substrates. Furthermore,
we should mention that the vertical electric field associated with a depletion gate for the potential barrier cannot
interfere with a horizontally-polarized light electric field for dressing electronic states. Therefore, the potential barrier
and off-resonant dressing field could be implemented completely independently from each other.

The dimensionless coupling parameter λ0 = c0/~ω is directly related to the electron-photon interaction strength c0
which is given by c0 = evFE0/ω v 10−22 J v 0.1−1 meV, where ~ω is the energy of the incident photons, vF = 106 m/s
is the Fermi velocity for all α− T3 materials including graphene as the limiting case when α→ 0, and E0 represents
the amplitude of an incident light field. This estimate based on the values for I0 = 1 kW/cm2 = 107 W/m2 for the
light intensity, while the light frequency ω = 2πf falls in the terahertz range f v 1012 − 1013 Hz (or ω v 1013 − 1014

rad) pertaining to a realistic experimental setup. The corresponding electric-field amplitude is E0 = 105 V/m since
I0 = ε0cE

2
0/2, where ε0 and c are the permittivity and speed of light in vacuum. Therefore, it is clear that the

coupling parameter λ0 will vary from 0.01 to almost 0.5. Meanwhile, the off-resonant limit can also be achieved
by assuming a high frequency ω v 1013 − 1014 rad for the dressing field rather than employing its intensity I0 so
that the requirement for low light intensity is no longer needed. Consequently, both I0 and ω could still be varied
independently by up to one order of magnitude. All parameter values utilized in our plots are realistic and could be
accessed in an actual experiment. In fact, the predicted phenomena in our paper would still be valid qualitatively
even if the value of λ0 is increased by five times.

Here, we would like to emphasize that our initial model for the dressed states of electrons is obtained within the
off-resonant limit in which the photon energy is actually much higher than any of the characteristic energies of the
material, such as the electronic Fermi energy. In contrast, resonant multi-photon states and transitions between them
are related to a nonlinearly driven oscillator with strong electron-photon coupling and photon-assisted tunneling taken
into account, as seen in Ref. [93].
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FIG. 1. (Color online) A horizontal (constant energy E0) cut, as well as a vertical (constant wave-vector magnitude |k|) cut, of
anisotropic Dirac-cone dispersions for both electron and hole states (γ = ±1), which are represented by intersection curves of
the dispersion cones with either a horizontal plane or an upright cylinder. Panels (a)-(d) describe the situations with aλ = 0.5
for a larger anisotropy, while plots (e) and (f) correspond to aλ = 0.8 for a smaller anisotropy. Here, the lower panels (b), (d),
(f) are zoom-in views for the energy range 0.2 < E0/E∗F < 1.0 with Fermi energy E∗F for a host material.

graphene

( )a b( )

FIG. 2. (Color online) (a) The relationships between the electron wave vector k, spinor Sγ=1(λ0,k) and group-velocity vector
V γ=1
G (λ0,k), i.e., a visualization of Eq. (14), outside the barrier layer. (b) Determining the components of wave vector k within

the barrier layer, corresponding to a given energy E0 = E∗F required for calculating tunneling conductivity in Eq. (29).

Figure 1 displays both horizontal and vertical cuts of an anisotropic Dirac-cone in different energy scales.0 As shown
in Fig. 1, the constant-energy or horizontal cut of the anisotropic Dirac-cone presented in Eq. (6) turns into an ellipse
with a shortened ky semi-axis. This ellipse is inscribed by a |k|-circle which includes all kλ wave vector satisfying

1 A brief and informative description and a recipe for finding an intersection curve for two given surfaces using Wolfram Mathematica
similar to what was used here could be found in https://community.wolfram.com/groups/-/m/t/177994.
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FIG. 3. (Color online) A schematic graph for determining the momentum of transmitted k(2) and reflected k(r) electrons, as
well as the group-velocity vector V γ=1

G (λ0,k) in the barrier region characterized by a barrier height V0. These quantities could
be computed by the known energy difference E0− V0 in the barrier region and the fact that the transverse electron momentum
k′y remains conserved in this system.

Eq. (6) and |kλ| ≤ |k|. The constant |k|-cut by an upright cylinder, on the other hand, appears as a much more
sophisticated three-dimensional curve which acquires its maximum values on the ky axis as θk = π/2.

Corresponding to energy dispersion in Eq. (6), the wave functions for the electron and hole states (i.e., conduction
and valence bands with γ = ±1) in a dice lattice (α = 1) are given as

Ψγ=±1
1 (τ, λ0,k) =

1

4

 e−iΘ
(1)
S (τ,k |λ0)
√

2 γ

e+iΘ
(1)
S (τ,k |λ0)

 , (9)

where the phase factor, as defined in Fig. 2, is calculated from

Θ
(1)
S (τ,k |λ0) = tan−1

[(
τky
kx

)
a1(λ0)

]
= tan−1 [τa1(λ0) tan θk] . (10)

Moreover, the wave function attributed to the flat band (γ = 0) is

Ψγ=0
1 (τ, λ0,k) =

 e−iΘ
(1)
S (τ,k |λ0)

0

−e+iΘ
(1)
S (τ,k |λ0)

 =
1

kλ

 kx − iτa1(λ0)ky
0

−kx − iτa1(λ0)ky

 , (11)

where kλ =
√
k2
x + a2

1(λ0)k2
y represents a measure for the kinetic energy of incident particles.

We further see from Fig. 3 that the wave vector k, the spinor vector Sγ(λ0,k) and the group-velocity vector
V γ
G(λ0,k) are different and not aligned to each other in the existence of a finite anisotropy a1(λ0) 6= 1. Explicitly,

Sγ(λ0,k) and V γ
G(λ0,k) are defined as

Sγ(λ0,k) =
γ√

k2
x + [a1(λ0)ky]2

[
kx

a1(λ0)ky

]
, (12)

V γ
G(λ0,k) =

1

~

[
∂/∂kx
∂/∂ky

]
εγ1(λ0,k) =

γ vF√
k2
x + [a1(λ0)ky]2

[
kx

a2
1(λ0)ky

]
. (13)
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Here, the spinor vector and its angle with the x-axis in Eq. (10) represent crucial components of the wave functions
presented in Eqs. (9) and (11), while V γ

G specifies the actual incidence direction of incoming particles and is used to
distinguish transmitted and reflected waves associated with the second interface of a barrier layer. From Eqs. (12)
and (13), the angles of these two vectors relative to the x-axis are determined by

tan ΘS(λ0) =

(
ky
kx

)
a1(λ0) = a1(λ0) tan θk , (14)

tan ΘV(λ0) =

(
ky
kx

)
a2

1(λ0) = a2
1(λ0) tan θk ,

which will be utilized in our hereafter computations.

As seen in Fig. 3, direction of the polarization for an imposed dressing field usually mismatches the normal direction
of a barrier layer in tunneling structures. As a result, it is reasonable to introduce two coordinate frames of reference
corresponding to these two directions, e.g., {x, y} for the x̂ vector whereas {x′, y′} for the x̂′ vector. These two frames

can be related to each other by an in-plane rotation angle β with a rotation matrix R̂(β) given by

R̂(β) =

[
cosβ − sinβ
sinβ cosβ

]
, (15)

where β is the polarization angle of light made with the x̂ direction. From a physics perspective, what makes our
transmission problem unique and a lot more complicated results from the fact that both {x, y} and {x′, y′} frames are
required to define the wave function of electrons. First, components of incident-electron momenta outside the barrier
layer should be defined in the (x′, y′) frame with respect to the normal direction of a barrier layer, and meanswhile,
both spinor and group-velocity angles must be calculated in the (x, y) frame within which the energy dispersions can be
determined by Eq. (6). Similarly, for electrons within the barrier layer, we also deal with both frames simultaneously

as we decide the electron momentum components based on E0−V0 = ~vF

√[
k

(2)
x

]2
+
[
a1(λ0) k

(2)
y

]2
in the (x, y)-frame,

and the conservation of transverse k′y component in the (x′, y′)-frame, as illustrated by Fig. 3.

Another intriguing feature for electron tunneling in a dice lattice with anisotropic dispersions comes from the
requirement of a new type of boundary conditions which are different from simply matching the components of a wave
function at two boundaries of a barrier region for graphene and isotropic dice lattice. [97] In our current system, the
new boundary conditions possess an additional kx′ -related term due to an extra discontinuity at two boundaries of a
barrier layer in the (x′, y′)-frame and that the main Hamiltonian in Eq. (3) is defined in the (x, y)-frame. As a whole,
after a lengthy calculation, we find the resulting boundary conditions for a dice lattice are given by ϕ2(−δx′) = ϕ2(δx′)
and

ℵ+
τ (λ0, β)ϕ1(−δx′) + ℵ−τ (λ0, β)ϕ3(−δx′) = ℵ+

τ (λ0, β)ϕ1(δx′) + ℵ−τ (λ0, β)ϕ3(δx′) , (16)

where ϕj(x) for j = 1, 2, 3 represent three wave function components, and

ℵ±τ (λ0, β) = τ cosβ [1± iτa1(λ0) tanβ] . (17)

It is known that a skew or non-symmetric type of Klein paradox is associated with a full transmission independent of
barrier height V0, width WB or the energy E0 of incoming particles. Such a phenomenon can be observed at a finite
incidence angle Θ′V 6= 0, in contrast with the conventional Klein paradox with Θ′V = 0. In this paper, however, we are
interested in investigating how this finite angle Θ′V 6= 0 depends on parameters of our system setup, e.g., anisotropy
factor a1(λ0) and light-polarization angle β made with x′-axis or the potential barrier normal direction.

Common Klein paradox could be observed only if the transverse component of electron momentum vanishes, or
equivalently k′y = 0. Obviously, this condition could be met as θ′k = 0 or θk = β and k = {k cosβ, k sinβ}. In fact,

this critical incidence angle could be found from ∂T [Edc, E γ=1
1 (k),Θ

(1)
V′ |λ0, β]/∂Θ

(1)
V′ = 0, which gives rise to [98]

Θ
(1)
V′ = Θ

(1)
V − β = tan−1

{[
a2

1(λ0)− 1
]

tanβ

1 + a2
1(λ0) tan2 β

}
. (18)
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Consequently, we immediately discern that for |β| < π/2, the largest asymmetry of the Klein paradox is achieved if
βc = cot−1[a1(λ0)], yielding

[
Θ

(1)
V′

]
max

= tan−1[a1(λ0)]− cot−1[a1(λ0)] . (19)

Therefore, the reach to
[
Θ

(1)
V′

]
max

could be fulfilled by adjusting either anisotropy factor a1(λ0) or misalignment angle

β.

Our calculated results for electron transmission in both graphene and dice lattice are presented in Figs. 4, 5 and 6,

which clearly demonstrate asymmetric Klein paradox for a finite Θ
(1)
V′ angle of electron incidence as the anisotropy

factor a1(λ0) 6= 1 and the misalignment angle β 6= 0 between the (x, y) and (x′, y′) frames. For the case of a dice
lattice, however, we need consider the energy E0 of incoming particles separately in the ranges of E0 < V0 and E0 > V0

so as to exclude the possibility for particle scattering into a zero-energy state in the barrier region with an infinite
degeneracy for its momentum. The observed transmission is generally larger for a dice lattice and very close to unity
for a wide range of incident angles, which is not the case for graphene with a series of separated distinguished peaks.
The dice lattice is also known for its “magic case”, i.e., a complete transmission for all angles of incidence if E0 = 2V0

is satisfied. The angular dependence of transmission is not symmetric with respect to Θ
(1)
V′ = 0 if both β and a1(λ0)

are finite [see panel (d) of Figs. 5 and 6]. In these cases, the Klein paradox line for full transmission is moved to

negative values for Θ
(1)
V′ in accordance with Eq. (18).

III. SEQUENTIAL-TUNNELING CURRENT AND CONDUCTIVITY

Under a DC electric field Edc along the x′ direction for tunneling transport of electrons within monolayer graphene
(with α = 0), which includes a potential barrier distributed along the x′ direction with a barrier width WB and a
barrier height V0, the sequential-tunneling sheet current Js(Edc |EF , λ0, β) in this system is calculated as

Js(Edc |EF , λ0, β) =
gsgv e

(2π)2

∫
d2k T [E γ=1

0 (k),Θ
(1)
V′ |λ0, β]V γ=1

G,x′ (λ0,k)

×
{
f0[E γ=1

0 (k)]− f0[E γ=1
0 (k) + eEdcWB ]

}
, (20)

where T [E γ=1
0 (k),Θ

(1)
V′ |λ0, β], which is independent of Edc for a thin barrier layer, represents the coefficient for

sequential tunneling of electrons through the square-potential barrier, gs = 2 and gv = 2 are spin and valley de-
generacies of graphene sheet, and k is the wave vector of electrons within the 2D lattice. Additionally, f0(x) =
{1 + exp[(x−µ)/kBT ]}−1 is the Fermi function for thermal-equilibrium electrons, µ and T are the graphene chemical

potential and the system temperature, and the incident energy E γ=1
0 (k) is below the Fermi energy of electrons in the

source electrode.

In current study, we calculate the conduction (dark) current of doped graphene or α − T3 materials under a weak
bias field Edc and a strong dressing field as well. In this way, a bias-independent conductance of this system can be
found within the linear-response regime. Meanwhile, we also know that the optical absorption in the same system can
occur and will further lead to a photo-current if ~ω0 ≥ 2E∗F . However, such an induced electron-hole photo-current
becomes insignificant in comparison with the high conduction current resulted from doped electrons in the system,
and then can be neglected safely in our model. This implies that the conductance of system will not be changed by the
appearance of very small electron-hole photo-current. Physically, for graphene or α−T3 materials, either a diffusion-
based (undoped p-n junction) or a sequential-tunneling-based (doped) photo-current can be generated and observed
experimentally if the thermally-excited electron-hole or doped-electron dark current is kept small enough. Refs. [99
and 100]

For a thin barrier with eEdcWB � E γ=1
0 (k), we find from Eq. (20) that

f0[E γ=1
0 (k)]− f0[E γ=1

0 (k) + eEdcWB ] = eEdcWB

[
− ∂

∂E γ=1
0 (k)

f0[E γ=1
0 (k)]

]
w eEdcWB δ[E γ=1

0 (k)− E∗F ] , (21)
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FIG. 4. (Color online) Angular plots for electron transmission T [E0,Θ(1)

V′ |λ0, β] as a function of incidence angle Θ
(1)

V′ of incoming-
particle group-velocity vector in graphene and a dice lattice. Each panel corresponds to a different value of the anisotropy factor
aα(λ0) of irradiated dressed states as well as the misalignment angle β and other parameters, as labeled. The Klein paradox is
detected as full transmission is observed for different selected values of barrier height V0, incidence energy E0 and barrier width

WB , e.g. V0/EF = 3.0, E0/EF = 1.0, 1.5 and k
(0)
F WB = 10.0, 15.0, 5.0 for black, red and blue curves, respectively, in panel (a).
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FIG. 5. (Color online) Density plots for T [E0,Θ(1)

V′ |λ0, β] as functions of Θ
(1)

V′ and E0 in a dice lattice. Each panel corresponds

to a specific value of a1(λ0) and β, as labeled. Here k
(0)
F WB = 100.0 for all panels. The values of E0/EF are chosen above the

barrier height V0/EF = 4.0 such that e-h (electron-to-hole) transition never occurs in the barrier layer.

where E γ=1
0 (k) = ~vF

√
k2
x + a2

0(λ0)k2
y, E∗F stands for the Fermi energy of graphene layer at low temperatures kBT �

E∗F , and vF is the Fermi velocity. In our computations of Eq. (20), we have used the following relations:

∫
d2k =

∞∫
0

k dk

2π∫
0

dθk , (22)

θk = tan−1

{
1

a2
0(λ0)

tan
(

Θ
(1)
V′ + β

)}
, (23)

dθk = a2
0(λ0)

{
cos2

(
Θ

(1)
V′ + β

) [
a2

0(λ0) + tan2
(

Θ
(1)
V′ + β

)]}−1

dΘ
(1)
V′ . (24)

Meanwhile, we also acquire

[
V γG,x′(λ0,k)
V γG,y′(λ0,k)

]
=

γ vF√
k2
x′ + a2

0(λ0) k2
y′

[
kx′

a2
0(λ0) ky′

]
=

γ vF√
k2
x + a2

0(λ0) k2
y

R̂(−β)

[
kx

a2
0(λ0) ky

]
, (25)

or simply V γ=1
G,x′ (λ0,k) ≡ vF cos

(
Θ

(1)
V′

)
.

At a finite but low temperature (i.e., kBT � E∗F ), the negative derivative of the Fermi-Dirac distribution function
under a weak bias field Edc becomes

f0[E γ=1
0 (k)]− f0[E γ=1

0 (k) + eEdcWB ] ≈ eEdcWB

2kBT

{
1 + cosh

[
E γ=1

0 (k)− E∗F
kBT

]}−1

, (26)
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FIG. 6. (Color online) Density plots for T [E0,Θ(1)

V′ |λ0, β] as functions of Θ
(1)

V′ and E0 in a dice lattice. Each panel corresponds

to a specific value of a1(λ0) and β, as labeled. Here, The k
(0)
F WB = 100.0 for all panels. The values of E0/EF are chosen below

the barrier height V0/EF = 4.0 such that e-h transition always occurs in the barrier region.
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FIG. 7. (Color online) Tunneling conductivity σs(E
∗
F , λ0) for λ0 = 0 in the units of σ0 = 2e2/h for isotropic graphene electronic

states in the absence of a dressing field as a function of incoming-particle energy E0 = E∗F in the units of EF . Panel (a)

is plotted for three different values of barrier height V0 and the fixed barrier width k
(0)
F WB = 12.0, while panel (b) displays

σs(E
∗
F , λ0) for three different values of WB , as labeled, for fixed V0 and WB .

where its low-temperature asymptotic delta-function representation gives rise to a peak with an “energy width” kBT
around E γ=1

0 (k) = E∗F . Consequently, the above result could be replaced by any other δ-function representation,
e.g., a Gaussian-type function. As a result, we immediately conclude that the temperature-induced broadening of our
k−integral in Eq. (20) will be on the order of O(kBT/E

∗
F )� 1. On the other hand, for estimate of the temperature-

induced modification of our calculated tunneling conductance, we would indicate that there exist two competing

factors, i.e. monotonic dependence of θk on the temperature-independent group velocity angle Θ
(1)
V′ and a decrease of

electron occupations around the Fermi energy E∗F due to the presence of an elliptical cross-section.

For the quantities, proportional to the Fermi energy E∗F , such as the polarization function, the largest temperature-
induced effect comes from the decrease of the chemical potential µ(T ) due to µ(T ) 6= E∗F . In fact, the Boltzmann
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FIG. 8. (Color online) σs(E
∗
F , λ0, β) with λ0 = 0 in the units of σ0 = 2e2/h for graphene anisotropic dressed electronic states.

On the left panels (a), (c) and (e), σs(E
∗
F , λ0, β) is plotted as a function of E0 = E∗F in the units of EF , as a function of

anisotropic factor a0(λ0) in panel (b) and a function of misalignment angle β in panels (d) and (f). Inset (i1) in panel (a)
displays the difference of tunneling conductivities with β = 30o and β = 0.

conductivity of graphene remains nearly independent of the temperature for unscreened electrons, but shows a steady
decrease as a function of temperature if the screening is included. [101] Our study in this paper corresponds to

the former case. Furthermore, we should emphasize that both the transmission T [E0,Θ(1)
V′ |λ0] and group velocity

V γ
G(λ0,k) do not exhibit a monotonic dependence on wave number k or the particle energy E γ=1

0 (k), as can be
verified from Figs. 5 and 6. Therefore, the averaging over a broadened k-range will not lead to significant changes of
the calculated conductance or its dependence on temperature.

Finally, the optically-modulated sheet conductivity σs(E
∗
F , λ0, β) of the system is given by

σs(E
∗
F , λ0, β) ≡ Js(Edc |E∗F , λ0, β)

Edc
=
e2WB

π2

∞∫
0

k dk

2π∫
0

dθk T [E γ=1
0 (k),Θ

(1)
V′ |λ0, β]

× V γ=1
G,x′ (λ0,k) δ[E γ=1

0 (k)− E∗F ] . (27)

In Eq. (27), the delta function δ[E γ=1
0 (k)− EF ] for the anisotropic dispersions E γ=1

0 (k) = ~vF kf0(θk) with f0(θk) =√
1− [1− a2

0(λ0)] sin2(θk) and a0(λ0) < 1 could be written as

δ[E γ=1
0 (k)− E∗F ] =

{
∂

∂k

[
E γ=1

0 (k)− E∗F
]}−1

δ[k − k∗F (θk)] =
1

~vF f0(θk)
δ[k − k∗F (θk)] , (28)

where k∗F (θk) = E∗F /[~vF f0(θk)] is the θk-dependent Fermi momentum for an elliptical Dirac-cone dispersion. By



13

2.0 6.02.8 3.6 4.4

0.0

1.2

2.4

6.0

0.0

1.2

2.4

6.0

( )a

5.0 6.0 7.0 8.0 10.01.5 1.9 2.3 2.7 3.5

0.0

10.0

2.0

4.0

b( )

5.0 6.0 7.0 8.0 10.0

( )c d( )

1.0

7.0

2.2

3.4

0.0

20.0

4.0

8.0

0.0

7.0

1.4

2.8

5.0 6.0 7.0 8.0 10.0

f( )e( )

0.80 1.000.84 0.88 0.92

0 0
3.0

5.0

3.4

3.8

( )h

g( )

2.0

5.0

3.6

4.2

* *
**

*
*

*

*

*

*

*
*

*

*

*
*

*
*

*

FIG. 9. (Color online) σs(E
∗
F , λ0, β) in the units of σ0 = 2e2/h for dice-lattice anisotropic dressed electron states. On the

panels (a)-(d) and (f), σs(E
∗
F , λ0, β) is plotted as a function of E0 = E∗F in the units of EF , as a function of a1(λ0) in panel (e)

and as a function of β in panels (g) and (h). Here, for E0 = E∗F dependence in isotropic σs(E
∗
F |λ0 = 0), we separate the cases

for E0 > V0 and E0 < V0 in the barrier region.

using the result in Eq. (28) and considering a forward incidence of particles with |Θ(1)
V′ | ≤ π/2, the conductivity in

Eq. (27) can be calculated explicitly as
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σs(E
∗
F , λ0, β) =

e2WBE
∗
F

π2~2vF

π/2∫
−π/2

dΘ
(1)
V′ cos

(
Θ

(1)
V′

)
T [E∗F ,Θ

(1)
V′ |λ0, β]

×

 1 + tan2
(

Θ
(1)
V′ + β

)
a2

0(λ0) + tan2
(

Θ
(1)
V′ + β

)
/a2

0(λ0)

1 + tan2
(

Θ
(1)
V′ + β

)
/a4

0(λ0)

1 + tan2
(

Θ
(1)
V′ + β

)
/a2

0(λ0)


=

(
2e2

h

)
E∗FWB

~vF

π/2∫
−π/2

dΘ
(1)
V′

π
cos
(

Θ
(1)
V′

)
T [E∗F ,Θ

(1)
V′ |λ0, β]

 1 + tan2
(

Θ
(1)
V′ + β

)
a2

0(λ0) + tan2
(

Θ
(1)
V′ + β

)
 , (29)

where Eγ=1
0 (k) = E∗F represents the kinetic energy of tunneling electrons at the Fermi level of graphene.

The only effect of finite temperature in our model is that we cannot use the δ-function approximation for the
∂/∂E γ=1

0 (k)-derivative of the Fermi-Dirac distribution function. For a thin barrier with eEdcWB � E γ=1
0 (k), where

E γ=1
0 (k) = ~vF

√
k2
x + a2

0(λ0)k2
y, we find

f0[E γ=1
0 (k)]− f0[E γ=1

0 (k) + eEdcWB ] ≈ eEdcWB

[
− ∂

∂E γ=1
0 (k)

f0[E γ=1
0 (k)]

]

=
1

kBT
exp

[
E γ=1

0 (k)− E∗F
kBT

] {
1 + exp

[
E γ=1

0 (k)− E∗F
kBT

]}−2

6= eEdcWB δ[E γ=1
0 (k)− E∗F ] . (30)

For this case, neither of the two integrals
∞∫
0

dk k
2π∫
0

dθk can be eliminated by the delta function and both of them are

retained in the final equation for the current. However, all the calculated quantities and their dependence on finite
but low temperatures kBT � E∗F remain qualitatively the same as the zero-temperature case. Even for elevated
temperatures, we still expect to find two competing factors, i.e. monotonic dependence of θk on the temperature-

independent group velocity angle Θ
(1)
V′ and a decrease of electron occupations around the Fermi energy E∗F due to

the presence of an elliptical cross-section although the exact numerical value will vary. Also, the obtained tunneling
conductivity will not be directly related to the density-of-states ρS(E) in Eq. (31) below.

Finalizing our calculations, we also obtain the density-of-states for asymmetric Dirac-cone electrons in graphene,
as well as the dependence of their Fermi energy E∗F on the electron density ne [102]. In general, the density-of-states
ρS(E) is defined as

ρS(E) =

∫
d2k

(2π)2

∑
γ=±1

∑
ξ,σ=±1

δ [E− Eγ0 (k)] , (31)

where σ and ξ refer to the spin and valley indices. As an example, we will only consider electron states with
γ = 1, while the situation for hole states with γ = −1 will be exactly symmetric. Meanwhile, there exist valley and
spin degeneracies so that

∑
ξ,σ=±1

= 4. Moreover, Eq. (31) looks identical to a part of the integrand in Eq. (29) for

conductivity, therefore, we can easily rewrite Eq. (31) as

ρS(E) = Cλ0
E ≡ E

(π~vF )2

2π∫
0

dθk

[
1 + tan2 θk

1 + a2
0(λ0) tan2 θk

]
, (32)

which is still proportional to energy E although its coefficient depends on the anisotropy factor a0(λ0) < 1, and is
reduced with increasing light intensity, in correspondence with the increase of tunneling current due to the anisotropic
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dispersion. Furthermore, the Fermi energy EF of the system is calculated as E∗F = (2ne/Cλ0
)1/2 which reduces to a

standard expression E∗F = ~vF
√
πne after taking a0(λ0) = 1.

Figures 8 and 9 demonstrate the electron tunneling conductance σs(E
∗
F , λ0, β) of irradiated graphene and a dice

lattice for different values of dressing-field intensity (∝ λ0) and misalignment angles β in comparison with non-
irradiated materials displayed in Fig. 7. The calculated results for σs(E

∗
F , λ0, β) in Figs. 8 and 9 are scaled with

σ0 = 2e2/h = 7.75 × 10−5 S, while the incoming-particle energy is scaled by the electron Fermi energy E∗F = ~k∗F =
~√πn0 = 100 meV, corresponding to doping density n0 = 1010−1012 cm−2 or Fermi wave number k∗F = 106−107 cm−1.
Meanwhile, the familiar V−shape dependence of σs(E

∗
F , λ0, β) on the incident energy E0 shows up even under a dressing

field. However, its correction ∆σs(E
∗
F , λ0, β) resulted from irradiation is limited by ∆σs ≤ σ0.

The tunneling conductivity σs(E
∗
F , λ0) for the standard case of isotropic dispersions (λ0 = 0) and symmetric Klein

paradox (Θ
(1)
V′ = 0) is shown in Fig. 7. As it is well known, σs(E

∗
F , λ0) reproduces a familiar V -shape dependence for

E0 = E∗F , where the transmission T [E0,Θ(1)
V′ |λ0] is equal to zero for all non-zero Θ

(1)
V′ angles of incidence and reaches

its minimal values at E0 = V0, where the electron momentum in the barrier region is zero so that the particle still
remains. However, the Klein paradox is still observed for the head-on collision. Similar E0 dependence in σs(E

∗
F , λ0, β)

is found for anisotropic dispersions with a finite angle β, as seen in Fig. 8, which is also reflected in T [E0,Θ(1)
V′ |λ0, β].

It is very interesting to find that the β dependence of σs(E
∗
F , λ0, β) in Figs. 8(d) and 8(f) is weak, periodic and

non-monotonic so that it plays no substantial role in σs(E
∗
F , λ0, β). The fluctuations around a fixed value in Figs. 8(d)

and 8(f) result from the fact that sub-resonances with k
′(2)
x WB = nπ with integer n [103] can equally contribute to

tunneling current and the change of β corresponds to a rotation of these “transmission petals”. In fact, as presented in

Eq. (27), σs(E
∗
F , λ0, β) is a convolution of T [E0,Θ(1)

V′ |λ0, β] with cos
[
Θ

(1)
V′

]
, which certainly relies on the misalignment

angle β.

It is also crucial that σs(E
∗
F , λ0, β) exhibits a stable decrease with increasing anisotropy factor aα(λ0), namely,

σs(E
∗
F , λ0, β) will reach its minimal value for the isotropic case with aα(λ0) = 1 and demonstrate a steady growth

with enhanced eccentricity eα(λ0) =
√

1− a2
α(λ0) of the electron dispersions. Therefore, the presence of an optical

dressing field is enabled to enhance the tunneling conductivity of electrons with increasing field intensity, which
demonstrates an attractive device application. This property remains true for both graphene and dice lattices, as can
be verified from Fig. 9(e), and could be explained by a similar dependence of density-of-states in Eq. (32) as well as
the dependence of E∗F on ne in Eq. (32) for aα(λ0) < 1. As illustrated in the right panel of Fig. 3, the actual value of
a transverse wave number ky will be changed by the inclusion of anisotropy.

Mathematically, the dependence of σs(E
∗
F , λ0, β) on the light-induced anisotropy factor aα(λ0) can be quantified

by two competing factors, i.e., a reduced dependence of θk on the group velocity angle Θ
(1)
V′ in Eq. (23) and a slight

decrease of density-of-states ρS(E) included in Eq. (29) due to the interchange of k−integration defined in Eq. (24).
On the other hand, the Fermi energy E∗F is considerably reduced for an anisotropic Dirac cone under a fixed electron
density ne, and therefore, it should be regarded as a key parameter in our computations. Moreover, as aα(λ0) = 1,
the isotropic σs(E

∗
F |λ0 = 0) also displays a steady enhancement for a wider barrier width WB mainly due to a bigger

voltage drop across the barrier layer, as seen in Eq. (29). Furthermore, the tunneling current in a dice lattice reveals
qualitatively the same feature as in graphene by comparing Fig. 8 with Fig. 9, but the actual values of σs(E

∗
F , |λ0 = 0)

are quite different due to an enhanced transmission coefficient for a dice lattice compared to that of graphene, as
can be seen in Fig. 4 and from Ref. [104]. Meanwhile, we find additional saturation of current increasing as E0 = E∗F
becomes lower than a critical value, as found from Figs. 9(a) and 9(c), due to unique features in the transmission
coefficient of a dice lattice.

IV. SUMMARY AND REMARKS

The effort of our work has been directed towards carrying out a rigorous investigation of the tunneling conductance
and the currents through a square potential barrier in graphene and a dice lattice in the presence of irradiation-induced
anisotropy of the electronic states and, specifically, their energy dispersions. In order to do that, we have derived an
analytical expression for the conductivity as a function of all the crucial tuning parameters: an incoming electron

energy E0, angle of incidence Θ
(1)
V′ , anisotropy aα(λ0) and misalignment angle β between the directions of the light

polarization and the direct incidence on the potential barrier.

For a finite angle β, the direction of motion of an incoming particle is determined by its group velocity ~V γG(λ0,k)

and its angle Θ
(1)
V′ relative to the normal incidence on the potential barrier, which is also used to distinguish the
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transmitted and reflected waves in the barrier region, but not the wavevector angle θk. In our case, however, both
these angles enter the equations for conductance simultaneously, which brings in some new unexpected relations and
physical behavior.

We have found that the tunneling conductance has only non-essential and periodic dependence on the misalignment
angle β. Its dependence on anisotropy consists of two terms with competing effects: a monotonically increasing trend

coming from the mismatch between angles Θ
(1)
V′ and θk, and a separate decreasing dependence which exactly reflects

the way how the density of states for such anisotropic Dirac electrons is related to their Fermi energy.

The external optical dressing field could modify the sequential-tunneling current of electrons with the help of polar-
ization angle β and light-interaction strength λ0. In addition to the applied Edc, the sequential tunneling of electrons
can also be enhanced by the Fermi energy EF in two electrodes and the barrier width WB . A strong dependence of
the tunneling conductance and the current on the electron doping and its fine-tuning by the applied irradiation leads
to a possibility to engineer an electronic device with desirable characteristics. Therefore, our work is expected to be
an important step in understanding the radiation-modulated properties and behavior of such optoelectronic devices.
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