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This paper reports the presence of extended-range ordering in the atomic pair-correlation function of amor-
phous silicon (a-Si) using ultra-large atomistic models obtained from Monte Carlo and molecular-dynamics
simulations. The extended-range order manifests itself in the form of radial oscillations on the length scale of
20–40 Å, which is examined by directly analyzing the radial distribution of atoms in distant coordination shells
and comparing the same with those from a class of partially-ordered networks of Si atoms and disordered con-
figurations of crystalline silicon from an information-theoretic point of view. The effect of the oscillations on the
first sharp diffraction peak (FSDP) in the structure factor is addressed by obtaining a semi-analytical expression
for the static structure factor of a-Si, and calculating an estimate of the error of the intensity of the FSDP asso-
ciated with the truncation of radial information from distant shells. The results indicate that the extended-range
oscillations do not have any noticeable effects on the position and intensity of the FSDP, which is primarily
determined by the medium-range atomic correlations of up to a length of 20 Å in amorphous silicon.
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order

I. INTRODUCTION

The structure of amorphous silicon (a-Si) is well repre-
sented by the continuous random network (CRN) model of
Zachariasen [1]. The CRN model of a-Si suggests that each
atom is bonded to four neighboring Si atoms, which form
an approximate tetrahedral atomic arrangement in the amor-
phous environment. The network is topologically distinct
from its crystalline counterpart (c-Si) owing to the presence
of 5-member and 7-member rings. In addition, a considerable
number of hexagonal rings and a few higher-member rings are
also present in the amorphous network. The pair-correlation
function (PCF) of a-Si obtained from CRN models indicates
that radial correlations typically extend up to a distance of 15
Å. Although the actual structure of laboratory-grown samples
of a-Si may differ from this simple CRN picture, except for a
few properties, the CRN model provides an overall good de-
scription of structural, electronic, and vibrational properties
of a-Si that mostly rely on the short-range order (≈ 5 Å) and,
to a lesser extent, the medium-range order (≈ 5–20 Å) of the
network.

Although the structure of a-Si has been extensively stud-
ied by using computer-generated models on the radial length
scale of 10–15 Å, there exist only a few studies [2–5] that
discuss the network structure of a-Si on the medium-range
length scale of 20 Å and beyond. This is partly due to the fact
that structural and electronic properties of a-Si are generally
found to be not particularly dependent on the medium-range
structure beyond 15 Å and in part to the computational com-
plexity of conducting quantum-mechanical calculations, using
density-functional theory (DFT), for large models. However,
this observation does not necessarily imply that no medium-
range structure exists in a-Si [6]. In this paper, we address
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this aspect of the problem by studying the network structure
of a-Si using atomistic models of sizes 21,952 and 400,000
atoms. In particular, we examine two important aspects of the
medium- and extended-range structures of a-Si that have been
reported in the literature. The first problem involves the pres-
ence of weak but noticeable radial oscillations in the PCF at
distances of 20–40 Å. This was first reported by Uhlherr and
Elliott [7] and it was given the name extended-range oscilla-
tions in the PCF of a-Si. The second issue is directly related to
the first and it concerns the effect of the medium-range order
beyond 15 Å, and possibly the extended-range order, on the
first sharp diffraction peak (FSDP) of a-Si. The latter corre-
sponds to the first peak of the static structure factor [8], S(Q),
at Q = 1.99 Å−1 in a-Si. In the following, we use the term
medium-range order (MRO) to imply ordering on the length
scale of 5–20 Å, whereas the term ERO indicates structural
ordering beyond 20 Å, including extended-range oscillations.

The role of the medium-range order (MRO) in amorphous
networks has been studied extensively in an effort to un-
derstand structure-property relationships in network-forming
glasses, for example, oxides [9–13] and chalcogenides [14–
18]. The MRO in these systems typically manifests itself as
the FSDP, and the position, width, and intensity of the FSDP
characterize the length scale associated with the MRO. The re-
sults from numerous experimental [11, 19–24] and computa-
tional studies [2, 25–30] indicate that the MRO/ERO in glassy
systems can extend up to a distance of 30 Å and that it can
play an important role in determining a number of materials
properties of network-forming glasses. By contrast, results
for tetrahedrally-bonded elemental amorphous semiconduc-
tors, such as a-Si and a-Ge, are few and far between. Uhlherr
and Elliott [7] studied the presence of extended-range oscil-
lations in a-Si by analyzing experimental neutron-diffraction
data of Fortner and Lannin [31] and the pair-correlation data
obtained from atomistic models of size 13,824 atoms. [32]
The authors concluded, via the Fourier inversion of the struc-
ture factor in the vicinity of the FSDP region, that the ra-
dial oscillations can extend to at least 35 Å and that it arises
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from the propagation of second-neighbor radial atomic cor-
relations. Recently, Roorda et al. [33] reported the presence
of ERO in amorphous Si/Ge using x-ray diffraction measure-
ments at high resolution. The PCF obtained in their study
from the Fourier transform of diffraction data shows the pres-
ence of ERO beyond 20 Å in both a-Si and a-Ge samples.
The authors also noted that the (spatial) periodicity and decay
length of the MRO/ERO increase upon thermal annealing. In
view of these observations, the main task of the present study
is to examine the presence of the ERO in large realistic models
of a-Si by a direct analysis of the pair-correlation function and
their partial counterparts associated with distant coordination
shells of amorphous silicon.

The rest of the paper is arranged as follows. In section II,
we have provided a description of the computational methods
employed here to generate atomistic models of a-Si and a set
of partially-ordered networks of Si atoms. This is followed
by results and discussion in section III. The origin of the ERO
is addressed from a real-space point of view of the network
structure of amorphous silicon. The relation between the ERO
and structure of the FSDP is also examined in this section by
constructing a semi-empirical expression for the structure fac-
tor of a-Si in the Gaussian approximation. This is followed by
conclusions of our work in section IV.

II. COMPUTATIONAL METHOD

The present study involves the use of three different sets of
models. The first set consists of a-Si models obtained from
using the Wooten-Winer-Weaire (WWW) [34, 35] algorithm.
The second set comprises a-Si models produced from large-
scale molecular-dynamics (MD) simulations. The third set in-
cludes three different types of partially-ordered networks of
Si atoms, denoted by M1, M2, and M3. These networks are
not realistic models of a-Si; they have varying degrees of ra-
dial ordering in the respective PCF up to a radial length of
6 Å. In order for the ERO to manifest in the PCF of a-Si at
radial distances of 20–40 Å, it is necessary for the models to
be sufficiently large, consisting of a few tens to several tens
of thousands of atoms. To this end, the sizes of the models
were chosen to be 21,952 atoms and 400,000 atoms, which
suffice to establish an unambiguous presence of the ERO in
the PCF. In this study, we generated a set of three independent
M1/M2/M3 and WWW models and three MD models for the
purpose of configurational averaging of data.

The MD models were produced by initially placing 400,000
Si atoms randomly in a cubic simulation cell of length 202.4
Å, so that no two atoms could be at a distance of less than 2 Å.
The mass density of the models corresponds to 2.26 g.cm−3,
which is close to the experimental value [36, 37] of the a-
Si density, 2.25–2.28 g.cm−3, depending upon the method
of preparation and experimental conditions. The modified
Stillinger-Weber potential [38, 39] was used to calculate the
total energy and forces and the velocity-Verlet algorithm was
employed to integrate the equations of motion in canonical
ensembles. The initial temperature was set at 1800 K and the
system was equilibrated for 20 ps at 1800 K. The tempera-

ture was then gradually decreased, by using a chain of Nosé-
Hoover thermostats [40, 41], from 1800 K to 300 K at an aver-
age cooling rate of 5× 1012 K/s. The final structures from the
MD simulations were further subjected to geometry optimiza-
tion using the limited-memory BFGS algorithm, as described
by Atta-Fynn and Biswas [42]. Atomic configurations were
collected during the course of simulations once the configu-
rations satisfied a set of convergence properties, involving a
minimum value of the width of the bond-angle distribution
and the number of 4-fold-coordinated atoms in the network.

The second set of models were produced by using the
WWW method. Here, we employed the modified version
of the algorithm, developed by Barkema and Mousseau [35].
The method essentially consists of the following steps: 1)
Generate a random configuration and construct a neighbor
list of atoms using an appropriate cutoff value, such that the
network is tetravalent as far as the list is concerned; 2) Em-
ploy the WWW bond-switching algorithm [34, 35] to pro-
duce a new configuration and accept or reject the configu-
ration upon local relaxation of the network via the Monte
Carlo method. The bond-switching procedure largely main-
tains the tetravalent character of the atomic network during
simulations, and local relaxations were performed by using
the nearest-neighbor-based Keating potential [43]; 3) Relax
the resulting configuration from step 2 at a regular but in-
frequent interval to include the structural information from
beyond the first shell of neighbors, by using a generaliza-
tion of Weber’s adiabatic bond-charge model [44]. For a de-
scription of the method, see Barkema and Mousseau [35]. In
this study, we have employed three independent 21,952-atom
WWW models for obtaining configurationally averaged val-
ues of structural properties. The atomic coordinates of the
WWW models are provided as Supplemental Material [45].

In addition to the WWW and MD models of a-Si, we have
also generated a set of disordered networks, M1–M3, of Si
atoms. As stated earlier, these models are partially ordered
and they can be classified by the degree of radial correlations
present in the respective PCF. Specifically, M1 models are
highly disordered and have very little or no radial correlations
in the PCF. By contrast, M2 models are characterized by the
presence of a well-defined first peak and radial correlations up
to 3 Å. Likewise, M3 models exhibit radial correlations up to
6 Å with a pristine first peak and a part of the second peak,
with a well-defined gap between the peaks. The M2 and M3
models were generated by adding one atom at a time in the
simulation cell so that the addition of each atom satisfied a
set of geometric constraints in order to produce radial correla-
tions up to a length of 4 Å and 6 Å, respectively. The sizes of
the WWW and M1/M2/M3 models were chosen to be 21,952
atoms, with a cubic supercell of linear size 77.03 Å.

Apart from the WWW, MD, and M1 to M3 models, we
have also employed a number of disordered amorphous sili-
con (da-Si) and disordered crystalline silicon (dc-Si) config-
urations in this study. These configurations were produced
by including structural disorder in pristine a-Si and diamond
c-Si structures via random displacements of atoms, using
ri,α → ri,α + σ pi,α, from their original positions. Here, ri,α
is the α-th component (α = x/y/z) of the atomic position
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at site i, σ is the maximum value of the atomic displacement
in Å, and pi,α is a random number, which is uniformly dis-
tributed between -1 and +1. The values of σ were chosen
from 0.2 Å to 1.2 Å, which correspond to a distortion of the
Si–Si bond length by 8–51% from its average/ideal value of
2.36 Å in a-Si/c-Si. It may be noted that a value of σ of the
order of 0.3 Å satisfies the Lindemann’s criterion of melting,
producing liquid-like structures of a-Si and c-Si. Thus, the dc-
Si configurations with σ � 0.3 Å are considerably disordered
compared to their counterparts with σ ≤ 0.3 Å.

Given a distribution of atoms in a disordered network, the
structure factor can be obtained from the Fourier transform
of the reduced PCF, G(r). Assuming that the distribution of
atoms in the network is homogeneous and isotropic, the struc-
ture factor, S(Q), is given by,

S(Q) = 1 +
4πn0
Q

∫ ∞
0

r[g(r)− 1] sin(Qr) dr

≈ 1 +
1

Q

∫ Rc

0

G(r) sin(Qr) dr, (1)

where g(r) is the conventional pair-correlation function
(PCF), G(r) = 4πn0 r [g(r) − 1] is known as the reduced
PCF, and n0 is the average number density of the system. For
finite-size models, the upper limit of the integral can be re-
placed by Rc = L/2 by using the periodic boundary condi-
tions, provided g(r) → 1 as r → Rc. We shall see later that
this condition is amply satisfied by models for which Rc is of
the order of 20 Å.

III. RESULTS AND DISCUSSION

A. Extended-range oscillations in the PCF of a-Si

We begin by establishing the unambiguous presence of ra-
dial oscillations in the PCF of a-Si at a distance of 20–40 Å.
Since the calculation of the PCF beyond 20 Å requires suffi-
ciently large models of a-Si, we first examine the large MD
models, consisting of 400,000 atoms. Thereafter, we pro-
ceed to determine the origin of these oscillations by analyz-
ing the three-dimensional network structure of these 400,000-
atom models and a set of 21,952-atom models obtained from
the WWW method. The results from these models will be
compared with the same from the partially-ordered networks,
M1 to M3, having varying degrees of radial ordering up to a
distance of 6 Å. The PCFs of the partially-ordered networks,
from M1 to M3, are shown in Fig. 1, along with the results
from the 21,952-atom WWW models of a-Si. It is evident
from the plots that the M2 and M3 models show radial corre-
lations of up to 4 Å and 6 Å, respectively. The M1 models,
on the other hand, exhibit small radial correlations up to 3 Å,
which mostly originate from the imposed constraint of a min-
imum separation distance of 2 Å between any two atoms in
the network.

Figure 2 shows the reduced PCF obtained from the MD
models of a-Si, which consist of 400,000 atoms. The data pre-
sented here correspond to the configurational-averaged values
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FIG. 1. The pair-correlation functions of three partially-ordered
models (M1 to M3) of Si atoms, showing radial correlations up to
a length of 6 Å. The results for a-Si (WWW models) are shown for
comparison with that for the M3 model. The size of the models cor-
responds to 21,952 atoms and the PCF data were averaged over three
independent configurations for each model.
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FIG. 2. The reduced pair-correlation function, G(r), of a-Si, ob-
tained from a configurational averaging of three large MD models of
size 400,000 atoms. The inset shows the presence of radial oscilla-
tions up to 40 Å, which are known as the extended-range oscillations
in a-Si.

of G(r) from three independent configurations. The inset in
Fig. 2 shows the presence of distinct radial oscillations at a
distance beyond 20 Å, extending at least up to 40 Å. Similar
oscillations have been also observed in the reduced PCF of
21,952-atom WWW models, but in a somewhat weaker form.
This is apparent in Fig. 3, where we have plotted the config-

urationally averaged reduced PCFs for the 400,000-atom MD
models and 21,952-atom WWW models. For comparison, the
radial distances (r) in Fig. 3 are scaled by the corresponding
position of the first peak (r0) by introducing a scaled variable
R = r/r0. The inset in Fig. 3 clearly shows the presence
of considerable oscillations in larger 400,000-atom MD mod-
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els compared to their WWW counterpart in the region of R
from 6 to 14, which translates into a distance of 14 Å to 33
Å for r0 ≈ 2.37 Å. The observed differences can be partly
attributed to the size and statistics and in part to the nature of
simulations. In general, MD models are considered to be more
representative of annealed samples of a-Si, which are slighly
more ordered than their as-deposited counterpart.

Table I presents some characteristic structural properties of
the MD and WWW models. Since the presence of too many
structural defects can affect the local density of the networks,
and the radial correlations between atoms, it is necessary for
the models to exhibit properties that are compliant with ex-
perimental observations. The presence of only a few dangling
bonds (up to 1.3%) and floating bonds (up to 1.2%), as well
as a small value of the root-mean-square width, ∆θ, about
9–10◦, of the bond-angle distribution, confirms that the struc-
tural properties of these models are indeed consistent with ac-
tual samples of a-Si.

To further characterize the models, one often computes the
electronic density of states (EDOS). The EDOS in a-Si is
found to be very sensitive to the presence of coordination de-
fects, especially three-fold-coordinated Si atoms or dangling
bonds. The presence of an electronic gap largely depends on
these defects, and the size of the gap is known to be related to
the density of such defects and the degree of disorder in bond-
length and bond-angle distributions. We have therefore calcu-
lated the EDOS of 21,952-atom WWW models and 400,000-
atom MD models. Since the diagonalization of the Hamilto-
nian matrix (H) of such large a-Si models is highly nontriv-
ial, we had to resort to: a) the tight-binding approximation of
the Hamiltonian; and b) employ the recursion method of Hay-
dock, Heine, and Kelly (HHK) [46, 47] to obtain the EDOS. In
the recursion approach of HHK, one calculates the projected
density of states nα(E), associated with a basis function |α〉
(involving a site and an orbital), by writing

nα(E) =
∑
k

|〈α|ψk〉|2δ(E − Ek). (2)

Here, Ek and ψk are the energy eigenvalues and eigenvectors
of H , respectively. Using a representation of the δ-function
and writing z = E + ıε, where ε → 0+, it can be shown that
the projected EDOS can be expressed in terms of the singu-
lar part of the diagonal element of the resolvent of H or the
Green’s operator Ĝ(z) = (zÎ − Ĥ)−1. This yields [48]

nα(E) = − 1

π
lim
ε→0+

Im Gαα(E + ıε). (3)

The local EDOS obtained from using Eq. (3) is averaged over
multiple sites to calculate the total EDOS. For 400,000-atom
MD models, the problem is particularly difficult due to the
handling and storage of large matrices and the computational
cost associated with the calculation for all sites. In practice,
a few clusters of several hundred atoms are found to suf-
fice for configurational averaging. Using a fast matrix-vector
multiplication scheme and a compressed representation of the
sparse H matrix, one can implement an order-N algorithm
for the calculation of the local EDOS in the tight-binding ap-
proximation. The results obtained from these calculations are

0 1 2 3 4 5 6
R (=r/r

0
)

-2

0

2

4

6

G
(R

)

MD (400,000)

WWW (21,952)

6 8 10 12 14
-0.1

-0.05

0

0.05

0.1

FIG. 3. The reduced PCFs of the 400,000-atom MD models and
21,952-atom WWW models showing the presence of considerable
extended-range oscillations in larger MD models. For clarity, the
radial distances are scaled by the corresponding first peak of the PCF,
i.e., R = r/r0, where r0=2.37 Å.
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FIG. 4. The electronic density of states (EDOS) of 21,952-
atom WWW and 400,000-atom MD models obtained from the tight-
binding approximation. The presence of an electronic band gap is
clearly visible in the plots.

shown in Fig. 4. The presence of a clean gap, rather than a
pseudo gap, in the EDOS further establishes the quality of
the models. The approach can be adapted to calculate the
vibrational density of states in the harmonic approximation,
provided that an efficient scheme to obtain electronic forces
for the construction of the dynamical matrix (DM) of a-Si is
available. A simple order-N approach to construct the DM
can be found in Ref. 49.

B. Origin of extended-range oscillations in a-Si

The first step toward understanding the ERO in a-Si follows
from an analysis of the reduced PCF of disordered crystalline
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TABLE I. Structural properties of three WWW models (W1–W3)
and three MD models (MD1–MD3). The average bond length
(〈r〉), average bond angle (〈θ〉), and the root-mean-square width of
bond angles (∆θ) are expressed in Å and degree, respectively. Cn

indicates the number of n-fold-coordinated atoms (in percent).

Model Bond angle Atomic coordination Bond length
Type Size (N) 〈θ〉 ∆θ C2 C3 C4 C5 〈r〉
W1 21,952 109.21 10.04 0.00 0.00 99.86 0.14 2.36
W2 21,952 109.23 9.83 0.00 0.00 99.9 0.1 2.36
W3 21,952 109.22 9.87 0.00 0.00 99.88 0.12 2.36

MD1 400,000 109.23 9.26 0.02 1.28 97.59 1.11 2.38
MD2 400,000 109.23 9.31 0.03 1.29 97.52 1.16 2.38
MD3 400,000 109.23 9.34 0.02 1.26 97.57 1.15 2.38
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FIG. 5. The presence of radial oscillations in MD models of a-Si
(blue) of size 400,000 atoms and two dc-Si structures of size 405,224
atoms from 15 Å to 30 Å. The positions of the radial peaks of a-Si
approximately correspond to those of dc-Si, indicating the possible
presence of weak extended-range ordering in a-Si beyond 15 Å.

silicon (dc-Si) structures. The inclusion of positional disor-
der washes out the sharp δ-functions in the PCF of diamond
c-Si and leads to a series of broadened peaks for the result-
ing dc-Si structures. A comparison of the reduced PCF of
a-Si with those from dc-Si, for σ = 1.0 Å and 1.2 Å, in Fig. 5
reveals that a-Si exhibits small but noticeable oscillations at
large distances of up to at least 30 Å. Despite the fine structure
of G(r) in dc-Si, it is apparent that the positions of the peaks
in a-Si approximately coincide with those in dc-Si. This ob-
servation leads to the possibility that the ERO in a-Si could
originate from the presence of weak radial-shell structures on
the nanometer length scale, as in the case of dc-Si. This point
is examined at length in the following paragraphs.

Assuming that radial-shell structures exist in the partially-
ordered environment of a-Si at large distances, one may ex-
press the total PCF, g(r), as a linear combination of the same
for each coordination shell, gn(r). Thus, g(r) =

∑
n gn(r),

where gn(r) = 〈g(r = |rn −Ri|)〉i. Here, r is the distance
between a central atom at Ri and its neighbors in the nth co-

ordination shell at rn, and the symbol 〈 〉i stands for the aver-
age over all atoms and independent configurations. Since, for
an arbitrary (highly) disordered network, distant radial shells
may not exist or be well defined – depending on the degree
of radial disorder – it is more appropriate to define the nth
coordination or topological shell as one that consists of nth
near neighbors of the central atom at Ri. This is schemati-

FIG. 6. A schematic representation showing the first two coordina-
tion shells of a central atom (blue) in a two-dimensional disordered
network. The atoms in the first shell (green) and the second shell
(yellow) can be reached from the central atom in one step and two
steps, respectively.

cally illustrated in Fig. 6 by showing the first-shell neighbors
(green) and the second-shell neighbors (yellow) of the central
atom (blue). The key point here is that the nth neighbors of
a central atom are those that can be reached (from the center)
by a minimum of n distinct and irreversible steps, irrespective
of the presence of well-defined radial shells or not. Thus, the
coordination shells defined above depend on the topology or
connectivity of the atomic network, and the three-dimensional
shape of the shells may not be necessarily spherical. We shall
see later that this can lead to a highly asymmetrical radial dis-
tribution of atoms within the coordination shells of partially-
disordered networks. Figure 7 shows the shell PCFs, gn(r),
obtained for the first six coordination shells, along with g(r)
for a 21,952-atom WWW model of a-Si. It is apparent that the
shell PCFs, for n = 1 to n = 6, can be represented by a bell-
shaped curve in a-Si, with the exception of g3(r) for which a
bi-modal distribution is observed. The latter is consistent with
the earlier study by Uhlherr and Elliott [7], who attributed the
bi-modal shape of g3(r) to the end-to-end radial distances of
a set of four neighboring atoms or quartets associated with
dihedral angles in a-Si.

Having expressed the total PCF in terms of gn(r), we now
examine the oscillations in the PCF by studying individual
gn(r)s, which reflect the characteristic properties of the radial
distributions of atoms in nth shells. In particular, the width of
gn(r) is indicative of the strength of the radial (dis)order in the
nth shell. A small value of the width corresponds to a highly
ordered state of atoms within the shell as far as radial ordering
is concerned, and vice versa. This assertion can be verified by
computing gn(r) for a number of partially-ordered networks
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FIG. 7. The shell pair-correlation function, gn(r), for the nth coor-
dination shell of a 21,952-atom WWW model of a-Si. The total g(r)
(dashed black), which is given by the sum of all shell PCFs, is also
shown in the plot.

of silicon. Figure 8 shows the results for the 13th coordina-
tion shell, g13(r) as a representative example, obtained from
21,952-atom models, of a-Si, dc-Si, and M2. As stated ear-
lier in Sect. II, the latter model (M2) is characterized by the
presence of a well-defined first-coordination shell, whereas
the dc-Si structures are produced by using a value of σ in the
range from 0.3 Å to 1.0 Å. It is apparent that a small value
of σ (for example, σ = 0.3 Å) produces well-defined multi-
ple peaks in g13(r) for dc-Si models. However, as the value
of σ increases and goes beyond 0.6 Å, the peaks in g13(r)
coalesce to form a unimodal distribution. This is unsurpris-
ing due to the presence of strong residual crystalline order in
the dc-Si networks for σ ≤ 0.6 Å. By contrast, the width of
g13(r) for a-Si is found to be considerably smaller than its M2
counterpart, which shows a more radially disordered distribu-
tion of atoms within the same shell in M2. This observation
is found to be true not only for g13(r) but also for all gn(r)s.
The high asymmetry of g13(r) for the M2 and dc-Si models
can be readily attributed to the connectivity of the atoms in
these models. Since the position of an atom in a given coor-
dination shell is determined by the number of steps/hops from
the central atom, there exist a few atoms in the shell that are
radially close to the central atom but are not reachable (from
the central atom) via a small number of steps/hops, due to the
low connectivity of the atoms in the networks for increasing
values of σ. This is reflected in the left tail of the distribution
(see Fig. 8), which leads to a negative value of the skewness
for the radial distribution of atoms in the shell. This can be
verified by computing the Fisher-Pearson (FP) coefficient of
skewness [50], s, for g13(r), for different σ values. In general,
the FP coefficient of skewness is given by the standardized
third central moment of a distribution, and a negative value of
the coefficient signifies a skewed distribution toward the left,
and vice versa. The variation of swith σ for a number of dc-Si
models is shown in Fig. 9, along with the corresponding value

10 12 14 16 18 20 22 24 26 28
r (Å)

0

0.2

0.4

0.6

0.8

g 13
 (

r)

dc-Si (σ = 0.3  Å)
dc-Si (σ = 0.8  Å)
dc-Si (σ = 1.0  Å)
a-Si (21,952)
M2

FIG. 8. The shell pair-correlation functions, g13(r), obtained from
21,952-atom WWW models of a-Si (red), dc-Si (blue/purple/cyan),
and partially-ordered configurations M2 (green) of Si atoms. The
disordered crystalline structures were generated from the diamond
c-Si structure, using σ = 0.3, 0.8, and 1.0 Å.

of the coefficient for the M2 model for comparison.
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FIG. 9. The variation of the Fisher-Pearson coefficient of skewness,
s, for the distribution g13(r;σ) with σ for a number of dc-Si models
(blue). The coefficients for the M2 model (green) and a-Si (red), for
σ = 0, are shown in the plot for comparison.

Figure 10 shows the full width at half maximum (FWHM)
of the shell PCFs, gn(r), for different shells, from n=1 to
n=20, for a class of partially-ordered models (M1 to M3), a-
Si, and dc-Si models of size 21,952 atoms. Since dc-Si mod-
els tend to exhibit the presence of multiple peaks in gn(r) for
σ ≤ 0.6 Å, the FWHM for the dc-Si models (with multiple
peaks) in Fig. 10 is calculated by fitting each individual peak
with a Gaussian distribution and averaging over the resulting
FWHM values for all major peaks in the distribution. The
FWHM values (in Fig. 10) suggest that the M1 models are
highly disordered, whereas the dc-Si structures with σ = 0.2
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FIG. 10. The full width at half maximum (FWHM) for a set of
partially-ordered configurations (M1 to M3), a-Si, and four dc-Si
structures of size 21,952 atoms. The dc-Si structure (with σ = 0.2 Å)
is the most ordered configuration, whereas M1 is the least ordered
configuration, by construction.

Å are the least disordered configurations. This observation
is indeed true by construction. For σ = 0.2–0.5 Å, a signifi-
cant radial ordering exists in the dc-Si structures that leads to
a small value of the width in Fig. 10. The rest of the models,
from M2 and M3 to a-Si, exhibit an increasingly more ordered
state of radially distributed atoms in the shells. It is apparent
that as more radial ordering is incorporated in a model (for ex-
ample, M2 and M3), the corresponding FWHM value of gn(r)
begins to decrease for a given shell. Conversely, the inclusion
of (additional) structural disorder increases the corresponding
FWHM value of gn(r) in a model. This can be seen from
Fig. 11, where the addition of positional disorder, via random
displacements of atoms in M1, M3, and a-Si, resulted in an
increase of the FWHM values of gn(r). This observation also
applies to the total PCF of a-Si. Figure 12 shows that the am-
plitude of the radial oscillations reduces in the region of 20–40
Å with the addition of positional disorder in a-Si. It may be
noted that the FWHM values for the M1 models, which are
highly disordered by construction, are practically unaffected
in Fig. 11 in the presence of additional disorder with σ values
of the order of 0.3 Å. Thus, the width (or the average width for
a multimodal case) of gn(r) can be taken as a measure of the
radial order/disorder in partially-ordered networks, including
a-Si and dc-Si structures.

C. Shannon information as a measure of extended-range
ordering

The assertion that the width of the shell pair-correlation
function, gn(r), can provide a measure of the disorder in
the radial distribution of atoms in the n-th coordination shell
of a disordered network is not particularly surprising and it
directly follows from the Shannon measure of information

(SMI) [51]. By normalizing the shell PCF, gn(r), one can
readily construct a discrete probability measure, pin, to define
the SMI as follows:

S[pin] = −k
∑
i

pin ln pin. (4)

In Eq.(4), the value of 0 ln(0) is defined to be 0, k is a constant,
and pin is given by

pin =
gn(ri)∑
i gn(ri)

.

The SMI can be understood as providing a measure of the
degree of uncertainty or the lack of radial ordering in the
distribution of atoms in the coordination shells. The mul-
tiplicative constant k in Eq. (4) can be taken as unity with-
out any loss of generality. The results for the SMI obtained
from M1/M2/M3/a-Si models are shown in Fig. 13 for the first
twenty coordination shells. The corresponding results for di-
amond c-Si are also shown in the plot for comparison. As
one may expect, the SMI values for different shells behave in
a similar manner as that of the FWHM (of the shell PCFs)
with respect to the peak position in Fig. 10. Once again, the
largest values of the SMI correspond to the highly disordered
M1 models, whereas a-Si exhibits the smallest values of the
SMI for each shell among M1, M2, M3 and a-Si. It is note-
worthy that, unlike the case of disordered and amorphous Si
networks, the SMI values associated with the coordination
shells in the diamond c-Si structure, which is perfectly or-
dered, increase considerably with the increasing shell num-
ber in a global sense. This observation can be attributed to
the presence of multiple peaks in the higher-order coordina-
tion shells. Since the (shell) PCFs for a crystalline structure
consist of a series of δ-functions, the presence of an increasing
number of peaks in the distant shells leads to more uncertainty
in the radial distribution of the atoms in these shells. This is
reflected in the larger value of the SMI for the distant shells.
Thus, the SMI can be loosely interpreted as a global mea-
sure of ordering/disordering in the distribution, which is most
appropriate for describing the degree of order/disorder asso-
ciated with unimodal distributions. However, for multimodal
distributions, such as the dc-Si structures with σ ≤ 0.5 Å, one
requires a suitable local measure of information, for example,
the Fisher information [52], in order to quantify the degree of
disorder or uncertainty associated with the radial distribution
of the atoms in the coordination shells. These issues will be
addressed elsewhere from an information-theoretic point of
view in a future communication.

The origin of the extended-range oscillations in a-Si can
now be interpreted in light of the results from Figs. 7–13.
Since the full PCF can be expressed in terms of its partial com-
ponents, any structural aspects of g(r), such as the extended-
range oscillations, can also be represented by a suitable set
of gn(r), associated with the length scale of the oscillations.
Figures 10 and 13 essentially suggest that, as the degree of
radial ordering in the full PCF increases from M1 to M3, the
corresponding width and the Shannon information associated
with gn(r) steadily decrease. Thus, the inclusion of radial in-
formation of up to a distance of 4 Å in M2 and about 6 Å
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between 20 Å and 40 Å. The results for the corresponding pristine
a-Si model (green) are also shown for comparison.

in M3 suffices to result in a reduction of the width of gn(r)
associated with the distant coordination shells. Since a-Si is
characterized by the presence of strong radial ordering at least
up to a length of 20 Å in the full PCF, it is unsurprising that
a small value of the width of gn(r) of a-Si is reflective of
the radial ordering in the distant shells on the length scale of
20–40 Å. By contrast, the dc-Si models with σ = 0.2–0.5 Å
show significant radial ordering as far as the widths of various
gn(r)s are concerned. Thus, the ERO in a-Si can be under-
stood as the resultant density fluctuations, originating from
highly ordered radial distributions of atoms in the first few co-
ordination/radial shells, which propagate and decay radially as
the (density) fluctuations travel through the distant shells. A
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FIG. 13. The Shannon measure of information (SMI), associated
with a discrete probability measure pn, obtained from the shell pair-
correlation functions, gn(r), for M1 to M3, a-Si, and diamond c-Si.
For disordered and amorphous Si networks, the results were averaged
over three independent configurations for each shell.

comparison of the results from the M2, M3, and a-Si models
in Fig. 10 appears to suggest that the characteristic local radial
ordering of up to 6 Å forces the atoms in distant shells to orga-
nize in such a way that small radial oscillations are built up on
the length scale of up to 40 Å, when the model is sufficiently
large. The presence of these small but distinct radial oscil-
lations in the full PCF is indicative of the existence of weak
extended-range radial ordering in a-Si up to a length of 40 Å,
as far as the size of the a-Si models studied in this work are
concerned.

D. Decay of radial correlations, autocorrelation coefficient,
and comparison with experimental diffraction data

The presence of radial atomic correlations beyond 20 Å can
be further evidenced by computing the autocorrelation coeffi-
cient(s) of G(r). Assuming that M observations, y1, y2, . . . ,
yM , form a time series, where yi = G(ri), the autocovariance
coefficient [53], ck, between the observations that are k-steps
apart, is given by:

ck =
1

M

M−k∑
i=1

(yi − ȳ)(yi+k − ȳ), k = 1, ..., n, n < M. (5)

The autocorrelation coefficient at lag k is then expressed as
γk = ck/c0, where c0 is the variance and ȳ is the mean value
of the set {yi}. Figure 14 shows a plot of γk versus rk. Here,
the set {yi} is constructed by choosing a segment of G(r)
from r1 = 15 Å to rn = 45 Å and expressing k in terms of
rk = r1 + k∆r, where ∆r is the distance between two con-
secutive observations of G(r). It is apparent from the plot
that, given the set of G(r) values from 15 Å to 45 Å, ∆r =
0.05 Å, n = 600, and M = 900, the radial correlations decay
in an oscillatory manner and become almost negligible after
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MD models of a-Si, showing the presence of radial correlations up
to 45 Å. The root-mean-square fluctuations are shown as error bars
(blue vertical lines). For visual clarity, the results for the radial region
from 35 Å to 45 Å are shown in the inset.

35 Å. The root-mean-square (RMS) fluctuations of γk, ob-
tained from the configurational averaging of the results from
three independent MD models of size 400,000 atoms, are also
shown in Fig. 14. Since the RMS values of the fluctuations are
almost of the order of γk for r ≥ 40 Å, the radial correlations
in this region may not be significant, even though the presence
of small residual correlations can be seen in this region.

We now provide a direct comparison of our results with
those from diffraction measurements by computing the decay
length and the (spatial) period of the ERO at radial distances
beyond 10 Å. High-energy x-ray diffraction measurements on
a-Si samples, by Roorda et al. [33], suggest that the period
of oscillations ranges from 2.77 Å to 3.03 Å and that the de-
cay length in annealed samples of a-Si is about 4.23 Å. Figure
15 shows the decay of the amplitudes of radial oscillations
in G(r) for 400,000-atom MD models of a-Si, which can be
roughly considered as the simulated counterpart of annealed
samples of a-Si in experiments. Here, the amplitudes and po-
sitions of the peaks are obtained from Fig. 2. The correspond-
ing decay for dc-Si networks for σ = 0.7 Å and 0.8 Å are also
included in the plot for comparison. For visual clarity, the first
three peaks of a-Si are omitted from the plot, by choosing an
appropriate range for the y axis. The values of the period and
the decay length obtained from our calculations compare very
well with the results from experiments. The average period of
oscillations from 400,000-atom MD models, in Fig. 15 (and
Fig. 2), is found to be 3.2±0.065 Å, which is very close to
the experimental value of 3.03 Å, and the corresponding de-
cay length turns out to be about 4.81±0.012 Å. The latter is
somewhat higher than the experimental value of 4.23 Å, ob-
tained from the Fourier transform of experimental diffraction
data by Roorda et al. [33]. It is evident from Fig. 15 that the
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FIG. 15. The decay of the radial peak heights inG(r) for a-Si (blue)
and dc-Si (red and green) with peak distances. The exponential fit of
the peak positions (dashed blue line) corresponds to the data for a-Si
models of size 400,000 atoms. The decay length for a-Si corresponds
to a value of 4.81 Å. The corresponding peak positions for dc-Si
structures are shown for comparison.

dc-Si models exhibit a rather slow decay, even for consider-
ably large values of σ from 0.7 Å to 0.8 Å.

E. Relation between ERO and the first sharp diffraction peak
in a-Si

In this section, we address the question whether the pres-
ence of extended-range oscillations has any bearing on the po-
sition and intensity of the first sharp diffraction peak (FSDP)
in a-Si. Since the origin of the FSDP is strongly related to
the presence of medium-range order (MRO) in glasses, which
can extend up to a radial distance of approximately 20 Å, it is
instructive to examine whether the ERO in a-Si can produce
any observable effect on the intensity of the FSDP near 2.0
Å−1.

The effect of distant radial correlations on the position and
intensity of the FSDP in a-Si can be calculated from using
Eq. (1). However, a direct application of Eq. (1) to very large
models can be problematic for two reasons. First, the presence
of noise inG(r) at largeR can introduce errors, depending on
the signal-to-noise ratio in G(r). This makes it difficult to
identify the optimal value of Rc for large models, by varying
the upper limit of the integral in Eq. (1). Second, for large
values of R, the integrand can be highly oscillatory and con-
ventional integration techniques may not suffice to accurately
compute S(Q0) in the presence of a noisy G(r). To amelio-
rate these issues, we shall address the problem by express-
ing G(r) in terms of suitable distance-dependent radial basis
functions, and calculate the resulting integral analytically to
obtain a closed expression for S(Q). Noting that the oscilla-
tions are particularly pronounced in G(r), it is useful to write
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FIG. 16. The static structure factor, S(Q), of a 21,952-atom WWW
model of a-Si obtained from the Gaussian approximation (red line)
and from direct numerical calculations (blue circles) using Eq. (7).

G(r) as a linear combination of Gaussian functions

G(r) =

m∑
i=1

aie
−bi(r−ci)2 (6)

in an effort to obtain an analytical expression for S(Q) in
terms of the Gaussian parameters. The parameters ai, bi, and
ci determine the approximate peak/trough height, width, and
the (radial) position of the ith peak/trough, respectively, and
can be obtained either via a nonlinear fit of Eq. (6) to experi-
mental/simulated reduced PCF data, G(r), or by minimizing
a suitable cost function with respect to the set of parameters
(ai, bi, ci). Here, we have taken the second approach and en-
sured that bi > 0 for all i. The structure factor can be ex-
pressed in terms of the fitted Gaussian parameters:

S(Q) = 1 +

∫ Rc

0

rG(r)
sin(Qr)

Qr
dr (7)

= 1 +
1

Q

m∑
i=1

ai

√
π

bi
sin(Qci) exp

[
−Q

2

4bi

]
(8)

In writing Eq. (8), we have denoted, for notational conve-
nience, the set (ai, bi, ci) as the fitted values of the parameters
and assumed that the center of each Gaussian function, ci,
satisfies the condition 0� ci � Rc so that S(Q) can be writ-
ten as a sum of Gaussian integrals (and not error functions)
with the integration limit extending from 0 to ∞. This con-
dition is readily satisfied by choosing an appropriate value of
m, such that Rc � cm, and noting that the first peak of the
PCF in a-Si rapidly decays to zero for r ≤ 2.0 Å. In practical
calculations, a value of Rc of the order of 20 Å is found to
be sufficient for accurate determination of S(Q) using Eq. (7)
[see Dahal et al. [54] and Fig. 17 here]. The structure fac-
tor obtained from Eq. (8) for a 21,952-atom WWW model of
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FIG. 17. The convergence of the intensity of the FSDP (at Q0)
and the principal peak (at Q1), obtained from Eq. (7), with respect to
the number (i) of Gaussian peaks/troughs for a 21,952-atom WWW
model. The radial length associated with the Gaussian peaks/troughs
is indicated in Å on the secondary x axis (top).

a-Si is plotted in Fig. 16, along with the results from direct
numerical calculations from Eq. (7) for comparison. For clar-
ity, the wavevector region from 15 Å−1 to 30 Å−1 is shown
separately as an inset in Fig. 16.

The variation of the intensity of the FSDP and the princi-
pal peak (i.e., the peak at 3.6 Å−1) can be studied, by using
Eq. (8), with respect to the number of Gaussian basis functions
m for a given Rc. Writing ∆S(Q, i) = S(Q,m) − S(Q, i),
where m=70 for Rc = 30 Å, Fig. 17 shows the convergence
of ∆S at Q0 = 1.94 Å−1 and Q1 = 3.6 Å−1 for an increasing
number (i) of peaks/troughs. Here, Q0 and Q1 correspond
to the position of the FSDP and the principal peak, respec-
tively. It is apparent that both S(Q0, i) and S(Q1, i) converge
to the respective limiting value, S(Q,m), very rapidly as i ap-
proaches to 30, which corresponds to a radial length of about
18 Å, as indicated in Fig. 17. The length is indicated at the
top of the plot as a secondary x axis, which reflects the non-
uniform distribution of Gaussian peaks/troughs in the radial-
region of 0–30 Å. Figure 17 suggests that radial correlations
from the region beyond 20 Å do not really play any signifi-
cant role. This observation can be stated more precisely. The
magnitude of the contribution to S(Q) obtained by including
an additional peak/trough beyond m in Eq. (8) can be written
as:

|δS(Q,m)| = |S(Q,m+ 1)− S(Q,m)|

=

∣∣∣∣∣∣ 1

Q

√
πa2m+1

bm+1
sin(Qcm+1) exp

[
− Q2

4bm+1

]∣∣∣∣∣∣
≤ 1

Q

√
πa2m+1

bm+1
exp

[
− Q2

4bm+1

]
. (9)

Substituting Q = Q0 = 2 Å−1 in Eq. (9) for the FSDP in a-Si,
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one obtains:

|δS(Q0,m)| < am+1√
bm+1

exp

[
− 1

bm+1

]
(10)

The asymptotic behavior of |δS(Q0,m)| with respect to m
follows from Eq. (10). Since G(r) → 0 as r → Rc for very
large models, the parameter am, which determines the height
of the Gaussian peak, decreases with an increasing value ofm,
and |δS(Q0,m)| becomes increasingly smaller asm becomes
a large number. In practice, however, |δS(Q0,m)| fluctuates
between 0 and a small value ε due to the presence of numerical
noise at large radial distances, which can be reduced by aver-
aging S(Q) [in Eq. (8)] over many independent sets of fitted
Gaussian parameters. Further, a value of Rc of about 30 Å is
found to be sufficient for the calculation of S(Q) from Eqs. (7)
and (8). The results from our calculations suggest that the av-
erage value [55] of ε is typically of the order of 0.025 for ra-
dial distances between 20 Å and 30 Å. This roughly translates
into an error of 1.7%, assuming S(Q0)=1.5 for as-deposited
samples from experiments [8]. Thus, aside from small fluctua-
tions of S(Q0) owing to numerical noise, the extended-range
oscillations in the radial region of 20–30 Å do not seem to
play any observable role in determining the intensity of the
FSDP in a-Si. A similar conclusion was reached in a recent
study [54], where an alternative argument based on the analy-
sis of the behavior of rG(r) and the sampling of sin(Qr)/Qr
within the radial region from 0 to Rc in Eq. (7) was provided
by the authors of the study to support this conclusion.

IV. CONCLUSIONS

The present study addresses the origin of the extended-
range oscillations in a-Si from a real-space point of view.
By analyzing a class of large partially-ordered networks of
Si atoms with radial ordering up to a distance of 6 Å in the
PCF, it has been shown that the inclusion of short-range or-
dering in the first two coordination shells of the disordered
networks can lead to an increased ordering of the atomic ra-
dial distribution in distant coordination shells. A comparison
of these results with those obtained from large a-Si and dis-
ordered crystalline configurations reveals that the shell pair-
correlation functions for the coordination shells of a-Si at ra-

dial distances of 20–30 Å are considerably ordered and that
this radial ordering manifests in the form of weak oscillations
in the total PCF of a-Si, which can be expressed as a sum of
the partial radial distributions from each coordination shell.
By using the full width at half maximum of the peak(s) of the
partial PCFs and the Shannon information as a measure of the
degree of order/disorder, one arrives at the conclusion that lo-
cal atomic correlations can considerably affect the distribution
of atoms in a-Si up to a distance of 40 Å.

An analysis of the amplitude of radial oscillations in the
reduced PCF of 400,000-atom MD models of a-Si shows that
the envelope function of the reduced PCF decays almost expo-
nentially and the resulting decay length (of 4.81 Å) is found to
be close to the experimental value (of 4.23 Å), estimated from
the Fourier transform of the diffraction data obtained for an-
nealed samples of a-Si. Likewise, the period of the extended-
range oscillations (for MD models) is found to be about 3.2
Å, which compares well with the corresponding experimental
value of 3.03 Å for annealed samples. The study also shows
that the structure factor of a-Si can be expressed as a linear
combination of a series of Gaussian functions, whose ampli-
tude is modulated by a sinc function. A convergence study of
the intensity of the FSDP, using the structure factor obtained
from the Gaussian approximation, with respect to the number
of peaks in real space shows that the structure of the FSDP
is primarily determined by the radial correlations originating
from a distance of up to 20 Å in a-Si networks, which leads to
the conclusion that the ERO has no discernible effects on the
FSDP in a-Si.
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