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We discuss multipartitions of the gapped ground states of (2+1)-dimensional topological liquids
into three (or more) spatial regions that are adjacent to each other and meet at points. By consider-
ing the reduced density matrix obtained by tracing over a subset of the regions, we compute various
correlation measures, such as entanglement negativity, reflected entropy, and associated spectra.
We utilize the bulk-boundary correspondence to show that such multipartitions can be achieved by
using what we call vertex states in (1+1)-dimensional conformal field theory – these are a type of
state used to define an interaction vertex in string field theory and can be thought of as a proper
generalization of conformal boundary states. This approach allows an explicit construction of the
reduced density matrix near the entangling boundaries. We find the fingerprints of topological liquid
in these quantities, such as (universal pieces in) the scaling of the entanglement negativity, and a
non-trivial distribution of the spectrum of the partially transposed density matrix. For reflected
entropy, we test the recent claim that states the difference between reflected entropy and mutual
information is given, once short-range correlations are properly removed, by (c/3) ln 2 where c is the
central charge of the topological liquid that measures ungappable edge degrees of freedom. As spe-
cific examples, we consider topological chiral p-wave superconductors and Chern insulators. We also
study a specific lattice fermion model realizing Chern insulator phases and calculate the correlation
measures numerically, both in its gapped phases and at critical points separating them.
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I. INTRODUCTION

“Quantum entanglement is not one but the character-
istic trait of quantum mechanics, the one that enforces
its entire departure from classical lines of thought” [1].
Entanglement also plays a central role in understanding
various phenomena and phases in many-body quantum
physics. For example, the scaling of the entanglement en-
tropy defined for a given subregion is a useful probe to un-
derstand different phases of matter and renormalization
group flows connecting them [2–8]. Modern approaches
to many-body quantum problems, such as the density
matrix renormalization group and tensor networks, are
based on the concept of quantum entanglement [9–13].

Quantum entanglement is particularly useful for char-
acterizing topological phases of matter, which lack con-
ventional order parameters. One of the simplest settings
to consider is a bipartition of the ground state of a topo-
logical liquid into two spatial subregions, A and its com-
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plement Ā, say. We can then study the scaling of the
entanglement entropy as a function of the size of the sub-
region A, which allows us to extract the topological en-
tanglement entropy of the topologically ordered ground
state [4, 5]. One can also study the entanglement spec-
trum, which also serves as a probe of different topological
orders and symmetry-protected topological phases [14–
16].

In this paper, we move beyond bipartitions and con-
sider multipartitions of the ground states of (2+1)-
dimensional topological liquids. Specifically, we consider
a tripartition (multipartition) in which the boundaries
between the three subregions A, B, and C meet at a
junction, as shown in Fig. 1. We note that this parti-
tioning is analogous to the one first considered in Ref.
[5]. A similar setup was also used recently in [17, 18] to
derive a formula for the chiral central charge in terms of
the modular commutator.

This multipartition setting allows us to define and com-
pute various correlation measures. For example, when
one of the three subregions, say C, is traced out, we are
left with the reduced density matrix for A ∪B, which is
now mixed. We can then discuss mixed state correlation
measures, such as the entanglement negativity [19–25]
and reflected entropy [26]. We can also study the associ-
ated spectra, such as the spectrum of the partially trans-
posed density matrix. These entanglement measures may
capture universal data related to multipartite entangle-
ment of topologically-ordered ground states, which are
not accessible in bipartition settings. (For previous stud-
ies on multipartite correlations in topological liquid, see,
for example, [27].)

The entanglement negativity and reflected entropy
have been previously studied in the context of
topologically-ordered phases in setups different from ours
[28–33]. We give a brief overview of the previous results
in Sec. II. As for the reflected entropy, for the tripartition
setup above, it was recently claimed [34] that the differ-
ence between the reflected entropy and mutual informa-
tion is given by (c/3) ln 2+O(e−`/ξ) where c is the central
charge of the topological liquid, ξ is the correlation length
and ` is the length scale for the three regions. (To obtain
the above universal value non-universal short-range cor-
relations must be removed by a proper local unitary – see
Sec. II.) As this multiparty entanglement quantity may
capture the central charge, the vanishing of this quantity
may be a prerequisite of having a PEPS (projected en-
tangled pair state) representation of the topological liq-
uid with finite bond dimension. (Or non-vanishing of
this quantity may be an obstruction to having a PEPS
representation with finite bond dimension.) We will re-
view this claim in Sec. II. These observations suggest that
there is much yet to be understood regarding topological
phases from the lens of entanglement.

We study the tripartition of topological phases using
two different approaches. First, we employ the edge the-
ory or “cut-and-glue” approach for computing the en-
tanglement of topological phases [30, 35–38], in which

FIG. 1: Tripartition of topological liquid on a two-
dimensional plane (a) and two-dimensional square lattice (b).

one approximates the entanglement between the bulk re-
gions as arising purely from entanglement of the gapped
chiral edge modes along the entanglement cuts between
the bulk regions. This approach is not limited to non-
interacting phases (e.g. integer quantum Hall or Chern
insulator phases) but rather is also applicable to generic
topologically-ordered phases. We recall that for the
case of bipartitioning a topological liquid, the entangle-
ment entropy (and other related quantities) can be ob-
tained from conformal boundary states (Ishibashi states)
[30, 35, 39, 40]. (See Sec. III A 1.) In this work, we will
extend this approach to the case of a multipartition (tri-
partition) by considering what we call “vertex states,”
which will be introduced in Sec. III A. What the vertex
states do for the case of tripartitioning is quite analogous
to what Ishibashi states do for the case of bipartitioning.
We emphasize that the construction of these vertex states
is a nontrivial extension of the corresponding computa-
tion for a bipartition, even for the case of free fermions.
Indeed, with some minor differences, states similar to ver-
tex states have been considered in the context of string
field theory [41–44]. They also resemble open bound-
ary states or rectangular states in conformal field theory
[45–48]. We will construct these vertex states using two
methods: the Neumann coefficient method, which makes
use of conformal mappings to fix the form of the vertex
state, and a direct calculation method, in which we di-
rectly diagonalize the boundary conditions defining the
vertex state. We check their equivalence numerically.

In the second approach, we consider the tripartite en-
tanglement of a specific non-interacting lattice fermion
model that realizes a Chern insulator phase. The many-
body ground state is given by a Gaussian state (namely,
a Slater determinant state), which allows us to make use
of the “correlator method” developed in Refs. [49, 50] to
compute various correlation measures. In contrast to the
edge theory calculation, which is only applicable for a
system deep in the topological phase, here we can study
how the correlation measures of interest change as we
tune across the phase transition between the topological
and trivial phases.

This paper is organized as follows. In Sec. II, we intro-
duce the correlation measures of interest and the corre-
lator method. In Subsec. III A, after reviewing the edge
theory approach to computing entanglement in biparti-
tion settings, we introduce vertex states for multiparti-
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tion. We demonstrate how to obtain the vertex state
using the Neumann coefficient method for both a Chern
insulator and a chiral superconductor. As a warm-up,
in Sec. III B we compute the entanglement entropy for
a bipartition and obtain a new topological contribution
in the sector with nontrivial topological flux piercing the
entanglement cut. In Sec. IV, we present the tripartite
vertex state solutions in different sectors, namely in the
presence of nontrivial topological fluxes, and extract new
fingerprints of the underlying topological state in entan-
glement. In particular, we discuss the scaling of the en-
tanglement negativity, the spectra of the entanglement
negativity and partially transposed density matrix. We
also test the conjecture on the reflected entropy in Ref.
[34]. In Sec. V, we study the entanglement measures nu-
merically in the lattice Chern insulator model. By com-
paring the results between vertex state and Chern insu-
lator ground state, we demonstrate the bulk-boundary
correspondence for tripartitioned topological states. We
also gain access to the spatial structure of entanglement
by calculating negativity contour.

We collect the technical details in Appendices. In Ap-
pendix A, we give the detailed derivation of the vertex
states by the direct calculation method, which is com-
plementary to the Neumann coefficient method. In Ap-
pendix B, we provide the technical details of the Neu-
mann coefficient method. Finally, in Appendix C, we
show how to apply the correlator method to vertex states
to compute various entanglement measures.

II. CORRELATION MEASURES OF INTEREST

In this section, we introduce the correlation measures
that will be discussed in this paper. Some of the correla-
tion measures, the entanglement entropy for the case of
pure states, and the entanglement negativity for generic
mixed states, are also entanglement measures, while oth-
ers such as mutual information and reflected entropy are
not. Here, entanglement measures are those quantity
that capture quantum correlations and monotonically de-
crease under local operations and classical communica-
tions (LOCCs).

a. Entanglement entropy When bipartitioning the
total system into two subregions A and Ā, after trac-
ing out subregion Ā, the reduced density matrix on A is
ρA := TrĀ ρ. The (von Neumann) entanglement entropy
is defined as

S(ρA) := SA := −Tr (ρA ln ρA) . (1)

The entanglement entropy is also given by the n →
1 limit of the Rényi entropies, defined as S

(n)
A :=

ln Tr (ρnA) /(1 − n). We recall that for gapped ground
states of two-dimensional Hamiltonians, ρ = |GS 〉〈GS |,
the entanglement entropy satisfies an area law, SA =
αL − γ, where α is a nonuniversal constant, L the
length of the entanglement cut, and γ the topological
entanglement entropy. Since the topological phases we

consider (chiral p-wave superconductor and Chern in-
sulator) are not topologically ordered (i.e. do not sup-
port anyon excitations), we will have γ = 0 in the ab-
sence of non-trivial fluxes. We can also combine en-
tanglement entropy in different regions to form other
correlation measures including the mutual information,
IA:B = SA+SB−SA∪B , and the tripartite mutual infor-
mation, I3 = SA+SB +SC −SAB−SBC −SAC +SABC .
Note that tripartite mutual information is directly re-
lated to topological entanglement entropy.

b. Entanglement negativity Let us now consider sub
Hilbert spaces A and B, and the density matrix ρA∪B
supported on A∪B. For mixed states, the entanglement
entropy is not a proper entanglement measure in that it
does not decrease monotonically under LOCCs. Instead,
one can consider the entanglement negativity,

EA:B = ln Tr ||ρTAA∪B ||1 = ln Tr
(√

ρTAA∪B(ρTAA∪B)†
)

(2)

with TA being the partial transpose on subregion A.

When ρA∪B is pure, EA:B = S
(1/2)
A . For bosonic systems,

the partial transpose is defined as

〈eAi eBj |ρ
TA
A∪B |e

A
k e

B
l 〉 = 〈eAk eBj |ρA∪B |eAi eBl 〉, (3)

where {|eA/Bi 〉} are complete bases of states for sub-
regions A/B, respectively. We note that by introduc-
ing the normalized composite density operator as ρ× =

ρTAA∪B
(
ρTAA∪B

)†
/Z×, we can express the negativity as

EA:B = ln
[
Z

1/2
× Tr

(
ρ

1/2
×
)]

= ln Tr
(
ρ

1/2
×
)

+
1

2
ln Tr

(
ρ2
A∪B

)
, (4)

where Z× := Tr
[
ρTAA∪B

(
ρTAA∪B

)†]
= Tr

(
ρ2
A∪B

)
.

On the other hand, for fermionic systems, the defini-
tion of the partial transpose has to take Fermi statistics
into account properly [51]. If we use the Majorana basis
and expand a density matrix ρA∪B in terms of Majo-
rana fermion operators a and b defined on HA and HB ,
respectively,

ρA∪B =

k1+k2=even∑
k1,k2

ρp1,··· ,pk1 ,q1,··· ,qk2

× ap1 · · · apk1 bq1 · · · bqk2 , (5)

then the partial transpose of ρA∪B with respect to sub-
region A is defined as

ρTAA∪B =

k1+k2=even∑
k1,k2

ρp1,··· ,pk1 ,q1,··· ,qk2 i
k1

× ap1 · · · apk1 bq1 · · · bqk2 . (6)

Entanglement negativity in fermionic systems, when for-
mulated by using the fermionic partial transpose above,
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is monotone under LOCC preserving the local fermion-
number parity [52, 53].

The entanglement negativity has been previously stud-
ied in the context of topologically-ordered phases in se-
tups different from ours [28–33]. The entanglement neg-
ativity for topologically-ordered ground states has been
shown to obey an area law with subleading, universal
corrections that are non-zero for topologically-ordered
ground states, much like the entanglement entropy. How-
ever, unlike the entanglement entropy, the entanglement
negativity appears to exhibit distinct behavior between
Abelian and non-Abelian topological phases when com-
puted in superpositions of topologically degenerate states
on manifolds with non-zero genus for certain tripartitions
[30, 32]. The entanglement negativity was also stud-
ied for topological phases of matter at finite tempera-
tures, and shown to detect finite temperature transitions
[54, 55].

In the same way that the entanglement spectrum
provides more information than the entanglement en-
tropy, also of interest to us is the spectral decompo-
sition of the entanglement negativity. Specifically, we
will study two types of spectra, one associated with
ρ× = ρTAA∪B(ρTAA∪B)†/Z× and the other with ρTAA∪B . We

note that for fermionic systems, ρTAA∪B may not be Her-
mitian. For conformal field theories and non-trivial SPT
phases in (1+1) dimensions, the spectrum of ρTAA∪B shows
an interesting pattern and is sensitive to the spin struc-
ture [51, 56].

c. Reflected entropy Finally, the reflected entropy
RA:B also provides a correlation measure for tripartite
Hilbert spaces. Given a reduced density matrix ρA∪B
supported on A∪B, we can obtain its canonical purifica-
tion |√ρ〉〉 in the doubled Hilbert space (A∪B)∪(Ã∪B̃),

where Ã and B̃ are identical copies of A and B, respec-
tively (with complex conjugation). The reflected entropy
RA:B is defined as the entanglement entropy of the puri-
fied state |√ρ〉〉 when tracing out the degrees of freedom

in B, B̃:

RA:B = S(ρA∪Ã), ρA∪Ã = TrB∪B̃
(
|√ρ〉〉〈〈√ρ|

)
. (7)

The reflected entropy has been studied in various many-
body quantum systems. For example, in (1+1)d CFT,
the reflected entropy has been studied for the ground
state [26], and for time-dependent states after quantum
quench [57–59]. The reflected entropy was also computed
for multi-sided thermofield double states in (non-chiral)
(1+1)d CFT (which has some similarly to vertex states
that we will introduce later) [60]. The reflected entropy
is a more sensitive probe of multipartite entanglement
than the von Neumann entropy [61, 62]. The difference
between the reflected entropy and mutual information

hA:B = RA:B − IA:B , (8)

is bounded from below, hA:B ≥ 0 [26], and called the
Markov gap in Ref. [63] as it is related to the fidelity
of a particular Markov recovery process on the canonical

purification. The difference hA:B is proposed as a non-
negative universal tripartite entanglement invariant [62].
It was also shown that for the ground states of 1d lattice
quantum systems at conformal critical points when the
subregion A and B are adjacent to each other, hA:B takes
a universal value, hA:B = (c/3) ln 2, where c is the (non-
chiral) central charge [62].

For the ground states of (2+1)d topological liquids,
it was recently conjectured in Ref. [34] that hA:B , when
computed for the tripartite setting in Fig. 1, captures
the chiral central charge of the topological liquid. Specif-
ically, from the topological ground state |Ψ〉, we con-
sider a state U |Ψ〉 where a local unitary U acts near the
junction. This unitary U can be optimized such that it
removes non-universal, short-range correlation near the
junction. Then, the claim in [34] is that the optimized
version of hA:B ,

hIRA:B = minUhA:B(U |Ψ〉), (9)

takes the universal value,

hIRA:B =
c

3
ln 2 +O(e−`/ξ), (10)

where ξ is the correlation length, ` is the length scale for
the three regions, and c is the central charge of the topo-
logical liquid that measures ungappable edge degrees of
freedom, i.e., cL + cR where cL/R is the left/right central
charge. This conjecture was tested in Ref. [34] for sting-
net models, for which c = 0, and for a non-interacting
Chern insulator model with proper optimization over U .

A. Fermionic Gaussian states

When the (reduced) density matrix of interest is Gaus-
sian, the above correlation measures can be efficiently
computed by using the correlator (or covariance matrix)
method [49, 51, 64, 65]. A Gaussian state ρA∪B is fully
characterized by the correlation matrices C and F , or
equivalently, by the covariance matrix Γ,

CIJ := Tr
(
ρA∪B f

†
I fJ
)
,

FIJ := Tr
(
ρA∪B f

†
I f
†
J

)
,

ΓJK :=
1

2
Tr
(
ρA∪B [cJ , cK ]

)
. (11)

Here, {f†I , fI} is a set of fermion creation/annihilation
operators where the indices I, J run over all relevant de-
grees of freedom, site, spin, orbital, etc. cI is the Ma-
jorana operator and we adopt the convention c2J−1 =

(fJ + f†J), c2J = i(fJ − f†J). Γ can be expressed in terms
of C,F as

Γ = (C − CT )⊗ 1 + (1− C − CT )⊗ σy
+ (F + F †)⊗ σz − i(F − F †)⊗ σx, (12)

where the Pauli matrices act on the space of odd and
even indices of the Majorana fermions.
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a. Entanglement entropy and negativity The von
Neumann entropy for the density matrix ρA∪B is ob-
tained from the eigenvalues γk of the covariance matrix
ΓA∪B for the degrees of freedom in region A ∪B:

SAB = −
′∑
k

[(1

2
+
γk
2

)
ln
(1

2
+
γk
2

)
+
(1

2
− γk

2

)
ln
(1

2
− γk

2

)]
. (13)

Here, the prime on
∑

means we only sum over one of
the eigenvalues in the ±γk pairs. Keeping only the de-
grees of freedom in region A ∪ B has the effect of trac-
ing out region C. In particle number conserving sys-
tems, the eigenvalues γk are related to the eigenvalues
εk of the quadratic entanglement Hamiltonian HE , de-

fined as ρA∪B ∝ exp (−
∑
I,J f

†
I (HE)IJfJ)), by εk =

ln [(1− γk)/(1 + γk)]. For ηk being eigenvalues of C, εk
can be expressed equivalently as εk = ln [(1− ηk)/ηk)].
We call the set of eigenvalues {εk} the (single-particle)
entanglement spectrum (ES) of ρA∪B .

Similar to the entanglement entropy, the entangle-
ment negativity for a fermionic Gaussian state can also
be computed from the covariance matrix. In particu-
lar, the covariance matrix associated to ρ× can be con-
structed as follows. Upon bipartitioning the Hilbert
space, HA∪B = HA ⊗ HB , we can write the covariance
matrix in a block matrix form,

ΓA∪B =

(
ΓAA ΓAB
ΓBA ΓBB

)
. (14)

Here, ΓAA and ΓBB denote the reduced covariance ma-
trices of subsystems HA and HB , respectively, whereas
ΓAB and ΓBA contain the expectation values of mixed
quadratic terms. The covariance matrix for the par-
tially transposed density matrix ρTAA∪B and its conjugate,

(ρTAA∪B)†, can be constructed as

Γ± =

(
−ΓAA ±iΓAB
±iΓBA ΓBB

)
, (15)

respectively. Using the algebra of the product of Gaus-
sian operators [66], the covariance matrix Γ× associated
with the normalized composite density operator ρ× is
given by

Γ× = 1− (1− Γ−)(1 + Γ+Γ−)−1(1− Γ+). (16)

In terms of the eigenvalues {γk} and {γ×k} of the co-
variance matrices Γ and Γ×, using Eq. (4), we can write

EA:B =

′∑
k

[
h(γ×k; 1/2) +

1

2
h(γk; 2)

]
where h(λ; q) = ln

[(
1− λ

2

)q
+

(
1 + λ

2

)q]
.

(17)

Again, only one eigenvalue in each of the ±γk and ±γ×k
pairs needs to be summed over. Analogous to the entan-
glement sectrum, the negativity spectrum (NS) is de-
fined as ln [(1− γ×k)/(1 + γ×k)] 1.

b. Spectrum of Γ+ The spectrum of ρTAA∪B can be
constructed from the eigenvalues of Γ+, which appear in
pairs {±ζk}. We will also study the distribution of the
eigenvectors associated with the eigenvalues ζk.

c. Negativity contour The negativity contour is a
spatial decomposition of the negativity. While the neg-
ativity associates a number to two extended spatial re-
gions, the contour, eA:B(r), is a function of the spatial
coordinates of the regions which can be interpreted as
the contribution of each degree of freedom to the negativ-
ity. The contour is constructed such that when summed
over all positions it reproduces EA:B ,

∑
r eA:B(r) = EA:B .

This elucidates where the entanglement is coming from.
For example, in ground states of gapped Hamiltonians,
the contour is concentrated at the entangling surface, de-
caying exponentially in space, representing the area law.
In, critical systems, the contour instead decays away from
the entangling surface as a power law. For highly excited
(thermal) states, the contour is finite and approximately
constant, representing the thermal entropy.

For Gaussian states, the negativity contour is defined
using the eigenvectors of the covariance matrices

eA:B(r) = v1(r) + v2(r),

v1(r) =
1

2

∑
k

|Uk(r)|2h(γk,×; 1/2),

v2(r) =
1

4

∑
k

|Vk(r)|2h(γk; 2),

(18)

where Uk(r) and Vk(r) are eigen states of Γ× and Γ with
eigenvalues γk,× and γk, respectively. (For the particle
number conserving case, Eq. (18) reduces to Eq. (A61)
of [65].)

d. Reflected entropy Finally, the reflected entropy
can also be computed conveniently using the covariance
matrix method [67]. Using the orthogonal transformation
O to bring ρ and Γ to canonical forms:

ρ =
∏
k

1

2
(1 + γkc

′
2k−1c

′
2k) where c′ = Oc,

Γ = OT
[
⊕k
(

0 iγk
−iγk 0

)]
O.

(19)

The purified state is given by

|√ρ〉〉 =
∏
k

[√
1 + γk

2
|0〉k|0̃〉k +

√
1− γk

2
|1〉k|1̃〉k

]
,

(20)

1 In other literature, the spectrum of a partially transposed density
matrix is also called the negativity spectrum.
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where |0̃〉k, |1̃〉k are states in the second copy of the
Hilbert space for the k-th mode. The associated covari-
ance matrix for |√ρ〉〉 is

Γ√ρ = O

[
⊕k
(

γkσ
y −i

√
1− γ2

k1

i
√

1− γ2
k1 −γkσy

)]
OT . (21)

The reflected entropy RA:B is then computed as the von
Neumann entanglement entropy using the A, Ã blocks in
Γ√ρ.

III. EDGE THEORY APPROACH

We now proceed to compute the correlation measures
introduced in the preceding section from the perspec-
tive of the boundary edge theories. We perform these
computations for a chiral superconductor and Chern in-
sulator (or integer quantum Hall state), the edge theo-
ries of which consist of single chiral Majorana and Dirac
fermions, respectively. As we will review in more detail
below, in the edge theory or “cut-and-glue” approach
[30, 32, 35–38], we compute the entanglement between
subregions of a topological phase by first physically cut-
ting the system along the entanglement cut, which gives
rise to the aforementioned chiral edge states. We then
“glue” the system back together by introducing a tunnel-
ing interaction to gap out the edge states. Since the cor-
relation length vanishes in the bulk, we can approximate
the entanglement between the bulk subregions as aris-
ing solely from entanglement between the gapped edge
modes. The first step in this computation is then to de-
termine the ground state of this gapped interface along
the entanglement cut.

For the case of a simple bipartition, this ground state
is known to take the form of a conformal boundary state,
or more precisely, an Ishibashi state [30, 35]. For the tri-
partitions of interest to us, in which the entanglement
cut involves a trijunction, a generic form for the ground
state of the interface is not known and is difficult to com-
pute, even in the present case of free fermions. Fortu-
nately, similar interface configurations have appeared in
the string field theory literature, in which the conformal
boundary states for such trijunctions are known as ver-
tex states. In the following, we will use the Neumann
coefficient method from string field theory [41–44, 68] to
compute the appropriate boundary or vertex states. We
introduce boundary and vertex states and outline the es-
sential steps of the Neumann coefficient method in Sec.
III A. With the vertex state in hand, we can then proceed
to compute all desired entanglement measures.

As a warm up, in Sec. III B we will first compute the
entanglement for a topological phase on a cylinder and
a bipartition cutting the cylinder in two, as shown in
Fig. 2(a). We use the Neumann function method to
compute the boundary state, as an introduction to the
technique. In particular, we compute the entanglement
when we introduce a π flux either passing through the cy-
cle of the cylinder, or entering the cylinder through one

end and exiting through the entanglement cut. For the
chiral superconductor, these configurations are topolog-
ically equivalent, respectively, to computing the bipar-
tite entanglement on a sphere, with a single Ising anyon
(σ anyon) in each subregion and an Ising anyon in one
subregion and the other on the entanglement cut, as de-
picted in Fig. 2. At the level of the edge theory, this
amounts to computing the boundary state |B〉 with three
different choices of boundary conditions for the chiral and
anti-chiral fermions: NS-NS, R-R, NS-R [69]. Here, NS
(Neveu-Schwarz) and R (Ramond) denote anti-periodic
and periodic boundary conditions, respectively. We note
that the entanglement in the NS-R case – in which an
anyon lies on the entanglement cut – has not been con-
sidered before. Remarkably, we find a new quantized
contribution to the entanglement in this configuration.
With this framework in hand, we will move on to the
focus of this work, the tripartitioning of a topological
liquid, in the following section.

A. Cut-and-glue approach and vertex states

We begin with a more detailed exposition of the cut-
and-glue approach and explain the role of conformal
boundary and vertex states, as well as how to construct
them. For concreteness, we focus first the case of a chiral
p-wave superconductor and then outline the simple ex-
tension of these methods to the case of a Chern insulator.

1. Bipartition and Ishibashi boundary states

The case of a bipartition was first considered in Ref.
[35], which we review here. Let us consider a chiral su-
perconductor on an infinite spatial cylinder with an en-
tanglement cut, partitioning the total system into two
regions A and Ā [Fig. 2(a)]. As described above, we
physically cut the system along the entanglement cut,
resulting in gapless edge modes on the boundaries of re-
gions A and Ā, respectively. For the case of the chiral
p-wave superconductor, they are described by chiral real
(Majorana) fermion theories with opposite chiralities, de-
noted by γL and γR. Their dynamics at low energies can
be described by

H0 =

∫ 2π

0

dσ
[
γLi∂σγL + γR(−i∂σ)γR

]
. (22)

Here, we take the circumference of the cylinder to be
L = 2π for simplicity. The Majorana fermion fields
obey either anti-periodic (Neveu-Schwarz, NS) or peri-
odic (Ramond, R) boundary conditions. For later pur-
poses, it is convenient to introduce

ψ1(σ) ≡ γL(σ), ψ2(σ) ≡ γR(2π − σ). (23)
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FIG. 2: Flux insertion configurations considered in computation of the bipartite entanglement on the cylinder geometry. (a)
No fluxes are inserted. All edge fermions obey NS boundary conditions. (b) A single π-flux, corresponding to the insertion of
a σ anyon flux, through the cylinder. All edge fermions obey R boundary conditions. (c) A single π-flux is inserted through
the right half of the cylinder, but exits through the entanglement cut. The edge fermions on the left (right) cylinder obey NS
(R) boundary conditions. In (b) and (c), the zero modes on the inner (outer) edge are χ1

0, χ
2
0 (χ̄1

0, χ̄
2
0).

The edge state Hamiltonian is then written as

H0 =

∫ 2π

0

dσ
∑
I=1,2

ψI i∂σψ
I . (24)

The chiral Majorana fermion field ψ(σ) can be Fourier
expanded as

ψ(σ) =
∑

s∈Z+1/2

e−iσsψs

where ψ−s = ψ†s, {ψs, ψs′} = δs,−s′ (25)

in the NS sector. The vacuum of the NS sector is defined
by

ψs|0〉 = 0 for s > 0 (26)

We have a similar expansion for the R-sector with integer
moding.

In order to “glue” the system back together, we in-
troduce a tunneling term which gaps out the chiral edge
degrees of freedom. Explicitly, we describe the gapped
edge with the Hamiltonian H0 +Hint, where

Hint = im

∫ 2π

0

dσ γLγR = im

∫ 2π

0

dσ ψ1(σ)ψ2(2π − σ).

(27)

As described above, we identify the entanglement be-
tween A and A as arising purely from the entanglement
between the chiral and anti-chiral Majorana fermions in
this gapped state (i.e. the “left-right” entanglement [70]).

The gapped ground state is in fact related to a confor-
mal boundary state, or more precisely, an Ishibashi state,
|B〉, of the gapless theory described by H0. For a general
CFT, |B〉 is defined by the relation[

Ln − L̄−n
]
|B〉 = 0 (∀n ∈ Z) (28)

where Ln (L̄n) is the Fourier component of the energy-
momentum tensor T (σ) (T̄ (σ̄)) of the edge theory. For
the case of the free fermion theory, the Ishibashi state is
defined by

[γL(σ)∓ iγR(σ)] |B〉 = 0. (29)

Or in terms of ψI ,

[ψ1(σ)∓ iψ2(2π − σ)]|B〉 = 0, (30)

which is valid for the whole region 0 ≤ σ ≤ 2π (this
leads to [ψ2(σ) ± iψ1(2π − σ)]|B〉 = 0). Indeed we see
that |B〉 is the ground state of H in the limit |m| → ∞.
From the Ishibashi boundary state, we can approximate
the ground state of the (2+1)d topological phase near
the entanglement boundary for large but finite m with
the regularized state,

|G〉 = N e−εH0 |B〉. (31)

Here, the regulator ε is inversely proportional to the bulk
energy gap. The reduced density matrix can then be con-
structed from |G〉 by tracing over Ā, ρA = TrĀ |G〉〈G|.
We emphasize that, while we took the non-interacting
fermion theory as an example, essentially the same
construction of the reduced density matrix using the
Ishibashi boundary state can be done for a much broader
class of theories.

The condition (30), (ψ1
r ∓ iψ2

−r)|B〉 = 0, for the free
fermion boundary state can explicitly be solved. For ex-
ample, for the NS sector (the NS boundary condition), it
is given in the form of a fermionic coherent state as:

|B〉 = exp
(
i
∑
r≥1/2

ψ1
−rψ

2
−r

)
|0〉, (32)

which has the form of Ishibashi state, as expected. Here
|0〉 is the Fock vacuum defined by ψIr |0〉 = 0 for r > 0.

2. Multipartition and vertex states

The bipartite setup and the cut-and-glue method of
the reduced density matrix presented above can be ex-
tended to a multipartition. In this section, we focus on a
tripartition, but the following discussion can readily be
extended to an N -partition (N > 3). We first note that
the configuration in Fig. 1(a) is topologically equivalent
to the one obtained by first considering three cylinders,
corresponding to the regions A,B,C, and then gluing
these cylinders together [Fig. 3(a)]. As in the case of a
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bipartition, we cut open the system along the cut, re-
sulting in an edge theory comprising three free Majorana
fermions, as described by the Hamiltonian,

H0 =

∫ 2π

0

dσ

3∑
I=1

ψI i∂σψ
I . (33)

We again heal the cut by introducing tunneling terms of
the form,

Hint = im

∫ π

0

dσ
∑
I

ψI+1(σ)ψI(2π − σ), (34)

such that the total Hamiltonian is H0 + Hint . (Here
and henceforth, we use the convention ψ4 ≡ ψ1). Anal-
ogously to the Ishibashi boundary state satisfying the
condition (30), the ground state in the limit |m| → ∞ is
given by a conformal boundary state, |V 〉, which satisfies[

ψI+1(σ)− iψI(2π − σ)
]
|V 〉 = 0, 0 ≤ σ ≤ π. (35)

Solving the constraint, the state |V 〉 is given in the form
of a fermionic coherent state. These types of states,
which we will refer to as vertex states, have been con-
sidered in the context of string field theory [41–44] where
they describe the interaction among strings. As before,
we regularize this state and consider |G〉 = N e−εH0 |V 〉,
which provides an approximation to the ground state of
H for large but finite |m|. Once |G〉 is obtained, we can
compute the reduced density matrices ρA∪B , ρB∪C , and
ρC∪A as well as the entanglement measures.

Although Eq. (35) uniquely defines the Majorana
fermion vertex state, an equivalent and more general def-
inition of vertex states, which also motivates the so-called
Neumann coefficient approach to constructing them, pro-
ceeds as follows. In the interest of generality, we consider
the most general case of an N -junction, such that N edge
theories meet at a single point. Hence, we start with N
copies of chiral CFTs (edge theories) defined on a spatial
circle parameterized by 0 ≤ σ ≤ 2π. Their Hilbert spaces
are denoted by H1,2,...,N , respectively. Together with the
(imaginary) time direction τ , we have a cylindrical space-
time. As usual, we can map each theory to the conformal
plane through the coordinate transformation z = eτ+iσ,
such that the half of the cylinder −∞ ≤ τ ≤ 0 is mapped
to the unit disk, |z| ≤ 1. We next consider conformal
maps ωI from the I-th unit disk to the complex plane C
that are analytic inside the unit disk. In particular, they
map each disk to a separate wedge of the complex plane
C, with the requirement that the edges of each wedge are
flush with one another so that the desired boundary con-
ditions are implemented. This sequence of maps for one
disk is illustrated for the case N = 3 in Fig. 3(b). We
will elaborate more on this after we present the explicit
form of the conformal maps momentarily. Then, we de-
fine a vertex state |V 〉 ∈ H1⊗H2⊗· · ·⊗HN by requiring
it reproduce correlation functions on the complex plane

as follows [44]:

〈V |
(
Oα|0〉1 ⊗Oβ |0〉2 ⊗ · · · ⊗Oγ |0〉N

)
=
〈
ω1[Oα]ω2[Oβ ] · · · ωN [Oγ ]

〉
C

(36)

where |0〉I is the vacuum in HI , Oα,β,··· ,γ represents an
arbitrary (primary) operator acting on H1,2,··· ,N , ωI [O]
represents the transformation of a primary operator O by
ωI , ωI [O(z)] = [ω′I(z)]

hO(ωI(z)), where h is the confor-
mal dimension of O. In order to fix the form of the con-
formal transformations ωI which define the vertex state,
we must impose additional constraints on |V 〉. First, it
is clear that, since the N Hilbert space copies are equiv-
alent, the vertex states must invariant under their cyclic
permutation. That is to say, focusing on N = 3,

〈V123| = 〈V231| = 〈V312|, (37)

where the subscripts label the Hilbert space indices.
Physically, this is just the statement that the trijunction
is invariant under 120◦ rotations. A second, less obvious
requirement is given by, again focusing on N = 3,

〈V125|〈V5†34| = 〈V235|〈V5†41|, (38)

The two sides of this expression correspond to gluing to-
gether two N = 3 vertex states to obtain N = 4 vertex
states. This constraint expresses the fact that this N = 4
vertex state must also be invariant under cyclic permu-
tations of the Hilbert spaces (i.e. under 90◦ rotations
of the “tetrajunction”).2 Enforcing these constraints re-
stricts the choice of conformal transformations ωI , which
in turn define the vertex state |V 〉. We next describe
choices of the ωI satisfying these constraints, which then
lead to vertex states satisfying Eq. (35).

For N = 2, we can choose the following conformal
maps [69]:

ωI(z) = ωI,0
1 + z

1− z
; ωI,0 = −ieiπI , I = 1, 2. (39)

In this way, the first disk is mapped to the upper half
plane and the second to the lower half plane. Note also
that the infinite past τ = −∞ is mapped to ±i, respec-
tively. Here, we note that a quantum state at τ = 0 or
|z| = 1 can be obtained by a path integral from τ = −∞
or |z| = 0 with possibly an insertion of an operator. By
the conformal maps ω1,2, the τ = 0 slices of the disks are
both mapped to the real axis. Hence, the field config-
urations for ψ1 and ψ2 are subject to the constraint in
(30); we will show this more explicitly in the following
subsection.

2 In the original string field theory context in which these ver-
tex states first appeared, these cyclicity constraints follow from
demanding gauge invariance of the string interaction vertex.
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Likewise, for N = 3, we can choose ω1,2,3 as

ωI(z) = ωI,0

(
1 + z

1− z

) 2
3

; ωI,0 = e
4πiI

3 −iπ, I = 1, 2, 3.

(40)

Note that ωI(2π − σ) = ωI+1(σ) for 0 ≤ σ ≤ π. These
conformal maps bring three disks (0 ≤ σ ≤ 2π, τ < 0) to
the whole plane, such that each unit disk is mapped to
a separate 120◦ wedge of the conformal plane, as shown
in Fig. 3(b) and Fig. 4(a). Here, the points at infinity
are identified. We note that this construction is simi-
lar to, but slightly different from, the conformal maps
used in open string field theory by Witten [68]; the CFTs
we consider obey (potentially twisted) periodic boundary
conditions. Though this alternative definition of the ver-
tex states seems obtuse at first glance, we will see in the
following that it provides an elegant way of deriving the
explicit form of said states.

3. The Neumann coefficient method

Let us now move on to the methods of constructing
vertex states. On the one hand, the overlap condition
(35) can be solved directly, and the vertex state can be
constructed as a coherent state. We will discuss the direct
construction in Appendix A and show the two methods
give consistent results numerically.

On the other hand, the definition of vertex states (36)
suggests the following strategy to construct vertex states,
which we call the the Neumann coefficient method. For
now, we focus on the NS sector for simplicity. We postu-
late the following Gaussian ansatz for |V 〉:

|V 〉 = exp
( ∑
r,s≥1/2

1

2
ψI−rK

IJ
rs ψ

J
−s

)
|0〉. (41)

(Here and henceforth, we adopt the convention in which
repeated flavor indices I, J, · · · are summed over implic-
itly, unless otherwise stated.) The coefficients KIJ

rs are
chosen to reproduce the correlation function on the right-
hand side of (36). Since |V 〉 is Gaussian, it is sufficient
to consider the two point functions of the fermion fields.
We then consider, at τ = 0, the Neumann function3

KIJ(σ, σ′) ≡ 〈ωI [ψI(σ)]ωJ [ψJ(σ′)] 〉C

=

(
dωI(σ)

idσ

)1/2(
dωJ(σ′)

idσ′

)1/2
1

ωI(σ)− ωJ(σ′)
.

(42)

3 KIJ is the two-point correlation function after the confor-
mal transformation. The name “Neumann function” is adopted
from open bosonic string field theory [41], where it refers to
the Green’s function of the Laplacian operator with Neumann
boundary condition on the upper half plane. We follow this ter-
minology although we are not considering open bosonic strings.

(Note I, J are not summed on the right hand side.) The
Neumann coefficients KIJ

rs are related to the mode ex-
pansion ansatz of KIJ(σ, σ′) as

KIJ(σ, σ′) =
∑

r,s≥1/2

eirσeisσ
′
KIJ
rs + δIJ

∑
r≥1/2

e−ir(σ−σ
′).

(43)
Note that there are two contributions to KIJ : the reg-
ular piece that contains KIJ

rs and the singular piece

δIJ
∑
r≥1/2 e

−ir(σ−σ′). The presence of the singular piece

is non-trivial, and needs to be verified case by case.
We now show the ansatz solution indeed satisfies the

boundary condition (35). We first note that, with
a proper choice of a branch in the conformal factor
(dωI/idσ)1/2, the Neumann function satisfies

iKIJ(2π − σ, σ′) = KI+1,J(σ, σ′), 0 ≤ σ ≤ π, (44)

which reflects the cyclic constraint of Eq. (37). Using
the mode expansion ψI(σ) =

∑
r ψ

I
re
irσ, ψI(σ)|V 〉 can

be expressed as

ψI(σ)|V 〉 (45)

=
∑
r≥1/2

ψI−re
−irσ|V 〉+

∑
r,s≥1/2

eirσKIJ
rs ψ

J
−s|V 〉

=

∫
dσ′

2π
KIJ(σ, σ′)ψJcr.(σ

′)|V 〉, (46)

where ψIcr.(σ) =
∑
r≥1/2 ψ

I
−re
−irσ. Using the cyclic prop-

erty of the Neumann function given in Eq. (44), we find,

ψI(2π − σ)|V 〉 =

∫
dσ′

2π
KIJ(2π − σ, σ′)ψJcr.(σ

′)|V 〉

= (−i)
∫
dσ′

2π
KI+1,J(σ, σ′)ψJcr.(σ

′)|V 〉

= −iψI+1(σ)|V 〉. (47)

This completes the proof. Note that it was crucial to
carefully take into account the singular part of the Neu-
mann function. The proof presented here applies for the
NS sector, and we leave the more complicated case of the
R sector (Sec. IV A 2) to Appendix B 1, B 2.

The direct and Neumann coefficient methods comple-
ment one other. When both methods can be applied,
they give rise to the same (consistent) vertex states. We
demonstrate the equivalence of these methods in the NS-
NS-NS sector in Appendix A. In other sectors, because
of the presence of zero modes, and because of the branch
cuts, sometimes one method has an advantage over the
other method. In general, vertex states obtained from
these two methods are consistent, but may differ by an
extra operator insertion at the junction [45, 46].

4. Complex fermion

We close this subsection by commenting on the case of
complex fermions, which parallels the treatment for real
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FIG. 3: (a) Gluing three cylinders from edge theory point of view. (b) The conformal map used to define vertex states for
tripartition. One disk (0 ≤ σ ≤ 2π, τ < 0) is mapped to the one-third of the whole plane. The past infinity point τ = −∞,

denoted by the black filled circle, is mapped to ω1,0 = eiπ/3, ω2,0 = e−iπ/3, ω3,0 = e−iπ for I = 1, 2, 3 by Eq. (40).

fermions. Indeed, the desired vertex state is obtained
by combining two copies of real fermions. We consider
complex fermion fields f I(σ), f I,†(σ). In the NS sector,
they can be expanded as

f(σ) =
∑

s∈Z+1/2

e−iσsfs, f†(σ) =
∑

s∈Z+1/2

eiσsf†s ,

with {fs , f
†
s′} = δs,s′ . (48)

We have a similar mode expansion in the R-sector. We
consider a vertex state obeying the overlap condition,[

f I+1(σ)− if I(2π − σ)
]
|V 〉 = 0,[

f I+1,†(σ)− if I,†(2π − σ)
]
|V 〉 = 0. (49)

The complex fermion field f, f† can be decomposed into
two real fermion fields, ψ and ϕ as f = (ψ − iϕ)/

√
2,

f† = (ψ+iϕ)/
√

2. Correspondingly, the Fourier modes of
f† and f , f(σ) =

∑
r e

irσfr ({f†r , fs} = δr,s), are related

to the Fourier modes of ψ and ϕ as fr = (ψr− iϕr)/
√

2,,

f†r = (ψ−r + iϕ−r)/
√

2. The ansatz solution is then

|V 〉 = exp
(1

2

∑
r,s≥1/2

ψI−rK
IJ
rs ψ

J
−s + ϕI−rK

IJ
rs ϕ

J
−s

)
|0〉

= exp
( ∑
r,s≥1/2

f I†r K
IJ
rs f

J
−s

)
|0〉.

(50)
The treatment of the R sector follows similarly, although
we need to take into account the presence of zero modes
properly, as we shall see in the following subsections.

B. Bipartition

In this subsection, we consider the bipartitions of a chi-
ral p-wave superconductor and a Chern insulator, using
the Neumann coefficient method described above. As
mentioned at the beginning of this section, we investi-
gate the effect of inserting non-trivial π-fluxes through
the cylinder on the entanglement. As shown in Fig. 2, we
consider the insertion of (a) no flux (b) π-flux through
the cylinder, and (c) a π-flux through one end of the

cylinder, which exits through the entanglement cut. For
the chiral superconductor, a π-flux is an extrinsic de-
fect which traps a Majorana zero-mode, forming an Ising
anyon. Thus, (b) can be viewed as creating a pair of
Ising anyons in the bulk and dragging them to opposite
ends of the cylinder, while (c) results from dragging only
one Ising anyon to an edge and leaving the other in the
bulk. In the bulk language, the creation and manipula-
tion of the Ising anyons leaves behind a Wilson line on
the cylinder or, equivalently, an anyon flux through the
cylinder. At the level of the edge theories, the braiding
of the Majorana fermions around the Ising anyon flux re-
sults in a phase of −1. Hence, the three configurations
in Fig. 2 are described by the boundary condition sectors
of the edge theories: (a) NS-NS, in which all fermions
obey anti-periodic boundary conditions (b) R-R, in which
all fermions obey periodic boundary conditions, and (c)
NS-R, in which the fermions on the left (right) cylinder
obey anti-periodic (periodic) boundary conditions. We
compute the entanglement in each sector in turn. As is
well-established, we obtain an area law for case (a) and

an area law term plus a subleading ln
√

2 correction from
the Ising anyons for case (b), which requires a careful
treatment of the zero modes [32, 38, 71]. The case (c)
has not been considered before and we find a novel sub-
leading correction to the entanglement.

1. The NS-NS sector

The setup of the calculation for the NS-NS sector is
already outlined above; all that remains is to explic-
itly evaluate the Neumann functions. Noting dωI

idσ =
2zωI,0
(1−z)2 and choosing the branch cuts carefully (

√
ω1,0 =

√
i,
√
ω2,0 = i

√
i, which leads to

√
ω1,0ω2,0 = −1), we

obtain:

K11 = K22 =

√
zz′

z − z′
=
∑
r≥1/2

e−ir(σ−σ
′),

K12 = −K21 =
i
√
zz′

1− zz′
= i

∑
r≥1/2

eir(σ+σ′).

(51)
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Note that K11 = K22 yields the expected singular-
ity. We also note that under σ → 2π − σ (z →
1/z,

√
z → −1/

√
z), the Neumann function satisfies

K1J(2π− σ, σ′) + iK2J(σ, σ′) = 0 and K2J(2π− σ, σ′)−
iK1J(σ, σ′) = 0 for 0 ≤ σ ≤ 2π. From the expansion of
K12, we conclude K12

rs = −K21
rs = δrs. Plugging this into

Eq. (41), we obtain the Ishibashi state (32) as expected.

2. The R-R sector

Let us now consider the vertex state in the R-R sec-
tor. We denote the fermion fields with the R boundary
condition as χI(σ). As before, the vertex state satisfies

[χ1(σ) + iχ2(2π − σ)]|V 〉
= [χ2(σ)− iχ1(2π − σ)]|V 〉 = 0 (52)

for 0 ≤ σ ≤ 2π. In the bulk, this situation corresponds
to a flux or, Ising anyon Wilson line, threading the hole
of the cylinder [Fig. 2 (b)]. From the edge theory point
of view, we need to include suitable twist operators to
introduce branch cuts, which enforce periodic boundary
conditions for the fermions. This will modify the Neu-
mann function, which we now denote as RIJ . It is related
to the Neumann function in the NS sector via:

RIJ(σ, σ′) = KIJ(σ, σ′)gIJ(σ, σ′), (53)

where gIJ is the new factor arising from the branch cuts.
(Here, the summation convention does not apply in the
right hand side.) We work with the following choice of
the branch cuts,

gIJ =
1

2

[√
(ωI − ω1,0)(ω′J − ω2,0)

(ω′J − ω1,0)(ωI − ω2,0)
+ (ωI ↔ ω′J)

]
,

(54)
where we recall ω1,0 = i, ω2,0 = −i. Other choices are
also possible and give an identical vertex state, as we
demonstrate in Appendix B 1. Using the conformal map
in Eq. (39), the explicit form of gIJ is

g11 = g22 =
1

2

(√
z

z′
+

√
z′

z

)
,

g12 = g21 =
1

2

(√
zz′ +

1√
zz′

)
.

(55)

These functions satisfy g1J(σ, σ′) = −g2J(2π−σ, σ′) (us-
ing z → 1/z,

√
z → −1/

√
z). The Neumann function is:

R11 = R22 =
1

2

z + z′

z − z′
=

1

2
+
∑
n≥1

e−in(σ−σ′),

R12 = −R21 =
i

2

1 + zz′

1− zz′
=
i

2
+ i
∑
n≥1

ein(σ+σ′).

(56)

They satisfy R1J(2π − σ, σ′) − iR2J(σ, σ′) = R2J(2π −
σ, σ′)+iR1J(σ, σ′) = 0. Again, the correct singular terms

show up in R11 and R22. The solution for |V 〉 for real
fermions in the R-R sector is then

|V 〉 = exp
(
− i
∑
n≥1

χ1
−nχ

2
−n

)
|Ω〉, (57)

with an additional requirement [χ1
0 + iχ2

0]|Ω〉 = 0. One
can verify that they satisfy the boundary condition (52).
The requirement that |V 〉 has definite parity for the zero
mode can also be understood from the i/2 term in R12.

The zero modes χ1
0, χ

2
0 of the real fermion need to be

handled with extra care. χ1
0, χ

2
0 live on the inner edges of

the cylinders. To have a well-defined Hilbert space, we
also need to include the zero modes on the outer edges
of the cylinders, which we denote as χ̄1

0, χ̄
2
0, as shown in

Fig. 2(b). Indeed, we recall that before making a physi-
cal cut along the entanglement cut, the cylinder with an
Ising anyon flux passing through it is topologically equiv-
alent to a sphere with a pair of Ising anyon defects. The
anyons yield a double degeneracy, as each has quantum
dimension

√
2. This corresponds to choosing whether

the complex fermion formed from the corresponding zero
modes, χ̄1

0 + iχ̄2
0, is occupied or unoccupied. We must

make a choice of which state in this degenerate subspace
we wish to compute the entanglement for. For concrete-
ness, we choose the state in which this fermion is unoccu-
pied, which amounts to imposing the boundary condition
[χ̄1

0 + iχ̄2
0]|Ω〉 = 0 for the outer edge zero modes. If we

define the complex fermion

gi =
1√
2

(χ1
0 + iχ2

0), go =
1√
2

(χ̄1
0 + iχ̄2

0), (58)

the zero-mode vacuum state is |Ω〉 = |0i, 0o〉. This com-
pletes the construction of the boundary state.

Note that gi and go mix the Hilbert spaces of the left
and right cylinders. When we compute the entangle-
ment we must trace out one of these cylinders, and so
it is necessary to perform a change of basis to complex
fermion modes localized on either the left or right cylin-
der: gA = (χ1

0 + iχ̄1
0)/
√

2, gB = (χ2
0 + iχ̄2

0)/
√

2. In this
basis, the vacuum is a maximally entangled state:

|Ω〉 = |0i, 0o〉 = (|0A0B〉 − i|1A1B〉)/
√

2. (59)

Below, we will see this gives a contribution of ln 2 to the
entanglement entropy.

3. The NS-R sector

Finally, we consider the NS-R sector which, as de-
scribed above, describes a novel configuration in which
we insert an anyon flux through one end of the cylinder
which then exits through the entanglement cut. From
Fig. 2(c), we see that the fermions on the right cylinder
braid around the anyon flux and so obey R boundary
conditions, whereas the fermions on the left cylinder do
not and hence are in the NS sector. In order to describe
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the gapped edge state at the entanglement cut, we must
impose a modified boundary condition:

[ψ(σ) + isgn(π − σ)χ(2π − σ)] |V 〉 = 0, (60)

for 0 ≤ σ < 2π. Here, ψ (χ) obeys NS (R) boundary
conditions. Formally, the sign function is needed to en-
sure the above expression is well-defined under shifts of
σ → σ + 2π. Physically, it represents the fact that an
anyon flux is piercing the entanglement cut. Indeed, the
Ising twist field is precisely the operator at the level of
the edge CFT which introduces such a “kink” for the
Majorana fields.

To the best of our knowledge, the vertex state in this
case was first constructed in [69]. In the NS-R sector,
we only need to introduce the branch cut for the second
string. The branch cut factor gIJ is chosen as [69]:

gIJ(σ, σ′) =
1

2

[√
ωI − ω2,0

ω′J − ω2,0
+

√
ω′J − ω2,0

ωI − ω2,0

]
. (61)

Explicitly,

g11 =
1

2

(√
1− z′
1− z

+

√
1− z
1− z′

)
,

g12 =
i

2

(√
1− z′
1− z

1√
z′
−
√
z′
√

1− z
1− z′

)
,

g22 =
1

2

(√
1− z′
1− z

√
z

z′
+

√
1− z
1− z′

√
z′

z

)
.

(62)

RIJ satisfies RIJ(σ, σ′) = −iRI+1,J(2π − σ, σ′) for 0 ≤
σ ≤ π. The mode expansion of RIJ needed to extract
the RIJrs in the definition of the vertex state, takes a more
complicated form than that of the preceding two cases:

R11
rs =

r − s
2(r + s)

u2r−1u2s−1,

R12
rn = −R21

nr =
n+ r

2(n− r)
u2r−1u2n,

R22
nm =

n−m
2(n+m)

u2nu2m,

(63)

where un is the expansion coefficients of u(x):

u(x) =

√
1 + x

1− x
=

∞∑
n=0

unx
n. (64)

Making use of this mode expansion and separating the
oscillator and zero-mode contributions, we can write out
the vertex state of Eq. (41) as

|V 〉 = exp
( ∑
r,s≥1/2

1

2
ψ−rR

11
rsψ−s +

∑
m,n≥1

1

2
χ−nR

22
nmχ−m

+
∑

r≥1/2,n≥1

ψ−rR
12
rnχ−n +

∑
r≥1/2

2ψ−rR
12
r0χ0 +

∑
n≥1

2χ−nR
22
n0χ0

)
|Ω〉.

(65)

Now, as in the R-R sector, to fix the form of the vacuum |Ω〉, we must treat the zero-mode sector carefully. Indeed,
due to the π flux through one half of the cylinder, we have another zero mode, χ̄0, on the outer edge of the left
cylinder [Fig. 2(c)]. We can combine them to define the complex fermion operator g0:

g0 =
1√
2

(χ0 − iχ̄0), g†0 =
1√
2

(χ0 + iχ̄0). (66)

Now, prior to making the entanglement cut, this flux configuration is again topologically equivalent to a sphere
supporting a pair of Ising anyons, corresponding to the χ0 and χ̄0 zero modes, yielding a double degeneracy associated
with the occupation of g0. (Note that, in contrast to the R-R case, cutting the system along the entanglement cut
does not introduce additional zero modes). We must again make a choice of which state in which to compute the
entanglement. We can fix the state by choosing a value for the occupation number of g0 of the reference state |Ω〉;
for simplicity, we take g0 to be unoccupied, so that |Ω〉 = |0〉. Finally, to simplify the expression for the vertex

state, we observe that X ≡
√

2(
∑
r≥1/2 ψ−rR

12
r0 +

∑
n≥1 χ−nR

22
n0)g†0 and Y ≡

√
2(
∑
r≥1/2 ψ−rR

12
r0 +

∑
n≥1 χ−nR

22
n0)g0,

commute, [X,Y ] = 0, and hence eX+Y = eXeY . The vertex state thus takes the form

|V 〉 = exp
( ∑
r,s≥1/2

1

2
ψ−rR

11
rsψ−s +

∑
m,n≥1

1

2
χ−nR

22
nmχ−m

+
∑

r≥1/2,n≥1

ψ−rR
12
rnχ−n +

√
2(
∑
r≥1/2

ψ−rR
12
r0 +

∑
n≥1

χ−nR
22
n0)g†0

)
|0〉.

(67)



13

4. Entanglement entropy

Having constructed the relevant boundary states for
the NS-NS, R-R, NS-R sectors, we now proceed to com-
pute the entanglement entropy SA after tracing out one
half of the cylinder. Let us start with the NS-NS sector.
We recall that the ground state of the entanglement in-
terface is given by a regularized version of the boundary
state, as stated in Eq. (31); this amounts to replacing
ψI−r → ψI−re

−εr in Eq. (32). The entanglement entropy
can directly be evaluated as

S =

(
1− ε d

dε

)
ln [

∏
r≥1/2

(1 + qr)] (68)

where q = e2πiτ = e−4ε and τ = 2iε
π . We can write the

argument of the logarithm in terms of the Dedekind η
function and a Jacobi θ function:

∏
r≥1/2

(1 + qr) = q1/48

√
θ3(τ)

η(τ)
. (69)

Under the modular S transformation and taking the limit
ε→ 0 limit (which corresponds to taking the bulk gap to
be very large), we have:

θ3(τ)

η(τ)
=
θ3(− 1

τ )

η(− 1
τ )
→ 1

(e−
2πi
τ )1/24

= e
π2

24ε . (70)

We thus find,

SReal.
NS−NS →

π(1/2)

24

L

ε
as

L

ε
→∞, (71)

as expected. Here, we reinstated the IR length scale L
(which has been set to 2π for simplicity) to make the area
law form of the entropy more explicit and so that the
dimensions are correct. We also make the chiral central
charge c = 1/2 dependence explicit.

The entanglement entropy in the R-R sector can be
computed similarly. However, the presence of the zero
modes make the calculations slightly more subtle. Let us
first compute the contribution from the oscillator modes
n ≥ 1. With the regulator ε, it can be computed as

Soscil. =

(
1− ε d

dε

)
ln [
∏
n≥1

(1 + qn)]. (72)

The product can be identified with θ2 function:

∏
n≥1

(1 + qn) =
1√
2

√
θ2(τ)

η(τ)
q−1/24. (73)

Under the modular S transformation and again taking
the limit ε→ 0, we have:

θ2(τ)

η(τ)
=
θ4(− 1

τ )

η(− 1
τ )
→ 1

(e−
2πi
τ )1/24

= e
π2

24ε . (74)

ε 0.005 0.008 0.01 0.02

SReal.
R−R 82.5933 51.7508 41.4699 20.9082

SReal.
R−NS 82.3433 51.5008 41.2199 20.6582

∆S 0.2500 0.2500 0.2500 0.2500

TABLE I: SReal.
R−R and SReal.

R−NS for various choices of ε. For each
fixed ε, we increase cutoff N until S saturates. We observe
that the difference ∆S = SReal.

R−R − SReal.
R−NS is a constant.

This gives

Soscil. =
π(1/2)

24

L

ε
− 1

2
ln 2. (75)

For the zero mode part, after the basis transformation,
the vacuum takes the form of a maximally entangled
state, |Ω〉 = |0i, 0o〉 = (|0A0B〉 − i|1A1B〉)/

√
2, which

gives a contribution of ln 2. Summing up these two terms,
the total entanglement entropy is:

SReal.
R−R =

π(1/2)

24

L

ε
+ ln
√

2. (76)

Compared with SReal.
NS−NS , the extra contribution ln

√
2 is

exactly the topological entanglement entropy from the σ
anyon, as expected [71].

We now proceed to the NS-R case. Since the entangle-
ment entropy in this case is not amenable to analytical
calculations, we will perform a numerical computation
using the correlation matrix method introduced in Sec-
tion II A with a cutoff of mode Nc. For a given value of
ε, we take Nc to be sufficiently large such that SA does
not appreciably change with further increases in Nc. We
collect the results in Table I. We observe that the area
law contributions (O(L/ε)) to SReal.

R−R and SReal.
NS−R cancel

out exactly, and the difference

∆S = SReal.
R−R − SReal.

R−NS = 0.2500 (77)

appears to be remarkably well quantized. Now, we recall
that, in the R-R sector, the presence of the anyon flux
passing through the cylinder (i.e. the presence of Ising
anyons on the ends of the cylinder) led to a contribu-

tion of ∆S0 = SReal.
R−R − SReal.

NS−NS = ln
√

2 = 0.3466 to
the entanglement entropy over the NS-NS case, in which
there was no flux. We see that 0 < ∆S < ∆S0. This
seems reasonable, as one expects the two halves of the
cylinder in the present NS-R case where one Ising anyon
straddles entanglement cut to somehow be less entan-
gled than the R-R case, where the Ising anyons are lo-
cated deep in the bulks of the two subregions. Evidently,
∆S0 − ∆S = 0.0966 corresponds to a contribution to
the entanglement from the anyon flux which pierces the
entanglement cut. We should, however, perhaps be care-
ful in identifying this as a universal contribution, as this
cut-and-glue approach likely corresponds to a particu-
lar choice of regularization of how the anyon flux pierces
the cut. The value of this new topological contribution
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may depend on this regularization. Additionally, we note
that the examination of the entanglement spectrum in
the NS-R sector shows that levels are all equally spaced
with no degeneracy. The equal spacing structure encodes
the CFT signature.

Finally, we consider the entanglement entropy for the
case of complex fermion, i.e., the edge theory of a Chern
insulator with unit Hall conductivity, and make a com-
parison with the above results. In the NS-NS sector, the
entanglement entropy for the complex fermion is simply
twice as large as the real fermion case,

SCplx.
NS−NS = 2SReal.

NS−NS =
π

24
· L
ε
. (78)

In the R-R sector, we need to include the effect of the
fermion zero modes properly, while the treatment for the
oscillator part is essentially the same. For the zero mode
part, since χ0 is already a well-defined degree of freedom,

paired with χ†0, we can only consider the inner edges. The

vacuum |Ω〉 needs to satisfy (χ1
0 − iχ2

0)|Ω〉 = 0, (χ1,†
0 −

iχ2,†
0 )|Ω〉 = 0, which can be chosen as |Ω〉 = (χ2,†

0 +

iχ1,†
0 )|0〉. This is a maximally-entangled pair state and

gives S0 = ln 2 contribution to S. To sum up,

SCplx.
R−R = 2Soscil. + S0 =

π

24
· L
ε
. (79)

There is no topological contribution for the complex
fermion. Furthermore, the numerical calculation of the

NS-R case shows SCplx.
NS−NS = SCplx.

NS−R = SCplx.
R−R . This is

desired since we expect SCplx.
NS−R to lie between SCplx.

NS−NS
and SCplx.

R−R . Once again, the NS-R entanglement spec-
trum shows equal spacing behavior with no degeneracy.

IV. TRIPARTITE VERTEX STATES AND
ENTANGLEMENT

Having illustrated how the Neumann coefficient
method reproduces the expected boundary states and en-
tanglement entropy for a bipartition on the cylinder with
and without flux threading it, as well as having derived a
new result for the entanglement in the case where a flux
pierces the cut, we turn to the main focus of this work,
namely the entanglement for a tripartition [Fig. 1(b)].
We will again focus primarily on the case of a chiral p-
wave superconductor and consider the effect of inserting
π-fluxes through the cylinders. In particular, we inves-
tigate the entanglement when no fluxes are inserted and
when two fluxes are inserted through two cylinders such
that one flux exits through the remaining cylinder and
the other flux through the entanglement cut [Fig. 4(a)].
At the level of the edge theories, these correspond to
the NS-NS-NS and R-R-R sectors, respectively. We con-
struct the vertex states for each case next before dis-
cussing the tripartite entanglement measures introduced
in Sec. II.

FIG. 4: (a) The σ anyon flux insertion in the R-R-R sector.
One σ-anyon is forced to be exited at the junction. (b) The
choice of the branch cuts for the R-R-R sector tripartition
vertex state. The branch cuts connect ωI,0 to ∞.

As a complement to the Neumann coefficient approach,
we also introduce a direct calculation method for com-
puting the vertex state in Sec. A. We show these two
methods give identical results for the vertex state solu-
tion numerically.

A. Vertex states

1. The NS-NS-NS sector

We first consider the simplest case in which no fluxes
are inserted through the cylinders. The required vertex
state |V 〉 is given by the Gaussian ansatz of Eq. (41),
the construction of which is outlined in Sec. III A 3. All
that remains is to determine the explicit form of the Neu-
mann coefficients from the correlation function, Eq. (42).
The conformal factor in Eq. (42) is given explicitly as

(dωIidσ )1/2 = 1

ω
1/4
I

(
(ω3
I+1)
3 )1/2. We choose the branch such

that ω
1/4
I (2π − σ) = iω

1/4
I+1(σ). This can be achieved by

the following choice:

ω
1/4
I (σ) = ω̃I

(
1 + eiσ

1− eiσ

)1/6

with ω̃1 = eiπ/12, ω̃2 = e−i7π/12, ω̃3 = ei3π/4.
(80)

The explicit form of the Neumann coefficients KIJ
rs is

technically involved and not particularly physically illu-
minating, and so we relegate it to Appendix B 3.

2. The R-R-R sector

Next we consider the case in which all fermions are in
the R sector. Similar to the NS-R sector discussed for
the case of a bipartition, in the R-R-R sector, the con-
servation of topological charge enforces the presence of
an Ising anyon at the junction where all three entangle-
ment boundaries meet. From the edge theory point of
view, we must again compute the Neumann functions for
periodic fermions, which takes the form in Eq. (53) with
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the factor gIJ accounting for the branch cuts. We choose
to work with the branch cut configuration in Fig. 4(b).

To determine the branch cut factor gIJ(σ, σ′), the fol-
lowing general properties should be satisfied [72]: (i) ω
and ω′ are symmetric in gIJ (thus anti-symmetric in
RIJ); (ii) The branch points include ω1,0, ω2,0, and ω3,0;
(iii) g reduces to 1 when ω′ → ω, so RIJ reduces to KIJ

in this limit. Furthermore, for our specific problem, RIJ

should also satisfy: (iv) The singular term in RIJ must

be δIJ
∑
n≥1 e

−in(σ−σ′) to ensure the boundary condition
is properly satisfied, as we show in Appendix B 2. This
extra requirement is non-trivial, and may rule out some
of the candidates that satisfy (i-iii).

We propose to use the following branch cut factor:

gIJ(σ, σ′) =
1

2

[(
(ωI − ω1,0)(ωI − ω2,0)(ωI − ω3,0)

(ω′J − ω1,0)(ω′J − ω2,0)(ω′J − ω3,0)

)1/2

+

(
(ω′J − ω1,0)(ω′J − ω2,0)(ω′J − ω3,0)

(ωI − ω1,0)(ωI − ω2,0)(ωI − ω3,0)

)1/2
]
,

(81)
where ω1,0 = eiπ/3, ω2,0 = e−iπ/3, ω3,0 = e−iπ, and
ωI(σ), ω′J(σ′) are defined in Eq. (40). It is easy to check
that this candidate fulfills the requirements (i-iii). The
branch points also include ∞. The branch cuts can be
chosen from ω1,0 to ∞, ω2,0 to ∞, and ω3,0 to ∞, as
shown in Fig. 4(b). We will compute the singular terms
explicitly later, which verifies requirement (iv). It turns
out that gIJ is the same for any I, J , and the mode ex-
pansion of gIJ in powers of z = eiσ is given by

gIJ =
1

2

( 1√
z′
−
√
z′
) ∑
r≥1/2

zr +
( 1√

z
−
√
z
) ∑
r≥1/2

z′r


=

1

2

∞∑
m=0

[
eiσ( 1

2 +m)−iσ′2 − eiσ( 1
2 +m)+iσ

′
2

+ eiσ
′( 1

2 +m)−iσ2 − eiσ
′( 1

2 +m)+iσ2

]
. (82)

It is worth noting that this expression is valid for the
vertex state of an N -junction with arbitrary N and the
insertion of N twist operators. As an example, we give
the construction of the vertex state for N = 2 using this
branch cut factor in Appendix B 1, which reproduces the
result for the R-R sector bipartition calculation of the
preceding section.

We are now ready to examine requirement (iv). Com-
bining the singular term of the Neumann coefficient in the
NS-NS-NS sector KIJ

sing. = δIJ
∑
r≥1/2 e

−ir(σ−σ′) with

the branch cut factor gIJ , we obtain:

KIJ
sing.g

IJ = δIJ
∞∑

r≥1/2

e−i(r+1/2)(σ−σ′)

+
δIJ

2

[ ∞∑
m=0

eimσ −
∑
m≥1

eimσ
′
]
.

(83)

The first term gives the correct singular term in the R-R-
R sector, RIJsing. = δIJ

∑∞
m≥1 e

−im(σ−σ′), and the second
term contributes to the zero mode parts R0,m, Rm,0, R0,0.
This shows that our choice of gIJ is indeed a valid one.
We thus verified the Neumann function has the following
expansion:

RIJ(σ, σ′) =
∑

m≥0,n≥0

eimσRIJmne
inσ′ + δIJ

∑
n≥1

e−inσeinσ
′
.

(84)

The non-singular terms can be worked out easily in a
similar way. We summarize the expansion coefficients
below:

RIJr′+1/2,s′+1/2 =
1

2

[ r′∑
r=1/2

(KIJ
r,s′+1 −KIJ

r,s′)

+

s′∑
s=1/2

(KIJ
r′+1,s −KIJ

r′,s)
]
,

RIJ0,s′+1/2 =
1

2

s′∑
s=1/2

KIJ
1/2,s −

1

2
δIJ ,

RIJs′+1/2,0 =
1

2

s′∑
s=1/2

KIJ
s,1/2 +

1

2
δIJ ,

RIJ00 =
1

2
δIJ .

(85)

Finally, using the Neumann coefficients, the vertex
state can be constructed as

|V 〉 =

exp

 ∑
m,n≥1

1

2
χI−mR

IJ
mnχ

J
−n +

∑
m≥1

2χI−mR
IJ
m0χ

J
0

|Ω〉.
(86)

We show this state satisfies the boundary condition ex-
plicitly in Appendix B 2.

As discussed in Sec. III B 2, to have a well-defined
Hilbert space, we need to combine the χI0 zero modes
with χ̄I0 at the outer edges. Indeed, physically speak-
ing, prior to physically cutting the system along the en-
tanglement cut, the R-R-R sector configuration is topo-
logically equivalent to a sphere with one Ising anyon
placed on the entanglement cut and three Ising anyons
in the three regions A, B, and C. These correspond
to the three outer edge Majorana fermion zero modes
and one of the zero modes that appears at the inner
edge when we physically cut along the entanglement
cut. This results in a four-fold degeneracy and we must
choose one of these states for which to compute the en-
tanglement. To do so, we define the complex fermion

as in Eq. (66), χI0 = (gI0 + gI,†0 )/
√

2. Denoting X =√
2
∑
m≥1 χ

I
−mR

IJ
m0g

†,J
0 , Y =

√
2
∑
m≥1 χ

I
−mR

IJ
m0g

J
0 , one

can show [X,Y ] = 0 and hence eX+Y = eXeY . In order
to fix a state within the four-fold degenerate subspace, we
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must fix the occupations of the zero modes. For simplic-
ity, we choose the reference state |Ω〉 to be one of definite
fermion parity take |Ω〉 = |000〉, which is annihilated by
all gI0 . Under this choice, the solution is simplified to:

|V 〉 =

exp

( ∑
m,n≥1

1

2
χI−mR

IJ
mnχ

J
−n +

∑
m≥1

√
2χ−mR

IJ
m0g

†,J
0

)
|0〉.

(87)
Finally, by combining two copies of real fermions, we

can construct the complex fermion vertex state as

|V 〉 = exp

 ∑
m,n≥1

gI−mR
IJ
mng

†,J
n

+
∑
m≥1

2RIJm0(gI−mg
†,J
0 + g†,Im gJ0 )

 |Ω〉.
(88)

Again, we postpone the verification of boundary con-
dition in Appendix B 2. We choose |Ω〉 to be the
vacuum that is annihilated by gI0 . Identifying X =

2
∑
m≥1R

IJ
m0g

I
−mg

†,J
0 , Y = 2

∑
m≥1R

IJ
m0g

†,I
m gJ0 , and

[X,Y ] = 4
∑
m,n≥1R

IJ
m0R

I′J
n0 g

†,I′
n gI−m, the solution is sim-

plified to

|V 〉 =

exp

 ∑
m,n≥1

gI−mR̃
IJ
mng

†,J
n +

∑
m≥1

2gI−mR
IJ
m0g

†,J
0

 |0〉,
(89)

with R̃IJmn = RIJmn − 2RIKm0R
JK
n0 .

B. Entanglement entropy, negativity and reflected
entropy

With the tripartite vertex states in hand, we now
proceed to the calculations of the correlation measures,
namely, the entanglement entropy SA and spectrum
when tracing out B and C, and negativity EA:B and
the spectra when tracing out C, and the reflected en-
tropy RA:B when tracing out C. Once again, the regu-
larization |V 〉 → |G〉 = N e−εH0 |V 〉 amounts to multiply-
ing the Neumann coefficients by an exponential factor,
e.g., RIJmn → RIJmne

−ε(m+n). As the resulting state |G〉 is
Gaussian, we can use the correlator method to compute
various entanglement measures, as described in Sec. II A.
The technical details are left to Appendix C. To evalu-
ate the correlators (covariance matrices) numerically, we
need to introduce a cutoff Nc to truncate the Neumann
coefficients. The correlation measures (for a given L/ε)
are then computed for different Nc and the results are ex-
trapolated toNc →∞. We typically takeNc ≥ 200−800.

We first present our results for the entanglement en-
tropy and negativity. For both cases, we find that they

scale with L/ε as

SA = a−1
L

ε
+ a0 + a1

ε

L
+ · · · ,

EA:B = b−1
L

ε
+ b0 + b1

ε

L
+ · · · ,

(90)

for both the NS-NS-NS and R-R-R sectors. The nu-
merically extracted coefficients are summarized in Ta-
ble II. The coefficients a−1 and b−1 are the same for
the NS-NS-NS and R-R-R sectors. The numerical re-
sult for a−1 is consistent with a−1 = πc/24 (see Sec.
III B 4). On the other hand, the numerically computed
b−1 is consistent with b−1 = 3πc/96. These may be un-
derstood as commonly appearing coefficients in the en-
tanglement entropy and negativity in topological liquids.
For example, for the mutual information and negativity
on the torus, when A,B,C are non-contractible and A
and B are adjacent, the area law terms of these quanti-
ties are proportional to (1/n + 1)(πc/12) (n → 1), and
(4/ne − ne)(cπ/48) (ne → 1) [30]. We also note that the
area law terms should cancel in E3 = 2EA:B − EA∪C:B ,

and we know EA∪C:B = S
(1/2)
A∪C:B ∼ (3πc/48)(L/ε). The

constant term a0 in the NS-NS-NS sector is small com-
pared with ln 2 ∼ 0.693, and may be consistent with
a0 = 0, the result we expect from the calculation for a
bipartition. On the other hand, in the R-R-R sector, a0

is an order of magnitude larger. We may attribute it to
the extra σ anyon positioned at the junction. We recall
that we obtained a similar result in the NS-R sector for
a bipartition.

In Fig. 5 we plot the entanglement and negativity spec-
tra. Here, we focus on the NS-NS-NS sector (as the R-
R-R sector shows the same features). Both the entan-
glement and negativity spectra exhibit an equal-spacing
structure. For the entanglement spectrum, this is ex-
pected as it is given by the spectrum of the CFT real-
ized on a physical edge [73]. Similarly, the equal-spacing
structure of the negativity spectrum may suggest that it
is described by some CFT. For the Majorana fermions,
the entanglement spectrum is non-degenerate while the
negativity spectrum is two-fold degenerate. For the com-
plex fermions, the degeneracy of the entanglement spec-
trum is two-fold, while that for the negativity spectrum
is four-fold. We will see in the next section that the de-
generacy matches with the lattice calculation result deep
in the topological region.

Plotted in Fig. 5(b) is the single-body spectrum {ζ} of

ρTAA∪B (the spectrum of the correlation matrix Γ+). The
eigenvalues appear to come in various branches; those
that are circularly distributed and those that are clus-
tered near the real axis. The non-trivial distribution of
the spectrum over the complex plane can be regarded as a
smoking gun of topological non-triviality of the bulk. As
a comparison, we note that for a simple product state the
spectrum {ζ} consists of just two eigenvalues, ζ = 1 and
ζ = −1. We also note that such non-trivial distribution
of the eigenvalues {ζ} was found previously in (1+1)d
fermionic CFTs [51], and (1+1)d SPT phases (the Kitaev
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a−1 a0 a1 b−1 b0 b1

Majorana (NS-NS-NS) 0.0654 0.0299 −0.0232 0.0491 0.0310 −0.4021

Majorana (R-R-R) 0.0654 0.6227 −5.3746 0.0491 0.3341 −0.2984

Dirac (NS-NS-NS) 0.1309 0.0597 −0.0119 0.0982 0.0600 0.3657

Dirac (R-R-R) 0.1309 −0.1139 22.9493 0.0982 0.0025 15.1538

TABLE II: The scaling of the entanglement entropy and negativity with respect to L/ε from the numerical analysis.

FIG. 5: (a) The evolution of SA and negativity EA:B with
different regulator ε at Nc → ∞ limit, in the NS-NS-NS sec-
tor for the Majorana fermion. (b) Distribution of the eigen-
values of Γ+, at Nc = 500 and ε = 0.02 for the complex
fermion. (c,d) Entanglement spectrum and negativity spec-
trum for Nc = 200 at different ε, which shows equal spacing
behavior.

chain) [56]. In these examples, the many-body spectrum

of ρTAA∪B has a 8-fold rotation symmetry. On the other
hand, we do not find such a symmetric pattern for the
case of our (2+1)d topological liquids. In the next sec-
tion, we will see that a similar distribution of {ζ} is also
found in the lattice Chern insulator calculation.

Finally, we turn to the reflected entropy and the con-
jecture (10). We study this difference for the four afore-
mentioned cases and show the results in Fig. 6. For the
Majorna and Dirac fermion edge theories in the NS-NS-
NS sector, and the Majorana fermion edge theory in the
R-R-R sector, hA:B does not change with ε, with the val-
ues being 0.1172, 0.2344, 0.2850 respectively. The results
for the NS-NS-NS sector are consistent with the predic-
tion (c/3) ln 2 = 0.1155, 0.2310 for c = 1/2 and c = 1, re-
spectively. (Alternatively, if we extract the central charge
from our numerics, we obtain c = 0.5073, 1.0145, 1.2335,
respectively.) For the R-R-R sector, the numerics sug-
gests that hA:B is slightly bigger than (c/3) ln 2, which
once again may be attributed to the Ising anyon at the
junction. Finally, for the Dirac fermion in the R-R-R
sector, hA:B changes with ε and the polynomial fit up
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FIG. 6: The difference between reflected entropy and mutual
information hA:B = RA:B − IA:B . (a) The NS-NS-NS sector
for Majorana fermion and complex fermion. The intercept
(0.2344) is twice of that of the Majorana fermion (0.1172). (b)
The R-R-R sector for Majorana fermion and complex fermion.
Using a power two polynomial fit, the intercept (0.5698) is
almost the twice of that of the Majorana fermion (0.2850).
In (a) and the real fermion case of (b), hA:B does not change
with ε.

to second order gives the intercept 0.5698. Notice that
0.2344 is twice as large as 0.1172, and 0.5698 is (almost)
twice as large as 0.2850. We note that to get the uni-
versal result in the edge theory calculations, we do not
have to consider a local unitary that remove short-range
correlations (UV effect) at the junction(s), which is re-
quired in the bulk calculation [34]. This is because our
boundary calculation is performed in the continuum limit
(Nc → ∞) with large gapping term (large L/ε), which
detects the entanglement in the IR limit.

V. LATTICE MODEL APPROACH

Though the edge theory, or “cut-and-glue” approach
provides a theoretically appealing way of computing en-
tanglement measures in the thermodynamic limit, it is
limited by the fact that it is only applicable to systems
deep in the topological phase. It is natural to ask how
the entanglement properties of a system change closer to
and across a topological phase transition.

To that end and as a check on the conclusions we have
drawn from the edge theory approach, in this section, we
study a tight-binding model on the square lattice that
realizes a Chern insulator phase. The Hamiltonian is
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FIG. 7: The von Neumann entanglement entropy and loga-
rithmic negativity for the Chern insulator model on a 20× 20
lattice (l = 20) for (a-c) anti-periodic boundary condition
and (d-f) periodic boundary condition. The lattice parti-
tion is shown in Fig. 1(b) where lA = 10; both A and B
are 10 × 10 blocks. (a,d) The von Neumann entanglement
entropy SAB and logarithmic negativity EA:B . (b,e) Entan-
glement spectrum ln( 2

1+γ
− 1). γ is four-fold degenerate for

both topological and trivial region, which is observed for both
of the boundary conditions. For the periodic boundary con-
dition (e), there exist four-fold degenerate zero modes. (c,f)
Negativity spectrum ln( 2

1+γ×
− 1). Note at u = 1, the low

lying spectrum shows equal spacing pattern, which is a CFT
signature. γ× is 4-fold degenerate in the topological region
and becomes 8-fold degenerate in the trivial region, which is
observed for both the boundary conditions.

given by

H =
−i
2

∑
r

∑
µ=x,y

[
f†rτµfr+aµ − f

†
r+aµτµfr

]
+

1

2

∑
r

∑
µ=x,y

[
f†rτzfr+aµ + f†r+aµτzfr

]
+ u

∑
r

f†rτzfr, (91)

where the two-dimensional integer vector r labels sites
on the square lattice, and ax = (1, 0) and ay = (0, 1);
f†r/fr are two-component fermion creation/annihilation
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FIG. 8: Single-particle spectrum {ζ} of ρTAA∪B ’s correlation
matrix Γ+ for various values of u on 20×20 lattice with anti-
PBC. Note that the ζ spectrum is complex, with real and
imaginary parts.

operators at site r, and τµ=x,y,z are the Pauli matrices. In
momentum space, the corresponding Bloch Hamiltonian
is,

h(k) = sin kxτx + sin kyτy + (u+ cos kx + cos ky)τz,
(92)

with kx,y ∈ [−π, π]. The parameter u tunes the model
across insulating phases with different Chern numbers:
the Chern number Ch = 0 for |u| > 2, Ch = 1 for
0 < u < 2 and Ch = −1 for −2 < u < 0. The
many body ground state |GS 〉 is obtained by filling the
lower band. On an N × N square lattice, the correla-
tion matrix elements are given by 〈GS |f†r,sfr′,s′ |GS 〉 =

N−1
∑

k v
∗
(k,s,−)v(k,s′,−)e

−ik·(r−r′), where s = 1, 2 and

vk,s,− is the s-th component of the Bloch eigen vector of
the lower band. Since it is a particle number conserv-
ing model, the correlation matrix Γ is simply given by
Γ = (1− 2C)⊗ σy.

We consider tripartitioning a 20 × 20 square lattice
(1 ≤ x ≤ 20, 1 ≤ y ≤ 20) into three regions A,B,C (A:
1 ≤ x ≤ 10, 1 ≤ y ≤ 10; B: 11 ≤ x ≤ 20, 1 ≤ y ≤ 10;
C:1 ≤ x ≤ 20, 11 ≤ y ≤ 20), and trace out the region
C, as shown in Fig. 1(b). Since this is a non-interacting
system, the reduced density matrix ρA∪B is Gaussian.
We can then use the correlator method reviewed in Sec.
II A to construct the partially transposed density matrix
ρTAA∪B . The entanglement spectrum of this model was
first studied in Ref. [14].

a. Entanglement entropy and negativity The nu-
merically computed entanglement entropy SAB and nega-
tivity EA:B , and the corresponding spectra {γ} and {γ×}
are shown in Fig. 7. We first verify that both SAB and
EA:B obey area law scaling with the size of lattice l, as
expected (not shown in the figure). In addition, we see
that the phase transition at u = 2 appears to manifest
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FIG. 9: Eigenvectors of Γ+ at (a) u = 1 and (b) u = 3 using anti-PBC for a 20× 20 lattice. For each u, we take three different
eigenvalues, as indicated using the blue, orange and yellow stars, and plot the corresponding eigenvectors supported on A∪B.
The eigenvectors exhibit differing patterns of spatial localization for different phases.
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FIG. 10: Distribution of (a) v1(r), (b) v2(r) and (c) negativity contour eA:B(r) at u = 1 for a 20 × 20 lattice, supported on
region A ∪B.

as a small “bump” in EA:B . A similar though less pro-
nounced change in the slope of SAB as a function of u at
u = 2 is somewhat visible.

Clearer signatures of this phase transition, as well as
the topological nature of the phases, are provided by the
entanglement and negativity spectra. Indeed, for peri-
odic boundary conditions, both the entanglement spec-
trum and negativity spectrum exhibit discontinuous be-
havior at the phase transition point u = 0,±2 , as we
can see in Fig. 7(e,f). For anti-periodic boundary condi-
tions, the spectra are no longer discontinuous across the
phase transition. However, the transition still appears to
manifest in the spectra by lifting of low lying modes and
change in the degeneracy (see the discussion below) when
crossing from the topological phase to the trivial phase.
The discontinuous behavior also does not exist for more
general twisted boundary conditions.

Moving on to the properties of the phases themselves,
we see that deep inside the topological phase, around

u = 1 where the bulk gap is the largest, the entangle-
ment spectrum is evenly spaced, at least for the “low-
energy” regime. This is consistent with the expectation
that the low-energy part of the reduced density matrix
is well described by ρA∪B ∼ exp (−ξHCFT ) where HCFT

is the (physical) CFT Hamiltonian for the edge state,
namely the free complex fermion CFT with c = 1. Here,
ξ is a non-universal parameter, controlled by the bulk
correlation length, for example. We expect more levels
will be described by CFT as we increase the system size
l. Similarly, around u = 1, the negativity spectrum is
also evenly spaced. This likewise suggests that ρ×,A∪B
is given by ρ×,A∪B ∼ exp (−ξH ′CFT ), where H ′CFT is a
Hamiltonian of CFT, which may differ from HCFT .

Moreover, the degeneracy of the entanglement and neg-
ativity spectra reveal signatures of the two phases and the
boundary conditions. One the one hand, every eigenvalue
γ is four-fold degenerate in the ES for SAB and two-fold
degenerate in the ES for SA. On the other hand, the neg-
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ativity spectrum γ× is four-fold degenerate in the topo-
logical region and becomes eight-fold degenerate deep in
trivial region, which is observed for both of the boundary
conditions. We thus see that the degeneracy of the NS
provides a signal for the topology of the ground state, in
contrast to the ES. The degeneracies deep in the topolog-
ical region (two-fold for ES and four-fold for NS) match
up with the edge theory results presented earlier in Sec.
IV B.

To compare with the results from the conformal field
theory calculation, let’s compare the entanglement en-
tropy and logarithmic negativity at u = 1 for anti-
periodic boundary condition (i.e., the N-N-N sector) and
periodic boundary condition (i.e., the R-R-R sector).

When taking AB as the subsystem to compute the en-
tanglement entropy, the entanglement spectra for PBC
and APBC are different (due to the zero mode), but they
give the same entanglement entropy. This is similar to
our previous experience in bipartition boundary state,
where the NS-NS and R-R sectors give the same entan-
glement entropy.

When taking A as the subsystem to compute the en-
tanglement entropy, we find the entanglement spectra for
SA are the same when deep in the topological region
u = 1, and deep into the trivial region u = 3. When
coming closer to the critical point, these two spectra be-
come different. (We note, in contrast, in the edge theory
calculation, the NS-NS-NS and R-R-R sectors give dif-
ferent entanglement entropies, SA. The precise reason
for the disagreement between the lattice and edge theory
calculations is unclear. We however note that the con-
figurations are not exactly the same – for example, there
are two junctions in the edge theory calculations whereas
there are four junctions in the lattice calculation.)

For negativity spectrum, we also find that the PBC
and APBC give the same spectrum γ× at u = 1. This is
only true deep in the topological region. For example, if
we take u = 1.9 or u = 0.1, we can see the vast difference
between the two spectra. Furthermore, when going deep
into the trivial region u = 3, the two spectra become
identical again.

b. Spectrum of Γ+ We now move on to the numeri-
cally obtained spectrum {ζ} of Γ+, plotted in Figs. 8-9,
for various u with anti-PBC. We see that they provide
clear signatures of the topology of the phase. Indeed,
in the Chern insulator phases, the eigenvalues {ζ} are
non-trivially distributed over the complex plane. In the
trivial insulator phases, on the other hand, the eigen-
values {ζ} are localized near ζ = −1; 1. In the atomic
limit u → ∞, we expect that the spectrum collapses to
two points ζ = −1; 1. The distribution of {ζ} is also
non-trivial at the critical points u = 0,±2. However, we
defer the discussions for the critical points, and focus on
the Chern insulator phase.

In particular, in the Chern insulator phase, we can
identify two types (branches) of eigenvalues, those that
are away from the real axis (Im(ζ) 6= 0); and those that
are exactly on ζ = −1 and ζ = 1, which are highly degen-
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FIG. 11: (a) The difference between reflected entropy and
mutual information hA:B = RA:B−IA:B , computed on 20×20
lattice (L = 20). (b) Scaling of hA:B with the size of lattice
l at u = 1.34, which shows that hA:B is a constant 2.272.
u = 1.34 is where hA:B is minimal in the topological phase.

erate. We believe that the appearance of these states is
closely tied to the topological properties of the Chern in-
sulator phase, in the same way that midgap states in the
regular entanglement spectrum indicate nontrivial topol-
ogy.

Moreover, the eigenstates corresponding to these two
types of eigenvalues are distinguished by their real space
profiles, as shown in Fig. 9. For the first type of eigenval-
ues, the corresponding eigenstates are localized near the
points where the regions A, B and C all meet. On the
other hand, for the eigenvalues at ζ = −1, 1, the eigen-
states are distributed throughout the bulk. In contrast,
in the trivial phase u = 3, from Fig. 9, there do not exist
eigenstates localized at the intersection of A,B and C.

c. Negativity contour To better understand the spa-
tial decomposition of the negativity, we plot the negativ-
ity contour (18) of a 20 × 20 lattice at u = 1 (Fig. 10).
From (c), the negativity contour is only supported near
the boundary between A and B, but not the boundary
between AB and their complement, which is as expected.
From (a)(b), we find this is because adding v1, v2 together
makes the non-zero values on the boundary between AB
and their complement cancel.

d. Reflected entropy We finally examine the re-
flected entropy and mutual information, and show their
difference hA:B in Fig. 11 (in units of ln(2)/3). As the
entanglement entropy and negativity, it is peaked at the
phase transitions and takes smaller values in gapped
phases. In the Ch = 1 phase, hA:B takes its minimum
around u ∼ 1.34 – we focus on this point and test the
conjecture (10). There, hA:B is independent of l, and
hA:B ∼ 2.272 × (c/3) × ln 2 (with c = 1). We should
first note that the setup in the lattice calculations has
four junctions where all the three regions meet, whereas
in our edge theory calculations there are two junctions
[see Fig. 3(a)]. This may result in a factor of two dif-
ference between the edge theory and lattice calculations.
Even taking into account the difference in the number of
junctions, hA:B is not quantized to (c/3) ln 2. We expect
this to be a consequence of non-universal contributions
coming from the sharp corners at the trijunction. This
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would suggest that the edge theory approach provides a
more reliable way of extracting universal topological con-
tributions to the reflected entropy (and other entangle-
ment measures) without being obscured by non-universal
and/or geometric effects. Similar to the entanglement en-
tropy, both APBC and PBC give the same result when u
is not so close to the critical point. Once again this may
be attributed to the different configurations adopted in
the edge theory and lattice calculations.

VI. CONCLUSION

We have investigated correlation measures, i.e., entan-
glement entropy, entanglement negativity, and reflected
entropy, in the ground states of topological liquid in
(2+1) dimensions, in the multipartition setting (Fig. 1).
This was done by constructing vertex states explicitly in
various configurations with or without fluxes.

In the bipartition case, we study the entanglement en-
tropy in the NS-NS, R-R, and NS-R sectors, and unveil a
new topological contribution in the NS-R case. This con-
tribution is due to the non-trivial configuration where a
σ-anyon exits from the entanglement cut.

In the tripartition case, we find the correlation mea-
sures capture various universal characteristics of topolog-
ical liquids. For example, we found that the spectrum of
the partially transposed density matrix is non-trivially
distributed over the complex plane. This is somewhat
similar to the spectrum previously computed for (1+1)d
fermionic conformal field theory and symmetry-protected
topological phases. There, a non-trivial dependence of
the spectrum on the spin structures was observed [51, 56].
We also found universal topological contribution to neg-
ativity and hA:B . In the NS-NS-NS case, we verified the
conjecture (10) for the reflected entropy, while there ex-
ists an additional contribution to hA:B in the R-R-R sec-
tor due to the σ-anyon.

There are a number of open questions to be dis-
cussed. First of all, our tripartition setup is different
from the ones considered previously (except for the orig-
inal Kitaev-Preskill setup [5]), and more complicated in
the sense that the entangling boundaries are not smooth,
but have a singular point where all spatial regions meet.
One may wonder if the correlation measures depend not
just on topological but also on geometrical properties of
entangling boundaries. For example, entanglement en-
tropy is known to have a non-trivial corner contribu-
tion when the entangling boundary has a sharp corner
in critical theories [74–83]; similar behavior was recently
found in the context of integer quantum Hall states [84].
One could imagine that there is a similar contribution to
quantities that we studied in our work. It is unclear at
this moment if our method is capable of capturing non-
trivial geometry at the point where all spatial regions
meet. Also, as we mentioned, in the R-R-R sector, we
expect that a non-trivial flux (anyon) should be located
just at the junction because of the conservation of topo-

logical charge. Understanding how precisely correlation
measures depend on such excitation is an important open
question.

Putting our work in a slightly broader context, one
of the important questions is to understand what kind
of underlying (topological/geometrical) data can appear
in entanglement measures. While we took chiral p-wave
superconductors and Chern insulators as examples, in
order to get more general pictures, it is desirable to ex-
tend our analysis to more generic topological liquids. In
the future, we plan to study Abelian fractional quan-
tum Hall states by constructing vertex states for multi-
component compactified boson theories. We can also
discuss cases where the different spatial regions A,B,C
have different topological orders. Such configurations in-
volving gapped interfaces between distinct phases have
garnered much attention recently due to the possibil-
ity of trapping parafermion zero modes at domain walls
along these interfaces [85–94]. The entanglement entropy
for an interface between two distinct arbitrary Abelian
phases [37, 40] and for particular classes of non-Abelian
phases [38, 95] has already been computed. In the former
case, the entanglement was subsequently shown to signal
the presence of an emergent one-dimensional topological
phase along the interface [96]. It is natural to expect
more exotic outcomes could occur in the trijunction con-
figurations we have considered. A similar consideration
was investigated recently in [97].

Finally, while we took in this paper an approach from
the edge theory, it is interesting to study the entangle-
ment negativity using complementary bulk approaches.
For example, we can study entanglement negativity in
lattice models such as string net models. Also, it is in-
teresting to formulate surgery calculations for the entan-
glement measures we have considered [31, 33, 95, 98, 99].
These alternative bulk calculations can clarify precisely
what kind of topological data can be captured by the en-
tanglement negativity in the setup studied in this work.
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Appendix A: Direct calculation method

The Neumann function method provides an elegant
way of deriving the form of the conformal boundary state
for free theories, which extends straightforwardly to the
tripartition case (and, indeed, more general n-partition).
As a check on our results using this method, we rederive
the vertex states in this section using a more direct ap-
proach. In this section, we will work with the Majorana
and complex fermion fields.

We recall that the edge state Hamiltonian including
gapping potential terms is given by

H0 =

∫ 2π

0

dσ
∑
I

f I†i∂σf
I ,

Hint =

∫ 2π

0

dσf †(σ)Mf(2π − σ) + h.c. (A1)

where in the last line we used a vectorial notation and
the mass matrix M is given by

M = m

 0 1 0

0 0 1

1 0 0

 . (A2)

Corresponding to this situation, we seek for a state |V 〉
which satisfies, for 0 < σ < π,[

f I(σ)− if I+1(2π − σ)
]
|V 〉 = 0. (A3)

Solving the constraint, the state |V 〉 is given in the form
of a fermionic coherent state. A major simplification for
the case of complex fermion is that we can diagonalize the
mass matrix M by a unitary rotation U as M = U†ΛU ,
where

U =
1√
3

 1 1 1

ω∗ ω 1

ω ω∗ 1

 ,

Λ = diag(1, ω, ω∗), ω = e2πi/3. (A4)

In the rotated basis η := Uf , the edge Hamiltonian is
diagonal and given by

H0 =

∫ 2π

0

dσ

3∑
a=1

η†ai∂σηa,

Hint =

∫ π

0

dσ

3∑
a=1

meiθaη†a(σ)ηa(2π − σ), (A5)

where θ1 = 0, θ2 = 2π/3, and θ3 = −2π/3. We take the
spatial boundary conditions (Ramond or Neveu-Schwarz)
for I = 1, 2, 3 being all identical, so the rotation does
not affect the spatial boundary condition. Thus, in the
rotated basis, we have three copies of the single fermion
problem,

[ηa(σ) + ga(σ)ηa(2π − σ)] |V 〉 = 0,

where ga(σ) = −is(σ)eis(σ)θa , (A6)

and s(σ) is the sign function: s(σ) = 1 for 0 < σ < π
and s(σ) = −1 for π < σ < 2π. Similarly, the boundary
condition for η† is given by[

η†a(σ) + g̃a(σ)η†a(2π − σ)
]
|V 〉 = 0

where g̃a(σ) ≡ −ga(−σ) = −is(σ)e−is(σ)θa . (A7)

For now, we focus on the vertex state for a given
copy and omit the subscript a. We will restore the sub-
script later when it is necessary. By mode expansion,
η(σ) =

∑
r e
−iσrηr and g(σ) =

∑
n∈Z e

inσgn, the gluing
condition can be written as

[ηr +Nr,sηs]|V 〉 = 0, (A8)

where Nr,s := g−r−s and the Fourier components of g(σ)
are given by

gn =


0 n 6= 0, n is even
−2 cos θ
nπ n is odd

sin θ n = 0

. (A9)

In the next subsections, we discuss the construction of the
vertex state for each copy, for the Majorana and Dirac
fermion fields separately. Here, we summarize the result.
We separate Nr,s into four blocks,

N++
r,s = Nr,s, N−−r,s = N−r,−s,

N−+
r,s = N−r,s, N+−

r,s = Nr,−s, r, s > 0 (A10)

The vertex state solution is

|V 〉 ∝ exp
( ∑
r,s≥1/2

Krsη
†
rη−s

)
|0〉,

with K ≡ −(1 +N++)−1(N+−)

= −(N−+)−1(1 +N−−), (A11)

where |0〉 is the Fermi sea annihilated by ηr, r > 0 and
η†r, r < 0. The equivalence of the two expressions of K
comes from the fact that

∑
sNrsNst = δr,t. We give

the detailed derivation in the next subsections. Denoting
ηr = ur and η−r = v†r for r > 0, the solution can be
written in the familiar Gaussian state form,

|V 〉 ∝ exp
( ∑
r,s≥1/2

Krsu
†
rv
†
s

)
|0〉

= exp
(1

2

∑
r,s≥1/2

[
Krsu

†
rv
†
s − (KT )rsv

†
ru
†
s

] )
|0〉.

(A12)

Combinining the three copies η1, η2, η3 and restoring
the subscript a = 1, 2, 3 for K,u, v, the vertex state in
the rotated basis is

|V 〉 = N exp

[
1

2
(V †)TKV †

]
|0〉 (A13)
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where

(V †)T =
(
u†1,v

†
1,u
†
2,v
†
2,u
†
3,v
†
3

)
,

K =



0 K1 0 0 0 0

−KT
1 0 0 0 0 0

0 0 0 K2 0 0

0 0 −KT
2 0 0 0

0 0 0 0 0 K3

0 0 0 0 −KT
3 0


. (A14)

We may use an inverse rotation to write the solution in
the original basis f, f† (See Appendix A 3).

1. Majorana fermion

Let us now discuss the type of state presented in (A6)
and (A7) in more detail. As a warm up, we first consider
a similar problem for the Majorana fermion edge mode,
following Ref. [46]. Let us consider the Majorana fermion
field, and the boundary condition[
ψ(σ) + g(σ)ψ(−σ)

]
|V 〉 = 0 for −π < σ < π. (A15)

We focus on the NS sector. As a specific example, we
can take g(σ) = ±isign(σ). We however proceed with a
generic choice of g(σ). g(σ) is subject to a consistency
condition: Assuming g(σ) 6= 0, we note that the condi-
tion (A15) can be rewritten as[

g(σ)−1ψ(σ) + ψ(−σ)
]
|V 〉 = 0

=⇒
[
g(−σ)−1ψ(−σ) + ψ(σ)

]
|V 〉 = 0. (A16)

Comparison with Eq. (A15) implies

g(σ)g(−σ) = 1. (A17)

In terms of the Fourier components of g(σ),
g(σ) =

∑
n∈Z e

inσgn, the consistency condition reads∑
n gngn+p = δp,0.
Let us now proceed to the construction of |V 〉. Defining

a matrix Nn,m = g−n−m, the boundary condition and the
consistency relation can be written as[

ψr +
∑
s

Nr,sψs
]
|V 〉 = 0,∑

m

Nn,mNm,l = δnl (N2 = 1), (A18)

respectively. For convenience, we use fermionic cre-
ation/annihilation operators to write ψ1/2

ψ3/2

...

 ≡ b,
 ψ−1/2

ψ−3/2

...

 ≡ b†. (A19)

We also introduce a block structure

N =

(
N++ N+−

N−+ N−−

)
, (A20)

N++
r,s = Nr,s = g−r−s, N+−

r,s = Nr,−s = g−r+s,

N−+
r,s = N−r,s = gr−s, N−−r,s = N−r,−s = gr+s.

From the consistency condition N2 = 1, these blocks
satisfy

(i) N++N++ +N+−N−+ = 1,

(ii) N++N+− +N+−N−− = 0,

(iii) N−+N++ +N−−N−+ = 0,

(iv) N−+N+− +N−−N−− = 1. (A21)

We also note NT = N , which is the consequence of
Nr,s = g−r−s. This leads to

(N++)T = N++, (N−−)T = N−−,

(N+−)T = N−+, (N−+)T = N+−. (A22)

The boundary condition (A18) can now be written two
different ways as[
ψr +

∑
s>0

Nr,sψs +
∑
s>0

Nr,−sψ−s
]
|V 〉 = 0

=⇒

{[
b+ (1 +N++)−1N+−b†

]
|V 〉 = 0[

b+ (N−+)−1(1 +N−−)b†
]
|V 〉 = 0.

(A23)

The equivalence of the two conditions can be established
by using the consistency equations (i) − (iv): We first
note that

(1+N++)(1−N++) = 1−(N++)2 = N+−N−+ (A24)

where we used (i) in the first line. This relation can be
rewritten as

(1−N++)−1(1 +N++)−1 = (N+−N−+)−1

=⇒ (1 +N++)−1(N+−) = (1−N++)(N−+)−1.
(A25)

Next, from (iii), we note that N−+ intertwines
the + and − sectors as N−+N++ = −N−−N−+.
This leads to N++(N−+)−1 = −(N−+)−1N−−, and
(N++)k(N−+)−1 = (N−+)−1(−N−−)k. Then,

(1−N++)(N−+)−1 = (N−+)−1(1 +N−−), (A26)

which completes the proof of the equivalence. We now
define

K := (1+N++)−1(N+−) = (N−+)−1(1+N−−), (A27)

and write the boundary condition as[
b+Kb†

]
|V 〉 = 0. (A28)
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We note that if g(σ) is odd under σ → −σ, gn = −g−n,
then KT = −K. This can be seen by first noting that
gn = −g−n, implies N++ = −N−− and N+− = −N−+,
which make N++/N−− and N+−/N−+ commute. We
then see

KT = (N+−)T [(1 +N++)−1]T

= (N−+)(1 +N++)−1

= (1 +N++)−1(N−+)

= (1 +N++)−1(−N+−) = −K.

(A29)

Finally, using the antisymmetry of K, we can
write down the solution of boundary condition[
b+Kb†

]
|V 〉 = 0:

|V 〉 ∝ exp
(
− 1

2

∑
r,s≥1/2

Kr,sb
†
rb
†
s

)
|0〉. (A30)

This can be checked by the Baker-Hausdorff formula.

2. Dirac fermion

Let us now turn to the case of Dirac fermions
f(σ), f†(σ). Consider a boundary condition

[f(σ) + g(σ)f(−σ)]|V 〉 = 0,

[f†(σ) + g̃(σ)f†(−σ)]|V 〉 = 0, (A31)

for −π < σ < π. At this moment, g̃(σ) appears to be an
independent function, not related to g(σ). We however
require the condition

g̃(σ) = −g(−σ). (A32)

We will see momentarily the implication of this condition
on the vertex state. As a specific example, we consider

g(σ) = −is(σ)eis(σ)θ,

g̃(σ) = −g(−σ) = −is(σ)e−is(σ)θ, (A33)

where s(σ) = sgn(σ).
In the Fourier space, the condition (A31) reads[

fr +
∑
s

Nr,sfs
]
|V 〉 = 0,

[
f̃r +

∑
s

Ñr,sf̃s
]
|V 〉 = 0,

Nr,s = g−r−s, g(σ) =
∑
n∈Z

einσgn.

Ñr,s = g̃−r−s, g̃(σ) =
∑
n∈Z

einσ g̃n. (A34)

where the Fourier decomposition of f† is given by
f†(σ) =

∑
s∈Z+1/2 e

iσsf†s =
∑
s∈Z+1/2 e

−iσsf̃s. Namely,

we introduced the new set of operators f̃s by f̃s ≡ f†−s.
Similarly the condition (A32) in the Fourier space is

g̃n = −g−n. (A35)

We define the creation/annihilated operators as f1/2

f3/2

...

 ≡ b,
 f−1/2

f−3/2

...

 ≡ c†,

f†1/2
f†3/2

...

 ≡ b†,

f†−1/2

f†−3/2

...

 ≡ c, (A36)

and we also define, similarly, f̃1/2

f̃3/2

...

 ≡ c,
 f̃−1/2

f̃−3/2

...

 ≡ b†. (A37)

The conditions in (A34) can be organized as[
fr +

∑
s≥1/2

Nr,sfs +
∑
s≥1/2

Nr,−sf−s
]
|V 〉 = 0

=⇒

{[
b+ (1 +N++)−1N+−c†

]
|V 〉 = 0[

b+ (N−+)−1(1 +N−−)c†
]
|V 〉 = 0

(A38)

[
f̃r +

∑
s≥1/2

Ñr,sf̃s +
∑
s≥1/2

Ñr,−sf̃−s
]
|V 〉 = 0

=⇒

{[
c+ (1 + Ñ++)−1Ñ+−b†

]
|V 〉 = 0[

c+ (Ñ−+)−1(1 + Ñ−−)b†
]
|V 〉 = 0

(A39)

As we have seen, the two conditions in (A38) are equiv-
alent by using N2 = I. Similarly, the two conditions in
(A39) are equivalent by using Ñ2 = I.

Now let us define

K = (1 +N++)−1(N+−) = (N−+)−1(1 +N−−),

K̃ = (1 + Ñ++)−1(Ñ+−) = (Ñ−+)−1(1 + Ñ−−).
(A40)

Then, the boundary conditions are written as
[
b +

Kc†
]
|V 〉 =

[
c+ K̃b†

]
|V 〉 = 0, or[(

b

c

)
+

(
0 K

K̃ 0

)(
b†

c†

)]
|V 〉 = 0. (A41)

Here, we note that the condition (A32) imposes

KT = −K̃. (A42)

This can be seen by first noting

KT = (N−+)(1+N++)−1 = (1−N−−)−1(N−+) (A43)
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where we use the intertwining relation N−+N++ =
−N−−N−+. Second, (A32) implies Ñ++ = −N−−,

and Ñ+− = −N−+, which leads to KT = (1 −
N−−)−1(N−+) = −(1 + Ñ++)−1(Ñ+−) = −K̃.

With this condition, the vertex state is given by

|V 〉 ∝ exp

−1

2

∑
r,s≥1/2

(
Krsb

†
rc
†
s + K̃rsc

†
rb
†
s

)|0〉
= exp

− ∑
r,s≥1/2

Krsb
†
rc
†
s

|0〉
= exp

− ∑
r,s≥1/2

Krsf
†
r f−s

|0〉
(A44)

3. Comparison with the Neumann coefficient method

Let us now take the complex fermion as an example and compare the elements of the Neumann coefficient matrix
K in the NS-NS-NS sector, between the direct calculation and Neumann function method. For the direct calculation
method, the matrix K in Eq. (A11) is in the rotated η basis, so we need to rotate back to f basis, namely,

Kf = U†

 Kη,1

Kη,2

Kη,3

U (A45)

In the direction method, we take the cutoff to be Nc = 400 and compute the Neumann coefficients K numerically. In
the following tables, we take the first 8 × 8 block from the K12 matrix in both cases. The real and imaginary parts
obtained from the direct calculation and Neumann function method are:

Re [K]direct = −



0 0.2971 0 0.0945 0 0.0564 0 0.0406

−0.2964 0 0.3127 0 0.0990 0 0.0569 0

0 −0.3124 0 0.3183 0 0.1047 0 0.0620

−0.0934 0 −0.3178 0 0.3163 0 0.1033 0

0 −0.0988 0 −0.3159 0 0.3189 0 0.1060

−0.0549 0 −0.1040 0 −0.3184 0 0.3172 0

0 −0.0568 0 −0.1030 0 −0.3168 0 0.3190

−0.0389 0 −0.0612 0 −0.1054 0 −0.3185 0


, (A46)

Re [K]Neumann =



0 0.2963 0 0.0933 0 0.0548 0 0.0388

−0.2963 0 0.3128 0 0.0990 0 0.0570 0

0 −0.3128 0 0.3177 0 0.1040 0 0.0611

−0.0933 0 −0.3177 0 0.3163 0 0.1034 0

0 −0.0990 0 −0.3163 0 0.3184 0 0.1053

−0.0548 0 −0.1040 0 −0.3184 0 0.3173 0

0 −0.0570 0 −0.1034 0 −0.3173 0 0.3184

−0.0388 0 −0.0611 0 −0.1052 0 −0.3184 0


, (A47)
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Im [K]direct =



−0.7699 0 −0.0998 0 −0.0638 0 −0.0477 0

0 −0.5703 0 −0.0444 0 −0.0330 0 −0.0265

−0.0999 0 −0.5537 0 −0.0384 0 −0.0302 0

0 −0.0444 0 −0.5322 0 −0.0255 0 −0.0212

−0.0639 0 −0.0384 0 −0.5291 0 −0.0238 0

0 −0.0330 0 −0.0255 0 −0.5210 0 −0.0179

−0.0478 0 −0.0303 0 −0.0238 0 −0.5199 0

0 −0.0265 0 −0.0212 0 −0.0179 0 −0.5156


, (A48)

Im [K]Neumann = −



−0.7698 0 −0.0998 0 −0.0638 0 −0.0476 0

0 −0.5702 0 −0.0444 0 −0.0329 0 −0.0264

−0.0998 0 −0.5536 0 −0.0383 0 −0.0302 0

0 −0.0444 0 −0.5321 0 −0.0254 0 −0.0211

−0.0638 0 −0.0383 0 −0.5291 0 −0.0237 0

0 −0.0329 0 −0.0254 0 −0.5209 0 −0.0178

−0.0476 0 −0.0302 0 −0.0237 0 −0.5199 0

0 −0.0264 0 −0.0211 0 −0.0178 0 −0.5155


. (A49)

We see these two set of matrices are almost identical (up to a minus sign, which is presumably due to convention).
The numerical check for other blocks K11, etc shows the same results.

We also compare the K matrices of closed string real fermion using direct calculation and Neumann coefficient
method, and arrives at the same conclusion. Note that in the direct calculation, the rotation becomes

Kf = UT

 K1,η/2 0 0

0 0 −KT
2,η/2

0 K2,η/2 0

U. (A50)

Appendix B: Details of the Neumann coefficient method

In this Section, we give some technical details for the Neumann coefficient method.

1. Different choice of the branch cuts in the R-R sector

For the vertex state for bipartition in the R-R sector, we can work alternatively with the following choice of the
gIJ function:

gIJσ−σ =
1

2

[√
(ω − ω1,0)(ω − ω2,0)

(ω′ − ω1,0)(ω′ − ω2,0)
+ (ω ↔ ω′)

]
. (B1)

Both choices lead to the same vertex state as we demonstrate below. The choice we made in the main text is
somewhat simpler, while this choice here is closer to the branch cuts we choose in our calculations in the R-R-R
sectors for tripartition. Using ωI = ωI,0( 1+z

1−z ), and ω1,0 = i, ω2,0 = −i, the Neumann function is given by

R11 = R22 =

√
zz′

z − z′
1

2

[√
z

z′
1− z′

1− z
+

√
z′

z

1− z
1− z′

]
=
∑
m≥1

(
z′

z

)m
+

1

2

∑
n≥0

zn −
∑
n≥1

(z′)n

 ,
R12 = −R21 =

i
√
zz′

1− zz′
1

2

[√
z

z′
1− z′

1− z
+

√
z′

z

1− z
1− z′

]
= (−i)

∑
m>0

(zz′)m +
i

2

[∑
n>0

zn +
∑
n>0

(z′)n

]
.

(B2)
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We note that we obtain the desired singular term
∑
m≥1(z′/z)m =

∑
m≥1 e

−im(σ−σ′) in R11 and R22. From the

expansion coefficients and use the same ansatz solution in Eq. (86), we obtain the vertex state:

|V 〉 = exp

−i∑
n≥1

χ1
−nχ

2
−n +

∑
n≥1

(
χ1
−nχ

1
0 + χ2

−nχ
2
0 + iχ1

−nχ
2
0 − iχ2

−nχ
1
0

) |Ω〉. (B3)

This is the same solution as Eq. (57) with the additional requirement (χ1
0 + iχ2

0)|Ω〉 = 0. Similarly, for the Dirac
fermion field in the R-R sector, one can show the solutions from the two choices of the branch cuts also match.

2. Verification of the boundary condition in the R sector

In this subsection, we verify that the R-R-R sector vertex state ansatz satisfies the boundary condition for real and
complex fermion. The verification for the NS-R two-string solution simply parallels the proof below[69], which we
shall omit.

For the Majorana fermion case, the ansatz solution is:

|V 〉 = exp

1

2

∑
m,n≥1

χI−mR
IJ
mnχ

J
−n + 2

∑
m,n≥1

χI−mR
IJ
m0χ

J
0

 |Ω〉. (B4)

Let us denote A =
∑
m,n≥1

1
2χ

I
−mR

IJ
mnχ

J
−n +

∑
m≥1 2χI−mR

IJ
m0χ

J
0 . To show explicitly that this state satisfies the

boundary condition, we define

DI =
∑
m≥1

2χJ−mR
JI
m0. (B5)

Using

χIp|V 〉 =
∑
n≥1

RIJpnχ
J
−n|V 〉+ exp (A)

2RIJp0 (χJ0 −
∑
m≥1

χK−mR
KJ
m0 )

 |Ω〉,
χI0|V 〉 = exp (A)

χI0 −∑
m≥1

2χJ−mR
JI
m0

 |Ω〉,
(B6)

one can check the following relation:

χI(σ)|V 〉 =
∑
p≥1

χIpe
−ipσ|V 〉+ χI0|V 〉+

∑
p≥1

χI−pe
ipσ|V 〉

=
∑
p,n≥1

e−ipσRIJpnχ
J
−n|V 〉+

∑
p≥1

e−ipσ exp (A)

2RIJp0 (χJ0 −
∑
m≥1

χK−mR
KJ
m0 )

 |Ω〉+ χI0|V 〉+
∑
p≥1

χI−pe
ipσ|V 〉.

(B7)
On the other hand, defining

χ̃Icr. =
∑
n≥1

χI−ne
inσ + 2χI0 +DI , (B8)

and using

(DI + 2χI0)|V 〉 = exp (A)

2χI0 −
∑
m≥1

2χJ−mR
JI
m0

 |Ω〉, (B9)
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one can check,

∫
dσ′

2π
RIJ(σ, σ′)χ̃Jcr.(σ

′)|V 〉 =
∑
m,n≥1

e−imσRIJmnχ
J
−n|V 〉+

∑
m≥1

e−imσRIJm0(DJ + 2χJ0 )|V 〉

+
∑
n≥1

RIJ0nχ
J
−n|V 〉+ δIJ

1

2
(DJ + 2χJ0 )|V 〉+

∑
m≥1

χI−me
imσ|V 〉

= χI(σ)|V 〉,

(B10)

where we exploited the fact RIJm0 = −RJI0m and RIJ00 = δIJ
1
2 . Finally, the property RI+1,J(σ, σ′) = iRI,J(2π − σ, σ′)

ensures that χ satisfies the desired boundary condition

χI+1(σ)|V 〉 = iχI(2π − σ)|V 〉. (B11)

For the complex fermion, we start from the ansatz solution in Eq. (88):

|V 〉 = exp

 ∑
m,n≥1

gI−mR
IJ
mng

†,J
n +

∑
m≥1

2RIJm0(gI−mg
†,J
0 + g†,Im gJ0 )

|Ω〉. (B12)

We can verify the following relations:

gI(σ)|V 〉 =

∫
dσ′

2π
RIJ(σ, σ′)g̃Jcr.(σ

′)|V 〉,

g†,I(σ)|V 〉 =

∫
dσ′

2π
RIJ(σ, σ′)g̃†,Jcr. (σ′)|V 〉,

(B13)

where

g̃Icr.(σ) =
∑
n≥1

gI−ne
inσ + (2gI0 +DI), DI =

∑
m≥1

2RJIm0g
J
−m

g̃†,Jcr. (σ′) =
∑
n≥1

g†,In einσ + (2g†,I0 +D†,I), D†,I =
∑
m≥1

2RJIm0g
†,J
m .

(B14)

These relations allow us to verify the boundary condition:

gI+1(σ)|V 〉 =

∫
dσ′

2π
RI+1,J(σ, σ′)g̃Jcr.(σ

′)|V 〉

= i

∫
dσ′

2π
RIJ(2π − σ, σ′)g̃Jcr.(σ′)|V 〉

= igI(2π − σ)|V 〉.

(B15)

Similarly, for g†, we can verify g†I+1(σ)|V 〉 = ig†I(2π − σ)|V 〉.
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3. Explicit form of the Neumann coefficients in the NS-NS-NS sector

The explicit form of the Neumann coefficient matrix K in the NS-NS-NS sector is derived following the methods
of Ref. [42] and is summarized below:

K = I3 ⊗Kaa + J+ ⊗Ka,a+1 + J− ⊗Ka,a−1,

Irs =


(
−m

n+m+1 + −m
n−m

)
unum n = even,m = odd(

n
n+m+1 −

n
n−m

)
unum n = odd,m = even

,

Kaa
rs =

1

3
Irs +

[
M+
r−1/2,s−1/2

r + s
+
M−r−1/2,s−1/2

r − s

]
,

M+
nm = − [(n+ 1)gn+1(m+ 1)gm+1 − ngnmgm] · [(−1)n − (−1)m] ,

M−nm = − [(ngn(m+ 1)gm+1 − (n+ 1)gn+1mgm] · [(−1)n − (−1)m] ,

Ka,a+1
rs =

1

2
Irs −

1

2
Kaa
rs −

(−i)
2

√
3

[
M̄+
r−1/2,s−1/2

r + s
+
M̄−r−1/2,s−1/2

r − s

]
,

M̄+
nm = [(n+ 1)gn+1(m+ 1)gm+1 − ngnmgm] · [(−1)n + (−1)m] ,

M̄−nm = [(ngn(m+ 1)gm+1 − (n+ 1)gn+1mgm] · [(−1)n + (−1)m] ,

Ka,a−1
rs =

1

2
Irs −

1

2
Kaa
rs +

(−i)
2

√
3

[
M̄+
r−1/2,s−1/2

r + s
+
M̄−r−1/2,s−1/2

r − s

]
,

I3 =

 1 0 0

0 1 0

0 0 1

 , J+ =

 0 1 0

0 0 1

1 0 0

 , J− = (J+)T ,

(B16)

where r = n+ 1
2 , s = m+ 1

2 . un is the coefficient in the expansion of ( 1+x
1−x )1/2 =

∑∞
n=0 unx

n, which can be expressed

compactly as u2n = u2n+1 =
(− 1

2
n

)
(−1)n. We note un satisfies the recursion relation:

u0 = u1 = 1, 2nu2n = (2n− 1)u2n−2, u2n = u2n+1. (B17)

gn is the coefficient in g(x) = ( 1+x
1−x )1/6 =

∑∞
n=0 gnx

n. Finally, ∆n = M̄−nm/(r − s) contained in the diagonal(r = s)

term should be evaluated using ∆n = 2
3

∑n
k=0(−1)n−kg2

n−k. We note, in addition, that the above coefficients differ
from those appearing in Ref. [42] by factors of i. This is a consequence of the fact that we deal with free fermions with
(anti-)periodic boundary conditions rather than open boundary conditions and hence different conformal maps ωI [Eq.

(40)] than those in Ref. [42]. One can also show explicitly that the singular terms are indeed δIJ
∑
r≥1/2 e

−ir(σ−σ′),

as required.

Appendix C: Correlation matrix for the vertex state

Once the vertex states are obtained, we can compute
various entanglement measures by the correlator method.
Here, we collect some details for the numerical calcula-
tions of the correlation matrices. For numerical purposes,
we need to truncate the matrix at size Nc, and in the
direct calculation method we use the second expression
in Eq. (A11) to compute K in order to avoid singulari-
ties (singularities become less problematic for larger Nc).
Then,K is a 6Nc×6Nc real anti-symmetric matrix, so we
can use an orthogonal matrix Q to bring it to standard

block diagonal form

K = QTΣQ, Σ = ⊕3Nc
k=1Σk, Σk =

(
0 σk
−σk 0

)
.

(C1)

In the block diagonal basis b† = QV †, the state |G〉 is

|G〉 = N exp

[
1

2
(b†)TΣb†

]
|0〉

= N exp

[
3Nc∑
k=1

σkb
†
2k−1b

†
2k

]
|0〉. (C2)

In order to calculate the entanglement entropy and
negativity, we need to compute the correlation matrices
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C and F . The non-zero elements are

〈G|b†2k−1b
†
2k|G〉 = −〈G|b†2kb

†
2k−1|G〉

= −〈G|b2k−1b2k|G〉 = 〈G|b2kb2k−1|G〉 =
σk

1 + σ2
k

,

〈G|b†2k−1b2k−1|G〉 = 〈G|b†2kb2k|G〉 =
σ2
k

1 + σ2
k

,

〈G|b2k−1b
†
2k−1|G〉 = 〈G|b2kb†2k|G〉 =

1

1 + σ2
k

, (C3)

and the correlation matrices C,F are expressed as

Crs = 〈G|V †r Vs|G〉 = 〈G|b†pbq|G〉QprQqs

=

3Nc∑
k=1

σ2
k

1 + σ2
k

(Q2k−1,rQ2k−1,s +Q2k,rQ2k,s),

Frs = 〈G|V †r V †s |G〉 = 〈G|b†pb†q|G〉QprQqs

=

3Nc∑
k=1

σk
1 + σ2

k

(Q2k−1,rQ2k,s −Q2k,rQ2k−1,s). (C4)

These correlators need to be rotated back to the original
basis fA, fB , fC by unitary transformation U . Noting
that f† transforms with U∗ rather than U , the full trans-
formation matrix U ′ is

U ′ = U∗ ⊗

(
1 0

0 0

)
+ U ⊗

(
0 0

0 1

)
(C5)

where 1 is the Nc ×Nc identity matrix. The correlation
matrices transform via

C → (U ′)†CU ′, F → (U ′)†F (U ′)∗. (C6)

With C,F , we can obtain the correlation matrix Γ using
Eq. (12) and compute various entanglement measures.
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