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Ensembles of quantum chaotic systems are expected to exhibit energy eigenvalues with random-
matrix-like level repulsion between pairs of energies separated by less than the inverse Thouless
time. Recent research has shown that exact and approximate global symmetries of a system have
clear signatures in these spectral statistics, enhancing the spectral form factor or correspondingly
weakening level repulsion. This paper extends those results to the case of spontaneous symmetry
breaking, and shows that, surprisingly, spontaneously breaking a symmetry further enhances the
spectral form factor. For both RMT-inspired toy models and models where the symmetry breaking
has a description in terms of fluctuating hydrodynamics, we obtain formulas for this enhancement
for arbitrary symmetry breaking patterns, including broken Abelian symmetries Zn and U(1), and
partially or fully broken non-Abelian symmetries.

I. INTRODUCTION

This paper is concerned with the statistical proper-
ties of energy levels of chaotic quantum systems exhibit-
ing spontaneous symmetry breaking (SSB). The phe-
nomenon of SSB can occur whenever a system possesses
a symmetry and a suitable thermodynamic limit. This
limit can be achieved either with a system extended in
space or, in the cases examined in this paper, a zero-
dimensional system with a large number of degrees of
freedom. SSB is said to occur at a given energy den-
sity (energy per degree of freedom) if, after first taking
the thermodynamic limit, a vanishingly small symme-
try breaking perturbation in the Hamiltonian leads to a
non-symmetric equilibrium state (reviews include [1, 2]).
Because the system’s symmetry constrains the structure
of Hamiltonian, SSB also manifests as a reorganization
of the energy levels as a function of energy density. The
purpose of this paper is to understand how this reorgani-
zation manifests in the correlations between energy levels
and how the symmetry unbroken case is recovered in a
finite size system.

More precisely, the theory developed here computes
the so-called spectral form factor (SFF), the simplest ver-
sion of which is the Fourier transform of the 2-point cor-
relation between pairs of energy levels. Because it is a
Fourier transform, the SFF naturally lives in the time
domain. For a quantum chaotic system, the expectation
is that, after a time known as the Thouless time, the
SFF will approach a random matrix form determined by
the symmetry of the Hamiltonian. This paper develops
a theory of the SFF in zero-dimensional system exhibit-
ing SSB. In particular, the theory explains how the SFF
deviates from the appropriate symmetric random matrix
form at early time and how random matrix behavior is
recovered at late time.

Although the SFF is understood in a wide variety
of regimes [3–5], including systems with symmetries [6],

there is yet to be a systematic study of the SFF in systems
with spontaneously broken systems. This paper fills this
gap in the zero-dimensional case, with the case of spa-
tially extended systems left to future work. There have
also been a few other studies of the interplay of quantum
chaos, eigenstate thermalization, and spontaneous sym-
metry breaking including [7–9]; see [10] for a review of
notions of quantum chaos.

We analyze the spectral correlations in these systems
as a function of energy density. At high energy density,
one typically finds symmetric random-matrix-like energy
levels, a hallmark of quantum chaos [11–14]. SSB then
sometimes occurs as the energy density is lowered, in
which case it corresponds to a breaking of ergodicity in
the thermodynamic limit. Our theory quantitatively ex-
plains how ergodicity and symmetry are restored at finite
system size from the point of the view of the energy spec-
trum.

Because symmetry restoration is a long-time process,
the theory must deal with special slow dynamical pro-
cesses associated with the order parameter of the bro-
ken symmetry for which a hydrodynamic-like effective
theory is the right description [15–20] (see [21] for an
accessible introduction to the Schwinger-Keldysh tech-
nique underlying these effective theories). In previous
work [22], we showed how the field theory formulation of
fluctuating hydrodynamics could be adapted to predict
a random-matrix-like spectral form factor at late times
and to compute finite time corrections to random matrix
theory (RMT). The present paper can be viewed as an
extension of the earlier theory to systems with the addi-
tional physics of spontaneous symmetry breaking [23, 24].

A. Setup and observables

We now describe the setup and observables in more
detail. A quantum system has symmetry group G if (1)
G acts on the Hilbert space of the system by some faith-
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FIG. 1. SFF (blue) of a random matrix exhibiting the dip-
ramp-plateau structure. The connected SFF only exhibits the
ramp and plateau.

ful (but typically reducible) representation U and (2) the
Hamiltonian of the system commutes with every repre-
sentative, U(g)H = HU(g). We focus on systems where
the representation of G acting on the full Hilbert space is
unitary and linear. For disordered systems correspond-
ing to an ensemble of Hamiltonians, we require that every
element of the ensemble commute with the same Us. Be-
cause it commutes with the Hamiltonian, such a symme-
try constrains the energy spectrum by forbidding certain
matrix elements in the Hamiltonian. More precisely, the
Hamiltonian breaks into decoupled blocks labelled by the
irreducible representations (irreps) of G.

In the simplest quantum chaotic case, each irrep block
will consist of a number of copies (equal to the dimension
of the irrep) of a system-specific matrix with random-
matrix-like level correlations [11–14]. Furthermore, the
matrices for different irreps will be independent of each
other. We quantify the correlations in these spectra us-
ing a filtered form of the spectral form factor (SFF) [25]
which zooms in on the particular energy density where
SSB occurs. The spectral form factor with filter function
f is

SFF(T, f) = |Tr[U(T )f(H)]|2, (1)

where U(T ) = e−iHT is the time evolution operator and
overline denotes a disorder average over an ensemble of
Hamiltonians where each representative is symmetric.
We will say more about this averaging shortly; it is nec-
essary in order to render the SFF a smoothly varying
function of time T .

It is also useful to define the connected and discon-
nected contributions to the SFF. The disconnected part,

SFFdis(T, f) = |Tr[U(T )f(H)]|2, (2)

is distinguished by the full SFF because the squaring hap-
pens after the averaging. The connected part is the dif-
ference

SFFcon(T, f) = SFF(T, f)− SFFdis(T, f) (3)

It can be shown that both the connected and discon-
nected parts are positive definite. In the standard dip-
ramp-plateau picture, the dip comes from the discon-
nected component, and the ramp and plateau come from
the autocorrelation of trU(T )f(H) found in the con-
nected component of the SFF.

For a quantum chaotic system with no symmetry, the
expectation is that, after a Thouless time the SFF will
agree with the random matrix result [11–14]. Up to the
Heisenberg time, which is proportional to the level den-
sity, the RMT result is [26] the linear ramp,

SFF(T, f) =

∫
dEf2(E)

T

πb
, (4)

where b = 1, 2, 4 is the Dyson index from random matrix
theory determined by the presence or absence of antiuni-
tary symmetries. If we choose f to be a Gaussian filter

of the form f = exp
(
− (E−E0)2

4σ2

)
, then the result is

SFF(T, f) =

√
2πσT

πb
(5)

provided E0 sits within the spectrum of H.
If instead we have a system with G symmetry which is

unbroken at energy E0, then the Gaussian filtered SFF
will be

SFF(T, f) =
∑
R

|R|2
√

2πσT

πb
, (6)

where the sum is over irreps R appearing in the spectrum
and |R| is the dimension of R. As discussed above, each
irrep block is composed of |R| identical copies of an inde-
pendent random matrix (one for each state in R), so the
|R|2 factor arises because all the subblocks are perfectly
correlated. See appendix for more details.

The new feature associated with SSB at energy E0 is
that the different irrep blocks will no longer be effectively
independent. At large but finite system size, the energy
eigenstates will be ‘cat states’ which transform in dif-
ferent representations of the symmetry group but have
nearly-identical energies. This means that the spectra of
different blocks will be strongly correlated, and this ad-
ditional correlation will cause the SFF to take a larger
value at early to intermediate times. Then at fixed sys-
tem size (and for typical forms of SSB), the system will
crossover to the unbroken behavior at very long time pro-
vided the order parameter fluctuates rapidly compared to
the Heisenberg time of each block.

The remainder of the paper is organized as follows. In
section we consider the case of spontaneously broken
Zn symmetry in various toy models, obtaining analytic
and numerical results in excellent agreement. Next, in
section , we do the same for more general finite groups
G. Next, we consider a hydrodynamic calculation of the
symmetry-breaking SFF in sections and , focusing first
on Abelian Lie groups and then on general Lie Groups.
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II. Zn SSB WITH ZERO SPATIAL DIMENSIONS

We will start with the simplest possible case of discrete
SSB: the case of a Zn symmetry and a charge-1 order pa-
rameter. Since any discrete Abelian group is a product
of Zn factors (with possibly different ns), this case cap-
tures most of the interesting physics of discrete Abelian
SSB. We also restrict attention to the case of zero spatial
dimensions, so the reader should have in mind a cluster
or similar sort of system where a large number of degrees
of freedom can interact without geometric restrictions.

The charge-1 order parameter is described by a basis
|φ〉 ∈ Φ with φ an integer from 0 to n − 1. Although
in this chapter the symmetry and the corresponding or-
der parameter are discrete, we will occasionally call φ a
Goldstone mode when analogy with the continuous case
would be helpful.

In addition to φ, we take the other degrees of freedom
to be described by a state ψ in an N -dimensional Hilbert
space Ψ, for some large L. In a physical system, L would
be exponential in the system size. A state in the total
Hilbert space will be an nL-dimensional superposition of
states of the form |φ〉⊗|ψ〉. In this section, we will require
that |ψ〉 transform trivially under G. We briefly consider
more general behavior in appendix .

The Hamiltonian is built from a collection of operators
Hk acting on Ψ that are associated with (possibly trivial)
transitions of the order parameter from sector φ to sector
φ + k. Using the shift operator Mk defined as Mk |φ〉 =
|φ+ k〉, we write this decomposition as

H =
∑
k

Mk ⊗Hk

(Mk)ij = δi,j+k,

(7)

with the arguments of the delta function in Mk all taken

mod n. Hermiticity of H requires that H†k = Hn−k since

M†k = Mn−k. For instance, the n = 4 Hamiltonian writ-
ten out in block matrix form is

H =

H0 H3 H2 H1

H1 H0 H3 H2

H2 H1 H0 H3

H3 H2 H1 H0


with H0 = H†0 , H1 = H†3 , H2 = H†2 .

(8)

At this point, we must ask what sorts of matrices H0

and Hk make good models of the sorts of systems we see
in real life. As a simple model, consider the case where
each Hk is chosen independently consistent with the con-
straints imposed by Hermiticity. This should be a rea-
sonable description of the spectral properties of generic
chaotic systems after all other modes have decayed. Each
block has matrix elements with variance J2

k/L, and the
physics of SSB is modeled by the condition J0 � Jk 6=0.
This leads to a diffusive motion in the order parameter
space.

The Hk could also have more structure. For example,
one could have Hk = gk(H0) for some simple slowly-
varying matrix function g. A salient case is where gk
is roughly constant over the energy range of H0, and
is 0 unless k = ±1. In this world, the Hamiltonian
can be roughly written as I ⊗ H0 + K ⊗ g(H0), where
Kij = δi,j+1 + δi,j−1. We can simultaneously diagonalize
H0 and K to diagonalize this matrix. Given an eigen-
state |ψ〉 of H0 with H0 |ψ〉 = Eψ |ψ〉 and an eigenstate
|q〉 of K with K |q〉 = λq |q〉 the energy of |q〉 ⊗ |ψ〉 is
Eψ+g(Eψ)λq. Especially when n is large, it makes sense
to talk about a dispersion relation depending on q. We
can think of the state as a particle with internal degrees
of freedom propagating ballistically in order parameter
space. In a real life system, the most realistic choice of
g would simply be an identity matrix, corresponding to
a temperature/energy-independent kinetic term for the
Goldstone mode. More general gs allow more compli-
cated dependence. And most realistic systems add an
ordered matrix such as the identity in this paragraph to
a disordered random collection as in the previous para-
graph. For instance, in the continuous case one can con-
sider a bound state of interacting atoms in a physical
Mexican hat potential. The system has Goldstone mode
θ, the angle to the center of mass of the atoms. The tran-
sition matrix is 1

2I ∂
2
θ , where I is the moment of inertia of

the system. By the eigenstate thermalization hypothesis,
this moment of inertia has some rough slow dependence
of E, but also some RMT contributions.

A. The SFF With a Purely Random Kinetic Term

Consider first the case of purely random Hk. To calcu-
late the SFF, it is convenient to work with two copies of
the system with total Hamiltonian. If the Hamiltonian
of a single copy of the system is Hsys,

Htot = Hsys ⊗ I − I ⊗H∗sys. (9)

The SFF of a single copy of the system is then

SFF(T, 1) = tr exp(−iHtotT ). (10)

Note that the complex conjugation in the definition of
Htot is added for convenience.

As a reminder, if all the Hk 6=0 are set to zero, then
the order parameter is frozen and the SFF is controlled
by the diagonal H0 blocks. H0 is a random matrix, so
its SFF is given by the random matrix result, but since
each block is identical and there are n blocks, the total
SFF of the system is n2 times the random matrix result.
Nonzero Hk 6=0 blocks cause the order parameter to fluc-
tuate in time. We want to calculate the modifications to
the SFF by summing over quantum trajectories of the
order parameter. This calculation is viewed as a kind
of path integral calculation on the doubled system with
Hamiltonian Htot. The averaging operation discussed in
the introduction corresponds here to averaging over the
elements of the Hks.



4

FIG. 2. A pictorial representation of how one goes from an
exact expression for the SFF (top right) to an effective action
on periodic boundary conditions (bottom right). The pro-
cess causes an effective coupling between same-time variables
on opposite contours, analogous to how performing this pro-
cedure on on a Schwinger-Keldysh contour also introduces
coupling between the two legs. In fact, the two procedures
will produce the same action, up to exponentially small cor-
rections.

FIG. 3. The predicted (orange) vs displayed (blue) enhance-
ments for two Zn-symmetric Hamiltonians. The pure RMT
prediction for a matrix with that symmetry group is in gray.

Let’s take a moment to consider what sort of for-
mula we should expect for this sum. As with other
ramp-related quantities, it is helpful to juxtapose it with
Schwinger-Keldysh/CTP contour e−βHeiTHe−iTH . We
can generally factor the Hilbert space into slow degrees
of freedom Φ and fast degrees Ψ. In this paper Φ is
the order parameter of a symmetry and the various Φ
sectors will be related by that symmetry. But Φ could

FIG. 4. The two types of processes. In the top figure, the first
and second copies of the system both have identical jumps.
In the bottom figure, the first system jumps and jumps back.

just as well include conserved quantities, gauge bosons,
or fermion degrees of freedom with a chiral symmetry.

At any point along the contour we have some den-
sity matrix ρΦΨ ∝ e−βH indicating the density for both
order parameter φ and the microscopic degrees of free-
dom ψ (equivalently, this can be viewed as a state of
the two-replica system). If we trace out the Ψ modes,
ρΦ evolves by multiplication by a time-dependent super-
operator, e−Trans(E)T , which is generated from a sort of
transfer matrix Trans(E) : Φ2 → Φ2 that acts on two
replicas of the order parameter space. More precisely,

ρΦ(T ) =

∫
dEe−Trans(E)TPEρΦ(0) (11)

where PE projects down to an energy window around E.
If it weren’t for the symmetry relating the different φs,

the superoperator Trans(E) would approximately anni-
hilate doubled-system states |φ1〉 |φ′1〉 with φ1 6= φ′1. One
intuitive reason for this is that with no similarities be-
tween the different φ sectors we would be free to add
a phase to one and not the others. The only terms
that would be invariant under this are φ1φ2 → φ1φ2

or φ1φ1 → φ2φ2. Averaging over disorder, the first of
these has to have zero amplitude in exp(−Trans(E)T )
because we can add some small amount of energy to one
sector but not another and rotate the term by a relative
phase. As such, without symmetry between sectors we
could essentially replace

Trans(E)φ1φ′1φ2φ′2
→ δφ1φ′1

δφ2φ′2
Trans(E)φ1φ2 . (12)

This is the case considered in [22]. But here the symme-
try allows for constructive interference, and we need to
trace over Trans(E) in its full glory. Equation 12 is no
longer valid. If the matrix elements of H0 and Hk 6=0 are
independent random numbers, then there are only two
perturbative processes that contribute to the path inte-
gral and thus to Trans(E), shown in figure 5. The first
is when both systems go from (possibly distinct) ψis to
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(possibly distinct) ψf s using the same Hk. The second
is when one of the two systems goes from ψi to ψf to ψi,

using Hk and H†k. The both-sides-jump perturbation is
parameterized by the two times t1, t2 of the two jumps,
and by the energies Efinal after the jump. The amplitude
for any one of these processes for any given ψf depends
on the square of the magnitude of the matrix element.
The double integral over time gives one “center of mass”
time and an energy delta function,∫

dt1dt2| 〈ψf |Hk |ψi〉 |2ei(Efinal−Einit)(t2−t1) ∝ Tδ(Efinal−Einit).

(13)
Disorder-averaging over the matrix elements and con-

verting the sum over final states into an integral, the total
amplitude for this process to happen once after time T is
a quantity depending on the root-mean-square (rms) ma-
trix elements of Hk, which can be simplified using Fermi’s
golden rule.∑
Efinal

∫
dt1dt2|Hk rms matrix element|2ei(Efinal−Einit)(t2−t1)

= rk(Einit)T

(14)

where the rate rk is

rk(E) = 2π|Hk rms matrix element|2ρ(E) (15)

with ρ(E) the density of states; this is just the Fermi’s
golden rule. This is thus an amplitude rk(E) per unit
time for a process that multiplies the states of both repli-
cas by Mk.

For the ψ1 → ψ2 → ψ1 processes, we have the con-
dition t2 > t1, which produces a factor of 1

2 relative to
when the two jumps happen on separate contours. How-
ever there is a factor of 2 because the two jumps can
happen in either replica of the system. The net result of
these two jumps is that both subsystems are in the same
sector, so the total amplitude is rk(E) for a process that
multiplies the states of both replicas by I.

Summing all processes we get

Trans(E) =
∑
k 6=0

rk(E) (I ⊗ I −Mk ⊗Mk) =

1

2

∑
k 6=0

rk(E) (2I ⊗ I −Mk ⊗Mk −M−k ⊗M−k)
(16)

The second equality follows from rk = rn−k and M−k =

Mn−k = M†k . Note that this is a tensor product of differ-
ent spaces, two factors of Φ, rather than a factor of Φ and
a factor of Ψ. This means that the transfer matrix has
four Φ indices, i.e. it is a superoperator. The enhance-
ment factor to the SFF is just

∫
dEf2(E) tr e−Trans(E)T .

We can see this prediction borne out in Figure 3.
Note that the late time enhancement of the SFF follows

from the number of zero modes of Trans(E). The general

FIG. 5. An additional figure, where one system jumps from
one sector to another, with a coherent amplitude gk(E)

spectrum of the transfer matrix is obtained from states
of the form ∑

φφ′

eiqφ+iq′φ′ |φ〉 |φ′〉 , (17)

where q, q′ are 2π
n times an integer ∈ {0, · · · , n−1}. The

q, q′ state has eigenvalue∑
k 6=0

rk(1− cos k(q + q′)). (18)

The set of zero modes is given by q = −q′, hence, there
are n zero modes of Trans(E). This implies that the late
time SFF enhancement is n, as expected in a situation
where the symmetry has been restored.

B. The SFF With A Mixed Kinetic Term

The effect of adding in a slowly varying kinetic term
like Hk = gk(H0) is to add in additional processes which
can contribute to transfer matrix. More precisely, let’s
break our Hamiltonian into

Hsys =
∑
k

Mk ⊗Hk +
∑
k

Mk ⊗ gk(H0), (19)

with the Hks fully independent of H0 and the gks rea-
sonably slowly varying analytic functions of small enough
value to be treated by perturbation theory. We will get
an additional contribution to the transfer matrix of

Trans(E)kinetic = −i
∑
k

gk(E) (Mk ⊗ I − I ⊗Mk) ,

(20)
which is just the amplitude of a single jump caused by
the perturbation fj . Here again the tensor product refers
to two factors of Φ. We see this prediction confirmed in
Figure 6.

III. GENERAL DISCRETE SSB

In this section we will generalize from the simple
Abelian case from last section and consider an arbitrary
(finite) non-Abelian symmetry group G. Apart from its
intrinsic interest, one motivation for considering Zn SSB
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FIG. 6. Each H0 is a 500 by 500 matrix, with consecutive
blocks connected by c1R + c2I, where R is a random com-
plex matrix, c1=0.02, and c2=0.03. The numerical results
are in blue, the analytic predictions are red. The pure RMT
prediction for a matrix with that symmetry group is in gray.

is that we can approach U(1) SSB by taking the limit
n → ∞. Unfortunately, there is no way to make arbi-
trarily good approximations of continuous non-Abelian
groups with finite groups. Nonetheless, such discrete
non-Abelian groups do appear in nature and can be
spontaneously broken. A standard example is a valence
bond solid, which preserves the SU(2) spin symmetry
but breaks the crystal point group symmetry.

We will start with some discrete symmetry group G,
and some order parameter φ ∈ Φ. It will be helpful to
think of φ not necessarily as a number, but as a thing
which transforms under G. For instance in a ferromag-
net, φ is a unit vector on the unit sphere S2 indicating
the direction of polarization. It transforms under the ro-
tation group G = SO(3). In effect, each element g ∈ G
induces a function fg(S

2)→ S2, where fg1 ◦ fg2 = fg2g1 .
Mathematicians call this a group action [27]. We say that
Φ is the orbit of φ under G. There is some (possibly triv-
ial) subgroup G′ which maps φ to itself. This is called
the stabilizer of φ, and we have |G′||Φ| = |G|.

In addition to the order parameter space Φ, we will
also have an ’internal’ state |ψ〉 ∈ Ψ, which transforms
trivially under G. Once again we will set Φ to be N -
dimensional. There is again some Hamiltonian random
H0 (variance J2

0/N) within each of those φ subspaces,
and a number of different matrices {Hi} connecting dif-
ferent sectors. Let’s again choose each element indepen-
dently, with variance J2

i /N , and where Ji � J0. Because
of the symmetry, each of the His will show up in more
than one place.

Consider the example of the group D4, which can be
realized as the symmetry group of a square. This is a
discrete group with 8 elements generated by 90◦ counter-
clockwise rotations (a) and reflections about one diagonal
(b). These obey the relations a4 = b2 = e (e is the iden-
tity) and ab = ba−1. The center is {e, a2}. The group
has four one-dimensional irreps and one two-dimensional
irrep.

The order parameter corresponds to a choice of one

corner of the square, so it takes 4 values. Suppose that
the only allowed jump of the order parameter corresponds
to the rotation a and the inverse rotation a−1 = a3. Let
the corresponding operators acting on Ψ be Ha and Ha3 .
Invariance under the reflection b requires Ha = Ha3 . The
block matrix form of the system Hamiltonian is thus

H =

H0 Ha 0 Ha

Ha H0 Ha 0
0 Ha H0 Ha

Ha 0 Ha H0

 (21)

More generally, the system Hamiltonian is given by

Hsys = I ⊗H0 +
∑
i

Mi ⊗Hi +M†i ⊗H
†
i (22)

where the Mis are matrices which are mostly 0s with a
few 1s connecting pairs of φs related by the same group
action. More precisely, the Mis are indexed by Φ2/G.
That is, two ordered pairs of φs share the same Mi if
their pairs are connected by an element of G.

In the non-Abelian case, we only consider the situa-
tion where the Hi matrices are completely random and
uncorrelated with H0 and each other. In this case, the
walk over the order parameter space is a random walk.
This is a good model for, say, a particle stuck in one
of k identical wells (with enough internal structure to
be chaotic), which jumps between wells using diffusive
Poisson-frequency instantons. If the wells are placed on
the vertices of a k-gon, the relevant group would be dihe-
dral groupDk. If they were the vertices of a k−1-simplex,
the relevant group would be the symmetric group Sk.
This paradigm can be mathematically modeled.

A. The SFF With a Purely Random Kinetic Term

As in the Abelian case, to calculate the SFF, we want
to have two copies of the system with total Hamiltonian

Htot = Hsys ⊗ I − I ⊗H∗sys (23)

The SFF of a single copy of the system is still

SFF(T, 1) = tr exp(−iHtotT ). (24)

The analysis proceeds as in the Abelian case, in partic-
ular, we still have a path integral picture and treat the
order parameter jumps in perturbation theory.

For each jump type Mi, there is a corresponding rate
ri. The transfer matrix is

Trans(E) =

1

2

∑
ri(E)

(
{Mi,M

T
i } ⊗ I + I ⊗ {Mi,M

T
i }

−2Mi ⊗Mi − 2MT
i ⊗MT

i

)
=

1

2

∑
ri(E)

(
(Mi ⊗ I − I ⊗MT

i )(MT
i ⊗ I − I ⊗Mi)

+(MT
i ⊗ I − I ⊗Mi)(Mi ⊗ I − I ⊗MT

i )
)
,

(25)
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FIG. 7. The predicted (orange) vs displayed (blue) enhance-
ments for a variety of group actions: Cubic Symmetry acting
on the vertices of a cube, D4 acting on the corners of a square,
Z11 acting on 11 points, S3 acting by multiplication on ele-
ments of S3.

where we used the fact that the Mi have real ma-
trix elements. The enhancement factor to the SFF is
tr e−Trans(E)T . Figure 7 shows the predicted and realized
enhancements for various choices of G and Φ. In ap-
pendix we show that at long times this gives the RMT
result consistent with symmetry G.

IV. ABELIAN SSB HYDRO AND THE SFF

We now turn to the description of SFFs in systems with
spontaneously broken continuous symmetries. We begin
with the Abelian case, focusing again on the simplest case
of U(1) symmetry and a charge 1 order parameter. Here
the full power of the corresponding Schwinger-Keldysh
hydro effective theory is revealed, so we first review that
theory and then describe its modification to treat the
SFF as in [22].

A. Quick Review of Hydrodynamics

At the broadest level, hydrodynamics is the program of
creating effective field theories (EFTs) for systems based
on the principle that macro-physics should be driven pri-
marily by conservation laws. We will utilize the technol-
ogy of the CTP formalism. For an accessible introduc-
tion, see [28], and for more details see [15, 16]. Addi-
tional information about fluctuating hydrodyamics can
be found in [17–20]. We first discussed the application of
hydro EFTs for non-SSB spectral statistics in [22].

The CTP formalism starts with the following partition
function of a Schwinger-Keldysh contour:

Z[Aµ1 (t, x), Aµ2 (t, x)] = tr
(
e−βHPei

∫
dtddxAµ1 j1µPe−i

∫
dtddxAµ2 j2µ

)
,

(26)
where P is a path ordering on the Schwinger-Keldish con-
tour.

For A1 = A2 = 0, this is just the thermal partition
function. Differentiating with respect to the As gener-
ates insertions of the conserved current density jµ along
either leg of the Schwinger-Keldysh contour. Thus Z is
a generator of all possible contour ordered correlation
functions of current operators.

One way to enforce the conservation law ∂µjiµ = 0 is
to require

Z[Aµ1 , A
µ
2 ] =

∫
Dφ1Dφ2 exp

(
i

∫
dtdxW [B1µ, B2µ]

)
,

Biµ(t, x) = ∂µφi(t, x) +Aiµ(t, x).

(27)

Here the fields φi have been “integrated in” and repre-
sent the slow fluctuating modes of the system. Insertions
of the currents are obtained by differentiating Z with re-
spect to the background gauge fields Aiµ. A single such
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functional derivative gives a single insertion of the cur-
rent, and so one presentation of current conservation is
the identity ∂µ

δZ
δAiµ

= 0.

This is derived as follows. Since Z only depends on
Aiµ via the combined field Biµ, the functional derivative
of Z reduces to a functional derivative of the action,

δZ

δAiµ
=

∫
Dφ1Dφ2

δ

δ(∂µφi)
exp

(
i

∫
dtdxW

)
. (28)

Acting with ∂µ and suppressing integration variables, we
get ∫

∂µ
iδW

δ(∂µφi)
ei

∫
W . (29)

Because W does not depend explicitly on φi (only on its
derivatives), this is the function integral of a functional
total derivative and hence vanishes.

The functional W is not arbitrary. The key assumption
of hydrodynamics is that the actionW is local. Moreover,
when expressed in terms of

Ba = B1 −B2,

Br =
B1 +B2

2
,

(30)

there are several constraints which follow from unitarity:

• W terms all have at least one power of Ba, that is
W = 0 when Ba = 0,

• Terms odd (even) in Ba make a real (imaginary)
contribution to the action,

• A KMS constraint imposing fluctuation-dissipation
relations.

When calculating SFFs, one typically sets the external
sources A to zero, so the action can be written purely in
terms of the derivatives of the φs.

The φs have a physical interpretation as phases trans-
forming under the U(1) symmetry. Performing a sym-
metry operation corresponds to adding a constant to φ.
If the symmetry is compact, this requires that adding
2πR to φ is actually a gauge transformation that doesn’t
change the state at all.

B. The Hydrodynamic SFF

As discussed in [22] and illustrated in figure 2, in order
to calculate a spectral form factor, one performs the hy-
drodynamic integral with periodic boundary conditions
in time. For instance, in a system with only energy con-
servation, the simplest hydro Lagrangian is

L = C∂tφa∂tφr. (31)

One can show by taking derivatives with respect to the
As that the energy is E =

∫
ddxC∂tφr. So the SFF

becomes

SFF(T, f) =

∫
DEDφa

2π
f2(E) exp

(
−i
∫
dtφa∂tE

)
(32)

This is a purely Gaussian integral. One can show that
(subsection ) that integrating out the nonzero frequencies
with proper regularization leaves us with a prefactor in
front of the measure of (2π)−1. This leaves us with just
an integral over the zero modes,

SFF(T, f) =

∫
dEdφa

2π
f2(E) =

T

2π

∫
dEf2(E), (33)

the well-known result for GUE systems (for GOE there
is an extra factor of two because one can reverse time on
one contour relative to the other).

C. Hydro and the Symmetry-Broken Spectral
Form Factor

Before we get into details, let’s ask the most basic
question: why should we expect spontaneous symmetry
breaking to have any effect whatsoever on the spectral
hydrodynamic path integral? For systems with spatial
extent, SSB allows novel terms in the hydro action[16].
But it is impossible to write such terms in 0+1d. How-
ever, we know from previous sections that in the case
of discrete symmetry, SSB has a clear signature in the
connected SFF at short times.

The resolution lies in the details, and in particular,
the boundary conditions. In conventional fluctuating hy-
drodynamics, when we break our field into φa and φr,
it is standard practice to consider an overall constant
addition to φr as a gauge symmetry. This is because
phases aren’t observable, only differences in phases like
φa or φr(t1)− φr(t2) are. But once a symmetry is spon-
taneously broken, phases do become observable. Water
is invariant under a total rotation, but for ice you get a
distinct quantum state.

What does this mean for boundary conditions? When
calculating the SFF using conventional fluctuating hy-
drodynamics, it is sufficient to ensure that φa and ∂tφr
are periodic in time. But for SSB SFF, φr itself needs to
be periodic. We can think of restoring the symmetry as
gauging away φr.

Of course, it is itself a phase defined on a circular man-
ifold, and the path integral can wrap around that mani-
fold any integer number of times. This introduces a sum-
mation into our calculation. We will handle the details
below.
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D. The SSB Hydro Action

We can write the Lagrangian as

L = M∂tφa(∂tφr + b∂2
t φr) + iM

b

2β
(∂tφa)2 (34)

plus terms with more derivatives and/or fields. We show
in appendix that this Lagrangian can be derived as a
continuous limit of the discrete Zn model in the previous
section. The nature of spontaneous symmetry breaking
means that in order to study it in 0+1d, we need some
sort of large-N limit. Thus, in our case, we are justified
in dropping nonlinearities and interactions.

E. Hamiltonian Approach

We have formulated the SFF as a path integral involv-
ing a hydro-like effective action. In this subsection, we
evaluate this path integral by converting to a correspond-
ing Hamiltonian description. In the next two subsections,
we give a direct Lagrangian calculation. Again, the con-
tribution of charge to the SFF is

Z =

∫
Dφ1Dφ2 exp

(
i

∫
dtL

)
f(q1)f(q2),

L = M∂tφa(∂tφr + b∂2
t φr) + iM

b

2β
(∂tφa)2,

(35)

where f is some function (perhaps a Gaussian) to regu-
larize over the infinite sum over charges/momenta.

We make use of the fact that a path integral in one
dimension is equivalent to a quantum mechanics problem.
The Hilbert space is just a suitable space of functions on
the configuration space of the path integral, in this case
a basis is given by U(1)2.

Viewed as an effective field theory, this path integral
arrives from integrating out a number of microscopic
modes. But like any Lagrangian path integral it is also
equivalent to a Schrodinger-like evolution on the square
of the Goldstone manifold (the imaginary φ2

a part of the
action corresponds to a non-unitarity for the fictitious
Schrodinger dynamics).

To go from a Lagrangian quadratic in velocities to a
Hamiltonian quadratic in momenta essentially involves
inverting the Lagrangian. It is convenient to convert
back to φ1 and φ2. Dropping the dissipative term in
the equations of motion, the Lagrangian is

L =
M

2
(∂tφ1)2− M

2
(∂tφ2)2 + i

Mb

2β
(∂tφ1− ∂tφ2)2. (36)

The corresponding canonical momenta are

π1 =
∂L

∂(∂tφ1)
= M∂tφ1 + i

Mb

β
(∂tφ1 − ∂tφ2) (37)

and

π2 =
∂L

∂(∂tφ1)
= −M∂tφ2 − i

Mb

β
(∂tφ1 − ∂tφ2). (38)

The Hamiltonian for this fictitious particle on the dou-
bled system is then

Heff = πi∂tφi−L =
π2
i

2M
− π2

2

2M
−i b

2βM
(π1+π2)2. (39)

Heff is not the Hamiltonian of any underlying system,
rather it is a mathematical trick that comes from evalu-
ating the Lagrangian of an effective field theory.

Since each φi is periodic with period 2πR, the eigen-
values of πi are quantized in terms of integer charges qi
to be qi

R . Hence, the eigenstates of the Hamiltonian are

Heffψq1,q2 = Eq1,q2ψq1,q2 ,

Eq1,q2 = (q2
1 − q2

2)
1

2MR2
− i b

2βMR2
(q1 + q2)2,

ψq1,q2(φ1, φ2) = eiq1φ1/Reiq2φ2/R.

(40)

The non-decaying solutions correspond to q1 =
−q2, Eq1,q2 = 0. At long times, these are the only remain-
ing contributions, and the long-time SFF is just equal to
the number of charge sectors allowed in the sum. At
general times, the overall sum is

Z = tr
[
f(q1)f(q2)e−iHeffT

]
=
∑
q1,q2

f(q1)f(q2) exp(−iEq1,q2T ).

(41)
It is worth taking a moment to point out that in the

large-N limit necessary for 0d spontaneous symmetry
breaking, the fictitious Es in expressions (40) and (41)
are 1/N quantities, meaning the slowest decay time is
actually extensive in the system size.

F. Lagrangian Approach

In this section, we will start be developing technology
for arbitrary Gaussian SFFs. We have our path integral

of exp
(
i
∫
φaDφr + φaDaaφa

)
, where D = a

∏K
k=1(∂t −

λk), with Re(λk) < 0 for all k, is some differential opera-
tor. The form of the action means that the determinant
depends only on D, and we will set Daa to zero through-
out this section.

We proceed via spacetime discretization, and say that

DφaDφr =
∏T/∆t−1
j=0

c
2πdφajdφrj , the factor c in the mea-

sure is to be determined. We compute the path integral
by going to the Fourier basis

φ̃i(ω) =
∑
j

eiωtj√
T/∆t

φi(tj), (42)

where tj = j∆t and ω = 2πn/T for n = 0, · · · , T/∆t−1.
The action becomes ∑

j

∆tφa(tj)[Dφr](tj) =

∑
ω

∆tφ̃a(−ω)a

K∏
k=1

(
e−iω∆t − 1

∆t
− λk

)
φ̃r(ω).

(43)
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With only the ra cross terms, the φ̃(−ω) integral just

gives 2π times a delta function of ∆tDφ̃r(ω).
Hence, the path integral evaluates to

Z =
∏
ω

c

a∆t

K∏
k=1

(
e−iω∆t − 1

∆t
− λk

)−1

. (44)

What constant c in the measure keeps the integral from
blowing up? This is pretty clearly a UV question. We
want some c such that

Z =

T/∆t−1∏
n=0

c

a∆t

K∏
k=1

(
e−2πin∆t/T − 1

∆t
− λk

)−1

=

T/∆t−1∏
n=0

c

a∆t1−K

K∏
k=1

(
e−2πin∆t/T − 1− λk∆t

)−1

(45)

doesn’t blow as ∆t → 0. If we switch the order of the
two products we get

Z =
( c

a∆t1−K

)T/∆t K∏
k=1

(
1− eλkT

)−1
(46)

For this not to blow up, we need to regularize with c =
a∆t1−K .

Now that we have a general technology for regular-
izing CTP integrals, let’s apply it to the specific case
of the hydro Lagrangian L = M∂tφa(∂tφr + b∂2

t φr) +
iM b

2β (∂tφa)2. The corresponding differential operator is

D = −Mb∂2
t (∂t + b−1). (47)

In this case, a = −Mb (although only the magnitude of
a is relevant), λ1 = 0, λ2 = 0, and λ3 = −b−1. How-
ever, there are two things keeping the hydro path inte-
gral from being a vanilla Gaussian integral: the zero-
frequency modes where one integrates over the hydro
manifold, and the topological aspect of trajectories that
wind around the manifold. For now, we will focus on the
saddle point with no winding.

In the non-winding sector, the non-zero-frequency
modes are treated as Gaussian variables, while the in-
tegral zero frequency modes are integrated over exactly.
The zero modes φ̃i(0) range over a period of length

2πR
√
T/∆t, and there are two of them. The path in-

tegral in the order parameter sector is thus

Zno-winding =

c

2π
(2πR)2 T

∆t

T/∆t−1∏
n=1

c

a∆t1−K

∏
k

(
e−2πin∆t/T − 1− λk∆t

)−1

.

(48)

The λ1 = λ2 = 0 terms in the product over k give
(

∆t
T

)2
,

and the λ3 = −1/b term gives ∆t
b(1−e−T/b) . These pieces

combine to give

Zno-winding =
c

2π

∆t

T
(2πR)2 ∆t

b(1− e−T/b)
. (49)

After inserting in our expression for c = Mb∆t−2 we have

Zno-winding =
1

2π

M

T
(2πR)2 1

(1− e−T/b)
. (50)

If we wanted, we could add in higher derivatives to our
original action. This would just result in more decaying
terms corrections like the 1− e−T/b in the denominator.

But there is a complication to equation (50)! The
periodicity of φ actually means that there is an infini-
tude of saddle-points. In particular, the saddle-points
of the action are parameterized by n1, n2, winding num-
bers of φ1, φ2 around the circle. As a function of nr =
n1+n2

2 , na = n1 − n2, the winding contribution to the
action is

∆Swinding(nr, na) = M
(2πR)2

T

(
nanr +

ib

2β
n2
a

)
(51)

The full path integral is obtained by summing over these
modes, and since each winding sector has the same Gaus-
sian part, we get

Z =

1

2π

M(2πR)2

T (1− e−T/b)
∑
nr,na

exp

(
iM

(2πR)2

T
nanr −M

(2πR)2

T

b

2β
n2
a

)
.

(52)

G. Dealing With the Discrete Sum

Equation (52) is a divergent sum that needs to be reg-
ulated. In particular, there are an infinite number of
na = 0 solutions that add up. To regularize them, we
need to remember that nr is proportional to the mo-
mentum/charge of the system, and so to get a finite en-
hancement we should only be summing over a finite set
of charges, rather than all charges from −∞ to∞ (or the
allowed set of microscopic charges). Then we can evalu-
ate the path integral with an f(Q) insertion, where f is
a regulating function. (For now we will assume it can be
naively inserted and removed at will, and will analyze it
more carefully in the next subsection.) We get

Z =
1

2π

M(2πR)2

T (1− e−T/b)
∑
nr,na

f(Q1)f(Q2)×

exp

(
iM

(2πR)2

T
nanr −M

(2πR)2

T

b

2β
n2
a

)
.

(53)

Here charge Qi is related to ni by

Qi = 2πMR2ni/T. (54)

Moreover, in writing Eq. (52) we implicitly assumed that
f is slowly varying so that the Gaussian part of the path
integral is not appreciably modified.

Note that this expression for Q in terms of winding
numbers is such that, if we use it inside the path integral
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with an f(Q) insertion, then we recover the correct sum
over discrete charges of f(Q) in the final answer. How-
ever, the quantization of Q in the path integral arising
from the winding sectors is different than the microscopic
quantization. Either way of doing the sum, direct micro-
scopic calculation or path integral calculation, will give
the same answer, and they are related, roughly speaking,
by a Poisson resummation. The situation is similar to the
comparison between the Hamiltonian and Lagrangian de-
scriptions of a particle on a ring.

For long times, we can rewrite na in terms of Qa to
see that the ∝ −Q2

aT term in the exponent suppresses
Qa 6= 0 contributions. The path integral is thus

1

2π

M(2πR)2

T (1− e−T/b)
∑
nr

f2(2πMR2nr/T ) =

∫
dQf2(Q),

(55)
exactly what we want. Again, this integral over charge
Q approximates the discrete sum on the left hand side
and is not a sum over the microscopic charges, but in
the limit of slowly varying f where Eq. (52) is valid, we
obtain the same answer.

Note that the functional substitution Q = M∂tφr
would give us the exact same action as in the non-SSB
case. The reason we get a more complicated short-time
behavior is that we are evaluating the path integral in
a different way. One way to look at the change is as a
change in boundary conditions. Before breaking the sym-
metry, we treated an overall addition to φr as a gauge
symmetry, and allowed arbitrary additions of it over the
period. Whereas now we require that φr change by a
quantized amount equal to 2πRnr.

H. A More Careful Accounting of f

We can express the filter function as

f(q) =

∫ 2πR

0

dxf̃(x)eiqx. (56)

Inserting any operator f(Q) into the path integral is thus
equivalent to a double integral over basic insertions of the
form eiQ1x1 ⊗eiQ2x2 . Since Qi is conjugate to φi, this in-
sertion when acting on a state of definite φi shifts the
value by −xi. When placed after the final resolution of
the identity in the path integral, one gets a delta function
δ(φi(0)−φi(T ) +xi) that effectively shifts the boundary
condition to φi(T ) = φi(0) + xi + 2πRni. The path inte-
gral (35) can thus be written as

Z =

∫
dx1dx2

∫
Dx1

φ1Dx2
φ2 exp

(
i

∫
dtL

)
f̃(x1)f̃(x2),

L = M∂tφa(∂tφr + b∂2
t φr) + iM

b

2β
(∂tφa)2,

(57)

where Dx is the path integral measure with twisted peri-
odic boundary conditions φi(T ) = φi(0) + xi + 2πRni.

If we repeat the analysis in the last two sections, we
find that these twisted boundary conditions don’t change
the Gaussian part of the path integral at all. Defining
xr = x1+x2

2 , xa = x1 − x2, equation (52) becomes

Z =
1

2π

M(2πR)2

T (1− e−T/b)

∫ 2πR

0

dx1

∫ 2πR

0

dx2

∑
nr,na

f̃(x1)f̃(x2) exp(∆S)

(58)

with

∆S = iM
((2πR)nr + xr) ((2πR)na + xa)

T
−

M
((2πR)na + xa)

2

T

b

2β
,

Z =
1

2π

M(2πR)2

T (1− e−T/b)

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2f̃(x1)f̃(x2)

× exp

(
iM

xrxa
T
−Mx2

a

T

b

2β

)
,

(59)

where in the last equation we extend f̃ to be a period
function with period 2πR. This formula is fully general
for any regulating function f no matter how rapidly it
varies.

Let’s investigate its behavior at short times. At short
times we can consider the f̃s roughly constant compared
to the Gaussian integral. Performing this integral and
factoring in the determinant 2π T

M from the delta func-
tion, we have the short-time formula

Zshort time =
1

(1− e−T/b)
(2πR)2f̃(0)2 =

( ∞∑
q=−∞

f(q)

)2

.

(60)

More generally, we can replace f̃(x1) =
1

2πR

∑
q′1
e−iq

′
1x1 . If we do the same for x2, and

define q′r =
q′1+q′2

2 , q′a = q′1 − q′2, we have a Gaussian
integral that works out to

Z =
1

(1− e−T/b)
∑
q′1,q

′
2

f(q′1)f(q′2) exp

(
i
T

M
q′aq
′
r +

2b

β

Tq′
2
a

M

)
.

(61)
If we make the T � b assumption of subsection , this is
the exact same formula as (41). For long T the q′a 6= 0
terms become zero and we have

Zlong time =
∑
q′

f2(q′). (62)

V. NON-ABELIAN HYDRO AND THE SFF

In this section, we treat the case of spontaneous sym-
metry breaking of continuous non-Abelian symmetries.
As in the continuous Abelian case, a modified version of
the hydro theory of non-Abelian SSB provides a useful
way to formulate the SFF.
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A. Overview of Non-Abelian Hydro

In Abelian U(1) hydrodynamics, the phase field φ can
be regarded as an element of the group U(1) by expo-
nentiating it. In non-Abelian hydrodynamics [29], we
replace the exponentiated phase field with a field g that
takes values in the (non-Abelian) global symmetry group
G. The hydro generating function is expressed as

Zhydro[Aµ1 (t, x), Aµ2 (t, x)] =∫
Dg1Dg2 exp

(
i

∫
dtddxW [B1µ, B2µ]

)
,

Bµ = Aµ + ig−1∂µg,

(63)

a non-Abelian generalization of Eq. (27). This action and
generating function will always have a G premultiplica-
tion symmetry. Note that in the case of G = U(1), we
recover the original Abelian hydro formalism. For the
purposes of this paper we will focus on the unsourced
A = 0 case, and also restrict to zero spatial dimensions.

Note that any action constructed out of Bs will have
a G premultiplication symmetry for both the right and
left replica, for a total symmetry group of GL ×GR. In
conventional hydro, this symmetry is broken to the di-
agonal by the future and past boundary conditions, but
these boundary conditions are not present in the SFF
case. A representative Lagrangian for 0d non-Abelian
hydro would be

L = Bta(M +Mb∂t)Btr + iM
b

2β
B2
ta (64)

where the Bs are in the adjoint representation of the Lie
algebra of G, and there is an implied summation over the
representation indices.

Action (64) has two time derivatives. Since we are
working in 0+1d QFT, this means there is a quantum me-
chanics interpretation, just as in the Abelian case there
was an interpretation in terms of non-unitary evolution
on U(1)2.

B. Hamiltonian Approach for Full SSB

We can use a Legendre transform to go from the La-
grangian (64) to a Hamiltonian,

Heff =
1

2M

∑
L2
i1−

1

2M

∑
L2
i2−i

b

2βM

(∑
Li1 + Li2

)2

,

(65)
where we sum over group generators Li, which are canon-
ically conjugate to the velocity components of ig−1∂tg.
The sum

∑
i L

2
i is called the Casimir operator L2, and has

a number of important properties. Intuitively, it plays
the same role as a Laplacian, but on a group manifold.
Just as the Laplacian operator commutes with any mo-
mentum operator, L2 commutes with all elements of the
group G. As such it can be shown to be constant within

any irreducible representation of G. For the Abelian case
G = U(1), where irreducible representations R are pa-
rameterized by integer charges q, L2(R) = q2.

Let’s evaluate

Z = tr
[
e−iHeffT f(L2

1)f(L2
2)
]
, (66)

where we promoted the filter function f(Q) from the
Abelian case to f(L2) in the non-Abelian case. Wave-
functions transform in the square of the regular repre-
sentation of Rreg of G. The regular representation has
the contains |Ri| copies of representation Ri. Rreg×Rreg
can be decomposed as

Rreg ×Rreg =
⊕
R̄

R̄⊕n(R̄)RregRreg

n(R̄)RregRreg =
∑
R1R2

|R1||R2|n(R̄)R1R2
,

(67)

where n(R̄)R1R2 is the number of times R̄ appears in
R1×R2. For instance if R1 and R2 are the spin 1/2 and
spin 1 representations of SU(2) and R̄ is the spin 1/2
representation, then n(R̄)R1R2

= 1.
The Hamiltonian depends on the Casimir of each Ri

and on the composite system Casimir (L1 + L2)2. The
enhancement factor is thus

Z =
∑

R1,R2,R̄

f(L2(R1))f(L2(R2))|R1||R2||R̄|×

exp

(
−i [L

2(R1)− L2(R1)]T

2M
− bL2(R̄)T

2βM

)
n(R̄)R1R2

,

(68)

Here R1 and R2 are representations of G on the first and
second replica of the system, whereas R̄ is a representa-
tion that lives in the Hilbert space of Heff on the full
doubled system.

The longtime behavior is given by the R̄ trivial case
where L2(R̄) = 0. This requires R̄ to be the trivial 1D
representation. If R̄ is trivial, n(R̄)R1R2

is zero unless R1

is the complex conjugate of R2, in which case it is one.
So the long time value is

Z(T →∞) =
∑
R1

f2(L2(R1))|R1|2. (69)

This is exactly what one would predict from random
matrix theory. We can also make use of |R1||R2| =∑
R̄ n(R̄)R1R2

|R̄| to show that in the short time limit
this is

Z(T → 0) =
∑
R1

∑
R2

f(L2(R1))f(L2(R2))|R1|2|R2|2.

(70)
Since the regular representation has |Ri| copies of |Ri|,
this is essentially saying all states of all charges construc-
tively interfere.
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C. Partial SBB

If a subgroupG′ ofG is unbroken, this means overallG′

transformations that affect both replicas are unphysical.
Thus we should gauge them out. In general, one gauges
out a group by inserting a projector

P =
1

Vol G′

∫
G′
dg′g′ (71)

into the path integral. If we break representations R̄ of
G into representations of R̄ =

⊕
R̄′ G′, this projects

out all nontrivial representations of G′. For instance if
G′ = G, this will remove all the nontrivial R̄′ leaving us
with the result for RMT with symmetry group G. If G′

is trivial, nothing is projected out and equation (68) still
holds. In general, different symmetry-breaking patterns
can be thought of as different degrees of freedom being
observable, which means different projection operators P
are needed as boundary conditions.

For example, let’s imagine a system with SO(3) sym-
metry, which is broken down to SO(2) by an order pa-
rameter. We are interested in some term in equation (68),
for example R1 = 5, R2 = 3, R̄ = 3. We can verify that
n(R̄)R1R2

= 1, meaning that when we multiply our rep-
resentations we get one copy of R̄ = 3. What happens
to this representation under the projection in equation
(71)? To answer this, let’s break of the representation of
G into representations of G′. The vector representation
of SO(3) breaks into a scalar and vector representation
of SO(2). Integrating g′ over the vector representation
(as over any nontrivial representation of any group) we
get zero. Integrating over the trivial representation we of
course get one. So the projection operator projects down
from three dimensions to one, and the |R̄| in equation
(68) becomes 1 instead of 3.

VI. DISCUSSION

In this paper we extended the understanding of quan-
tum chaotic level repulsion to include systems with spon-
taneous symmetry breaking. We started with toy mod-
els with discrete symmetries, solved them, and confirmed
our solutions with exact diagonalization. Next we used
hydrodynamics, extending known techniques for unbro-
ken symmetry to the case of spontaneous breaking. The
technique is powerful enough to prove the correct long-
time behavior, and flexible enough to handle any possible
symmetry breaking pattern. Interestingly, we found that
SSB typically enhances the SFF beyond that of a system
with unbroken symmetry. In terms of the spectral form
factor we have schematically

No Symmetry < Symmetry < Spontaneously Broken Symmetry.
(72)

One is left wondering how gauge symmetry might fit into
that hierarchy.

In terms of SSB, the next step would be to han-
dle higher dimensional systems. At least two interest-
ing phenomena would reveal themselves in this case.
First, the presence of sound poles associated with Gold-
stone modes. In higher dimension spontaneous symme-
try breaking allows new terms in the hydrodynamic La-
grangian consistent with unitarity, such as φa∂

2
xφr. This

would allow the hydrodynamic variables to have sound
poles, leading to a potentially rich new phenomenology
in the SFF.

Higher dimensions also allows the possibility of topo-
logical effects. For instance, in a periodic system the
Goldstone mode could wrap around the manifold sev-
eral times. This new topological charge would lead to an
expansion in the number of sectors and an additional en-
hancement to the SFF that could last for exponentially
long times until the system tunnels into a topologically
uncharged state. More exotic Goldstone manifolds and
spatial manifolds would result in even more exciting topo-
logical concerns.

Finally, there is the issue of the plateau structure, en-
tirely ignored in this paper. The lack of the hydrody-
namic description of plateau behavior is made all the
more striking by the fact that certain systems with some
sort of resonant behavior (the peaks in figure 6) can
have ‘ramp’ values of the SFF exceeding the final plateau
value.
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Appendix A: SFF For Unbroken Non-Abelian
Symmetries

For systems with non-Abelian symmetry group G, the
Hilbert space can be decomposed into a sum of irre-
ducible representations R of the Hamiltonian with di-
mension |R|. These are the non-Abelian analogs of the
charge sectors in systems with U(1) symmetries. Just as
no term in an U(1)-invariant Hamiltonian can mix states
with different charges, no term in a G-invariant Hamil-
tonian can mix states in different irreducible represen-
tation. Written in the |R| subspace, the Hamiltonian
should decompose into a tensor product of a chaotic ran-
dom matrix and an |R| by |R| identity. In equations we
have

H =
⊕
R

I|R| ⊗HR, (A1)

where each HR is an independent matrix with in-
dependent eigenvalues. If we write ZR(T, f) =
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tr e−iHRT f(HR), then Z(T, f) =
∑
R |R|ZR(T, f).

Squaring this, and setting the cross-terms to 0, we re-
cover equation 6. For systems with spontaneous symme-
try breaking, the ZRs are no longer independent and it no
longer makes sense to set the cross-terms to 0. Resolving
this complication is the key goal of this paper.

Appendix B: Appendix: Internal Charge

For many realistic systems, there is charge/momentum
contained within the state ψ, not just encoded in the
pattern of φs. A nice example of this is a superconduc-
tor. There is some charge in the condensate, but plenty
of other charge in the system, including in uncondensed
electrons and atomic nuclei. Likewise, if we look at a me-
chanical example of rotational SSB like a planet with a
cloud of moons orbiting a star, there is some orbital an-
gular momentum of the overall system, but the system of
planets and moons has its own intrinsic angular momen-
tum. What sort of Hamiltonian captures this situation?

Let’s say the states are characterized by an order pa-
rameter φ, an internal angular momentum L, and an in-
ternal state |ψ〉. The simplest G-invariant Hamiltonian
we can write for this is given by equation (22) for with
internal-G-invariant H0 and His. This candidate H ac-
tually has two copies of the symmetry, an internal one
and an external one.

To make the model more realistic, we need to have
some coupling which breaks us down to just one copy
of the symmetry. First let’s do it for Zn. We can pa-
rameterize the sectors by order parameter 0 ≤ φ < n
and q. Then we have a coupling connecting the φ, q and
φ, q′ sectors proportional to e2πi/nφ(q−q′). This obviously
doesn’t commute with bland translation or bland conser-
vation of q. But it does retain an overall Zn symmetry.
Written in block matrix form, such a Hamiltonian for a
Z4 symmetry might take the form

H =

H
0
0 I 0 I
I H1

0 I 0
0 I H2

0 I
I 0 I H3

0

 (B1)

Where Hφ
0 is, itself, a block matrix of the form

Hφ
0 =


Q00 e

2πi
4 φ(0−1)Q01 e

2πi
4 φ(0−2)Q02 e

2πi
4 φ(0−3)Q03

e
2πi
4 φ(1−0)Q10 Q11 e

2πi
4 φ(1−2)Q12 e

2πi
4 φ(1−3)Q13

e
2πi
4 φ(2−0)Q20 e

2πi
4 φ(2−1)Q21 Q22 e

2πi
4 φ(2−3)Q23

e
2πi
4 φ(3−0)Q30 e

2πi
4 φ(3−1)Q31 e

2πi
4 φ(3−2)Q32 Q33


(B2)

While the Qii matrices all have to be square, Hermitian

matrices and Qij = Q†ji, in general the internal-charge-
i subspace and the internal-charge-j subspace can be of
totally difference sizes.

If we have a more general group, the elements are
parameterized by order parameter φ, irrep R and vec-
tor k within that irrep. We connect φ,R and φ,R′ by

RG(φ)MR′G−1(φ) where G(φ) is a group element that gets

us to φ, and M is invariant under the unbroken part of
the symmetry.

Appendix C: Appendix: Long-Time Behavior with
Non-Abelian Discrete Groups

The enhancement factor for non-Abelian discrete sym-
metry groups is tr

[
e−Trans(E)T

]
with transfer matrix

Trans =
1

2

∑
ri(Mi ⊗ I − I ⊗MT

i )(MT
i ⊗ I − I ⊗Mi)+

(MT
i ⊗ I − I ⊗Mi)(Mi ⊗ I − I ⊗MT

i ).

(C1)

In this section, we count the zero modes of the transfer
matrix. Such a zero mode must be annihilated by Mi ⊗
I − I ⊗MT

i for all Ms, which is a heavy constraint.
For our analysis, we will need to decompose a vector

space CΦ into irreps. This space is a representation of G,
with the G matrices forming permutation matrices which
permute the elements of Φ according to the group action.
The matrices Mi are matrices acting on this space which
commute with every element of G. We can decompose
the representation CΦ into irreducible representations of
R as

CΦ =
⊕
R

R⊕KR , (C2)

where each representation R appears KR times. A vector
v in CΦ can be written as vR,k,µ, where R denotes the
irreducible representation it transforms in, 0 ≤ k < KR

indicates which copy of R, and µ is the index within the
representation R. In this case, the requirement that the
Mis commute with elements of G mean that they can
act only on the k index, in a way not depending on the
µ index. If we sum over a large enough collection of Ms
(in particular, enough Ms so that their action on the
k indices don’t all commute) then the only vectors on
CΦ⊗Φ which are annihilated by the transfer matrix are
ones in which the left and right k indices are maximally
entangled. We are free to choose the representation R
and the indices µ1 and µ2 for the right and left repli-
cas. So we have

∑
R |R|2 zero modes. This is also the

random matrix theory prediction for the long-time ramp
enhancement.

Appendix D: Appendix: Deriving Hydro from the
Discrete Case

Let’s talk about how a term like equation (20) gives
rise to a Goldstone-like theory. It can be thought of as
decoupled diffusion on both the right and left copies of
the system, with positive and negative imaginary diffu-
sivities. Of course, this is just QFT with a canonical
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kinetic term

L =
1

2
φ1∂

2
t φ1 −

1

2
φ2∂

2
t φ2 = φa∂

2
t φr. (D1)

This is already similar to the Goldstone theory, but it
needs an aa term. This comes from the contribution of
the matrix in equation (16). This matrix can be thought
of as generating an un-intuitive sort of random walk on
Φ2. The most un-intuitive part is that the transfer prob-
abilities aren’t all positive. We can see from the formula
that there is a morass of positive and negative signs. In
order to build intuition, let’s consider the case of Zn sym-
metry acting on n elements. We know that the matrices
Mi are indexed by Φ2/G, which in this case is just the
collection of jump sizes, ranging from the trivial jump to
jumping n− 1 to the right. For simplicity, let’s just look
at (M1)ij = δi,j+1, the nearest-neighbor jump.

What sort of transfer matrix does this give rise to?
Remembering that the transfer matrix is a linear map

from the vector space RΦ2

to itself and thus has a total
of 4 Φ indices, it is unilluminating to try to write the
whole thing. But we can write that it is

Tij,i′j′ ∝ 2δi,i′δj,j′ − δi,i′+1δj,j′+1 − δi,i′−1δj,j′−1 (D2)

If we go from a discrete Zn to a continuous U(1), this
transfer matrix corresponds to φr undergoing diffusion
while φa doesn’t change at all. When we combine this
with the transfer matrix in equation (20) we add the co-
variances/correlators. Equation (78) only has ar correla-
tors. Adding in an rr correlator results in a Lagrangian

L = φa∂
2
t φr + iCφa∂

2
t φa. (D3)

This is a generic hydrodynamic action for a superfluid,
obtained entirely through taking the continuous limit of
the transfer matrices.

Appendix E: Appendix: Time-Reversal Symmetry

Let’s consider spontaneous time-reversal symmetry
breaking. First, what is a good RMT-like toy model of
the phenomenon? Consider a block Hamiltonian of the
form

H =

(
H0 H1

H1 H∗0

)
, (E1)

where H0 is an N ×N GUE matrix and whose real and
imaginary parts have variance J2/N , and H1 is a ran-
domly selected GOE matrix whose elements are all in-
dependent and have variance J2

1/N . This matrix has

an anti-unitary time reversal symmetry which conjugates
the elements and switches the two blocks (which we will
label the + and − blocks). But within each block, there is
no time-reversal symmetry. Since the system will choose
a block and only slowly tunnel back and forth, we say
that the system spontaneously breaks the time-reversal
symmetry.

FIG. 8. Predicted (orange) and observed (blue) enhancement
relative to GOE expectation for the model in equation (81).

We can study this using a similar instanton-like ap-
proach as with Z2 SSB. We start with a doubled system.
Since one copy of the system has two sectors, a pair of
copies has 2 × 2 = 4 sectors. If the system is in the
++ or −− sectors, it has exactly the same transfer ma-
trix as a GUE matrix with two sectors. The processes
contributing are the ++ → − − / − − → ++ process
with amplitude given by Fermi’s golden rule, and the
negative-amplitude ++ → + + / − − → −− processes.
This gives an enhancement of tr eMT = 1 + e−rT , (where
r is the transition rate) over the GUE result. However,
we can also time-reverse the left contour with respect
to the right. Now we have a system starting in either
the +− or −+ states, and the left replica is performing
a time-reversed version of the right-replica’s evolution.
This gives another 1 + e−rT contribution. The overall
enhancement factor is thus 2(1 + e−rT ) times the GUE
ramp, which is of course 1 + e−rT times the GOE ramp.

One thing which bears discussion and which is not fully
understood is what happens when the Thouless time be-
comes comparable to the Heisenberg time for individ-
ual subsystems, in large part because we don’t have a
path integral-like picture for how the ramp gives way to
the plateau. For GOE-like systems, plateau-like behavior
sets in gradually even before the Heisenberg time. One
guess then to assume that the ramp behavior for time
reversal SSB is thus (1 + e−rT )SFFGOE(T ) even when
tThouless . tHeis.

[1] Aron Beekman, Louk Rademaker, and Jasper van Wezel,
“An introduction to spontaneous symmetry breaking,”

SciPost Physics Lecture Notes (2019), 10.21468/scipost-

https://doi.org/ 10.21468/scipostphyslectnotes.11


16

physlectnotes.11.
[2] Yoshimasa Hidaka and Yuki Minami, “Spontaneous sym-

metry breaking and nambugoldstone modes in open clas-
sical and quantum systems,” Progress of Theoretical and
Experimental Physics 2020, 033A01 (2020).

[3] Phil Saad, Stephen H. Shenker, and Douglas Stanford,
“A semiclassical ramp in syk and in gravity,” (2019),
arXiv:1806.06840 [hep-th].

[4] Amos Chan, Andrea De Luca, and J. T. Chalker, “Spec-
tral lyapunov exponents in chaotic and localized many-
body quantum systems,” Phys. Rev. Research 3, 023118
(2021).

[5] Sanjay Moudgalya, Abhinav Prem, David A. Huse, and
Amos Chan, “Spectral statistics in constrained many-
body quantum chaotic systems,” Phys. Rev. Research 3,
023176 (2021).

[6] Aaron J. Friedman, Amos Chan, Andrea De Luca, and
J.T. Chalker, “Spectral statistics and many-body quan-
tum chaos with conserved charge,” Physical Review Let-
ters 123 (2019), 10.1103/physrevlett.123.210603.

[7] Bo Zhao, Merritt C. Kerridge, and David A. Huse,
“Three species of schrdinger cat states in an infinite-
range spin model,” Physical Review E 90, 022104 (2014).

[8] Keith R. Fratus and Mark Srednicki, “Eigenstate ther-
malization in systems with spontaneously broken sym-
metry,” Physical Review E 92, 040103 (2015).

[9] Keith R. Fratus and Mark Srednicki, “Eigenstate ther-
malization and spontaneous symmetry breaking in the
one-dimensional transverse-field ising model with power-
law interactions,” (2017), arXiv:1611.03992 [cond-
mat.stat-mech].

[10] Luca DAlessio, Yariv Kafri, Anatoli Polkovnikov, and
Marcos Rigol, “From quantum chaos and eigenstate ther-
malization to statistical mechanics and thermodynam-
ics,” Advances in Physics 65, 239362 (2016).

[11] Oriol Bohigas and Marie-Joya Giannoni, “Chaotic mo-
tion and random matrix theories,” in Mathematical
and computational methods in nuclear physics (Springer,
1984) pp. 1–99.

[12] Michael Victor Berry and Michael Tabor, “Level cluster-
ing in the regular spectrum,” Proceedings of the Royal
Society of London. A. Mathematical and Physical Sci-
ences 356, 375–394 (1977).

[13] Freeman J. Dyson, “Statistical theory of the energy levels
of complex systems. iii,” Journal of Mathematical Physics
3, 166–175 (1962), https://doi.org/10.1063/1.1703775.

[14] F. Haake, Quantum Signatures of Chaos, Springer Series

in Synergetics (Springer Berlin Heidelberg, 2010).
[15] Michael Crossley, Paolo Glorioso, and Hong Liu,

“Effective field theory of dissipative fluids,” (2017),
arXiv:1511.03646 [hep-th].

[16] Paolo Glorioso, Michael Crossley, and Hong Liu, “Effec-
tive field theory of dissipative fluids (ii): classical limit,
dynamical kms symmetry and entropy current,” Journal
of High Energy Physics 2017, 1–44 (2017).

[17] Sao Grozdanov and Janos Polonyi, “Viscosity and dissi-
pative hydrodynamics from effective field theory,” Phys-
ical Review D 91, 105031 (2015).

[18] Pavel Kovtun, “Lectures on hydrodynamic fluctuations
in relativistic theories,” Journal of Physics A: Mathe-
matical and Theoretical 45, 473001 (2012).

[19] Sergei Dubovsky, Lam Hui, Alberto Nicolis, and
Dam Thanh Son, “Effective field theory for hydrodynam-
ics: Thermodynamics, and the derivative expansion,”
Physical Review D 85, 085029 (2012).

[20] Solomon Endlich, Alberto Nicolis, Rafael A. Porto, and
Junpu Wang, “Dissipation in the effective field theory for
hydrodynamics: First-order effects,” Physical Review D
88, 105001 (2013).

[21] Alex Kamenev, Field Theory of Non-Equilibrium Sys-
tems (Cambridge University Press, 2011).

[22] Michael Winer and Brian Swingle, “Hydrodynamic the-
ory of the connected spectral form factor,” (2020),
arXiv:2012.01436 [cond-mat.stat-mech].

[23] Y. Lallouet, D. Davesne, and C. Pujol, “Hydrodynam-
ics with spontaneous symmetry breaking: Application to
relativistic heavy ion collisions,” Physical Review C 67,
057901 (2003).

[24] Pablo I. Hurtado and Pedro L. Garrido, “Spontaneous
symmetry breaking at the fluctuating level,” Physical Re-
view Letters 107, 180601 (2011).
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