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Applied magnetic fields can couple to atomic displacements via generalized Lorentz forces, which
are commonly expressed as gyromagnetic g factors. We develop an efficient first-principles method-
ology based on density-functional perturbation theory to calculate this effect in both molecules and
solids to linear order in the applied field. Our methodology is based on two linear-response quantities:
the macroscopic polarization response to an atomic displacement (i.e., Born effective charge tensor),
and the antisymmetric part of its first real-space moment (the symmetric part corresponding to the
dynamical quadrupole tensor). The latter quantity is calculated via an analytical expansion of the
current induced by a long-wavelength phonon perturbation, and compared to numerical derivatives
of finite-wavevector calculations. We validate our methodology in finite systems by computing the
gyromagnetic g factor of several simple molecules, demonstrating excellent agreement with experi-
ment and previous density-functional theory and quantum chemistry calculations. In addition, we
demonstrate the utility of our method in extended systems by computing the energy splitting of the
low-frequency transverse-optical phonon mode of cubic SrTiO3 in the presence of a magnetic field.

I. INTRODUCTION

An applied magnetic field has a significant impact on
the lattice dynamics of molecules and solids via gener-
alized Lorentz forces, which are commonly expressed as
gyromagnetic g factors.1 These are of great fundamental
interest as manifestations of “geometric magnetization”,2

and enjoy an elegant formulation in terms of geomet-
ric phases3 and Berry curvatures.4 They are also related
to the angular momentum of phonons via the so-called
“phonon Zeeman effect”,5,6 and are a crucial ingredient in
the theory of the phonon Hall effect4,7,8 (PHE). In recent
years significant advances have been made in the theoret-
ical understanding of Lorentz forces in real systems,3,9,10

but an accurate and computationally efficient formalism
for both molecules and extended crystals is still lacking.

First-principles electronic-structure methods have tra-
ditionally been highly successful at calculating molec-
ular g factors. Reference values with chemical ac-
curacy have been obtained long ago in the context
of post–Hartree–Fock ab initio methods, like coupled-
cluster (CC) or Moller–Plesset (MP) perturbation
theory.11 The works by Ceresoli and Tosatti1,12 later
demonstrated that density functional theory (DFT) can
provide reliable values at a significantly lower computa-
tional cost; also, their pioneering Berry-phase approach
has paved the way towards the development of the “mod-
ern theory of magnetization”.13–15

The case of extended solids has been comparatively
much less explored. The reason is that previous ap-
proaches required performing calculation in the pres-
ence of a finite external magnetic field (B), which is a
challenge to incorporate with periodic boundary condi-
tions. Though there has been theoretical work in this

direction,16,17 so far a widespread implementation is lack-
ing. This situation is in stark contrast with the case
of an isolated molecules, where finite-B methods are
well established in existing codes.18,19 As a result, refer-
ence theoretical values for the coupling constants between
phonons in solids and an external magnetic field are still
scarce. Recent works by Spaldin and coworkers,5,6 do
report first-principles values for the phonon g factors in
a broad range of crystalline insulators; however, a point-
charge model for the microscopic currents associated with
the ionic orbits was assumed therein. This certainly
constitutes a drastic simplification from the computa-
tional perspective, as it only requires calculating stan-
dard linear-response properties (e.g., the Born effective
charge tensor); however, the validity of such an approxi-
mation has not been tested yet.

Here we establish, in the framework of first-principles
density-functional perturbation theory (DFPT), an accu-
rate and computationally efficient methodology to com-
pute both generalized Lorentz forces and g factors in
molecules and solids. Our strategy consists in defining
both quantities in terms of the microscopic electronic and
nuclear currents, J(r), that accompany the adiabatic evo-
lution of the system along the atomic trajectories. In par-
ticular, the first spatial moment of J(r) can be regarded
as a geometric orbital magnetic moment, m, which cou-
ples linearly to the external B field and acts as an ef-
fective vector potential in the classical ionic Lagrangian.
At the leading order in the ionic velocities, v, the cal-
culation of m can be carried out in the framework of
density-functional perturbation theory via a long-wave
expansion of the macroscopic polarization response to a
phonon. Such expansion, in turn, is written in terms
of two linear-response tensors:20 the macroscopic polar-
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ization induced by an atomic displacement J(0), corre-
sponding to the Born effective charges (BECs), and its
first-order spatial dispersion, J(1). BECs are routinely
calculated in many publicly-available density-functional
theory codes21–23; the main technical challenge resides
then in the calculation of J(1).

In the course of this work we have implemented and
used two different approaches for accessing J(1), and com-
pared their mutual consistency as part of our numeri-
cal tests. The first method, based on Ref. 24, consists
in performing the DFPT calculations of the polarization
response at finite q, and subsequently taking their long-
wave expansion via numerical differentiation. The sec-
ond method, which we shall prefer from the point of
view of computational convenience, consists in taking the
long-wave expansions analytically via the recently imple-
mented25,26 long-wave module of abinit.27,28 Note, how-
ever, that the existing implementation only works for the
symmetric part of J(1), corresponding to the dynamical
quadrupole tensor, while for the present purposes we re-
quire the antisymmetric part of the tensor, which has not
been addressed earlier. For its implementation, we have
further extended the capabilities of abinit by incorpo-
rating the wavefunction response to an orbital B field.
One can show that the resulting formulation of the geo-
metric orbital magnetization nicely recovers the theory of
Ref. 2, including the additional topological contribution
derived therein.

To demonstrate our method, we first consider the gy-
romagnetic g factor, which depends on the magnetic mo-
ment that is associated with a uniform and rigid rota-
tion of a finite body. We show that our formula, based
on the calculation of J(1), consistently yields a vanishing
magnetic moment in the case of a neutral closed-shell
atom, and correctly transforms upon a change of the as-
sumed center of rotation. Our numerical results for sev-
eral representative molecules show excellent agreement
with experiment and with earlier calculations, where
available; the elements of J(1) that we obtained via ei-
ther finite-difference or analytical long-wave expansions
nicely match in all tested cases. For comparison, we also
test an alternative formulation, based on a coordinate
transformation to the co-moving frame of the rotating
molecule,29 and discuss its performance regarding numer-
ical convergence and other technical issues (e.g., related
to the use of nonlocal pseudopotentials).

Next, we consider the magnetization induced by a cir-
cularly polarized optical phonon, which we express as a
generalized Lorentz force in presence of a uniform mag-
netic field. As a physical manifestation of this effect, we
calculate the splitting of the soft polar transverse-optical
(TO) mode frequencies of SrTiO3 at the Brillouin zone
center due to an external magnetic field. Our motivation
for revisiting this system comes the very recent measure-
ment of a giant phonon Hall effect30 in the same material.
As in the case of the molecular g factors, we base our
discussion on the calculation of the J(1) tensor, which we
perform both via the approach of Ref. 24, and via the

analytical long-wave method; again, we find excellent nu-
merical agreement between the two.

The remainder of the paper is organized as follows.
Sec. II and III are devoted to introducing the formalism
and computational implementation for calculating molec-
ular g factors and generalized Lorentz forces in extended
solids. In Sec. IV we present results on the gyromagnetic
g factors of some simple molecules and the computation
of the generalized Lorentz force in cubic SrTiO3. The
latter enables the calculation of the frequency splitting
of the TO modes in presence of a magnetic field. We
conclude the paper with Sec. V.

II. THEORY

A. Lagrangian for a solid under an applied
magnetic field

Consider the nonadiabatic Ehrenfest Lagrangian of the
crystalline system under an applied magnetic field

L =
∑

lκα

1

2
Mκ(Ṙlκα)2 +

∑

lκ

ZκṘ
l
κ ·A(Rl

κ)

+
∑

j

〈φj | [i∂t −Hel(A, {Rl
κ})] |φj〉

(1)

where A is the magnetic vector potential, Rl
κ represents

the position of ion lκ within the crystal (κ is a basis index
and l refers to the cell), Mκ is the mass of ion κ and Zκ
its bare (pseudo-)charge. Regarding the electronic part,
φj are the Kohn-Sham orbitals and Hel is the electronic
Hamiltonian, depending parametrically on the ionic po-
sitions,

Hel(A, {Rl
κ}) =

1

2
[p + A(r)]2 + Veff({Rl

κ}). (2)

(We use Hartree atomic units, i.e., the electron mass and
charge are me = 1 and −e = −1, respectively.) If we
assume that the external magnetic fields are small (an
excellent approximation in the vast majority of cases),
we can work at linear order in the vector potential and
write

L =
∑

lκα

1

2
Mκ(Ṙlκα)2 +

∑

lκ

ZκṘ
l
κ ·A(Rl

κ)

+
∑

j

〈φj | [i∂t −Hel({Rl
κ})] |φj〉

+

∫
d3rA(r) · Jel(r),

(3)

where the microscopic electronic currents (in zero exter-
nal field) are defined as

Jel(r) = −
∑

j

1

2
〈φj |

(
p|r〉〈r|+ |r〉〈r|p

)
|φj〉 . (4)
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As we treat the nuclei as classical point charges, the ionic
currents read as

Jion(r) =
∑

lκ

ZκṘ
l
κδ(r−Rl

κ); (5)

this allows us to reabsorb the effects of the external vector
potential in a single interaction term,

L =
∑

lκα

1

2
Mκ(Ṙlκα)2

+
∑

j

〈φj | [i∂t −Hel({Rl
κ})] |φj〉

+

∫
d3rA(r) · J(r),

(6)

where J = Jel + Jion. By choosing the symmetric gauge,
A = 1

2B× r, we can equivalently write
∫
d3rA(r) · J(r) = B ·m({Rl

κ}, {Ṙl
κ}), (7)

where m =
∫
d3rr × J/2 is the geometric magnetic mo-

ment associated with the dynamical evolution of the ions
along their trajectories. We are now ready to take the
adiabatic approximation, in a regime where the ionic ve-
locities are small,

L =
∑

lκα

1

2
Mκ(Ṙlκα)2 + B ·

∑

lκα

Ṙlκαml
κα({Rl

κ})

− EKS({Rl
κ}),

(8)

where the two new terms are the Born-Oppenheimer po-
tential energy surface in zero field, EKS, plus a term that
depends on the dynamical orbital magnetic moment ten-
sor,

ml
κα =

∂m

∂Ṙlκα

∣∣∣
Ṙlκα=0

. (9)

The latter quantity differs to the Born effective charge
(BEC) tensor in that the adiabatic macroscopic m,
rather than the adiabatic macroscopic current J, is dif-
ferentiated with respect to the ionic velocities. Note that
ml
κα generally depends on the electromagnetic gauge, un-

like the BEC; however, as we shall see shortly, its conse-
quences on ionic dynamics are gauge-independent. This
is a common feature of physical problems that involve an
applied external B; and indeed, the velocity-dependent
potential

Ãlκα = B ·ml
κα (10)

can be regarded as an effective vector potential, Ãl
κ, act-

ing on the ion lκ, and whose magnitude depends on the
specific atom under consideration. This leads to the fol-
lowing expression for the classical Hamiltonian of the
ions,

H =
∑

lκα

1

2
Mκ[Ṙlκα − Ãlκα({Rl

κ})]2 + EKS({Rl
κ}), (11)

which is good up to linear order in the ionic velocities,
and where the vector potential emerges from the break-
down of time-reversal symmetry (TRS) that is associated
with the external B. One can show that this treatment is
fully consistent with the conventional expression,31 where
Ãlκα is written as a Berry connection in the parameter
space of the ionic coordinates. The advantage of the
present formulation rests on the availability of efficient
first-principles methods to compute directly ml

κα, and

hence the vector potential Ãlκα, without the need of in-
corporating an external B field in the simulation. We
shall discuss this point in the next subsection.

B. Geometric magnetization

The basic quantity we shall be dealing with is the mi-
croscopic polarization response to the displacement of an
isolated atom,20

Pκβ(r−Rl
κ) =

∂J(r)

∂Ṙlκβ
. (12)

Eq. (12) always sets the coordinate origin to the atomic
site; therefore, the functions Pκβ(r) do not depend on
the cell index l. [Recall that l runs over all the unit cells,
and Rl

κ = Rl + τκ, where Rl is a Bravais lattice vector
and τκ is the position of ion κ within the unit cell.] Note
that the vector fields contain both electronic and ionic
contributions, i.e.,

Pα,κβ(r) = Pel
α,κβ(r) + P ion

α,κβ(r), (13)

where the α subscript indicates the Cartesian component.
The ionic contribution comes in the form of a Dirac delta
function that carries the bare nuclear (or pseudopoten-
tial) charge Zκ,

P ion
α,κβ(r) = Zκδαβδ(r). (14)

For most practical purposes, it is convenient to expand
the microscopic polarization field into a multipole series,
by writing the lowest-order moments as

J
(0)
α,κβ =

∫
d3rPα,κβ(r),

J
(1,γ)
α,κβ =

∫
d3r rγPα,κβ(r).

(15)

(Note that, in order to ensure the convergence of the
above integrals, some care is required in the treatment
of the macroscopic electric fields; techniques to deal with
this issue are now well established.)20,32 J(0) corresponds
to the Born effective charge tensor and J(1) is the first
moment of the polarization response, whose symmetric
part corresponds to the dynamical quadrupole tensor20,25

Q
(2,αγ)
κβ = J

(1,γ)
α,κβ + J

(1,α)
γ,κβ . (16)
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On the other hand, the antisymmetric part of J(1) con-
tributes to the magnetization response to the atomic ve-
locity, and can be expressed as

Mα,κβ =
1

2

∑

γ,δ

εαγδJ
(1,γ)
δ,κβ , (17)

where εαγδ is the Levi-Civita symbol. More precisely,M
is the magnetic moment of the electronic currents calcu-
lated with respect to the unperturbed atomic position,
which follows from the definition of J(1) in Eq. (15).

The above definitions lead to the following formula for
the geometric magnetic moment associated with the adi-
abatic motion of the ion lκ,

ml
κβ =

1

2

∫
d3rr×Pκβ(r−Rl

κ)

=
1

2
Rl
κ × Zκβ +Mκβ ,

(18)

where Z∗α,κβ = J
(0)
α,κβ is the α component of the polar-

ization induced by a displacement of atom κ along β,
i.e., the Born effective charge. This expression clarifies
the gauge-dependence of ml

κβ that we have anticipated
in the previous subsection: this quantity depends explic-
itly on the absolute atomic position, and hence on the
arbitrary choice of the coordinate origin.

In the case of an isolated and neutral molecule, it is
insightful to consider the sublattice sum of mκβ = m0

κβ ,
which corresponds physically to the magnetic moment
associated with a rigid translation of the body. Because
of the acoustic sum rule, the origin indeterminacy disap-
pears; then, by using the dipolar sum rule of Appendix B,
we arrive at

∑

κ

mα,κβ =
1

2

∑

γ

εβαγDγ , (19)

where D is the static dipolar moment of the molecule,

D =

∫
d3r r ρ(0)(r). (20)

Eq.(19) is precisely the expected result for the uniform
rigid motion of a distribution of classical charges whose
local density equals ρ(0)(r).

C. Magnetization by rotation: rotational g factors

We now derive the rotational g factor, which is rele-
vant for molecules and other finite systems. Consider an
isolated molecule to which we apply a time-dependent
counter-clockwise rotation along the axis b by an angle
θb. In general, the magnetic moment can be expressed
as33

ma =
1

2

∑

j

gajLj , (21)

where gaj is the g tensor. Lj is the angular momentum,
given by

Lj =
∑

b

Ijbωb, (22)

where I is the moment of inertia matrix. (ωb = θ̇b is the
angular velocity, defined as time derivative of the rotation
angle.) Thus,

∂ma

∂ωb
=

1

2

∑

j

gajIjb, (23)

In the reference frame where I is diagonal, the g tensor
can then be written as

gab =
2

Ibb

∂ma

∂ωb
. (24)

We shall now derive a closed formula for the magnetic
moment induced by a uniform rotation of the molecule.
We shall present two alternative results, the first calcu-
lated in the standard Cartesian frame based on the quan-
tities introduced in the previous Section, and the second
based on the comoving frame theory of Ref. 29.

1. Cartesian frame

A rigid rotation about an arbitrary axis can be rep-
resented as the following displacement of the individual
atoms,

uκ = θ× τκ, (25)

where we have introduced the rotation pseudovector θ =
θr̂b. By combining Eq. (25) with Eq. (18), the magnetic
moment associated with the rigid rotation of the sample
can be expressed in terms of the dynamical magnetization
and Born effective charge tensors defined in the previous
subsection,

∂ma

∂ωb
=
∑

κ,j,β

εbjβτκj


Ma,κβ +

1

2

∑

i,α

εaiατκiJ
(0)
α,κβ


 .

(26)
This formula, containing the first moment of the dynam-
ical magnetic dipoles and the second moment of the dy-
namical electrical dipoles, is valid only if the electromag-
netic gauge origin coincides with the center of rotation
of the molecule; this ensures, via rotational symmetry,
that the linear-response result coincides with the average
geometric magnetization accumulated in a cyclic loop.29

In Appendix A we shall prove that, upon a simultaneous
shift of the gauge origin and center of rotation by R, the
above formula transforms as

∂ma(R)

∂ωb
− ∂ma(0)

∂ωb
=
RaDb +RbDa

2
− δabR ·D. (27)
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Thus, ∂ma(R)/∂ωb is origin-independent in nonpolar
molecules (i.e., molecules with vanishing static dipole).
In other cases, the result depends on the assumed center
of rotation, which is usually set as the center of mass of
the system.

2. Comoving frame

By using the theory of Ref. 29, the rotational geomet-
ric magnetization can be expressed as34

∂ma

∂ωb
=− 2χmag

ab +
1

2

∫
d3r

∂[r× (ω × r)]a
∂ωb

ρ(0)(r)

=− 2χmag
ab +

1

2

∑

ijβ

εaiβεbjβ
∫
d3rrirjρ

(0)(r)

=− 2χmag
ab +

1

2

∫
d3r(δabr

2 − rarb)ρ(0)(r).

(28)

The first term is proportional to the magnetic susceptibil-
ity, and originates from the electronic currents in the ref-
erence frame that is rigidly rotating with the sample; the
second term describes the magnetic moment generated
by the rigid rotation of the ground-state charge density
of the molecule, and serves to convert the result to the
laboratory frame. Upon a shift of the gauge origin, χmag

ab
remains unaltered while the second term trivially trans-
forms as in Eq. (27). (Clearly, the quadrupole becomes
origin-dependent whenever a nonzero dipolar moment is
also present, consistent with the above arguments.)

As part of the validation of our implementation, we
shall compute the geometric magnetization by using both
methods, Eq. (26) and Eq. (28). We can anticipate,
however, that Eq. (26) is preferable in practical appli-
cations, for the following reasons. First, the widespread
use of nonlocal pseudopotentials is a concern in regards
to Eq. (B3), which is a prerequisite for Eq. (28) to be
valid. [In particular, the equivalence between Eq. (26)
and Eq. (28) rests on the translational invariance at the
quadrupolar order, see the discussion around Eq. (B17).]
Because of this issue, we find that Eq. (28) yields qual-
itatively incorrect results for systems where ∂ma/∂ωb
must vanish identically, e.g., in isolated noble gas atoms
or molecular dimers that rotate about their axis. Sec-
ond, even in cases where Eq. (28) is exact (e.g., in the
H2 molecule whenever hydrogen is described by a local
pseudopotential), its numerical implementation involves
the calculation of the static quadrupolar moment of the
molecule, which might converge slowly as a function of
the cell size. (We shall illustrate this point in practice in
Sec. IV A.)

D. Magnetization induced by a circularly polarized
optical phonon: generalized Lorentz force

We now turn to extended systems, and consider the
case of a circularly polarized optical phonon describing a

cyclic path along orbits in a given plane. In presence of
time-reversal symmetry (TRS), the clockwise and coun-
terclockwise orbits are degenerate. Here, we take the ap-
proach of breaking TRS via an external B field oriented
along γ, and discuss the implications on lattice dynamics
within the harmonic regime of small displacements.

In order to compute the derivatives of the Lagrangian
with respect to the ionic displacements (ulκ) and veloci-
ties (u̇lκ), we expand the total orbital magnetic moment
of the system up to first order in both ulκ and u̇lκ, and the
Kohn-Sham energy up to second order in ulκ (harmonic
approximation). The Lagrangian of Eq. (8) then reads
as

L =
∑

lκα

1

2
Mκ(u̇lκα)2 +

∑

lκα

( ∂mγ

∂u̇lκα
u̇lκαBγ −

∂EKS

∂ulκα
ulκα

)

+
∑

lκα
l′κ′β

( ∂2mγ

∂ulκα∂u̇
l′
κ′β

ulκαu̇
l′

κ′βBγ −
∂2EKS

∂ulκα∂u
l′
κ′β

ulκαu
l′

κ′β

)
.

(29)

The first line consists, next to the kinetic term, in a
constant vector potential field acting on individual ions,
which can be gauged out; and in the static forces in the
initial configuration, which we assume to vanish. Based
on these observations, we can now obtain the Euler-
Lagrange equations of motion via

d

dt

∂L
∂u̇0

κα

− ∂L
∂u0

κα

= 0, (30)

which leads to

Mκü
0
κα =−

∑

lκβ

[
Φκα,κ′β(0, l)ulκ′β − Φγκα,κ′β(0, l)u̇lκ′βBγ

]
,

(31)

Here Φ is the usual real-space interatomic force-constant
matrix and we have defined

Φγκα,κ′β =
∂2mγ

∂uκα∂u̇κ′β
− ∂2mγ

∂u̇κα∂uκ′β
, (32)

which is the (antisymmetric) generalized Lorentz force
produced by the external magnetic field. By using this
result in combination with Eq. (9) and Eq. (18), we ob-
tain

Φγκα,κ′β = Φpc,γ
κα,κ′β + Φdi,γ

κα,κ′β + Φea,γ
κα,κ′β . (33)

The meaning of the three terms on the rhs goes as follows.
First, we have an on-site contribution that only depends
on the Born dynamical charges,

Φpc,γ
κα,κ′β =

1

2
δκκ′

∑

l

(
εγαlZ∗l,κβ − εγβlZ∗l,κα

)
. (34)

The “point-charge” (pc) denomination indicates that, in
absence of electrons, the Z tensor becomes a constant,
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Z∗l,κα = Zκδαl, and Eq. (34) reduces then to the well-

known Lorentz force (L) acting on a classical test particle
of charge Zκ,

ΦL,γ
κα,κ′β = δκκ′Zκε

γαβ . (35)

This term was described in Refs. 5 and 6. Next, we
have a “dispersion” (di) contribution, which stems from
the fact that the electronic currents associated with ionic
motion are spread out in space around the nuclear site,

Φdi,γ
κα,κ′β =

∂

∂τκα
Mγ,κ′β −

∂

∂τκ′β
Mγ,κα. (36)

This additional term was neglected in earlier studies; its
explicit calculation constitutes one of the main technical
advances of this work. Finally, we have a third contribu-
tion in the form

Φea,γ
κα,κ′β =

1

2

∑

j,l

εγjl
(
τκ′j

∂J
(0)
l,κ′β

∂τκα
− τκj

∂J
(0)
l,κα

∂τκ′β

)
, (37)

which is different from zero only when κ 6= κ′, and cor-
responds to the electrical anharmonicity (ea) tensor dis-
cussed by Roman et al..35 This term is present only if the
site symmetries of the occupied Wyckoff position lack the
space inversion operation; if, on the other hand, every
atom in the crystal sits at an inversion center (e.g., cubic
perovskites like SrTiO3), Φea,γ

κα,κ′β vanishes identically.

One can verify that all three contributions are antisym-
metric under κα↔ κ′β, consistent with the definition of
Eq. (32) and also that they are independent of the choice
of the coordinate origin. As a final comment, we expect
all these three terms to vanish for large interatomic dis-
tances, although there may be long-range contributions
mediated by electrostatic forces; their detailed analysis,
while interesting, goes beyond the scope of our work, as
we will only focus on zone-center phonons.

E. Phonon g factors and frequency splitting

We now demonstrate how the formalism of Sec. II D
can be used to calculate the g factor for the phonon
modes of the system.5,6,12 Recalling the equations of mo-
tion of the ions given by Eq. (31), as usual, we seek a
solution of the type

ulκβ(t) = Uq
κβe

i(q·Rl
κ−ωt), (38)

where ω is the frequency. We shall specialize to the q = 0
case henceforth, and thus remove the q subscript. We
obtain,

ω2Ũκα =
∑

κ′β

(
D

(0)
κα,κ′β + iωBγD

γ
κα,κ′β

)
Ũκ′β , (39)

with Uκα = Ũκα/
√
Mκ and

D
(0)
κα,κ′β =

1√
MκMκ′

∑

l

Φκα,κ′β(0, l),

Dγ
κα,κ′β =

1√
MκMκ′

∑

l

Φγκα,κβ(0, l).

(40)

We shall treat the frequency- and B-dependent contribu-
tion of Dγ

κα,κ′β to Eq. (39) as a small perturbation of the
zero-B phonon dynamics in the following.

Consider a cubic crystal with a two-fold degenerate
transverse optical mode at the Γ point (e.g., the “soft”36

polar mode in cubic SrTiO3). The unperturbed (zero-B)
frequency ω(0) can be determined by solving the following
eigenvalue problem

[ω
(0)
i ]2V (i)

κα =
∑

κ′β

D
(0)
κα,κ′βV

(i)
κ′β , (41)

where i runs over the degenerate modes and V
(i)
κ′β are

the eigenvector components, where κ′ runs from 1 to N
(number of ions in the cell) and β runs over the Cartesian
directions. We choose i = 1, 2 to span the plane orthog-
onal to B in such a way that they form a right handed
coordinate system. We shall now apply degenerate per-
turbation theory to Eq. (41) by choosing the unperturbed
eigenvectors as

|+〉 =
1√
2

(
|V (1)〉+ i |V (2)〉

)
,

|−〉 =
1√
2

(
|V (1)〉 − i |V (2)〉

)
,

(42)

where 〈κ′β|V (i)〉 = V
(i)
κ′β . Here |κ′β〉 stands for a unit

displacement of ion κ′ along the Cartesian direction β
while the rest of ions remain still; |V (i)〉 is therefore a
3 × N dimensional vector. |+〉 and |−〉 are circularly
polarized phonon modes expressed as a superposition of
linearly polarized modes. In order to account for the
frequency splitting and to verify that the eigenvectors
given by Eq. (42) diagonalize the perturbation, we build
the perturbation matrix gij ,

gij = i

(
〈+|Dγ |+〉 〈+|Dγ |−〉
〈−|Dγ |+〉 〈−|Dγ |−〉

)
, (43)

which we identify with the gyromagnetic gij tensor of
the phonon modes.1,5,6,12 Assuming cubic symmetry, this
reduces to

gij =

(
g 0
0 −g

)
, (44)

where

g = i 〈+|Dγ |+〉
= i 〈+| (Dpc,γ +Ddi,γ) |+〉
= gpc + gdi

(45)
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is the g factor of the phonon modes. We have explic-
itly indicated the two contributions on Dγ coming from
Eq. (34) and Eq. (36); there is only a difference of a
mass factor between Φγ and Dγ , which is given in Eq.
(40). Once the g-factor is computed it is easy to give an
expression for the frequency splitting of the modes,

ω(±) ' ω(0) ± 1

2
gBγ . (46)

Before closing this Section, we briefly comment on the
relationship between our methodology to calculate the
phonon g factors and previous first-principles approaches.
Spaldin and coworkers5,6 calculated the “pc” contribu-
tion, while the “di” term was systematically neglected,
resulting in a point-charge approximation to the full g
factor; we will show below that for the soft polar mode
in SrTiO3, both terms are the same order of magnitude.
In Ref. 12, Ceresoli presents a point charge model, in
addition to a similar perturbative treatment to our Eq.
(39). In the latter, it was assumed that the Born effective
charge tensor was isotropic for each sublattice κ, which
is not the case for cubic perovskites like SrTiO3. Also,
Ceresoli’s version of our dispersion contributionDdi,γ was
in the form of a Berry curvature. While formally equiv-
alent to our expression [which can be seen by writing
the Lagrangian in terms of the effective vector potential
given by Eq. (10)], it is more computationally demanding
compared to the DFPT implementation given here.

III. IMPLEMENTATION

We now discuss the practical calculation of the dynam-
ical magnetic moments,M, in the framework of density-
functional perturbation theory. (The other materials-
dependent quantity entering the g factors, i.e., the Born
effective charge tensor Z, is straightforward to calculate
within standard implementations of DFPT.)21–23

A. Polarization response to a long-wavelength
phonon

As a first step, we express the real-space moments of
Eq. (12) in a form that is more practical from the compu-
tational perspective. To that end, we consider the macro-
scopic (cell-averaged) adiabatic current that is associated
with the distortion pattern of Eq. (38),

∂Jmac(r)

∂Uq
κβ

= −iωPq
κβe

i(q·r−ωt). (47)

The quantities defined in Eq. (15) can then be recast as
a long-wave expansion,20

Jq
κβ = J

(0)
κβ − iqγJ

(1,γ)
κβ + · · · , (48)

where Jq
κβ = ΩPq

κβ , Ω being the cell volume. The ad-
vantage of this reciprocal-space formulation is that the

macroscopic polarization response at any q can be de-
fined and calculated using a primitive unit cell as

Jq
α,κβ = −2 Im

∫
[d3k]

∑

n

〈uAαnk,q|u
τκβ
nk,q〉, (49)

where
∫

[d3k] ≡ Ω
(2π)3

∫
BZ
d3k. Here |uλnk,q〉 indicates the

adiabatic first-order response of the electronic band nk
to the perturbation λ, where λ = Aα stands for the elec-
tromagnetic vector potential and λ = τκβ refers to the
phonon perturbation Eq. (38) taken at ω = 0. The im-
plementation described in Ref. 24 allows one to calcu-

late Jq
κβ directly via Eq. (49); J

(1,γ)
α,κβ can be then ob-

tained by taking numerical derivatives around q = 0.
The same finite-q implementation24 allows one to com-
pute the magnetic susceptibility of the system, which we
shall use in our numerical tests of Eq. (28).

B. Analytical long-wave expansion

An alternative approach, which we shall prefer in the
context of this work, consists in taking the long-wave
expansion of Eq. (49) analytically by using the formalism
described in Ref. 25. A straightforward differentiation of
Eq. (49) leads to

J
(1,γ)
α,κβ = −2 Im

∫
[d3k]

∑

n

(
〈uAαnk,γ |u

τκβ
nk 〉+ 〈uAαnk |u

τκβ
nk,γ〉

)
,

(50)

where we have defined the wavefunction response to the
spatial gradient of the perturbation λ as

|uλnk,γ〉 =
∂|uλnk,q〉
∂qγ

∣∣∣∣∣
q=0

. (51)

Explicit computation of |uτκβnk,γ〉 would imply a major
computational effort; this can be, however, circumvented
via a careful use of the “2n+ 1” theorem,25 which yields
the second term in the round brackets of Eq. (50). The

calculation of 〈uAαnk,γ | (first term in Eq. (50), indicated as

“T5” in Ref. 25) is comparatively uncomplicated, and
can be, in principle, carried out by following the guide-
lines of Ref. 25. The existing implementation,25 how-

ever, focuses on the dynamical quadrupoles Q
(2,αγ)
κβ [see

Eq. (16)], which are symmetric under exchange of Carte-
sian indices α ↔ γ. Thus only the symmetric compo-
nents of 〈uAαnk,γ | are currently available. To access the

antisymmetric components, as required by Eq. (50), the

calculation of 〈uAαnk,γ | needs to be generalized as we de-
scribe in the following.

C. Response to a long-wavelength vector potential
field

This section is devoted to give explicit expressions for
the response to a vector potential A. A detailed deriva-
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tion of the perturbing operators for the response of a vec-
tor potential A is given in the Appendix of Ref. 25; here
we summarize the main results. (In general, the response
functions have both valence and conduction band com-
ponents. However, in the present case the valence band
part turns out to be irrelevant since it is multiplied by a
conduction band state; we focus on the conduction band
part in the following.) The wave-function response (in
the long-wave limit) to a vector potential can be written
in terms of the following Sternheimer equation25

(Ĥ
(0)
k + aP̂k − ε(0)

mk) |uAαmk,γ〉 = −Q̂kÔk |u(0)
mk〉 , (52)

where H
(0)
k is the ground state Hamiltonian of the sys-

tem, ε
(0)
mk is its energy eigenvalue, a is a parameter that

ensures stability37 and Q̂k = 1 − P̂k is the conduction

band projector with P̂k =
∑
m |u

(0)
mk〉 〈u

(0)
mk|. The per-

turbing operator Ôk in Eq. (52) is given by

Ôk = 2∂γĤ
(0)
k ∂αP̂k − 2∂γP̂k∂αĤ

(0)
k + ∂2

γαĤ
(0)
k , (53)

where ∂α ≡ ∂/∂kα is a gradient in k space. Interestingly,
the symmetric (S) part (under the exchange α ↔ γ) of

the perturbing operator Ôk corresponds to the d2/dkdk
perturbation,

ÔSk = + ∂γĤ
(0)
k ∂αP̂k + ∂αĤ

(0)
k ∂γP̂k

− ∂γP̂k∂αĤ
(0)
k − ∂αP̂k∂γĤ

(0)
k + ∂2

γαĤ
(0)
k ,

(54)

which is already implemented in the publicly available
abinit code27,28; while its antisymmetric (A) contribu-
tions gives rise to the response of a uniform B field, as
defined in Ref. 38,

ÔAk = + ∂γĤ
(0)
k ∂αP̂k − ∂αĤ(0)

k ∂γP̂k

− ∂γP̂k∂αĤ
(0)
k + ∂αP̂k∂γĤ

(0)
k .

(55)

We therefore conclude that the computational cost of cal-
culating the response to a vector potential as defined in
Eq. (52) and the response to a uniform B field is the
same as for the usual d2/dkdk perturbation. Further-
more, given the similarities of the perturbing operators
(their differ only by a couple of signs) their implementa-
tion turns out to be straightforward.

D. Computational parameters

The formalism described in Secs. III A and III B has
been implemented in the abinit code.21,27,28,39 We use
the Perdew-Wang40 parametrization of the local density
approximation (LDA) and Optimized Norm-Conserving
Vanderbilt Pseudopotentials (ONCVPSP)41 in all the
DFT and DFPT calculations.

Our numerical results on rotational g factors in
molecules are obtained employing a large cell of 20 ×
20× 20 bohr3 to avoid interactions between neighboring

images. A maximum plane-wave cutoff of 100 Ha (60 Ha
for CH4, C5H5N and C6H5F) is used and the Brillouin
zone is sampled with a single k point at Γ. The struc-
tural optimization for the geometry of the molecules is
performed to a tolerance of 5·10−7 Ha/bohr on the resid-
ual forces.

For our calculations on SrTiO3, we use the five-atom
primitive cubic cell, with a plane-wave cutoff of 80 Ha
and an 8× 8× 8 mesh of k points to sample the Bril-
louin zone; with this setup we obtain an optimized cell
parameter of a0 = 7.288 bohr. For the derivative with re-
spect to the displacement of atoms appearing in Eq. (36),
∂/∂τκα, we apply a displacement of 0.01 bohr to atom κ
along the Cartesian direction α and compute the deriva-
tive via finite differences; this means that 3N (where N
is the number of atoms in the cell) of such calculations
are needed to compute the full Dγ matrix. This num-
ber could be reduced significantly via use of symmetries;
however, in our calculations we opt for a straightforward
calculation of all components, and check that the result-
ing generalized Lorentz force tensor enjoys the expected
symmetries as part of the validation procedure.

IV. RESULTS

A. Rotational g factor of molecules

To begin with, we present a detailed study of the H2,
N2, and F2 molecules, since they constitute the simplest
nontrivial test of our methodology. In the case of elemen-
tal diatomic molecules, the gyromagnetic g factor is only
defined for rotations about an axis that is perpendicular
to the bond. Assuming that the bond is aligned with the
x Cartesian direction, and that the rotation axis passes
through the center of mass, the g factor reduces to

g =
J

(1,x)
y,1y − J

(1,y)
x,1y

I
, (56)

where I = Md2/2 is the moment of inertia. (d stands for
the interatomic distance, and M is the atomic mass in
units of the proton mass.)

Figure 1 shows the convergence with the plane-wave
cutoff of the g factor of H2 using the experimental ge-
ometry (dexp=1.4 bohr), calculated using the analytical
long-wave approach described in Sec. III B. We see that
the result is well-converged at a relatively modest (for a
molecule in a box) cutoff of 50 Ha. We can compare the
converged value of 0.8956 to the finite-q calculations de-
scribed in Sec. III A, which gives precisely 0.8956. For N2

(dexp=2.074 bohr) and F2 (dexp=2.668 bohr), the analyt-
ical long-wave approach gives −0.2704 and −0.1043, also
in excellent agreement with the finite-difference method,
which yields −0.2708 and −0.1045, respectively. The ex-
cellent agreement confirms the accuracy of our implemen-
tation described in Sec. III B.

Since the H atom is well described by a local pseu-
dopotential, we can use the H2 molecule to benchmark
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FIG. 1: Convergence of the g factor of H2 (with dexp = 1.4
bohr) with respect to the plane-wave cutoff. Calculations are
performed using a single k point (Γ) with a box size of 203

bohr3.

the performance of the two alternative formulations of
∂ma/∂ωb, i.e. Eq. (26) [which reduces to Eq. (56) in
this case] and Eq. (28). In Fig. 2(a) we the plot the cal-
culated g factor for H2 versus inverse cell size by using
either method. As we anticipated in Sec. II C, we find
that Eq. (28) is quite challenging to converge, while the
corresponding results of Eq. (56) display an optimally
fast convergence. To understand the origin of such a be-
havior, we show in Fig. 2(b) a decomposition of Eq. (28)
into the two contributions on the rhs. This analysis clar-
ifies that the convergence of is limited by the quadrupole
term [i.e., the second term in Eq. (28)], while the mag-
netic susceptibility of the molecule is already converged
at a relatively small box size. If we extrapolate this term
to the limit of an infinitely large cell parameter (1/a→ 0,
purple dashed curve), then we see that our g factor indeed
converges to the value we obtain using the methodology
of Sec. III B [purple cross on Fig. 2(a)]. The agreement
for large cell sizes provides an independent confirmation
of the accuracy of our approach, though the methodol-
ogy of Sec. III B is clearly superior from a computational
perspective.

As we anticipated, a further issue with Eq. (28) con-
sists in the fact that it may yield qualitatively incor-
rect results when nonlocal pseudopotentials are used,
i.e., in the vast majority of first-principles simulations
that are being performed nowadays. An obvious exam-
ple is that of a neutral (and isolated) closed-shell atom,
where the rotationally induced magnetization must van-
ish exactly. This requirement is trivially fulfilled by our
Eq. (26): both dynamical charges and dynamical mag-
netic moments identically vanish in this system due to
charge neutrality and inversion symmetry. In the con-
text of Eq. (28) one would expect a vanishing result,
too: Langevin’s theory of diamagnetism expresses the
susceptibility as the quadrupolar moment of the spheri-
cal atomic charge, which should cancel out exactly with

1/∞ 1/40 1/20 1/10
1/a (1/Bohr)

0.6

0.7

0.8

0.9

g
fa

ct
or

(a)

Eq. (26)

Eq. (28)

extrapolated

1/∞ 1/40 1/20 1/10
1/a (1/Bohr)

−1.50

−1.48

−1.46

−1.44

−1.42

−1.40

1 2

∫
d

3
r(
x

2
+
z

2
)ρ

(0
) (r

)
1.78

1.80

1.82

1.84

1.86

−
2
χ
y
y

(b)

FIG. 2: (a) Calculation of rotational g factor of H2 (with
dexp=1.4 bohr) using the expression for ∂ma/∂ωb from
Eq. (28) (dots) and from Eq. (26) (triangles) versus inverse of
the simulation cell size side length. (b) Convergence of terms
in Eq. (28) versus inverse of the simulation cell size. Purple
dashed line in (b) is the extrapolated value for the quadrupole
term; the purple cross in (a) is the g factor calculated with
the extrapolated quadrupole term.

the second term on the rhs. In presence of nonlocal pseu-
dopotentials, however, Langevin’s result no longer holds,
and Eq. (28) yields a nonzero value for all noble gas atoms
except He. (The latter, just like H, is well described by a
local pseudopotential.) We regard this as a serious con-
cern in this context, and we therefore caution against a
straightforward application of Eq. (28) to the calculation
of rotational g factors.

In addition to the aforementioned elemental diatomic
molecules, we consider several other examples: HF, HNC,
and FCCH (still linear, but with a finite dipole moment),
nonlinear molecules such as NH3, H2O, and CH4, and the
aromatic compounds C5H5F and C6H5F. At difference
with H2 and related structures, in all these cases Eq. (24)
contains a nonzero contribution from the Born effective
charges; therefore, these additional examples provide us
with the opportunity to test the full formula, Eq. (26)
[in combination with Eq. (24)], rather than its simplified
version, Eq. (56). The molecular geometries and rota-
tional axes used in this work are discussed in Appendix
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TABLE I: Calculated rotational g factors for selected sim-
ple molecules compared with the relevant literature data.
“HF/DFT” and “MP/CCD” stand for computational results
at various level of theory (Hartree-Fock / Density Functional
Theory, and Møller-Plesset perturbation theory / Coupled-
Cluster with Double excitations); “Exp.” refers to experi-
mental measurements.

Rotational g factor

This work HF/DFT MP/CDD Exp.

H2 0.8901
0.9103a

0.8899a 0.8829c

0.8755b

N2 −0.2699 −0.2872a −0.2653a −0.2593c

F2 −0.1003 −0.0900a −0.1136a −0.1208c

HF 0.7603 0.7624a 0.7488a 0.7392c

HNC −0.1004 −0.0996a −0.0968a

FCCH −0.0065 −0.0077d

H2O 0.6699 0.6640a 0.6507a 0.6450c

NH3 0.5289 0.5061a 0.5044a

CH4 0.3629
0.3019a

0.3190a 0.3133c

0.2985e

C5H5N 0.0411 0.0428d

C6H5F 0.0276 0.0266d

aRef. 11
bRef. 1
cRef. 42
dRef. 43
eRef. 44

C.
In Table I we compare our results for the rotational g

factors to experimental measurements from Refs. 42 and
43. In addition, we report the results of previous calcu-
lations using Hartree-Fock (HF) and post Hartree-Fock
methods,11 as well as DFT calculations using the Berry-
phase method.1,44 Since the inclusion of electron-electron
correlations, either at at the level of Møller-Plesset (MP)
perturbation theory or coupled cluster with double exci-
tations (CCD), seems to improve the agreement with ex-
periment in many cases,11 we include those data as well
for comparison. We see that our DFPT based method
compares well even with the best theoretical values ob-
tained via more computationally demanding methods.
Our results in Table I are also in excellent agreement with
experiment, where available. CH4 appears to be the only
exception, though the reason for the larger discrepancy
is not clear.

B. Soft-mode frequency splitting of cubic SrTiO3

We now turn to the splitting of the soft polar TO mode
at the zone center in cubic SrTiO3. As we did in the case
of the rotational g factors in Sec. IV A, we can test the
accuracy of our generalized Lorentz forces by comparing
the implementation described in Sec. III B with the alter-

TABLE II: g factor of the soft polar TO mode at the zone
center in cubic SrTiO3. Units are in 10−4 atomic units.

g gpc gdi

SrTiO3 −1.2083 0.6679 −1.8763

native approach of Sec. III A. In Table V of Appendix D
we present the components of (Ddi,γ)κα,κ′β elements [see
Eq. (36)] for cubic SrTiO3 using both methods; we see
quite good agreement, giving us confidence that gdi is
accurately calculated.

The results for the g factors are shown in Table II. Fol-
lowing Eq. (45), we separate the two different contribu-
tions coming from the J(0) (gpc) and J(1) (gdi) terms. As
mentioned earlier, some works5,6 have only accounted for
the terms depending on the Born effective charges within
a point-charge approximation, roughly corresponding to
our calculated gpc. It is immediately clear from Table
II that such an approximation is inappropriate: the re-
mainder (gdi) has opposite sign and is almost three times
larger (in absolute value) than the contribution coming
from gpc; as a result, the total g factor disagrees with
gpc both in magnitude and sign. This indicates that an
accurate computation of the J(1) tensor is crucial in this
particular case and that these terms should not be ne-
glected.

For a more quantitative comparison, note that Ref.
12 and Ref. 6 computed gpc for tetragonal SrTiO3, ob-
taining values of gpc = 5.76 · 10−5cm−1/T and gpc =
4.78 · 10−5cm−1/T, respectively. In those units, our re-
sult for cubic SrTiO3 is gpc = 6.23 · 10−5cm−1/T. The
agreement is rather good, especially considering that: (i)
we are considering the full tensorial form of the Born ef-
fective charge tensor and (ii) our analysis is carried out
in the cubic, and not tetragonal, phase of SrTiO3. Note
that Ref. 12 also reports a result for the total g-factor,
g = −7.95 · 10−5cm−1/T, which again compares well to
our calculated value of g = −11.28 · 10−5cm−1/T.

To gain some insight on the physics, we perform a
further decomposition of gpc and gdi into the individ-
ual contributions of each atomic sublattice. In the case
of gpc, such a decomposition is straightforward, as this
term mediates an on-site coupling between the displace-
ment of each atom and its own velocity. [This can be
appreciated by observing that the corresponding contri-
bution to the generalized Lorentz force, Eq. (34), con-
tains a δκκ′ prefactor.] The case of gdi is less obvious:
the nondiagonal (on the atomic index) nature of Φdi im-
plies that the velocity of a given atom can produce forces
not only onto itself, but also on its neighbors. Thus, prior
to attempting a decomposition of gdi, we first isolate the
basis-diagonal κ = κ′ terms in Φdi, and use them to
define an on-site contributions to gdi (indicated as gdi

κ=κ′

henceforth). Apart from enabling the aforementioned de-
composition, this analysis also gives a flavor of the overall
importance of the off-site contributions to gdi.

The results are summarized in Table III. Regarding
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TABLE III: Contribution of each atom to gpc and gdiκ=κ′ ,
which are defined as the on-site (κ = κ′) contributions to
gdi. Units are in 10−4 atomic units.

Sr Ti O1 O2 O3 total

gpc -0.0197 -0.1082 0.2985 0.2985 0.1987 0.6679

gdiκ=κ′ -0.0118 -0.1246 -0.6429 -0.6429 -0.0062 -1.4284

gpc, we find that the contribution of the oxygen atoms
largely dominates over the rest, consistent with the con-
clusions of Ref. 12. Due to their smaller mass, oxygens
evolve along larger orbits, which amplifies their contri-
bution to the magnetic moment. Regarding gdi, we find
that the on-site terms represent more than the 75% of
the total gdi factor, which indicates that intersite cou-
plings have a relatively minor importance. At the level
of gdi

κ=κ′ , we find that the contribution of the equatorial
oxygens is by far the largest, and primarily responsible
for reversing the sign of the overall g factor.

Finally, we use the above results to calculate the fre-
quency splitting of the TO modes. Considering a mag-
netic field of B = 100 T we obtain gB ∼ 0.01 cm−1,
of the same order as predicted in Ref. 5. This is a
very small value that appears challenging to resolve even
for the most powerful experimental techniques available
nowadays. Our hope is that the computational tools de-
veloped here allow for a more efficient screening of can-
didate materials where this effect may be measurable.

V. CONCLUSIONS

We have developed a complete theoretical approach
for calculating orbital magnetization from rotations and
pseudorotations (circularly polarized optical phonons)
within the context of first-principles theory. The ap-
proach is based on density-functional perturbation the-
ory calculations of the polarization induced by an atomic
displacement (i.e., Born effective charges), and its first
real-space moment. We have demonstrated an imple-
mentation to calculate the latter quantity via general-
ization of the existing long-wave approach to dynami-
cal quadrupoles; thus, we have established a connection
between spatial dispersion phenomena and orbital mag-
netism, and demonstrated its accuracy via comparison
with finite-difference calculations. Our methodology al-
lows for efficient and optimally accurate computation,
and works equally well for molecules and solids. We
have used this approach to determine rotational g fac-
tors of some simple molecules, and demonstrated excel-
lent agreement with experimental results where available.
Finally, we have developed a strategy to calculate the
generalized Lorentz force on atoms in presence of a mag-
netic field, and utilized it to study the splitting of the
soft optical phonons in cubic SrTiO3. In the latter sys-
tem, we demonstrated that contributions to phonon g

factor from the first moment of the induced polarization,
which had been neglected in some previous approaches,
dominate the response.

In spite of this correction, the overall g factor remains
of the same order of magnitude as the values quoted in
Refs. 5,12. Therefore, our theory as it stands appears un-
likely to explain the large phonon Hall30 effects reported
experimentally. To move forward in this direction, we
suspect that it may be necessary to take into account
the quantum paralectric nature of SrTiO3 at low temper-
atures, e.g., by going beyond the Ehrenfest Lagrangian of
Eq. (1). We regard this as an exciting avenue for further
study.
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Appendix A: Translational symmetry of the
geometric magnetization

To see how a change in the assumed center of rotation
(and, simultaneously, in the gauge origin) affects the re-
sult, consider

∂ma(R)

∂ωb
=
∑

κ,j,β

εbjβ(τκj −Rj)×


Ma,κβ +

1

2

∑

i,α

εaiα(τκi −Ri)J (0)
α,κβ




=−
∑

κ,j,β

εbjβRj


Ma,κβ +

1

2

∑

i,α

εaiατκiJ
(0)
α,κβ




− 1

2

∑

κ,j,β,i,α

εbjβεaiατκjRiJ
(0)
α,κβ +

∂ma(0)

∂ωb

=− 1

2

∑

κ,j,i,α

εbjαεaiαRjDi

− 1

2

∑

κ,j,β,i,α

εbjβεaiατκjRiJ
(0)
α,κβ +

∂ma(0)

∂ωb
.

(A1)
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[In the last step we have used the sum rule Eq. (19).]
It is useful now to observe the following property of the
Levi-Civita symbol,

∑

i,j,α

εbjαεaiα = δabδij − δbiδaj . (A2)

This leads to

−1

2

∑

κ,j,i,α

εbjαεaiαRjDi =− 1

2
(δabR ·D −RaDb). (A3)

In the second line we can write

−
∑

κ

τκjJ
(0)
α,κβ =

∑

κ

J
(1,j)
α,κβ −Dj . (A4)

The second term yields the same as above, with the ab
indices switched; the first term can be written in terms
of J (1). The final result, after collecting all the contribu-
tions is

∂ma(R)

∂ωb
− ∂ma(0)

∂ωb
=

=− 1

2
(δabR ·D −RaDb −RbDa)

+
1

2

∑

j,β,i,α

εbjβεaiαRi
∑

κ

J
(1,j)
α,κβ .

(A5)

The second term on the rhs vanishes: the sublattice sum
of the J

(1,j)
α,κβ tensor coincides with the proper piezoelec-

tric tensor times a trivial volume factor, and is therefore
symmetric with respect to βj. (An antisymmetric contri-
bution would describe a steady macroscopic current that
is generated by a rotating body in its comoving reference
frame, and must vanish on general physical grounds, see
Sec. III.D.2 of Ref. 29.) The remainder leads to Eq. (27).

Appendix B: Dipolar sum rule for bounded systems

Statement of the problem. We will prove the following
sum rule, valid for an isolated molecule in open electro-
static boundary conditions,

∑

κ

(
J

(1,γ)
α,κβ + τκγZ

∗
α,κβ

)
= δαβDγ , (B1)

where D is the static dipole moment of the molecule,

Dγ =

∫
d3rrγρ

(0)(r). (B2)

In absence of nonlocal pseudopotentials the proof is

straightforward: it suffices to observe that Z∗α,κβ = J
(0)
α,κβ ,

and then use the definition of the J
(n)
α,κβ moments pro-

vided in the main text together with the following rela-
tion (translational invariance) for the microscopic polar-
ization response,

∑

κ

Pα,κβ(r) = δαβρ
(0)(r). (B3)

If nonlocal pseudopotentials are present, Eq. (B3) breaks
down; however, we will show that Eq. (B1) is exact even
in that case.
Proof. To prove Eq. (B1) without passing through

Eq. (B3), we will use another (exact) sum rule, relat-

ing the J
(1,γ)
α,κβ moments to the clamped-ion piezoelectric

tensor,

− 1

Ω

∑

κ

J
(1,γ)
α,κβ = ēα,βγ . (B4)

To apply this rule, we need first of all to place the iso-
lated molecule in a large box of volume Ω, and work in
periodic boundary conditions. Then, Eq. (B4) describes
the proper piezoelectric response of the resulting crystal
lattice to an infinitesimal strain. [To avoid complications
due to long-range interactions between repeated images,
we will assume that the Coulomb kernel is cut off at
the boundary of the box, and that all objects entering
Eq. (B1) are consistently calculated in such conditions.]

Since the images of the molecule are isolated in space,
the macroscopic polarization of the crystal is exactly
given by the Clausius-Mossotti formula as the static
dipole moment divided by the volume,

P =
D
Ω
. (B5)

ēα,βγ , however, is not defined as a straightforward strain
derivative of P (that would be the so-called improper
piezoelectric tensor). To arrive at ēα,βγ we first need
to introduce the direct lattice vectors ai and their duals
bi in such a way that ai · bj = δij . Then, the reduced
polarization is defined in units of charge as the flux of P
through a facet of the crystal cell,

pi = Ωbi ·P = bi ·D. (B6)

Finally, the proper piezoelectric tensor is defined as

ēα,βγ =
1

Ω

∑

i

aαi
∂pi
∂ηβγ

, (B7)

where η is the Cauchy infinitesimal strain tensor. This
leads to the following formula, without factors of volume,

∑

κ

J
(1,γ)
α,κβ = −

∑

i

(ai)α
∂(bi ·D)

∂ηβγ
. (B8)

In order to calculate the derivative of the scalar prod-
uct, note that an infinitesimal strain corresponds to the
following linear transformation of the atomic coordinates
and direct lattice vectors,

τ ′κ =(I + η)τκ, (B9a)

a′i =(I + η)ai. (B9b)

The first relation yields

∂τκσ
∂ηβγ

= δβστκγ , (B10)
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and immediately (by using the definition of the Born
charge tensor),

∂Dα
∂ηβγ

=
∑

κσ

∂Dα
∂τκσ

∂τκσ
∂ηβγ

=
∑

κ

Z∗α,κβτκγ . (B11)

The second relation is used to determine the transforma-
tion law for the duals. The reciprocal-space vectors need
to preserve the orthonormality condition to linear order
in the strain, which leads to the following result,

b′i ' (I− ηT )bi. (B12)

From this, we deduce

∂(bi)ξ
∂ηβγ

= −δγξ(bi)β . (B13)

By using the orthonormality rule
∑
i(ai)α(bi)β = δαβ ,

we eventually arrive at
∑

κ

J
(1,γ)
α,κβ = Dγ −

∑

κ

Z∗α,κβτκγ , (B14)

thereby concluding our proof.
General consequences. The above results allow us to

further specify the validity of Eq. (B3) in the case of an
isolated molecule. While the microscopic formula breaks
down in presence of nonlocal pseudopotentials, one can
expand both sides into Cartesian multipoles and ask at
what order the equality no longer holds. At order zero
the equality clearly holds,

∑

κ

∫
d3rPα,κβ(r) = δαβ

∫
d3rρ(0)(r), (B15)

since macroscopic currents are well described; in the case
of a neutral molecule Eq. (B15) reduces to the acoustic
sum rule on the Born charge tensor components. In this
Appendix, we have provided a formal proof that Eq. (B3)
works equally well at first order,

∑

κ

∫
d3r rγPα,κβ(r) = δαβ

∫
d3r rγρ

(0)(r). (B16)

On the other hand, we already know from earlier works
that the second order doesn’t work if nonlocal potentials
are used in the calculation,

∑

κ

∫
d3r rγrλPα,κβ(r) 6= δαβ

∫
d3r rγrλρ

(0)(r). (B17)

This breakdown of translational invariance at the
quadrupolar level explains why Eq. (26) and Eq. (28)
disagree in presence of nonlocal potentials.

Appendix C: Structure of molecules used in this
work

Here we show the molecular structures used in this
work. For the aromatic compounds, we also display

FIG. 3: Cartoon illustrating the relaxed geometries used in
this work for a) C5H5N (the N atom is in blue) and b) C6H5F
(F atom is in light blue).

a cartoon of the molecules in Figure C, labeling each
atom with a number. This figure, in combination with
Table IV, enables to construct the C5H5N and C5H5F
molecules.

In order to calculate the g factor, the rotation axis is
taken to be perpendicular to the molecular axis in linear
molecules (H2, N2, F2, HF, HNC, and FCCH), perpen-
dicular to the molecular plane for C5H5N, C6H5F and
H2O, along one of the bonds in CH4 and perpendicular
to the plane formed by the H atoms in NH3; the field is
taken to be parallel to the rotation axis.

Appendix D: Comparison between DFPT and finite
q calculations for cubic SrTiO3

Here we present a comparison between the “DFPT”
implementation described in Sec. III B, and the “finite
q” implementation described in Sec. III A for the gen-
eralized Lorentz force in cubic SrTiO3. Specifically, we
compare the (Ddi,z)κα,κ′β elements, see Eq. (36). All of
the independent elements for both methods are presented
in Table V. Note that our labeling convention for the
oxygen is, in reduced coordinates: O1 = (0, 1/2, 1/2),
O2 = (1/2, 0, 1/2), O3 = (1/2, 1/2, 0). The additional
(κα, κ′β) can be determined from the following symme-
try requirements on the tensor in cubic SrTiO3. For κ
and κ′ either (or both) Ti, Sr, or O3, x ↔ y results in
the same magnitude coefficient, with a change of sign.
For terms involving O1 and/or O2, exchanging x↔ y as
well as O1↔ O2 also results in a different sign, but same
magnitude coefficient. Overall, we see quite good agree-
ment, to the second or third decimal places, between the
very distinct implementations; this confirms the accuracy
of our methodology.



14

TABLE IV: Molecular geometries for selected simple
molecules after relaxation. Distances are in bohr.

Relaxed geometry

H2 d = 1.446

N2 d = 2.066

F2 d = 2.622

HF d = 1.760

HNC
dHN = 1.908

dNC = 2.202

FCCH
dFC = 2.396

dCC = 2.260

dCH = 2.022

H2O
dHO = 1.835

6 HOH = 104.8◦

NH3
dNH = 1.930

6 HNH = 107.3◦

CH4 dCH = 2.070

C5H5N

d1,2 = 2.509, d2,3 = 2.615

d3,4 = 2.611, d2,7 = 2.071

d3,8 = 2.063, d4,9 = 2.064

6 6, 1, 2 = 117.54◦, 6 1, 2, 3 = 123.42◦

6 2, 3, 4 = 118.52◦, 6 3, 4, 5 = 118.58◦

C5H5F d1,2 = 2.603, d2,3 = 2.614

d3,4 = 2.616, d1,7 = 2.534

d2,8 = 2.062, d3,9 = 2.063

d4,10 = 2.062, 6 6, 1, 2 = 122.43◦

6 1, 2, 3 = 118.40◦, 6 2, 3, 4 = 120.45◦

6 3, 4, 5 = 119.86◦

TABLE V: (Ddi,z)κα,κ′β elements [see Eq. (36)] for cu-
bic SrTiO3 calculated with the “DFPT” implementation de-
scribed in Sec. III B, and the “finite q” implementation de-
scribed in Sec. III A.

(κα, κ′β) DFPT Finite q

(Sr x, Sr y) 1.5320 1.5317

(Sr x, Ti y) 2.4483 2.4526

(Sr x, O1 y) −0.4487 −0.4489

(Sr x, O2 y) −2.3829 −2.3874

(Sr x, O3 y) −1.1537 −1.1542

(Ti x, Ti y) 8.4125 8.4037

(Ti x, O1 y) −9.6112 −9.6131

(Ti x, O2 y) −2.4061 −2.3937

(Ti x, O3 y) 3.7315 3.7336

(O1 x, O2 y) −6.3272 −6.3416

(O2 x, O1 y) 3.9400 3.9416

(O2 x, O2 y) 8.3977 8.3987

(O3 x, O1 y) −0.3842 −0.3845

(O3 x, O2 y) −2.0026 −2.0041

(O3 x, O3 y) 0.0642 0.0653
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