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In polar semiconductors and insulators, the Fröhlich interaction between electrons and long-
wavelength longitudinal optical phonons induces a many-body renormalization of the carrier effective
masses and the appearence of characteristic phonon sidebands in the spectral function, commonly
dubbed ‘polaron satellites’. The simplest model that captures these effects is the Fröhlich model,
whereby electrons in a parabolic band interact with a dispersionless longitudinal optical phonon.
The Fröhlich model has been employed in a number of seminal papers, from early perturbation-
theory approaches to modern diagrammatic Monte Carlo calculations. One limitation of this model
is that it focuses on undoped systems, thus ignoring carrier screening and Pauli blocking effects
that are present in real experiments on doped samples. To overcome this limitation, we here extend
the Fröhlich model to the case of doped systems, and we provide exact solutions for the electron
spectral function, mass enhancement, and polaron satellites. We perform the analysis using two
approaches, namely Dyson’s equation with the Fan-Migdal self-energy, and the second-order cu-
mulant expansion. We find that these two approaches provide qualitatively different results. In
particular, the Dyson’s approach yields better quasiparticle masses and worse satellites, while the
cumulant approach provides better satellite structures, at the price of worse quasiparticle masses.
Both approaches yield an anomalous enhancement of the electron effective mass at finite doping
levels, which in turn leads to a breakdown of the quasiparticle picture in a significant portion of the
phase diagram.

I. INTRODUCTION

The Fröhlich interaction, that is the coupling be-
tween electrons and long-wavelength longitudinal opti-
cal (LO) phonons in polar semiconductors and insula-
tors, constitutes one of the earliest and most intensely
studied manifestations of electron-phonon physics.1–3 On
the theory side, Fröhlich couplings have received con-
siderable attention during the past few years, as effi-
cient ab initio techniques to describe these processes
have become available.4–7 Meanwhile, a recent report
has demonstrated the remarkable effectiveness of a gen-
eralized Fröhlich model in the prediction of zero-point
band-gap renormalization when compared to highly ac-
curate ab-initio calculations.8 On the experiment side,
the Fröhlich interaction has long been known to play
an important role in the carrier transport properties of
doped semiconductors and oxides9,10 and in their super-
conducting phases.11–13 More recently, Fröhlich couplings
have been identified as the origin of intriguing phonon
sidebands in the photoelectron spectra of many com-
pounds, including SrTiO3 (STO),14–17 TiO2,

18, EuO,19

CaMnO3,
20 and ZnO.21 In turn, these sidebands have

been linked to the observation of superconducting phases
in bulk and interfacial systems.13,22,23

The most direct route to investigate the effect of
Fröhlich couplings on electron band structures is via
angle-resolved photoelectron spectroscopy (ARPES). In
ARPES experiments, electrons are extracted from a sam-

ple via laser or synchrotron light, and the energy and mo-
mentum of the electron prior to exiting the sample can
be reconstructed by an analyzer. This setup provides a
direct image of the momentum-resolved electron spectral
function, i.e. the many-body electron band structure.
Since only occupied electronic states can be probed by
ARPES, it is necessary to dope electrons into the sample
in order to image the band edges. These electrons in-
teract with all phonons in the sample; however, in polar
semiconductors and oxides the dominant coupling mecha-
nism is the Fröhlich interaction with long-wavelength LO
phonons, because the associated coupling matrix element
diverges at long wavelength.24 This coupling enhances
the carrier effective mass and leads to the appearence
of phonon sidebands below the conduction band edge,
usually called ‘polaron satellites’.17,18,22,23 A schematic
illustration of these effects is shown in Fig. 1.
The description of these low-energy structures using

ab initio many-body methods is challenging.25 In the
case of standard metals, where the Fermi energy EF is
much larger than the characteristic phonon energy ~ωph,
~ωph/EF ≪ 1, Migdal’s theorem guarantees that the
interaction is well described by non-crossing electron-
phonon self-energy diagrams.24,26,27 However, degenerate
semiconductors including doped oxides typically possess
a Fermi energy comparable to the characteristic phonon
energy, ~ωph/EF ∼ 1.28 This scenario falls outside of the
validity limit of the Migdal approximation. As a result,
calculations on these systems based on the Migdal ap-
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FIG. 1. Schematic illustration of the many-body renormaliza-
tion of the conduction band bottom of a polar semiconduc-
tor or insulator by the Fröhlich interaction. The illustration
refers to a parabolic conduction band minimum, doped with
electrons up to the Fermi level. The dashed line indicates the
non-interacting band structure, the solid lines show the renor-
malized band minimum as well as the phonon sidebands (two
sidebands for example). The energy separation between the
quasiparticle band and the sidebands is an integer multiple of
the LO phonon energy.

proximation suffer from well-documented shortcomings,
for example incorrect energetics of the satellite structures
shown in Fig. 1.25,29–31

One promising strategy to overcome this limitation
is provided by the cumulant expansion method.32–34 In
its original formulation, this approach was introduced
to study the coupling of core holes to plasma excita-
tions in metals.32 The generalization of this approach
to valence electrons33 enabled the first ab initio calcu-
lations of plasmon satellites in elemental metals.34 More
recently, the cumulant approach has been employed to
improve the description of spectral satellites arising from
electron-plasmon interactions in GW calculations.35–43

In the context of electron-phonon physics, the cumu-
lant expansion has successfully been employed to cal-
culate phonon sidebands in systems exhibiting Fröhlich
coupling.19,25,29–31,44–46

Despite much progress on the front of ab initio calcula-
tions, we still lack a simple analytical model that captures
the essential features of Fröhlich interactions in doped
systems, and that can be used as a reference benchmark
for validating ab initio implementations. This gap is par-
ticularly critical as ab initio calculations of Fröhlich cou-
plings require extremely dense Brillouin zone grids, and
are therefore computationally very demanding. As a re-
sult, it is difficult to systematically explore the parameter
space and extract general trends.
The most popular model employed to investigate elec-

tronic couplings to polar LO phonons is the Fröhlich
model.1 This model consists of an electron in a

parabolic electron band coupled to a dispersionless
LO phonon.1,47–51 It forms the basis for a number
of seminal papers on electron-phonon interactions and
polarons,2,3,27 and is routinely used for testing advanced
many-body techniques such as the diagrammatic Monte
Carlo method.52,53 However, this model describes a sin-
gle electron coupled to a phonon bath, therefore it does
not include the effects of band filling (shown schemati-
cally in Fig. 1), and the associated screening of the polar
interaction by free carriers. Without including free car-
riers, the Fröhlich model cannot reproduce the correct
energetic ordering of bands and satellites as shown in
Fig. 1 and observed in experiments; instead, the Fröhlich
model incorrectly yields satellites above the conduction
band bottom.30,53

In this work, we go beyond the original Fröhlich
model by deriving analytic expressions for the elec-
tron self-energy and spectral function for electron-LO
phonon interactions in the presence of free carriers. This
model constitutes an idealization of Fröhlich interac-
tions in many degenerate semiconductors and doped
oxides that have been investigated via photoelectron
spectroscopy.13,16–23 We refer to this extended model as
the “doped Fröhlich solid”. For this model, we derive
the Fan-Migdal self-energy, and use it to obtain the elec-
tron spectral function within both Dyson’s equation and
the second-order cumulant expansion method. For each
approach, we analyze the quasiparticle (QP) band struc-
ture, the phonon satellites, and the mass enhancement,
and we identify advantages and shortcomings. In par-
ticular, we show that both approaches yield anomalous
electron mass enhancements at finite Fermi levels. This
enhancement is so strong that the band curvature is in-
verted in a large region of the phase diagram, leading
to a breakdown of the QP picture. This failure is more
pronounced in the cumulant approach.
This manuscript is organized as follows: In Sec. II,

we formally introduce the doped Fröhlich solid, the Fan-
Migdal self-energy, and how to obtain the spectral func-
tion within either Dyson’s method or the second-order
cumulant expansion. In Sec. III A, we review the clas-
sic Fröhlich polaron problem as the empty-band limit of
the doped Fröhlich solid. We show that the empty-band
model fails to reproduce the correct energetic ordering
of bands and satellites that is observed in experiments.
This shortcoming is remedied in Sec. III B, where we in-
troduce free carriers and a finite Fermi level in the model.
In this case we only consider band filling effects, without
taking into account the screening of the Fröhlich inter-
action by the free carriers. This scenario is relevant for
experiments in the anti-adabatic regime (~ωph/EF ≫ 1).
In Sec. III C, we include both the effect of band fill-
ing and free-carrier screening, and derive semi-analytical
self-energy and spectral functions. This more accurate
model is found to capture most of the features observed
in ARPES experiments in doped oxides. For easier orien-
tation within this manuscript, we reference all equations
for the QP energy and effective mass for the three consid-
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ered scenarios in table I. Section IV connects our Dyson
and cumulant spectra to experimental data by compar-
ing calculated and measured quasi-particle weights. In
Sec. V we summarize our results and discuss the implica-
tions of our findings for ab initio calculations of Fröhlich
couplings. Lastly, we report details of the derivations in
the appendices.

II. MODEL SETUP AND GENERAL

EXPRESSIONS FOR THE SELF-ENERGY AND

THE SPECTRAL FUNCTION

A. The doped Fröhlich solid

The Fröhlich Hamiltonian for electrons coupled to dis-
persionless LO phonons is given by:24

Ĥ =
∑

k

ǫk ĉ
†
kĉk + ~ω0

∑

q

(

â†qâq +
1

2

)

+N−1/2
p

∑

k,q

g(q) ĉ†k+qĉk
(

â†q + â−q

)

, (1)

where k, q, ĉk, and âq are electron wavevectors, phonon
wavevectors, fermion annihilation operators, and boson
annihilation operators, respectively. The single-particle
energies of the electrons are indicated by ǫk, ~ω0 is the
LO phonon energy, g(q) with q = |q| is the Fröhlich ma-
trix element, and Np is the number of unit cells in the
Born-von-Kármán supercell.
In this model, the electron-electron interation is as-

sumed to be already taken into account by the effec-
tive mass m0, and the electron band structure is sim-
ply given by ǫk = ~

2k2/2m0, with k = |k|. Throughout
this manuscript we consider the system at zero temper-
ature, so that the electron occupations are described by
the Heaviside function fk = θ(kF − k), where kF is the
Fermi wavevector.
The matrix element of the Fröhlich interaction is given

by:4,5

g(q) =
i

q

[

4π α ~(~ω0)
3/2

Ω
√
2m0

]1/2

, (2)

where Ω = Np ΩUC is the volume of the crystal cell
consisting of Np unit cells with volume ΩUC, and the
strength of the interaction is quantified by the dimen-
sionless Fröhlich coupling constant:

α =
e2

4πǫ0 ~

√

m0

2~ω0

(

1

ε∞
− 1

ε0

)

. (3)

In this expression, ǫ0 is the vacuum permittivity, and ε0
and ε∞ are the static and high-frequency dielectric con-
stant of the undoped crystal. The matrix element pro-
vided by Eq. (2) describes the probability amplitude for
an electron in the initial electronic state with wavevec-
tor k to be scattered into the final state with wavevector

k + q by an LO phonon of wavevector q. The charac-
teristic singularity at q = 0 corresponds to the onset of
a macroscopic polarization in the crystal, accompanied
by a uniform electric field. In the polaron literature it is
common to distinguish weak-coupling, intermediate cou-
pling, and strong coupling depending on the value of α.3

Although this separation is somewhat arbitrary, the onset
of strong coupling is usually placed at α = 6 for reasons
that will become clear in Sec. III A.
In the presence of free carriers, the Fröhlich interac-

tion described by Eq. (2) is weakened by the electronic
screening.29 To be consistent with the parabolic electron
bands employed in the Fröhlich model, we describe this
screening using the Lindhard dielectric function ε(q, ω),
i.e. the dielectric function of the electron gas in the
random-phase approximation.54

The dielectric function in the random-phase approxi-
mation is given by:54

ε(q, ω) = 1 + rs

(

4

9π

)1/3
1

π

1

(q/kF)3
×

×
[

2q/kF + f

(

q/kF +
(ω + iη)/EF

q/kF

)

+f

(

q/kF − (ω + iη)/EF

q/kF

)]

, (4)

where EF is the Fermi energy measured from the band
bottom, η is a positive infinitesimal, and the function f
is given by f(z) = (1 − z2/4) log[(z + 2)/(z − 2)]. The
quantity rs in Eq. (4) is the Wigner-Seitz radius of the
electron gas, i.e. the radius of a sphere that contains one
electron on average. It is given by:27

rs =
m0

a0 ε∞

(

3

4π n

)1/3

, (5)

where n is the density of free carriers, and a0 the Bohr
radius, and ε∞ is again the high-frequency dielectric con-
stant of the semiconductor in the absence of free carriers.
This scaling is needed so that the Lindhard function de-
scribes free carriers within the dielectric environment of
the semiconductor, as opposed to the standard electron
gas in a metal. The screened Fröhlich matrix element is
then obtained via:27,29

gscr(q) =
g(q)

ε(q, ω0)
. (6)

This equation states that the bare electron-phonon in-
teraction is screened by both the dielectric constant of
the semiconductor without free carriers (this effect is in-
cluded in g), and the metallic screening provided by the
free carriers, embedded in the dielectric continuum of the
semiconductors (this effect is included in ε). A detailed
derivation of Eq. (6) can be found in Sec. 6.3 of Ref. 27.
We note that, in Eq. (6), we evaluate the Lindhard

function at the phonon frequency ω0. This is a reason-
able approximation that is necessary to keep the prob-
lem tractable. A complete calculation including the fre-
quency dependence of ε(q, ω) would introduce additional
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poles in the self-energy, and would require us to take
into account phonon-plasmon polaritons. We have not
explored these avenues given the complexity of the for-
malism.

B. Dyson’s equation approach

We describe the many-body band structure of the
doped Fröhlich solid by calculating the electron spectral
function:

Ak(ω) =
1

π
|ImGk(ω)| . (7)

This function represents the momentum-resoved density
of states and it is accessible via ARPES experiments.55,56

To obtain Ak(ω), we evaluate the interacting electron
Green’s function Gk(ω) of the system. Both the spectral
function and the Green’s function depend only on the
absolute value of the electron wavevector as the system
is isotropic.
In the Dyson equation approach, the Green’s function

is evaluated as G = G0 + G0ΣG, where G0 is the non-
interacting Green’s function, and Σ is the self-energy.
This equation leads to the standard expression:

Gk(ω) = [~ω − ǫk − Σk(ω)]
−1 . (8)

Here, the Green’s function and the self-enery are both
retarded. The same results would be obtained using the
time-ordered version of both quantities. By combining
Eqs. (7) and (8) the spectral function can be expressed
directly in terms of the self-energy:

Ak(ω) =
−1

π

ImΣk(ω)

[~ω − ǫk − ReΣk(ω)]
2
+ [ImΣk(ω)]

2 . (9)

The electron addition/removal energies correspond to the
poles of the Green’s function, and are usually determined
by setting to zero the denominator of Eq. (9) under the
assumption that the imaginary part of the self-energy
and its frequency dependence can be neglected near the
poles. By calling these poles Ek, we have:

Ek = ǫk +ReΣk(Ek), (10)

or, linearized around ǫk:

Ek = ǫk + Zk ReΣk(ǫk), (11)

where the QP renormalization factor Zk is given by:

Zk =

[

1− 1

~

∂ ReΣ(ω)

∂ω

]−1

ω=Ek/~

. (12)

This quantity represents the spectral weight of the QP
peak, and 1−Zk is the spectral weight transferred to the
incoherent satellite structure, i.e. the phonon sidebands
schematically illustrated in Fig. 1.

The evaluation of the self-energy requires the summa-
tion over all possible connected electron-phonon Feyn-
man diagrams. This summation can be performed nu-
merically using the diagrammatic Monte Carlo method,52

as it has been demonstrated for the original (undoped)
Fröhlich model.53 Here, we are interested in developing
analytic and semi-analytic solutions, therefore we trun-
cate the expansion to the first-order diagram, consisting
of a single electron line and a single phonon line con-
nected by the electron-phonon matrix elements at the
two ends. This choice leads to the Fan-Midgal self-
energy:24,26

Σk(ω) =
Np

~

∫

BZ

dq

ΩBZ

[

|g(q)|2 fk+q

ω − ǫk+q/~+ ω0+iη

+
|g(q)|2 (1− fk+q)

ω − ǫk+q/~− ω0+iη

]

. (13)

This self-energy describes the electron-phonon interac-
tion to second order in the atomic displacement, as can
be seen from the fact that the Fröhlich matrix element
appears as g2. To the same order in perturbation the-
ory, there exists an additional contribution to the self-
energy, the Debye-Waller term.57,58 The Debye-Waller
self-energy plays an important role in the calculation of
phonon-induced band gap renormalization in semicon-
ductors and insulators.59–61 In the case of the Fröhlich
model considered here, the Debye-Waller self-energy van-
ishes identically, as we show in Appendix A.

C. Cumulant expansion approach

A promising strategy to include higher-order electron-
phonon diagrams beyond the Fan-Migdal self-energy is
provided by the cumulant expansion formalism.19,25,29–46

Owing to its roots in the description of deep-lying core
states, the cumulant is a priori defined in terms of the
lesser and greater self-energy, clearly separating elec-
tron and hole states. Later adaptations to states near
the Fermi level include the introduction of the retarded
cumulant.36 In this manuscript, we follow the original
definition of the cumulant expansion, treating electrons
and holes separately.41

The interacting Green’s function in the time domain
is obtained as the product of the non-interacting Green’s
function and the time-evolution operator:32

G
≷
k (t, t

′) = G
≷
0,k(t, t

′) eC
≷
k
(t−t′), (14)

where t, t′ are time variables, and hole or electron QPs
are described separately via the lesser (<) or greater (>)
Green’s function. The exponential represents the time-

evolution operator, and C
≷
k is the cumulant function.

We expand the exponential in Eq. (14) and compare

the term linear in C
≷
k (t−t′) to the expansion of the Dyson



5

equation:34

G
≷
0,k(t, t

′)C
≷
k (t− t′)

=
1

2π

∫ ∞

−∞
dω G

≷
0,k(ω)Σ

≷
k (ω)G

≷
0,k(ω) e

−iωt. (15)

Using the definition of the lesser (greater) non-interacting
Green’s function,

G
≷
k (t, t

′) = ∓ i

~
θ(±t∓ t′)e−

i
~
(ǫk∓iη)(t−t′), (16)

inside Eq. (15), the cumulant function can be expressed
in terms of the same self-energy employed in Dyson’s
equation approach:

C
≷
k (t, t′) =

∓1

π ~

∫

dω ImΣ
≷
k (ǫk ± ω)

1∓ iωt− e∓iωt

ω2
.

(17)

If we use the Fan-Migdal self-energy, the cumulant func-
tion will also contain electron-phonon interactions to sec-
ond order in the atomic displacements. The advantage of
the cumulant method is that, when the approximate cu-
mulant function given by Eq. (17) is used inside Eq. (14),
the exponentiation or “cumulant resummation”27 gen-
erates an infinite series of terms. This series contains
both non-crossing and crossing electron-phonon Feyn-
man diagrams.33

The lesser and greater self-energies appearing in
Eq. (17) are given by:

Σ<
k (ω) =

Np

~

∫

BZ

dq

ΩBZ

|g(q)|2 fk+q

ω − ǫk+q/~+ ω0 − iη
, (18)

Σ>
k (ω) =

Np

~

∫

BZ

dq

ΩBZ

|g(q)|2 (1− fk+q)

ω − ǫk+q/~− ω0 + iη
. (19)

These self-energies are simply related to the retarded self-
energy of Eq. (13) by Σk = (Σ<

k )
∗
+Σ>

k .
In order to gain insight into the structure of the spec-

tral function obtained from the cumulant expansion, it is
convenient to express Eqs. (14) and (17) in the frequency
domain. The result is:

A
≷
k = A

≷
QP,k +A

≷
QP,k ∗A

≷
S,k

+
1

2
A

≷
QP,k ∗A

≷
S,k ∗A

≷
S,k + · · · , (20)

where ∗ denotes a convolution in frequency space. A
detailed derivation of this result can be found in Ref. 62.
The functions A

≷
QP,k(ω) and A

≷
S,k(ω) are given by:

A
≷
QP,k(ω) =

Z
≷
k

π

(

1− fk
fk

)

(21)

×
ImΣ

≷
k (ǫk) cosα

≷
k −

[

ω − ǫk − ReΣ
≷
k (ǫk)

]

sinα
≷
k

[

ω − ǫk − ReΣ
≷
k (ǫk)

]2

+
[

ImΣ
≷
k (ǫk)

]2 ,

A
≷
S,k(ω) =

∓ImΣ
≷
k (ǫk + ω)−

(

∓ImΣ
≷
k (ǫk)∓ ω α

≷
k

)

π ~2ω2
,

(22)

where the quantities α
≷
k and Z

≷
k are defined as:

α
≷
k =

∂ ImΣ
≷
k (ω)

∂ω

∣

∣

∣

∣

∣

ω=ǫk/~

, (23)

Z
≷
k = exp

(

∂ReΣ
≷
k (ω)

∂ω

)

ω=ǫk/~

. (24)

The first term on the r.h.s. of Eq. (20) represents the
QP peak, and corresponds to a Fano lineshape. The QP
peak is found at the energy:

E
≷
k = ǫk +ReΣ

≷
k (ǫk). (25)

Successive terms of the series expansion in Eq. (20) repre-
sent a sequence of satellites, one per convolution. Higher-
order convolutions correspond to weaker satellites located
farther away from the QP peak. In practice, the first
two to three satellites carry the majority of the spectral
weight of the incoherent part and are the features usually
resolved in experiments.
One question that often arises in the cumulant ex-

pansion literature is whether one should use the lesser
and greater self-energy, whereby electrons and holes are
described separately,41,62 or else one should use the re-
tarded self-energy, whereby electrons and holes are de-
scribed at the same time.36

If the cumulant is used to describe electron or hole
states away from the Fermi level, the lesser (greater)
Green’s function only depends on the lesser (greater) self-
energy. It has been shown that this picture can be ex-
tended to states near the Fermi surface.34,35 The retarded
cumulant introduced in Ref. 36 is designed to describe
emission and absorption processes simultaneously. The
main difference between the retarded cumulant and the
lesser/greater self-energy approach used in the present
work lies in the description of the satellites.
The satellite function depends exclusively on the imag-

inary part of the self-energy, which is a quantity that can
easily be separated into contributions arising from absop-
tion and emission. In particular, we have:

Im
[

Σ<(ω)
]

6= 0 only if ω < −ω0, (26)

which implies that the lesser self-energy can only give rise
to hole satellites at ω < −ω0, i.e. below the quasiparticle
peak.
Conversely, for the greater self-energy, we have

Im
[

Σ>(ω)
]

6= 0 only if ω > ω0, (27)

causing electron satellites above the quasiparticle peak.
Crucially, the shape and magnitude of the lesser and
greater satellite functions are completely independent.
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Given this premise, the difference between different cu-
mulant approaches can be understood as follows: The re-
tarded cumulant employs both the lesser and greater self-
energy at all k points, causing satellites to appear above
and below the quasiparticle peaks throughout the band
structure. Conversely, in the lesser/greater self-energy
approach, hole satellites are confined to states k < kF,
and electron satellites to states k > kF.
To the best of the authors’ knowledge, in ARPES

measurements14,15,17,19 phonon satellites are only ob-
served for wavevectors smaller than the Fermi wavevec-
tor. Since in the retarded cumulant, the satellites are
found to disperse beyond the Fermi wavevector, the
present approach appears more suitable to model existing
ARPES data.
To conclude this section, we briefly note the main dif-

ferences between the Dyson’s approach and the second-
order cumulant: (i) Dyson’s approach using the Fan-
Migdal self-energy leads to one QP peak and one satellite,
while the cumulant approach leads to one QP peak and a
series of satellites of decreasing intensity; (ii) in Dyson’s
approach, the self-energy is evaluated at the QP energy
Ek, while in the cumulant approach the self-energy is
evaluated at the non-interacting energy ǫk (“on the mass
shell”). This latter difference leads to different QP ener-
gies: Dyson’s method contains the renormalization factor
Zk [see Eq. (11)], but the cumulant approach does not
[see Eq. (25)]. This inconsistency is reflected in the QP
effective masses, as we discuss in Sec. III A

III. RESULTS

A. Single electron in the conduction band

We start by considering the case of a single elec-
tron added to an otherwise empty conduction band,
which corresponds to the well-known Fröhlich polaron
problem.1 The self-energy for this case is obtained by
setting fk = 0 for all electron wavevectors k. As a result,
the lesser self-energy in Eq. (18) vanishes identically, and
the retarded self-energy in Eq. (13) is equal to the greater
self-energy in Eq. (19). After performing a change of in-
tegration variables to spherical coordinates, Eq. (19) can
be integrated analytically to yield:

Σ>
k (ω) = −i

α (~ω0)
3/2

2π
√
ǫk

log

√
~ω − Ω0 +

√
ǫk√

~ω − Ω0 −
√
ǫk

, (28)

where Ω0 = ~(ω0 − iη). This result was also derived,
among others, in Refs. 27,63. Some key steps of the
derivation are reported in Appendix B.
The real and imaginary parts of the self-energy are

shown in Figs. 2(a) and (b), respectively. As the real part
of the self-energy is negative everywhere [see Fig. 2(a)]
the QP energy near the bottom of the conduction band
lies below the non-interacting energy. The physical in-
terpretation of this result is that the phonon cloud tends

to stabilize the electron, precisely as it happens when
a polaron is formed.64 This qualitative trend holds for
both the Dyson’s approach and the cumulant approach,
as it can be seen in the spectral functions reported in
Figs. 2(c), (d), and (e), (f), respectively.
The imaginary part of the self-energy vanishes identi-

cally for frequencies ω below the threshold ǫk + ~ω0, as
it can be seen in Fig. 2(b). The interpretation of this
behavior is that the electron does not have sufficient en-
ergy to emit a phonon, therefore its lifetime is infinite
and ImΣ = 0. This effect is also seen in the spectral
functions, Figs. 2(c) - (f), which exhibit sharp QP peaks
for energies within ~ω0 from the band bottom.
Despite sharing the same self-energy, the Dyson and

cumulant approaches differ considerably in the QP en-
ergies and effective masses. In the Dyson approach, the
QP energy is defined by:

Ek = ǫk +
α (~ω0)

3/2

2π
√
ǫk

arg

√

Ek − Ω∗
0 +

√
ǫk

√

Ek − Ω∗
0 −

√
ǫk

. (29)

This expression does not lead to a general analytic ex-
pression for Ek, but the QP energy and mass at the band
bottom (k = 0) have simple expressions, see e.g. Section
7.1.1 of Ref. 27:

E0

~ω0
= − α

√

1− E0/~ω0

, (30)

and

m∗

m0
=

1 + α/2

1 + α/3
. (31)

The weak coupling (α ≪ 1) expansion of Eq. (30) can
be obtained by writing the solution E0 as a continued
fraction and then taking the limit of small α:

E0

~ω0
= −α+

α2

2
− 5

8
α3 +O(α4). (32)

Similarly, the weak-coupling expansion of Eq. (31) is

m∗

m0
= 1+

α

6
− α2

18
+O(α3). (33)

The effective mass renormalization in the Dyson ap-
proach is the same as that obtained within Brillouin-
Wigner perturbation theory applied to the Fröhlich po-
laron problem.27

In the case of the cumulant approach, the QP energy
is given by:

E>
k = ǫk +

α (~ω0)
3/2

2π
√
ǫk

arg

√
ǫk − Ω0 +

√
ǫk√

ǫk − Ω0 −
√
ǫk

. (34)

By taking the limit of small k, we obtain the standard
result for the QP energy at the band bottom,

E>
0

~ω0
= −α, (35)



7

which is valid at all α. The corresponding effective mass
is:

m∗,>

m0
=

1

1− α/6
= 1 +

α

6
+

α2

36
+O(α3). (36)

These last two results coincide with what one obtains by
performing Rayleigh-Schrödinger perturbation theory on
the Fröhlich polaron problem.65

It is instructive to compare Eqs. (30), (33), (35), and
(36) with calculations based on Feynman’s path integral
approach to the Fröhlich polaron problem.51 Feynman’s
approach is considered to be the most accurate in describ-
ing the undoped Fröhlich model, and agrees closely with
advanced diagrammatic Monte Carlo calculations.53 In
this approach, the QP energy and mass at weak coupling
are found to be:

E0

~ω0
= −α− 1

81
α2 +O(α3). (37)

m∗

m0
= 1 +

α

6
+ 0.025α2 +O(α3). (38)

These two results show that, at weak coupling (α ≪ 1),
both the Dyson approach and the cumulant approach
yield QP energies and effective masses that agree with
Feynman’s path integral calculation to first order in the
coupling strength α. A detailed comparison between
these three approaches to the undoped Fröhlich model
is shown in Fig. 3. This comparison shows that, while
the three approaches agree at weak coupling, there exist
significant differences for larger values of α. In particular,
the cumulant method yields a QP energy that remains
closer to the Feynman result up to intermediate coupling
strengths (α = 6), while the Dyson approach deviates
from Feynman’s already at moderate coupling. On the
other hand, the cumulant approach yields an unphysical
divergence of the effective mass at intermediate coupling
(singularity at α = 6 and change of sign beyond this
point), while the mass in Dyson’s method remains finite.
Based on the comparison between QP energies, re-

cently it has been argued that the cumulant method
provides a better description of polarons than Dyson’s
approach.30 However, Fig. 3 clearly shows that the effec-
tive mass (and by extension the band structure) in the
cumulant approach is not reliable at intermediate cou-
pling. This point is further corroborated by a close in-
spection of the spectral functions in Fig. 2(e): As a result
of a logarithmic singularity in the self-energy [Eq. (28)],
the QP energy diverges when ǫk = ~ω0, and the spectral
function exhibits unphysical vertical streaks.
Moving to the polaron satellites, we see from Figs. 2(c)

and (e) that both the Dyson’s approach and the cumulant
approach exhibit satellites states. As already discussed
in numerous reports,25,29–31,34–38,40–43,45,46,66–71 Dyson’s
approach yields only one satellite, to leading order lo-
cated at a binding energy of (1 + α)~ω0 from the QP
peak, see Fig. 2(c). On the other hand, the cumulant

method correctly yields multiple satellites which are sep-
arated from the QP peak by integer multiples of the bo-
son energy ~ω0. Thus, the cumulant method is superior
in the description of satellite features, as anticipated.
One last issue that deserves attention is the location of

the satellites with respect to the QP band. Both Dyson’s
method and the cumulant approach yield satellites lo-
cated at higher energy than the QP band [see Figs. 2(c)
and (e)] when applied to the empty-band system. How-
ever, in ARPES experiments satellites are observed below

the QP band, as schematically illustrated in Fig. 1. This
discrepancy has to do with the fact that ARPES probes
occupied electronic states, while the empty-band Fröhlich
model describes unoccupied states. It is clear that a cor-
rect description of polaron physics as probed in ARPES
experiments necessitates the study of a doped Fröhlich
solid. The following sections are devoted to the doped
model.

B. Finite Fermi level in the conduction band

Now we consider the case of partially occupied conduc-
tion band with a Fermi energy EF > 0. The self-energy
for this case is obtained by setting fk = θ(kF − k) in
Eqs. (18) and (19). In this section, we ignore free-carrier
screening, which will be included in Sec. III C. This ap-
proximation is meaningful to describe the anti-adiabatic
regime, where the Fermi level is much smaller than the
characteristic phonon energy, EF ≪ ~ω0.
After carrying out the integrals in Eqs. (18) and (19)

explicitly, we obtain the following self-energies. For com-
pleteness, key steps of the derivation are provided in Ap-
pendix B. The lesser self-energy, which describes electron
removal processes, is given by

Σ<
k (ω) = −α (~ω0)

3/2

2π
√
ǫk

[

L
(

√

EF/ǫk,
√

(~ω +Ω0)/ǫk

)

+ log
~ω +Ω0 − EF

~ω +Ω0 − ǫk
log

∣

∣

∣

∣

√
EF +

√
ǫk√

EF −√
ǫk

∣

∣

∣

∣

]

− ReΣ<
kF
(EF),

(39)

with

Σ<
kF
(EF) = −α (~ω0)

3/2

2π
√
EF

[

Li2
2
√
EF√

EF +
√
EF +Ω0

+ Li2
2
√
EF√

EF −
√
EF +Ω0

]

. (40)

In these expressions, the auxiliary function L is defined
as:

L(z1, z2) = Li2
1 + z1
1 + z2

+ Li2
1− z1
1 + z2

− Li2
1 + z1
1− z2

− Li2
1− z1
1− z2

, (41)
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Li2 denotes the dilogarithm function, and z1, z2 are
complex-valued parameters. The greater self-energy,
which describes electron addition processes, is found to
be:

Σ>
k (ω) =

α (~ω0)
3/2

2π
√
ǫk

[

L
(

√

EF/ǫk,
√

(~ω − Ω0)/ǫk

)

+ log
~ω − Ω0 − EF

~ω − Ω0 + ǫk
log

∣

∣

∣

∣

√
EF +

√
ǫk√

EF −√
ǫk

∣

∣

∣

∣

− iπ log

√
~ω − Ω0 +

√
ǫk√

~ω − Ω0 −
√
ǫk

]

− ReΣ>
kF
(EF), (42)

with

Σ>
kF
(EF) = −α (~ω0)

3/2

2π
√
EF

[

iπ log

√
EF − Ω0 +

√
EF√

EF − Ω0 −
√
EF

−Li2
2
√
EF√

EF +
√
EF − Ω0

− Li2
2
√
EF√

EF −
√
EF − Ω0

]

. (43)

For metallic systems, Luttinger’s theorem states that the
volume of the Fermi surface does not change when adi-
abatically turning on many-body interactions in a non-
interacting system.72 In the present model, the volume
of the Fermi surface is determined by the Fermi wavevec-
tor kF, therefore Luttinger’s theorem implies that kF and
hence the Fermi energy EF should not be affected by the
self-energy Σ. In order to enforce this condition, we sub-
tracted the constants defined in Eqs. (40) and (43) from
the lesser and greater self-energies in Eqs. (39) and (42),
respectively, so that ReΣkF

(EF/~) = 0. One can ver-
ify that this choice leaves the QP energy at the Fermi
level identical to the non-interacting energy, for both the
Dyson’s and cumulant approaches.
Using Eqs. (39) and (42), the retarded self-energy is

obtained as Σ = (Σ<)
∗
+ Σ>. We note that Eq. (42)

correctly reduces to the corresponding equation for the
undoped model, Eq. (28), upon taking the limit EF → 0.
The real and imaginary parts of the doped self-energy
are shown in Figs. 4(a) and (b). The real self-energy
is now positive in the range of occupied states, passes
through zero at (k = kF, ~ω = EF) to ensure particle
number conservation, and becomes negative for unoccu-
pied states. The resulting QP peak shown in Figs. 4(c)
and (e) thus exhibits a higher effective mass than the bare
electron. In fact, we find that the mass renormalization
in the presence of doping is even more pronounced than
in the empty-band model, as we discuss below.
Turning to the imaginary self-energy shown in

Fig. 4(b), we note that the main peak structure in ImΣ<
k

for occupied states, k < kF, is now found at lower ener-
gies than the independent particle, causing the satellites
in Figs. 4(c) and (d) to appear below the QP peak. For
empty states, the situation is similar to the discussion of
the empty-band model in Sec. (III A), i.e. we find satel-
lite features above the QP dispersions.
In both Dyson’s and cumulant approaches we find

that QP energy and effective mass are strongly doping-

dependent. Starting with the Dyson approach, the
dressed electron energy is found to be:

Ek = ǫk −
α (~ω0)

3/2

2π
√
ǫk

Re

[

L

(

√

EF/ǫk,
√

(Ek +Ω∗
0)/ǫk

)

− L
(

√

EF/ǫk,
√

(Ek − Ω0)/ǫk

)

+ log
Ek +Ω∗

0 − EF

Ek +Ω∗
0 − ǫk

log

∣

∣

∣

∣

√
EF +

√
ǫk√

EF −√
ǫk

∣

∣

∣

∣

− log
Ek − Ω0 − EF

Ek − Ω0 + ǫk
log

∣

∣

∣

∣

√
EF +

√
ǫk√

EF −√
ǫk

∣

∣

∣

∣

+ iπ log

√
Ek − Ω0 +

√
ǫk√

Ek − Ω0 −
√
ǫk

]

− ReΣkF
(EF). (44)

At the bottom of the conduction band (k = 0), this
result yields the following expressions for the QP energy
and the effective mass:

E0

~ω0
=

α

π
Re

[ √
~ω0

√

E0 +Ω∗
0

log

√

E0 +Ω∗
0 +

√
EF

√

E0 +Ω∗
0 −

√
EF

(45)

−
√
~ω0√

E0 − Ω0

(

log

√
E0 − Ω0 +

√
EF√

E0 − Ω0 −
√
EF

+ iπ

)

+
1

2

√

~ω0

EF

(

iπ log

√
EF − Ω0 +

√
EF√

EF − Ω0 −
√
EF

+ Li2
2
√
EF√

EF +
√

EF +Ω∗
0

+ Li2
2
√
EF√

EF −
√

EF +Ω∗
0

− Li2
2
√
EF√

EF +
√
EF − Ω0

− Li2
2
√
EF√

EF −
√
EF − Ω0

)]

,

and

m∗

m0
=

[

1 +
α(~ω0)

3/2

2π (E0 +Ω∗
0)

3/2
(46)

×
(

log

√

E0 +Ω∗
0 +

√
EF

√

E0 +Ω∗
0 −

√
EF

+
2
√

EF (E0 +Ω∗
0)

E0 − EF +Ω∗
0

)

− α(~ω0)
3/2

2π (E0 − Ω0)
3/2

×
(

log

√
E0 − Ω0 +

√
EF√

E0 − Ω0 −
√
EF

+
2
√

EF (E0 − Ω0)

E0 − EF − Ω0
− iπ

)]

×
[

1 +
2α (~ω0)

3/2

3π

×
(

E0 +Ω∗
0

EF (E0 − EF +Ω∗
0)

2 − E0 − Ω0

EF (E0 − EF − Ω0)
2

+
tanh−1

√
EF√

E0+Ω∗

0

(E0 +Ω∗
0)

3/2
−

tanh−1
√
EF√

E0−Ω0

− π/2

(E0 − Ω0)
3/2

−
√
EF (EF − 2E0 − 2Ω∗

0)

(E0+Ω∗
0)(EF−E0−Ω∗

0)
2 +

√
EF (EF − 2E0 + 2Ω0)

(E0−Ω0)(EF−E0+Ω0)
2

)]−1

.
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As in the undoped case, all quantities in the Dyson
approach are defined self-consistently. In the cumulant
approach, the QP energy and effective mass are again
evaluated at the independent particle energy, and the
self-energy is always linear in α. The k-dependent QP
energy in the cumulant approach is given by:

E<
k = ǫk (47)

+Re

[

α (~ω0)
3/2

π
√
ǫk +Ω0

log

√
ǫk +Ω0 +

√
EF√

ǫk +Ω0 −
√
EF

− Σ<
kF
(EF)

]

.

At the Γ point, this becomes:

E<
0

~ω0
=

α

π
Re

[

log

√
Ω0 +

√
EF√

Ω0 −
√
EF

+
1

2

√

~ω0

EF
(48)

×
(

Li2
2
√
EF√

EF +
√
EF +Ω0

+ Li2
2
√
EF√

EF −
√
EF +Ω0

)]

.

The cumulant effective mass is given by

m∗

m0
=

[

1− α

2π

(

log

√
Ω0 +

√
EF√

Ω0 −
√
EF

+
2
√
EF Ω0

Ω0 − EF

)

− 2α

3π
√
EF

(

√

~ω0 −
√

EF tanh−1

√
EF√
Ω0

)

]−1

.(49)

These expressions are illustrated in Fig. 6. The depen-
dence of the QP renormalization on the coupling strength
α and doping level EF for the Dyson and cumulant ap-
proaches are shown in Figs. 6(a) and (c), respectively.
Figures 6(b) and (d) show the corresponding effective
masses.
The darker the shade of green in Figs. 6(a) and (c),

the lower the QP energy lies below the Fermi level. This
situation corresponds to a stable dressed electron, pre-
cisely as in the case of the undoped Fröhlich model. Con-
versely, the red areas in Figs. 6(a) and (c) indicate that
the QP peak would lie above EF, causing a breakdown
of the Fermi surface. This latter scenario is unphysical,
and underscores the limitations of using a second-order
electron-phonon self-energy.
Moreover, moving to the effective masses shown in

Figs. 6(b) and (d), we find areas in the phase space where
overshooting mass renormalization leads to an inversion
of the curvature in the QP spectrum, and a negative ef-
fective mass (shown in red). We refer to this effect as
’anomalous mass enhancement’.
We emphasize that the data presented in Fig. 6 do not

take into account free-carrier screening of the electron-
phonon matrix elements. As we show in Sec. III C and
Fig. 10, the inclusion of free-carrier screening extends
the validity range of both the Dyson and cumulant ap-
proaches, but unphysical solutions still exist in the region
EF < ~ω0, i.e. in the anti-adiabatic regime. The insets
in Figs. 6(b) and (d) show an enlarged view of the low-
doping limit for small α. Note that the color bar has
been extended with respect to the full image.

In fact, this situation is reminiscent of Fröhlich’s theory
of superconductivity,73 which incorrectly predicts an in-
version of the band curvature at strong coupling.74 This
artifact was later resolved within the Bardeen-Cooper-
Schrieffer theory, where the self-energy is evaluated self-
consistently as opposed to perturbatively,75 and the re-
sulting band structure features an energy gap, instead of
inverted bands.
The anomalous mass renormalization in the presence of

doping, and the emergence of critical values for α and EF

is a consequence of an intricate dependence of Σ on the
Fermi energy: In appendix C, we show that the curvature
of the (lesser) self-energy exhibits a singularity near EF =
0. The effective mass is defined as:

m∗ =

[

1

m0
+

1

~2

d2 ReΣk(Ek)

dk2

]−1

k=0

, (50)

and d2Σ/dk2 < 0 for EF ≥ 0. At large doping lev-
els, the (negative) curvature of Σ is small, and so is the
mass enhancement due to Eq. (50). With decreasing EF,
the curvature d2Σ/dk2 approaches −1/m0 from above,
and the effective mass can reach arbitrarily large val-
ues. Beyond the critical value of EF, as the magnitude
of d2Σ/dk2 keeps increasing, Eq. (50) becomes negative
and the quasi-particle picture breaks down.
This behavior occurs in both the Dyson and cumulant

aproaches, and is also independent of the specific im-
plementation of the cumulant method: In appendix C,
we show that the small-EF behavior of the retarded
cumulant36 is very similar.
It is instructive to consider the QP energy and mass

renormalization near this singularity in Σ. For small cou-
pling strengths α ≪ 1, we find the following expressions
as we take the extreme anti-adiabatic limit EF ≪ ~ω0 in
the Dyson approach:

E0

~ω0
=

2α

π

√

EF

~ω0
+

α

6

EF

~ω0
+O(EF/~ω0)

3/2, (51)

m∗

m0
= −4α

3π

√

~ω0

EF
+

(

1 +
5α

6

)

−8α

3π

√

EF

~ω0
+O(EF/~ω0)

3/2

(52)
while for the cumulant expansion we obtain:

E<
0

~ω0
=

α

π

√

EF

~ω0
+O(EF/~ω0)

3/2, (53)

m∗

m0
=

2α

3π

√

~ω0

EF
+1+

4α

3π

√

EF

~ω0
+O(EF/~ω0)

3/2. (54)

Note that to obtain Eqs. (51)-(54), we have first taken
the limit for small α followed by the limit for small EF,
i.e. we remain within the green area in Figs. 6(b) and
(d).
Within the range of physical values for (α,EF), we find

that the Dyson approach tends to provide more stable so-
lutions in the phase space, cf. Fig. 6. Nevertheless, given
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that for the doped Fröhlich solid there exists no solu-
tion equivalent to Feynman’s treatment of the Fröhlich
polaron, it is difficult to judge whether the Dyson or cu-
mulant approach yields the more accurate QP and mass
renormalization.
For both approaches, we observe that combinations of

intermediate-to-high coupling strengths and low doping
levels quickly become problematic, while high doping lev-
els and low coupling strengths lead to meaningful results.
Probably, this was to be expected, since the Migdal theo-
rem (which underpins the Fan-Migdal self-energy) is only
valid within the adiabatic approximation, ~ω0 ≪ EF.

26

This result is significant for the interpretation of ex-
perimental data. Commonly, the curvature of the QP
band obtained from from ARPES measurements is used
to determine the dressed mass and hence the coupling
strength α. In the literature, the coupling strength is
often determined by using the formula for the undoped
Fröhlich model, as given by Eqs. (31) and (36). How-
ever, the experimental setup for ARPES always requires
a small but finite Fermi sea from which electrons can be
excited. As discussed above, the physics of such a system
are likely better captured by Eqs. (51)-(54).
Moving to the polaron satellites, we see from Figs. 4(c)

and (d) that the Dyson approach again produces a single
satellite starting with a broad area of low but non-zero
spectral weight at one phonon energy below the Fermi
edge. Note that this area extends beyond the Fermi mo-
mentum kF, suggesting that unoccupied electronic states
could also emit a phonon upon excitation. This does not
conform to experiment, and is an artefact of formulating
the Fan-Migdal self-energy as a retarded quantity, i.e.
treating occupied and unoccupied states within the same
self-energy. At the lower end of the satellite structure,
we recover a sharp peak whose intensity is almost of the
order of the main QP peak.
On the other hand, the cumulant approach, shown in

Figs. 4(e) and (f), produces several satellites at exactly
integer multiples of the boson energy, with peak intensi-
ties following a Poisson distribution.
Moreover, our analytical approach indicates that the

satellites consist of doublets: Consider Fig. 5, in which
we juxtapose the imaginary self-energy at ǫk = 0.1~ω0,
also shown in Fig. 4(b), with the corresponding satel-
lite function which yields the double-peaked satellite of
Fig.4(e). At finite doping, phonon emission and absorp-
tion processes can occur at all energies between ǫk=0 and
EF, which causes the finite imaginary self-energy in the
energy range [−~ω0,−~ω0 + EF]. This is shown as the
’phonon’ line in blue in Fig. 5. Mathematically, this is
due to the negative argument of the logarithm in Eq. (39)
at the given values, which is independent of the elec-
tronic lifetime broadening iη. The energy of the lower
edge of the satellite, ~ω = ǫk − ~ω0, is equal to the
singularity of the non-interacting electron Green’s func-
tion shifted by the phonon energy. This is indicated by
the green line ’electron’ in Fig. 5. In numerical calcula-
tions, the peak height of this singularity is determined by

the parameter iη, and it enters the self-energy through
L(
√

EF/ǫk,
√

(~ω +Ω∗
0)/ǫk.

In some of the early work on the cumulant spectra of
polarons, it was suspected that the satellite peak would
simply follow the dispersion of the QP band.44 By de-
riving all involved quantities analytically, we are able to
uncover an even more nuanced picture of the cumulant
satellites.
Conversely, our analytical solutions exhibit a sec-

ondary peak whose dispersion is inverted with respect
to the main satellite peak, leading to a near-elliptical
feature. The energy separation of the two structures
that constitute the satellite peak equals the Fermi en-
ergy. This non-trivial satellite structure may be related
to the finite spectral weight between satellites observed in
experiment, and it could provide an explanation for some
of the broadening of spectral features seen in ARPES but
not yet reproduced in previous ab initio calculations; cf.
e.g. Refs. 17,19.

C. Finite Fermi level including free-carrier

screening

In this last section we consider the most complex sce-
nario: a Fröhlich model with doping as well as screening
of the electron-phonon interaction by free carriers. Due
to the intricate dependence of the screened matrix ele-
ment on the wave vector q, see Eq. (6), we express the
screened self-energy in terms of a one-dimensional inte-
gral in q. The screened lesser self-energy is given by:

Σ<
k (ω) = −α (~ω0)

3/2

2π
√
ǫk

×
[

∫ kF−k

0

dq

|εRPA(q)|2 q log
~ω − ~

2(k+q)2

2m0

+Ω0

~ω − ~2(k−q)2

2m0

+Ω0

+

∫ kF+k

kF−k

dq

|εRPA(q)|2 q log
~ω − EF +Ω0

~ω − ~2(k−q)2

2m0
+Ω0

]

−ReΣ<
kF
(EF), (55)

with

Σ<
kF
(EF) =

α ~ω0

2π

√

~ω0

EF

×
∫ 2kF

0

dq

|εRPA(q)|2 q log

(

1− ~
2(q2 − 2kFq)

2m0Ω0

)

. (56)
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The screened greater self-energy is found to be:

Σ>
k (ω) = −α (~ω0)

3/2

2π
√
ǫk

×
[

∫ kF+k

kF−k

dq

|εRPA(q)|2 q log
~ω − ~

2(k+q)2

2m0

− Ω0

~ω − EF − Ω0

+

∫ ∞

kF+k

dq

|εRPA(q)|2 q log
~ω − ~

2(k+q)2

2m0

− Ω0

~ω − ~2(k−q)2

2m0

− Ω0

]

−ReΣ>
kF
(EF), (57)

with

Σ>
kF
(EF) = −α ~ω0

2π

√

~ω0

EF

×
[

∫ 2kF

0

dq

|εRPA(q)|2 q log

(

1 +
~
2(q2 − 2kFq)

2m0Ω0

)

+

∫ ∞

2kF

dq

|εRPA(q)|2 q log
1 + ~

2(q2+2kFq)
2m0 Ω0

1 + ~2(q2−2kFq)
2m0 +Ω0

]

. (58)

Expressions for the QP energy and effective mass for the
screened case are provided in App. E.
The magnitude of electronic screening effects depends

both on the given Fermi level EF, as well as material-
specific parameters. In the Lindhard function in Eq. (4),
system properties enter through the Wigner-Seitz radius
rs, which depends on the bare mass of the conduction
electrons m0 and the dielectric constant ε of the undoped
solid in the high-frequency limit.
In Fig. 7, we show the screening function

|εRPA(q, ω0)|−2 as a function of doping level n0 for
two types of systems. This function quantifies the
suppression of the electron-phonon matrix element g
by free-carrier screening, because the Fröhlich matrix
elements appears to the second power in the self-energy,
and the angular integration over the phonon wavevec-
tor introduces a phase-space factor 4πq2. Therefore
the impact of the screening is to modify a function
that scales as q2|g|2 ∼ 1 to a function that scales as
|εRPA|−2q2|g|2 ∼ |εRPA|−2. If |εRPA|−2 = 1, there is
no screening by free carriers; for |εRPA|−2 = 0, all
electron-phonon coupling is completely suppressed. The
dielectric function in Fig. 7(a) corresponds to a dilute
electron gas with a high electron mass and intermediate
dielectric constant, as realized e.g. in cubic SrTiO3. We
observe that the ability of the free carriers to screen
long-range (small-q) electron-phonon coupling gradually
increases over a typical doping range for conducting
oxides (1018-1021 cm−3). At the highest doping level
shown, polar interactions are almost completely sup-
pressed, indicating that we have reached the metallic
limit.
By contrast, the screening function in Fig. 7(b) is that

of a dense electron gas, as realized e.g. in GaAs. In the
latter case, a very low electron mass means that the free

carriers can screen long-range electron-phonon interac-
tions very effectively already at relatively low doping lev-
els. In these systems, Fröhlich coupling only plays a sec-
ondary role, therefore in the remainder of this manuscript
we focus on dilute electron gases such as the one in
Fig. 7(a).
Figure 8 illustrates the effect of this screening func-

tion on the real and imaginary parts of the self-energy
at a doping level of EF/~ω0 = 0.8. The correspond-
ing unscreened and screened Dyson spectral functions
are shown in Figs. 9(a)-(d), while the second-order cu-
mulant spectral functions are shown in Figs. 9(e)-(h). In
particular, note that the Fermi surface in the unscreened
second-order cumulant spectrum in Fig. 9(e) is breaking
down due to (unphysically) strong renormalization effects
at the given values of α and EF. We expect the effective
electron-phonon interaction in a real system to be closer
to the situation shown in Fig. 9(g), in which the polar
coupling is partially suppressed.
Given the q dependence of the dielectric function, the

effect of electron screening is not uniform, but rather
stronger up to a scattering wave vector q = kF, and then
weaker for states k and k′ which are farther apart.
The significant effect of free-carrier screening on the

total Fröhlich coupling strength in the system is also
seen in Fig. 10, where we show the QP energy and ef-
fective mass renormalization in the doped Fröhlich solid
using the screened matrix element. The comparison to
the corresponding Fig. 6 is telling: We find that the re-
gion showing the effective mass anomaly is reduced, and
in general we observe weaker renormalization for a wide
range of coupling strengths α and doping levels. For
EF/~ω0 > 1.5, the effective mass in the second-order
cumulant expansion returns to values close to the non-
interacting system.
Turning to the satellites in Figs. 9(a) and (c), we ob-

serve that the energy difference between QP and satellite
in the screened system is reduced by approximately 50%.
This result underscores the pathological dependence of
the satellite energy on the coupling strength in Dyson’s
approach. As the energy of the phonon is the same with
or without screening (barring frequency renormalization
effects that we did not consider in this work), there is no
reason to expect the satellite energy to change as a result
of free-carrier screening.
By contrast, the lower peak in the satellite structure

in the screened cumulant spectrum [Fig. 9(g)] remains
separated from the QP peak by one phonon energy. As
discussed above, the energy span of the satellite in the
cumulant approach matches the size of the Fermi energy
in the system. At a Fermi level of EF/~ω0=0.8, we find
substantial spectral weight in the region in between the
quasi-particle and the satellite. This finding is in re-
markable agreement with the raw ARPES data reported
in Refs. 17 and 19 for n-doped SrTiO3 and EuO, respec-
tively.
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IV. EXPERIMENTAL QP WEIGHT

Wang et al.17 present a very careful analysis of
polaron satellites in the two-dimensional electron gas in
doped SrTiO3. The lowest doping level considered in
this study is n2D = 2.9 × 1013cm−2. We can assume
that the conduction band near Γ is well described by
three degenerate parabolic bands with an average band
mass of m0 = 0.9.76 The considered doping level then
corresponds to a Fermi wavevector of kF=0.041a−1

0 and a
Fermi energy of EF = 25meV. With a phonon energy of
~ω0 =100meV and a reported Fröhlich coupling strength
of α ≈ 2 − 3, they observe intermediate quasi-particle
renormalization with Z ≈ 0.2.

Equations (12) and (24) give the expressions for
the Dyson and cumulant quasi-particle weights, respec-
tively. To be able to evaluate them analytically, we
have derived expressions for the frequency derivative of
the self-energy for finite Fermi energy. For the Dyson
equation approach, we need the derivative of the full
retarded self-energy:

1

~

∂Σk=0(ω)

∂ω
= − α (~ω0)

3/2

2π (~ω +Ω∗
0)

3/2
(59)

×
(

log

√

~ω +Ω∗
0 +

√
EF

√

~ω +Ω∗
0 −

√
EF

+
2
√

EF (~ω +Ω∗
0)

~ω +Ω0 − EF

)

+
α (~ω0)

3/2

2π (~ω − Ω0)
3/2

×
(

log

√
~ω − Ω0 +

√
EF√

~ω − Ω0 −
√
EF

+
2
√

EF (~ω − Ω0)

~ω − Ω0 − EF
+ iπ

)

.

To obtain the Dyson quasi-particle weight at k = 0, we
evaluate this expression at ~ω = ǫk=0 + Zk=0ǫk=0.
For the cumulant expansion, we find for the derivative:

1

~

∂Σ<
k=0(ω = 0)

∂ω

= − α

2π

(

log

√
Ω0 +

√
EF√

Ω0 −
√
EF

+
2
√
EF Ω0

Ω0 − EF

)

. (60)

We insert Eqs. (59) and (60) into Eqs. (12) and (24), and
evaluate the quasi-particle weight using the parameters

α = 3, ~ω0 = 100meV m0 = 0.9me EF = 25meV.

The resulting quasi-particle weight is reported in table II.
We find that the calculated Dyson and cumulant QP
weights over-estimate the measured weight by a factor
of 2 and 1.5, respectively. For case of the cumulant ex-
pansion, this inconsistency between theoretical and ex-
perimental spectra has been studied in great detail in
the literature, see e.g. Ref. 46. In this study, the authors
are able to show how additional satellite intensity arises
from inelastic scattering of the outgoing photoelectron in
experiment.

V. CONCLUSIONS

We have presented the doped Fröhlich solid as a gen-
eralization of the Fröhlich polaron problem to study the
single-particle excitation spectra of doped polar oxides,
as measured by ARPES experiments. To reach reliable
conclusions that are not affected by numerical sampling
of the electron-phonon scattering, we derived exact ana-
lytical expressions for the electron self-energy in the pres-
ence of free carriers. These expressions allow to analyze
in detail the role of Pauli blocking and free carrier screen-
ing in the electron spectral functions.
Our analytical approach has provided new insight into

the Fröhlich polaron problem, and allows us to draw the
following conclusions: To capture the low-energy many-
body physics of doped polar semiconductors, especially
in the presence of doping (as needed in ARPES mea-
surements), it is crucial to explicitly account for the
small but non-zero electron occupations in the conduc-
tion band. We have demonstrated that neglecting finite
occupations leads to incorrect satellite energetics and ex-
cessive electron-phonon renormalization. In the case of
high doping levels, further many-body effects in the form
of free-carrier screening of the electron-phonon matrix
element must also be included to achieve a meaningful
description of QP shifts and effective mass renormaliza-
tion.
We have derived analytical expressions for the renor-

malized band energy and effective mass of the doped
Fröhlich model, and investigated the dependence of these
quantities on the coupling strength and the doping level.
We have found that a significant portion of the coupling-
doping phase diagram exhibits regions with anomalously
strong mass enhancement, as well as regions where the
band curvature is inverted, leading to a breakdown of the
QP picture. These findings indicate that caution must be
used when studying electron-phonon coupling in doped
polar materials, as the standard second-order Fan-Migdal
self-energy might not provide a physically accurate pic-
ture in the anomalous regions of the phase diagram iden-
tified in this work.
We also found that, in the presence of doping, the mass

renormalization depends both on the electron-phonon
coupling strength and the Fermi level. This finding im-
plies that the use of the standard relation m∗/m0 =
1 + α/6 for extracting the Fröhlich coupling from ex-
periments is not justified, and should be replaced by the
generalized expression obtained in this work, Eq. (51).
In line with previous literature, we found that the

second-order cumulant spectral function improves the de-
scription of polaron satellites compared to the conven-
tional first-order Dyson approach. The intensity and
binding energy of the sidebands provided by the cumu-
lant method are in line with the equidistant satellites
observed in experiments. On the other hand, the cumu-
lant method appears to provide a worse description of
the QP band, as compared to the Dyson approach. In-
deed, we have shown that the cumulant approach leads
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to an inversion of the band curvature over a much wider
region of the phase diagram as compared to the Dyson
method, and that the cumulant spectral function exhibits
unphysical vertical streaks that are intrinsic to the theo-
retical framework (rather than being numerical artifacts).
Our comparative analysis of the cumulant and Dyson ap-
proaches leads to suggest that a complete description of
the Fröhlich problem in the presence of doping might
require the inclusion of self-energy diagrams beyond the
second order. In the meantime, we recommend that both
approaches be tested in future calculations, keeping in
mind that the cumulant method appears more suited to
describing satellites, and the Dyson method appears to
describe QP bands better.
We hope that this work will stimulate further discus-

sion on the role of doping in the electron-phonon interac-
tion in polar insulators and semiconductors, and inspire
additional investigations of the reliability and scope of
the cumulant method and the Dyson approach in the
study of electron-phonon effects in these materials.
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Appendix A: Debye-Waller self-energy

In this appendix, we show that the QP shift aris-
ing from the Debye-Waller self-energy24 vanishes in the
Fröhlich model. We start from the compact expression
for the Debye-Waller matrix element in the rigid-ion ap-
proximation derived in Ref. 77:

Dκαα′

(k) = i〈uk|
[

∂ΓκαV̂
L, p̂α′

]

|uk〉, (A1)

where α, α′ are Cartesian coordinates, κ is the atomic in-
dex, uk are the Bloch-periodic components of the electron
wavefunctions, V̂ L is the long-range part of the interac-
tion potential, and

p̂α =
∑

κα′

Zκαα′∆τκα′ (A2)

is the dipole moment in direction α arising from the dis-
placement of atom κ with Born effective charge Zκαα′

along the direction ∆τκα′ . The potential derivative in

Eq.(A1) is defined as24

∂qκαV̂ =
∑

p

e−iq·(r−Rp)
∂V

∂τκα

∣

∣

∣

∣

∣

r−Rp

, (A3)

where Rp is the lattice vector of the p-th unit cell in the
supercell, and τκα is the coordinate of atom κ in cartesian
direction α.
In the doped Fröhlich solid, the electronic states are

planewaves and the long-range part of the Fröhlich po-
tential is4

V̂ L(r) = −i
4π

4πǫ0NΩUC
(A4)

×
∑

q
G 6=−q

∑

καα′

Zκαα′∆τκα′

(q+G)α ei(q+G)·r

(q+G) · εεε · (q+G)
.

Here, G is a reciprocal lattice vector, and εεε is the static
dielectric tensor of the crystal. Using the isotropy of our
system to simplify the Born effective charge and dielectric
tensors, Zκαα′ = Zκδαα′ and εαα′ = ǫ∞δαα′ , we can
calculate the derivative

∂Γκα = − i

ǫ0 ǫ∞ ΩUC

∑

G 6=0

∑

κ

Zκ
Gα eiG·r

|G|2 . (A5)

After calculating the commutator of this function with
the dipole p̂α, we obtain a lattice periodic expression,
and as the eigenstates of our system are plane waves, we
find

〈uk|eiG·r|uk〉 = 0. (A6)

This result shows that the Debye-Waller correction van-
ishes for the Fröhlich model.

Appendix B: Derivation of the Fan-Migdal

self-energy

In this appendix, we outline the derivation of the vari-
ous self-energy expressions used in this manuscript, start-
ing from the definition of the Fan-Migdal self-energy
given in Eqs. (18) and (19).

1. Single electron in the conduction band

In the case of a single electron added to the conduction
band, the occupation factor fk+q vanishes everywhere,
cancelling all contributions from the lesser self-energy.
At the Γ point (k = 0), we integrate Eq. (19) by intro-

ducing spherical coordinates. We write:

Σ>
k=0(ω) = 4π

∫ ∞

0

dq q2

(2π)3
|g(q)|2

~ω − ~2q2

2m0

− Ω0

, (B1)



14

and find:

Σ>
k=0(ω) = −i

α (~ω0)
3/2

√
~ω − Ω0

, (B2)

where we used the definition of the Fröhlich matrix ele-
ment, Eq. (2). Equation (B1) leads directly to Eq. (30).
For general k, we write Eq. (19) as

Σ>
k (ω) =

∫

dq

(2π)3
|g(q− k)|2

~ω − ~2q2

2m0

− Ω0

. (B3)

After transforming to spherical coordinates, we use the
identity

∫ π

0

dθ sin θ

k2 + q2 − 2kq cos θ
=

1

2kq
log

(k + q)2

(k − q)2
, (B4)

and the definition of the Fröhlich matrix element,
Eq. (2), to obtain:

Σ>
k (ω) =

α ~(~ω0)
3/2

2π k
√
2m0

∫ ∞

0

dq q

~ω − ~2q2

2m0
− Ω0

log
(k + q)2

(k − q)2
.

(B5)

The integrand in Eq. (B5) has the primitive:

I(q) = −
[

log
~ω − ~

2q2

2m0

− Ω0

~ω − ~2k2

2m0
− Ω0

log

∣

∣

∣

∣

∣

q + k

q − k

∣

∣

∣

∣

∣

(B6)

+ Li2

~(k+q)√
2m0

~k√
2m0

−
√
~ω − Ω0

+ Li2

~(k+q)√
2m0

~k√
2m0

+
√
~ω − Ω0

− Li2

~(k−q)√
2m0

~k√
2m0

+
√
~ω − Ω0

− Li2

~(k−q)√
2m0

~k√
2m0

−
√
~ω − Ω0

]

.

We find I(q = 0) = 0; in the limit q → ∞, only the
dilogarithms Li2 survive and converge to:

lim
q→∞

I(q) = −iπ log

√
~ω − Ω0 +

√
ǫk√

~ω − Ω0 −
√
ǫk

. (B7)

Inserting Eq. (B7) into Eq. (B5), we find Eq. (28) from
the main text.

2. Finite Fermi level in the conduction band

We now consider the scenario where we have a finite
electron density in the conduction band. At k = 0, the
lesser self-energy is defined as

Σ<
k=0(ω) = 4π

∫ kF

0

dq q2

(2π)3
|g(q)|2

~ω − ~2q2

2m0

+Ω0

, (B8)

which can be integrated to give

Σ<
k=0(ω) =

α (~ω0)
3/2

π
√
~ω +Ω0

log

√
~ω +Ω0 +

√
EF√

~ω +Ω0 −
√
EF

. (B9)

For the greater self-energy, we have

Σ>
k=0(ω) = 4π

∫ ∞

kF

dq q2

(2π)3
|g(q)|2

~ω − ~2q2

2m0

− Ω0

, (B10)

and hence

Σ>
k=0(ω) = − α (~ω0)

3/2

π
√
~ω − Ω0

[

log

√
~ω − Ω0 +

√
EF√

~ω − Ω0 −
√
EF

+ iπ

]

.

(B11)

For general k, the lesser self-energy is obtained from an
expression similar to that of Eq. (B6), but with the sign
of Ω0 inverted, which then needs to be evaluated at q = 0
and at q = kF, respectively, to give Eq. (39). The greater
self-energy at k 6= 0 is obtained from Eq. (B6) evaluated
at q = kF and q → ∞, which leads to Eq. (42).

3. Finite Fermi level including free-carrier

screening

In this section we provide details on the calculation of
the self-energy in the presence of free-carrier screening.
Inserting the screened coupling matrix element given in
Eq. (19) into Eqs. (18) and (19), we obtain for the self-
energy at k = 0:

Σ<
k=0(ω) =

∫ ∞

0

dq q2

2π2

|g(q)|2
|εRPA(q)|2

θ
(

k2F − q2
)

~ω − ~2q2

2m0

+Ω0

,

(B12)

Σ>
k=0(ω) =

∫ ∞

0

dq q2

2π2

|g(q)|2
|εRPA(q)|2

θ
(

q2 − k2F
)

~ω − ~2q2

2m0
− Ω0

.

(B13)
Using the Fröhlich matrix element in Eq. (2), we recover
Eqs. (55) and (57) from the main text.
For general k, we write

Σ<
k (ω) =

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

dq q2

(2π)3
|g(q)|2

|εRPA(q)|2

× θ
(

k2F − (k2 + q2 + 2kq cos θ)
)

~ω − ~2(k2+q2+2kq cos θ)
2m0

+Ω0

, (B14)

Σ>
k (ω) =

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

dq q2

(2π)3
|g(q)|2

|εRPA(q)|2

× θ
(

(k2 + q2 + 2kq cos θ)− kF
)

~ω − ~2(k2+q2+2kq cos θ)
2m0

− Ω0

, (B15)

where φ and θ are relative angles between vectors k and
q. For the integration over angle θ, we use the substitu-
tion x = kF − k2 − q2 − 2kq cos θ to obtain:

Σ<
k (ω) =

2π

~

1

2k

∫ ∞

0

dq q

(2π)3
|g(q)|2

|εRPA(q)|2

×
∫ k2

F
−(k−q)2

k2

F
−(k+q)2

dx
θ (x)

~ω − ~2(k2

F
−x)

2m0

+Ω0

,(B16)
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Σ>
k (ω) =

2π

~

1

2k

∫ ∞

0

dq q

(2π)3
|g(q)|2

|εRPA(q)|2

×
∫ k2

F
−(k−q)2

k2

F
−(k+q)2

dx
θ (−x)

~ω − ~2(k2

F
−x)

2m0
− Ω0

.(B17)

As we are using spherical coordinates, we have
k ≥ 0, q ≥ 0 and kF > 0, and hence

k2F − (k − q)2 ≥ k2F − (k + q)2, (B18)

allowing us to identify three ranges for the integration
over q: For the lesser self-energy [Eq. (B16)] we have: (i)
If k2F ≥ (k + q)2, then θ (x) = 1 and

∫ k2

F
−(k−q)2

k2

F
−(k+q)2

dx

~ω − ~2(k2

F
−x)

2m0
+Ω0

= log
~ω − ~

2(k+q)2

2m0

+Ω0

~ω − ~2(k−q)2

2m0

+Ω0

. (B19)

(ii) If (k + q)2 ≥ k2F ≥ (k − q)2, we have

∫ k2

F
−(k−q)2

0

dx

~ω − ~2(k2

F
−x)

2m0

+Ω0

= log
~ω − EF +Ω0

~ω − ~2(k−q)2

2m0

+Ω0

. (B20)

(iii) For (k − q)2 ≥ kF, the Heaviside function in (B16)
vanishes everywhere. In particular, there is no contribu-
tion for q ≥ kF. Combining Eqs. (B16), (B19) and (B20),
we recover Eq. (55) from the main text.
For the greater self-energy [Eq. (B17)], we have (i)

θ (−x) = 0 whenever k2F ≥ (k+ q)2, cancelling all contri-
butions for q < kF. (ii) If (k + q)2 ≥ k2F ≥ (k − q)2, we
have

∫ 0

k2

F
−(k+q)2

dx

~ω − ~2(k2

F
−x)

2m0

− Ω0

= log
~ω − ~

2(k+q)2

2m0
− Ω0

~ω − ~2(k−q)2

2m0
− Ω0

. (B21)

(iii) For (k − q)2 ≥ k2F, we obtain

∫ k2

F
−(k−q)2

k2

F
−(k+q)2

dx

~ω − ~2(k2

F
−x)

2m0
− Ω0

= log
~ω − ~

2(k+q)2

2m0

− Ω0

~ω − ~2(k−q)2

2m0

− Ω0

. (B22)

Combining Eqs. (B17), (B21) and (B22), we recover
Eq. (57) from the main text.

Appendix C: Derivation of the effective mass

1. Dyson effective mass

The effective mass m∗ corresponding to the QP energy
in Dyson’s approach,

Ek = ǫk +ReΣk(Ek), (C1)

is given at k = 0 by

1

m∗ =
1

~2

d2Ek

dk2

∣

∣

∣

∣

∣

k=0

=
1

m0
+

1

~2

d2 ReΣk(Ek)

dk2

∣

∣

∣

∣

∣

k=0

. (C2)

We can express the momentum dependence of the self-
energy in terms of the associated bare electron energy ǫk,
and write:

d2Σ(ǫk, Ek)

dk2
=

∂Σ(ǫk, Ek)

∂ǫk

d2 ǫk
dk2

+
∂Σ(ǫk, Ek)

∂Ek

d2Ek

dk2
,

(C3)
and hence63

m∗

m0
=

1− ∂ReΣ(ǫk, Ek)/∂Ek

1 + ∂ReΣ(ǫk, Ek)/∂ǫk

∣

∣

∣

∣

∣

k=0

. (C4)

2. Cumulant effective mass

As the QP energy in the cumulant expansion is simply
given by

E<
k = ǫk +ReΣ<

k (ǫk), (C5)

the corresponding effective mass is equal to

m∗

m0
=

[

1 +
1

~

∂ ReΣ<
k (ω)

∂ω
+

∂ ReΣ<
k (ω)

∂ǫk

]−1

ǫk=0,ω=0

.

(C6)
As the cumulant self-energy is linear in α, the small-α
expansion of the effective mass becomes

m∗

m0
= 1− 1

~

∂ ReΣ<
k (ω)

∂ω
− ∂ ReΣ<

k (ω)

∂ǫk
+O(α2). (C7)

3. Singularity in d2Σ/dk2

We can calculate the curvature of Σ at k = 0 for the
unscreened system by starting from Eq. (55) and setting
εRPA ≡ 1. After taking the derivative we are left with
the integral in q:

∂ Σ<
k (ω)

∂ǫk

∣

∣

∣

∣

∣

k=0

= −2α~ω0

√
EF ~ω0

3π
(C8)

×
∫ kF

0

dq

kF

~
2q2

2m0

+ 3~ω + 3Ω0
(

~2q2

2m0
− ~ω − Ω0

)3

− 2α ~ω0

3π

√

~ω0

EF

~ω +Ω0

(~ω − EF +Ω0)
2
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From the second term in Eq. (C8), its divergent behavior
at EF → 0 is apparent. After evaluation of the integral,
we find

∂ Σ<
k (ω)

∂ǫk

∣

∣

∣

∣

∣

k=0

= −2α~ω0

√
EF ~ω0

3π
(C9)

×
[

EF − 2~ω − 2Ω0

(~ω +Ω0) (EF − ~ω − Ω0)
2

− 1
√
EF (~ω +Ω0)

3/2
tanh−1

√
EF√

~ω + Ω0

]

− 2α ~ω0

3π

√

~ω0

EF

~ω +Ω0

(~ω − EF +Ω0)
2 .

4. Effective mass of the retarded cumulant

In the framework of the retarded cumulant, the effec-
tive mass at k = 0 is defined as:

m∗

m0
=

[

1 +
1

~

∂ ReΣk(ω)

∂ω
+

∂ ReΣk(ω)

∂ǫk

]−1

ǫk=0,ω=0

,

(C10)
where Σk(ω) is now the full retarded self-energy intro-
duced in Eq. (13). Following the same steps as before,
one finds for the expansion to first order in α:

m∗

m0
= 1− α

6π

(

8~2ω2
0 + 4E2

F

E2
F − Ω2

0

√

~ω0

EF
− π (C11)

+ 2

(

tan−1

√

EF

~ω0
− tanh−1

√

EF

~ω0

))

+O (α)
2

Taking the limit EF → 0, we reach

lim
EF→0

m∗

m0
=

4α

3π

√

~ω0

EF
+
(

1 +
α

6

)

+O (EF)
3/2

,(C12)

which has the same behavior for small EF as Eq. (54) in
the main text.

Appendix D: Small-coupling limits, Dyson approach

To obtain the expansion of Eq. (45) to linear order in
α, it suffices to set E0 = 0 on the left-hand side of the

equation. We find

E0

~ω0
=

α

π
Re

[

log

√

Ω∗
0 +

√
EF

√

Ω∗
0 −

√
EF

+ i log
i
√
Ω0 +

√
EF

i
√
Ω0 −

√
EF

− π

+
1

2

√

~ω0

EF

(

Li2
2
√
EF√

EF +
√
EF +Ω0

∗

+ Li2
2
√
EF√

EF −
√
EF +Ω0

∗ − Li2
2
√
EF√

EF +
√
EF − Ω0

+ Li2
2
√
EF√

EF −
√
EF − Ω0

+ iπ log

√
EF − Ω0 +

√
EF√

EF − Ω0 −
√
EF

)]

+ O(α)2. (D1)

The Dyson effective mass for small α is given by

m∗

m0
= 1 +

α(~ω0)
3/2

2πΩ
3/2
0

(D2)

×
(

log

√

Ω∗
0 +

√
EF

√

Ω∗
0 −

√
EF

+
2
√

EF Ω∗
0

Ω∗
0 − EF

−i log
i
√
Ω0 +

√
EF√

iΩ0 −
√
EF

− 2
√
EFΩ0

Ω∗
0 + EF

+ π

)

−2α

3π

(

tanh−1

√
EF√
Ω0

− tanh−1

√
EF

√

−Ω∗
0

− π

2

−
√
EF ~ω0 (EF − 2Ω∗

0)

(EF − Ω∗
0)

2 −
√
EF ~ω0 (EF − 2Ω0)

(EF +Ω0)
2

+
(~ω0)

5/2

√
EF (EF − Ω∗

0)
2 +

(~ω0)
5/2

√
EF (EF +Ω0)

2

)

+O(α)2

When we take the limit of this expression for small EF,
we recover Eq. (52).

Appendix E: Renormalized quantities including

free-carrier screening

Upon including free-carrier screening, the Dyson QP
energy can be expressed in terms of the one-dimensional
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integral

Ek = ǫk −
α (~ω0)

3/2

2π
√
ǫk

× Re

[

∫ kF−k

0

dq

|εRPA(q)|2 q log
Ek − ~

2(k+q)2

2m0

+Ω∗
0

Ek − ~2(k−q)2

2m0

+Ω∗
0

+

∫ kF+k

kF−k

dq

|εRPA(q)|2 q log
Ek − EF +Ω∗

0

Ek − ~2(k−q)2

2m0
+Ω∗

0

+

∫ kF+k

kF−k

dq

|εRPA(q)|2 q log
Ek − ~

2(k+q)2

2m0

− Ω0

Ek − EF − Ω0

+

∫ ∞

kF+k

dq

|εRPA(q)|2 q log
Ek − ~

2(k+q)2

2m0
− Ω0

Ek − ~2(k−q)2

2m0
− Ω0

]

− ReΣ<
kF
(EF)− ReΣ>

kF
(EF). (E1)

In particular, the occupied state at the band bottom
becomes

E0

~ω0
=

α

π
Re

[

∫ kF

0

dq/kF
|εRPA(q)|2

2
√
EF ~ω0

E0 − ~2q2

2m0

+Ω∗
0

(E2)

+

∫ ∞

kF

dq/kF
|εRPA(q)|2

2
√
EF ~ω0

E0 − ~2q2

2m0
− Ω0

+
1

2π

√

~ω0

EF

∫ 2kF

0

dq

|εRPA(q)|2 q ×
(

log
Ω∗

0

EF − ~2(kF−q)2

2m0
+Ω∗

0

+ log
EF − ~

2(kF+q)2

2m0
− Ω0

−Ω0

)

+
1

2π

√

~ω0

EF

∫ ∞

2kF

dq

|εRPA(q)|2 q log
EF − ~

2(kF+q)2

2m0
− Ω0

EF − ~2(kF−q)2

2m0
− Ω0

]

.

The effective mass at the zone center is given by:

m∗

m0
= Re

[

1 +
2α (~ω0)

3/2

π
√
EF

×
(

∫ kF

0

dq/kF
|εRPA(q)|2

EF
(

E0 − ~2q2

2m0
+Ω∗

0

)2

+

∫ ∞

kF

dq/kF
|εRPA(q)|2

EF
(

E0 − ~2q2

2m0

− Ω0

)2

]

×
[

1 +
2α (~ω0)

3/2

3π
√
EF

×
(

∫ kF

0

dq/kF
|εRPA(q)|2

EF

(

3E0 +
~
2q2

2m0

+ 3Ω∗
0

)

(

E0 − ~2q2

2m0

+Ω∗
0

)3

+

∫ ∞

kF

dq/kF
|εRPA(q)|2

EF

(

3E0 +
~
2q2

2m0
− 3Ω0

)

(

E0 − ~2q2

2m0

− Ω0

)3

− 1

|εRPA(kF)|2

(

Ω∗
0 + E0

(E0 − EF +Ω∗
0)

2 +
Ω0 − E0

(E0 − EF − Ω0)
2

))]−1

.

(E3)

To linear order in α, the weak-coupling limit of Eq. (E2)
is simply given by:

E0

~ω0
=

α

π
Re

[

∫ kF

0

dq/kF
|εRPA(q)|2

2
√
EF ~ω0

−~2q2

2m0
+Ω∗

0

+

∫ ∞

kF

dq/kF
|εRPA(q)|2

2
√
EF ~ω0

−~2q2

2m0

− Ω0

+
1

2

√

~ω0

EF

∫ 2kF

0

dq

|εRPA(q)|2 q ×
(

log
Ω∗

0

EF − ~2(kF−q)2

2m0

+Ω∗
0

+ log
EF − ~

2(kF+q)2

2m0

− Ω0

−Ω0

)

+
1

2

√

~ω0

EF

∫ ∞

2kF

dq

|εRPA(q)|2 q log
EF − ~

2(kF+q)2

2m0

− Ω0

EF + ~2(kF−q)2

2m0

− Ω0

]

+O(α2). (E4)
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For Eq. (E3), we find at small α:

m∗

m0
= 1 +

2α (~ω0)
3/2

3π
√
EF

Re

[

∫ kF

0

dq/kF
|εRPA(q)|2

3EF
(

~2q2

2m0

− Ω∗
0

)2

+

∫ ∞

kF

dq/kF
|εRPA(q)|2

3EF
(

~2q2

2m0

+Ω0

)2

−
∫ kF

0

dq/kF
|εRPA(q)|2

EF

(

~
2q2

2m0
+ 3Ω∗

0

)

(

~2q2

2m0

− Ω∗
0

)3

−
∫ ∞

kF

dq/kF
|εRPA(q)|2

EF

(

~
2q2

2m0
− 3Ω0

)

(

~2q2

2m0

+Ω0

)3

− 1

|εRPA(kF)|2

(

Ω∗
0

(EF − Ω∗
0)

2 +
Ω0

(EF +Ω0)
2

)]

+ O(α2). (E5)

In the case of the cumulant approach, the QP energy for
k < kF is given by

Ek = ǫk −
α (~ω0)

3/2

2π
√
ǫk

× Re

[

∫ kF−k

0

dq

|εRPA(q)|2 q log
Ω0 − ~

2(q2+2kq)
2m0

Ω0 − ~2(q2−2kq)
2m0

+

∫ kF+k

kF−k

dq

|εRPA(q)|2 q log
Ω0 + ǫk − EF

Ω0 − ~2(q2−2kq)
2m0

]

− ReΣ<
kF
(EF). (E6)

In the limit k → 0, we recover

E0

~ω0
=

α

π
Re

[

∫ kF

0

dq/kF
|εRPA(q)|2

2
√
EF ~ω0

Ω0 − ~2q2

2m0

(E7)

+
1

2

√

~ω0

EF

∫ 2kF

0

dq

|εRPA(q)|2 q log
Ω0

EF − ~2(kF−q)2

2m0
+Ω0

]

,

which is already linear in α. Lastly, the cumulant effec-
tive mass at Γ is given by:

m∗

m0
= Re

[

1− 2α (~ω0)
3/2

π kF/
√
EF

×
∫ kF

0

dq

|εRPA(q)|2

[

1
(

−~2q2

2m0

+Ω0

)2 +

~
2q2

2m0

+ 3Ω0

3
(

~2q2

2m0

− Ω0

)3

]

−2α ~ω0

3π

√

~ω0

EF

1

|εRPA(kF)|2
Ω0

(−EF +Ω0)
2

]−1

, (E8)

and its small-α expansion is equal to

m∗

m0
= Re

[

1 +
2α (~ω0)

3/2

π kF/
√
EF

(E9)

×
∫ kF

0

dq

|εRPA(q)|2

[

1
(

−~2q2

2m0
+Ω0

)2 +

~
2q2

2m0

+ 3Ω0

3
(

~2q2

2m0
− Ω0

)3

]

+
2α ~ω0

3π

√

~ω0

EF

1

|εRPA(kF)|2
Ω0

(−EF +Ω0)
2

]

+O
(

α2
)

.
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TABLE I. Overview of equations for all quantities derived in this work: k-dependent QP energy Ek, QP energy at the zone
center E0/~ω0, and renormalized effective mass m∗/m0 for the cases of a single electron (Fröhlich polaron problem), finite
doping, and finite doping including free-carrier screening.

Dyson Dyson O(α) Cumulant

Ek E0/~ω0 m∗/m0 E0/~ω0 m∗/m0 Ek E0/~ω0 m∗/m0

Single electron (29) (30) (31) (32) (33) (34) (35) (36)

Finite doping (44) (45) (46) (D1) (D2) (47) (48) (49)

Doping and screening (E1) (E2) (E3) (E4) (E5) (E6) (E7) (E8)

TABLE II. Comparison of calculated and experimental quasi-
particle weights

Experiment17 Dyson Cumulant

QP weight Zk=0 0.2 0.38 0.31
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FIG. 2. Self-energy and spectral function for the undoped, empty-band Fröhlich model with α = 1. (a) Real part of the greater
self-energy (black lines) relative to the dispersion of the non-interacting electron in units of the phonon energy ~ω0 (dashed
orange line). The blue area indicates the energy range [ǫ0 − ~ω0, ǫ0 + ~ω0]. (b) Imaginary part of the greater self-energy.
(c) Color plot of the Dyson spectral function of the undoped system. The dashed orange line indicates the dispersion of the
non-interacting electron in units of the phonon energy ~ω0. (d) Logarithmic line plot of the Dyson spectral function at the Γ
point. (e) Color plot of the second-order cumulant spectral function. (f) Logarithmic line plot of the cumulant spectral function
at the Γ point.



23

0 2 4 6 8 10
α

−12

−10

−8

−6

−4

−2

0
E 0
/ħ
ω
0

low-coupling limit

high-coupling limit

Dyson
Cumulant
Feynman

0 2 4 6 8 10
α

−4

−2

0

2

4

6

ħ
* /
ħ
0

Dyson
Cumulant
Feynman

(a)

(b)

FIG. 3. (a) Electron energy renormalization in the undoped
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screening is not included. (a) Real part of the lesser and greater self-energies in the extreme anti-adiabatic limit (black lines)
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energy and Fermi momentum, respectively; the blue area indicates the energy range [EF − ~ω0, EF + ~ω0]. (b) Imaginary part
of the self-energy. (c) Color plot of the Dyson spectral function in the extreme anti-adiabatic limit relative to the non-interacting
electron energy (dashed orange line) and the Fermi energy (red line). (d) Logarithmic line plot of the Dyson spectral function at
the Γ point. (e) Color plot of the second-order cumulant spectral function. (f) Logarithmic line plot of the cumulant spectrum
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QP energy lies above the Fermi level, and indicate a breakdown of the Fermi surface. (b) Renormalized Dyson effective mass
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scale in the inset has been extended to m∗/m0 = 10. (c) Renormalized second-order cumulant QP energy E0/~ω0 relative to
the Fermi level. (d) Renormalized second-order cumulant effective mass.



27

0 1 2 3 4 5 6 7 8
q/kF

0.0

0.2

0.4

0.6

0.8

1.0
|ε

RP
A (
q,

ω 0
))−2 Dilute e ectron gas

ε∞ = 6.2
m0 = 0.9

Di ute e ectron gas
ε∞ = 6.2
m0 = 0.9

n0 [cm−3]
1e+18
1e+19
5e+19
1e+20
5e+20

0 1 2 3 4 5 6 7 8
q/kF

0.0

0.2

0.4

0.6

0.8

1.0

|ε
RP

A (
q,
ω 0

)),
2 Dense e ectron gas

ε∞ = 11.9
m0 = 0.01

Dense e ectron gas
ε∞ = 11.9
m0 = 0.01

n0 [cm−3]
1e+18
1e+19
5e+19
1e+20
5e+20

(a)

(b)
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FIG. 10. (a) Renormalized Dyson quasi-particle energy E0/~ω0 relative to the Fermi level, including screening by free carriers.
Negative QP energies (shown in green) indicate a higher binding energy of the interacting system, whereas positive energies
(in red) imply that the renormalized QP energy lies above the Fermi level, and indicate a breakdown of the Fermi surface.
(b) Renormalized second-order cumulant quasi-particle energy relative to the Fermi surface. (c) Renormalized Dyson effective
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m∗ (shown in red) indicate that the curvature of the QP spectrum at k = 0 has become negative, and signal a breakdown of
the second-order expansion of the self-energy. (d) Renormalized second-order cumulant effective mass.


