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Abstract: Line-graph (LG) lattices are known for having flat bands (FBs) from the destructive 

interference of Bloch wavefunctions encoded in only lattice symmetry. Here, we develop a generic 

atomic/molecular orbital design principle for FBs in non-LG lattices. Based on linear-combination-

of-atomic-orbital (LCAO) theory, we demonstrate that the underlying wavefunction symmetry of 

FBs in a LG lattice can be transformed into the atomic/molecular orbital symmetry in a non-LG 

lattice. We illustrate such orbital-designed topological FBs in three 2D non-LG, square, trigonal, 

and hexagonal lattices, where the designed orbitals faithfully reproduce the corresponding lattice 

symmetries of checkerboard, Kagome, and diatomic-Kagome lattices, respectively. Interestingly, 

systematic design of FBs with a high Chern number is also achieved based on the same principle. 

Fundamentally our theory enriches the FB physics; practically it significantly expands the scope 

of FB materials, since most materials have multiple atomic/molecular orbitals at each lattice site, 

rather than a single s orbital mandated in graph theory and generic lattice models. 
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I. INTRODUCTION 

Electronic properties of crystals are generally determined by four fundamental degrees of 

order: lattice, orbital, charge, and spin [1]. One distinguished manifestation of lattice symmetry in 

electron band structure is topological flat band (TFB) in line-graph (LG) lattices [2-5]. In graph 

theory, a LG is made by connecting the centers of edges sharing a common vertex of a graph. It is 

proved that [6-8] the Laplacian operator of a LG is equivalent to the electronic Hamiltonian of the 

corresponding LG lattice, which has ubiquitously a constant eigenvalue, i.e., a FB. The topology 

of a FB hosted in a LG lattice can be assessed by the existence of singular band touching point with 

a dispersive band at a high-symmetry k point [9-12], differing from an isolated trivial FB, such as 

the one in Tasaki lattices [13-15]. When the degeneracy of the touching point is lifted, the gapped 

TFB  has a nonzero Chern number [9]. Due to its quenched kinetic energy and nontrivial topology, 

there exists a rich spectrum of physics associated with TFB, such as ferromagnetism [13,16,17], 

superconductivity [18-20], Wigner crystallization [21-23], fractional quantum Hall effect [24-27], 

Weyl fermion [28], and excitonic insulator [29]. Recent discovery of superconductivity in twisted 

bilayer graphene has further boosted the interest in FBs [30-33]. 

The lattice, orbital, charge, and spin degrees of order are interdependent with each other. Of 

particular interest here is the transformation between lattice and orbital symmetry. Some generic 

lattice models (namely one s-orbital per site), based on LG [2-8,34-46], cell [13-15,47-49], and 

compact localized state (CLS) construction [10,47,50], have been developed for FBs [see Section 

I of Supplemental Material (SM) [51]]. Also, a couple of specific models have been shown for FBs 

in non-LG lattices [22,35,52], such as the hexagonal lattice with (px, py) orbitals [22,53-55]. 

However, a generic orbital model for TFB construction, including high-Chern-number FB, is still 

lacking, which is important and useful since real materials usually consist of multiple 

atomic/molecular orbitals on each lattice site. In general, our understanding of fundamental 

relationship between lattice and orbital symmetry regarding FBs is far from complete.  

In this work, we introduce a generic orbital design principle for TFBs, based on linear-
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combination-of-atomic-orbitals (LCAO) theory, which transforms the symmetry of lattice 

wavefunctions in LG lattice into “molecular” orbital (MO) symmetry in non-LG lattice by a unitary 

transformation. Applying this principle, we predict new FB lattice/orbital systems and explain the 

few existing ones. It also enables a systematic orbital design of FBs with a high Chern number in 

various lattices. Using the tight-binding method, we calculate the band structures of three most 

common non-LG, square, trigonal, and hexagonal lattices, by employing the combinations of 

orbitals that are symmetry-transformed from a subset of lattice wavefunctions of the LG, 

checkerboard, Kagome, and diatomic-Kagome lattices, respectively. We are able to produce TFBs 

in these lattices with all the possible orbital combinations, as summarized in Table I at the end, 

much beyond a few specific cases found previously by physical intuition. 

II. COMPUTATIONAL METHODS 

For tight-binding model calculations, we employed the well-known two-center bond integrals 

initially derived by Slater and Koster [56]. All moment-space Hamiltonians without spin-orbit 

coupling (SOC) can be found in Section IV of SM [51]. Furthermore, onsite SOC (Table S1 [51,57]) 

is considered to break the degeneracy of singular touching points between the flat and dispersive 

band. For the two-dimensional systems in this work, the orbital bases with separate spin-up and -

down channels |o1,↑, … , |on,↑; |o1,↓, … , |on,↓ are used, so the onsite-SOC contribution to 

Hamiltonian is written as 𝜆𝑳 ∙ 𝑺 =
𝜆

2
[
𝐿𝑧 0
0 −𝐿𝑧

]  [58] with SOC strength λ, orbital angular 

momentum L, and spin angular momentum S, in which the matrix Lz is derived based on 

Supplementary Table 1. The spin z component is not mixed by the onsite SOC, manifesting z 

component is still a good quantum number. For the spin-polarized band indexed as n, Chern 

invariant 𝐶𝑛 =
1

2𝜋
∫ 𝑑2𝒌𝛺𝑛

0

𝐵𝑍
  is calculated by integrating Berry curvature in the FBZ [59]. The 

momentum-space Berry curvature is 𝛺𝑛(𝒌) = − ∑
2𝐼𝑚⟨𝜓𝑛𝒌|𝑣𝑥|𝜓𝑛′𝒌⟩⟨𝜓𝑛′𝒌|𝑣𝑦|𝜓𝑛𝑘⟩

(𝐸𝑛′𝒌−𝐸𝑛𝒌)
2𝑛′≠𝑛 , where 𝑣𝑥 

and 𝑣𝑦 are velocity operators along the x and y directions. The Chern invariant is calculated for 

spin-up channel in this work.  
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III. RESULTS AND DISCUSSION 

A. General formulation of orbital-design principle. 

We first discuss a general formulation of the orbital designed TFBs in non-LG lattices. 

Consider a LG lattice consisting of n sites per unit cell, such as n = 2 in a checkerboard lattice (LG 

of square lattice) in Fig. 1 (grey dots), with one s-orbital per site (𝜑𝑠). Let us partition the LG by 

grouping m sites with labels (A, B, C, ⋯) together as a “molecule” (periodically repeated), the 

resulting MOs are constructed from LCAO theory as 

  ∅𝑀𝑂 = ∑ 𝑐𝑖𝜑𝑖𝑠
𝑚
𝑖=𝐴,𝐵,𝐶,⋯  ,                                                      (1) 

and treat the center of this molecule as one site with n MOs in a new lattice, which will generally 

be a non-LG lattice. For example, in Fig. 1(a), we chose m = n = 2, then the new lattice is a square 

lattice with two MOs on each site (blue dots). This operation transforms the lattice symmetry of a 

LG checkerboard lattice into the orbital symmetry of a non-LG square lattice. Importantly both 

lattices must have the same band structure, including the FB, because they have the equivalent 

Hamiltonian by a unitary transformation between different basis expansions for the Bloch 

wavefunctions in the same lattice partition, the former expanded in single s-orbitals and the latter 

in multi-MOs. The symmetry (or type) of the MOs is determined by coefficients 𝑐𝑖 in Eq. (1), in 

particular the sign of 𝑐𝑖 on the m LG lattice sites, which can be obtained from the nodes of Bloch 

wavefunctions at the Γ point. Note that the basis transformation is independent of k points; in other 

words, the Bloch states at every k point are solved with the same s-orbital (MO) basis in the LG 

(non-LG) lattice. For example, the two MOs in Fig. 1(a) have the general form of ∅𝑀𝑂
1,2 = (𝜑𝐴𝑠 ±

𝜑𝐵𝑠)/√2 [see calculation results in Fig. 2(a)], indicating one s- and one p-orbital. This is different 

from the k-resolved symmetry analysis of the whole-lattice Bloch states, used to assess band 

topology [60,61]. 

Also, different MOs may result from partitioning different number of m sites. For example, in 

Fig. 1(b), we chose m = 2n = 4, the new lattice is again a square lattice, but the two MOs on each 

site (blue dots) have s- and d-symmetry, respectively [see calculation results in Fig. 2(e)]. In doing 
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so, the new square lattice has a supercell size twice as large as the original checkerboard lattice, as 

the two MOs are transformed from four s-orbitals. This indicates band folding must accompany 

with this basis transformation, since the band structure is independent of basis representations. 

Interestingly, this would lead to multiple “folded” singular band touching points between the flat 

and dispersive band, indicating the FB with a high Chern number. 

B. Square lattice. 

Next, we illustrate the above design principle by tight-binding band calculations of specific 

examples.  The checkerboard lattice, having site A and B in a unit cell, hosts a FB touched with a 

dispersive band (Fig. S1 in SM [51]). In Fig. 2(a), we plot the two eigenstates at , 𝜓𝐸=−3𝑡 =

1

√2
(|𝐴⟩ + |𝐵⟩) and 𝜓𝐸=𝑡 =

1

√2
(|𝐴⟩ − |𝐵⟩), centered at the middle of A and B. They may be viewed 

as two MOs sitting on the same site in a square lattice, one with  𝑠 ~ |𝐴⟩ + |𝐵⟩ and the other with  

𝑝 ~ |𝐴⟩ − |𝐵⟩ symmetry polarized along the diagonal direction, as shown in Fig. 2(a,b). The band 

structure of this square lattice is calculated, as shown in Fig. 2(c), using the following nearest-

neighbor (NN) and next-NN (NNN) hopping integrals (note: the two-center Slater-Koster integrals 

[56,62] is scaled by a common factor t.) 

𝑡𝑠𝑠𝜎
𝑁𝑁 = −𝑡𝑠𝑝𝜎

𝑁𝑁 = −
1

2
, 𝑡𝑝𝑝𝜎

𝑁𝑁 = −𝑡𝑝𝑝𝜋
𝑁𝑁 , 𝑡𝑠𝑠𝜎

𝑁𝑁𝑁 = −
1

4
, 𝑡𝑠𝑝𝜎

𝑁𝑁𝑁 =
1

2√2
, 𝑡𝑝𝑝𝜎

𝑁𝑁𝑁 =
1

2
.               (2) 

One may also partition the checkerboard lattice wavefunctions in Fig. 2(a) differently, by 

grouping four instead of two lattice sites, as illustrated in Fig. 2(e). Expanding the Γ-point lattice 

wavefunctions into a four-site basis in a √2 × √2 checkerboard superlattice gives rise to two MOs 

corresponding to 𝜓𝐸=−3𝑡 =
1

2
(|𝐴1⟩ + |𝐴2⟩ + |𝐵1⟩ + |𝐵2⟩) , and 𝜓𝐸=𝑡 =

1

2
(|𝐴1⟩ + |𝐴2⟩ − |𝐵1⟩ −

|𝐵2⟩), with s and d symmetry in a square lattice [Fig. 2(e,f)]. This enables an alternative design of 

FB in a square lattice, and Figure 2(g) shows the resulting band structure calculated using (s, dxy)-

hopping integrals of 𝑡𝑠𝑠𝜎
𝑁𝑁 = −𝑡𝑑𝑑𝜋

𝑁𝑁 = −
1

2
, 𝑡𝑠𝑠𝜎

𝑁𝑁𝑁 = −
1

4
, 𝑡𝑠𝑑𝜎

𝑁𝑁𝑁 = −
1

2√3
, and 𝑡𝑑𝑑𝜎

𝑁𝑁𝑁 = −
1

3
. 

The band structure in Fig. 2(g) is different but related to that in Fig. 2(c) by band folding. 
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Specifically, the bands in Fig. 2(g), calculated from the 1  1 unit cell [solid square in Fig. 2(f)] 

with a “1  1” first Brillouin zone (FBZ) [solid square of inset in Fig. 2(g)], can be folded into the 

bands of a √2 × √2 cell [dashed rhombus in Fig. 2(f)] with a “
1

√2
×

1

√2
” FBZ [dashed rhombus of 

inset in Fig. 2(g)], with the M, middle point of -M, and X of the former folded into the X, and 

M of the latter, respectively. The folding produces two sets of degenerate checkerboard bands (Fig. 

S2) having the identical band dispersions as in Fig. 2(c). Interestingly, this renders the FB in Fig. 

2(g) to have a Chern number of −2 for one spin channel, as manifested by the observation of FB 

touched with the dispersive band at two X points within the FBZ, as explained below. 

At each band touching point, the Berry curvature of singular Bloch wavefunctions of TFB 

diverges, in association with the N−1 CLSs for a finite lattice with N sites, and 2 topological 

noncontractible loop states (NLSs), i.e., extended boundary states, in real space [9-12]. In LG 

lattices, the CLS is resulted from destructive interference (phase cancellation) of lattice hopping 

induced solely by lattice symmetry, as reflected by the alternating nodal signs of wavefunction on 

an even-edged plaquette, e.g., a rhombus in a checkerboard lattice (Fig. S1). The CLS of orbital-

designed FBs is more complex, as illustrated in Fig. 2(d). The Bloch state of FB in Fig. 2(c) is 

calculated as 𝜓𝒌
𝐹𝐵 = 𝑖

1

√2
sin

𝑘1+𝑘2

2
|𝑠⟩ + cos

𝑘1

2
cos

𝑘2

2
|𝑝⟩ with 𝑘𝑗 = 𝒌 ∙ 𝒂𝑗 (𝒂𝑗, lattice vector; j = 1, 

2), whose Fourier transformation 𝜓𝑹
𝐹𝐵 = ∫ 𝑑𝒌𝑒−𝑖𝒌∙𝑹𝜓𝒌

𝐹𝐵0

𝐵𝑍
 produces a real-space CLS on a square 

plaquette centered at R [Fig. 2(d)]. It consists of nodal wavefunctions of 
|𝑝⟩

4
, −

|𝑠⟩

2√2
+

|𝑝⟩

4
, 

|𝑝⟩

4
, and 

|𝑠⟩

2√2
+

|𝑝⟩

4
 at four vertices of the plaquette, respectively. Electron hoppings outward from the CLS to 

its surrounding lattice sites are completely forbidden, which can be shown by analyzing hoppings 

based on Eq. (2). For example, the hoppings to the site above site 1 come from site 1 and 2 in Fig. 

2(d), which are respectively 
1

4
[

1

2
(𝑡𝑝𝑝𝜎

𝑁𝑁 + 𝑡𝑝𝑝𝜋
𝑁𝑁 ) −

1

√2
𝑡𝑠𝑝𝜎

𝑁𝑁 ] = −
𝑡

8√2
  and −

1

2√2
𝑡𝑠𝑠𝜎

𝑁𝑁𝑁 +  
1

4
𝑡𝑝𝑝𝜋

𝑁𝑁𝑁 =

𝑡

8√2
, and cancels out with each other. The same is true for all other hoppings. Likewise, the FB in 

sd-orbital model supports a CLS on a square plaquette with linearly combined s and d orbitals on 

its vertices [Fig. 2(h)], whose outward hoppings also vanish (see details in Section II of SM [51]). 
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Thus, the orbital symmetry in a non-LG lattice plays the role of lattice symmetry in a LG lattice in 

conditioning the destructive interference of Bloch states to form a CLS. Besides the localized CLSs, 

the extended FB NLSs exist (see details in Section III of SM [51]), indicating the nontrivial 

topology of the orbital-designed FBs [9-12].  

In real materials, there are usually multiple atomic/molecular orbitals on each lattice site 

contributing to the bands near Fermi level. In the proposed lattice-orbital transformation, the 

number of sites in the LG lattice equals the number of orbitals in the non-LG lattice per unit- or 

super-cell. So, to design FB with more than two orbitals in a square lattice, one may find another 

LG lattice, instead of checkerboard lattice, with more sites per cell. One such choice is the diamond-

octagon (diatomic-checkerboard) lattice, the LG of Lieb lattice [43]. This leads to dual TFBs in a 

square lattice. Without losing generality, let us first choose three orbitals (s, px, py) [Fig. 3(a,b)], 

and the following NN hopping integrals  

𝑡𝑠𝑠𝜎 = −
1

8
, 𝑡𝑝𝑝𝜎 =

1

4
, 𝑡𝑠𝑝𝜎 =

1

4√2
.                                                (3) 

The resulting band structure consists of two FBs touched with one dispersive band in between [Fig. 

3(c)]. They correspond exactly to the top three bands of diamond-octagon lattice (Fig. S3), whose 

lattice wavefunctions at Γ indeed display the s, px, and py orbital symmetry, respectively, as shown 

in Fig. 3(a), following our design principle.  

The CLS is analyzed to understand how the kinetic energy of the dual TFBs is quenched. As 

illustrated in Fig. 3(d), the lower FB supports a CLS on a square plaquette with bonding nodal 

wavefunctions |𝑠⟩ +
1

√2
(|𝑝𝑥⟩ − |𝑝𝑦⟩), |𝑠⟩ −

1

√2
(|𝑝𝑥⟩ + |𝑝𝑦⟩), |𝑠⟩ +

1

√2
(−|𝑝𝑥⟩ + |𝑝𝑦⟩), and  |𝑠⟩ +

1

√2
(|𝑝𝑥⟩ + |𝑝𝑦⟩)  at four vertices, respectively; while the upper-FB CLS consists of four anti-

bonding vertex states. Based on Eq. (3), both CLSs have vanishing outward hoppings. For example, 

the one from site 1 to the site above is (𝑡𝑠𝑠𝜎 + 𝑡𝑠𝑝𝜎) −
1

√2
(−𝑡𝑠𝑝𝜎 + 𝑡𝑝𝑝𝜎) = 0  (see others and 

topological NLSs in Section II and III of SM [51], respectively). It once again confirms that the 

orbital symmetry underlines the destructive interference of Bloch wavefunctions for our 
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theoretically designed TFBs. 

The diamond-octagon lattice has total four sites per unit cell and hence four bands; the 

wavefunction of the fourth bottom isolated band has the dx2−y2 symmetry (Fig. S3). It can be shown 

that by changing the sign of lattice hopping integrals, the position of s- and dx2−y2-band is 

interchangeable. Consequently, an alternative design of the top three bands with dual FBs is to use 

(dx2−y2, px, py) in place of (s, px, py) orbitals in a square lattice (Fig. S4), as found previously [35]. 

One may also include four orbitals (s, px, py, dx2−y2) in a square lattice, which produces two sets of 

checkerboard bands of opposite chirality (Fig. S5). They are dubbed as Yin-Yang checkerboard 

bands, in analogy to the yin-yang Kagome bands [41]. The above hopping integrals in square lattice 

produce a perfect FB, same as in the corresponding LG lattice with ideal hopping integrals. Ideally, 

specific inter-orbital hopping integrals are assumed in the non-LG lattices to produce FBs with 

perfect flatness, same as in the corresponding LG lattice with ideal hopping integrals. Usually, a 

small deviation from ideal hopping conditions in either LG or non-LG lattices leads to finite 

dispersion of FBs, but without changing the physics qualitatively ([64], Fig. S6). 

In the present study, we focus on the LG of bipartite lattices whose FB is singularly touched 

with a dispersive band, and hence topologically nontrivial [9-12], while the LG of non-bipartite 

lattices have an isolated FB that is topologically fragile [4,8,36]. Each singular band touching point 

can be viewed as a Berry flux center, in analogy to Dirac/Weyl point [9,63], contributing to one 

integer Chern number of 1. This can be clearly illustrated by evaluating evolution of band 

structure and Berry curvature  of FB as a function of increasing SOC strength, as shown in Fig.  

4 for the case of sp2 square lattice as an example. One sees that with a diminishing SOC [Fig. 4(a)] 

towards zero,  vanishes everywhere except for around the  point where it diverges going to 

infinity on a tiny small circle. With the increasing SOC, the distribution of  gradually broadens 

around  on a band of ring. In all cases, integration of  over the FBZ gives a Chern number of 1. 

Indeed, this is confirmed by adding SOC to open a gap, and calculating the FB Chern number in 

all the lattices considered (Fig. S7). Each singular band touching point contributes a Chern number 

of +1 or -1; therefore, the proposed orbital design provides also an effective way to realize high-
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Chern-number FBs by introducing multiple band touching points as shown in Fig. 2(g) [see also 

Fig. 5(f) below]. 

C. Trigonal lattice. 

Next, we demonstrate existence of TFB in a trigonal lattice, by orbital design from a Kagome 

lattice (LG of hexagonal lattice). Kagome lattices has three Γ-point eigenstates of  
1

√3
(|𝐴⟩ + |𝐵⟩ +

|𝐶⟩), 
1

√2
(−|𝐴⟩ + |𝐵⟩), and 

1

√6
(−|𝐴⟩ − |𝐵⟩ + 2|𝐶⟩) at E = −4t, 2t, and 2t [Fig. 5(a)], which have 

the s, px, and py orbital symmetry, respectively. So, using three orbitals (s, px, py) on each site [Fig. 

5(b)] and the following NN hopping integrals 

𝑡𝑠𝑠𝜎 = −
2

3
, 𝑡𝑝𝑝𝜎 = 1, 𝑡𝑝𝑝𝜋 = −

1

3
, 𝑡𝑠𝑝𝜎 = √

2

3
,                                     (4) 

a FB appears to touch with two Dirac bands [Fig. 5(c)], similar to Kagome bands (Fig. S8).  Since 

the lattice-orbital transformation has three lattice sites transformed into three orbitals in the same 

unit cell, there is no band folding. 

Similar to the design of high-Chern-number FB in square lattice [Fig. 2(g) vs. 2(c)], instead 

of three sites (nodal points), one may consider the symmetry of Kagome lattice wavefunctions 

partitioned on twelve nodal points in a 2 × 2 supercell [Fig. 5(d)], leading to three (s, dxy, dx2−y2) 

orbitals in a trigonal lattice. Correspondingly, using (s, dxy, dx2−y2) basis in a 1  1 trigonal unit cell 

[Fig. 5(e)] and NN hopping integrals 𝑡𝑠𝑠𝜎 = −
2

3
, 𝑡𝑑𝑑𝜎 = −

4

9
, 𝑡𝑑𝑑𝜋 = 1, 𝑡𝑠𝑑𝜎 = −√

8

27
, we obtain a 

band structure exhibiting a FB touched with Dirac bands [Fig. 5(f)], but different from the apparent 

looking of Kagome bands (Fig. S8). This is because they are unfolded from four sets of degenerate 

Kagome bands appearing as if in a “2 × 2” supercell with a “
1

2
×

1

2
” FBZ [four dashed hexagons in 

the inset of Fig. 5(f)], with the K and M of the former unfolded from the K and  of the latter, 

respectively. Accordingly, there are four singular band touching points, one at Γ and three at M in 

the FBZ, with the former contributing a Chern number of +1 and the latter −3, adding to a net FB 

Chern number of −2 (Fig. S7). The FB CLS in a trigonal lattice is on a hexagon plaquette, with 
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outward hopping all canceled out by orbital symmetry (Fig. S9).  

D. Hexagonal lattice. 

Lastly, we discuss the design of FBs in a hexagonal lattice with site A and B, where an already-

known orbital basis is (px, py) with the hopping integral 𝑡𝑝𝑝𝜎 =
2

3
 [22]. The four Γ-point eigenstates 

are −|𝐴: 𝑝𝑥⟩ + |𝐵: 𝑝𝑥⟩, |𝐴: 𝑝𝑦⟩ − |𝐵: 𝑝𝑦⟩, |𝐴: 𝑝𝑥⟩ + |𝐵: 𝑝𝑥⟩, and |𝐴: 𝑝𝑦⟩ + |𝐵: 𝑝𝑦⟩, which have the 

same symmetry of diatomic-Kagome lattice wavefunctions (Fig. S10, S11), noticing that the 

diatomic-Kagome lattice is a generalized LG (i.e., two copies of LG) of hexagonal lattice. So, it 

again conforms to our generic orbital-design principle.  

Furthermore, other orbital bases for TFBs in hexagonal lattice can be designed. As shown in 

Fig. 6(a,b), using (dxy, dx2−y2) orbitals on each site, and a NN hopping integral 𝑡𝑑𝑑𝜎 = −
8

9
, two FBs 

sandwiching two Dirac bands are obtained [Fig. 6(c)]. The doubly degenerate Γ-point eigenstates 

are −|𝐴: 𝑑𝑥𝑦⟩ − |𝐵: 𝑑𝑥𝑦⟩  and |𝐴: 𝑑𝑥2−𝑦2⟩ + |𝐵: 𝑑𝑥2−𝑦2⟩  ( |𝐴: 𝑑𝑥𝑦⟩ − |𝐵: 𝑑𝑥𝑦⟩  and |𝐴: 𝑑𝑥2−𝑦2⟩ −

|𝐵: 𝑑𝑥2−𝑦2⟩), respectively, having the same symmetries as those of diatomic-Kagome lattice Γ-

point wavefunctions in Fig. 6(a). Adding another s orbital leads to yin-yang Kagome bands (Fig. 

S12), as found previously [41].  

IV. CONCLUSION 

We have developed a generic orbital design principle for FBs, including high-Chern-number 

FBs, in non-LG lattices via LG lattice wavefunctions, as summarized in Table I, for all possible 

orbital combinations. Importantly, the required hopping conditions are generally achievable in real 

materials, and some of the proposed designs have already been shown in real materials [41,52-

55,64,65]. Also, more strict hopping conditions can be met by designing artificial lattice systems, 

where photonic and phonic FBs can be created in the non-LG lattices. Generally, the 

implementation of the design principle is more flexible with molecular than atomic orbitals. For 
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example, the frontier MOs of a triangular graphene flake have the pz, (px, py) and (s, px, py) 

symmetry, respectively, with a side length of 2, 3, and 4 benzene rings [41]. One may also 

generalize the design principle to three dimensional lattices. 
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Figures and Tables 

 

 

FIG. 1. (a) Illustration of lattice wavefunction symmetries, viewed on two sites (A and B, shaded) 

in a 1  1 checkerboard primitive cell (black thin lines), to be transformed into two orbitals on one 

site (blue dot) in a square lattice: |𝑠⟩~|𝐴⟩ + |𝐵⟩, |𝑝⟩~|𝐴⟩ − |𝐵⟩. (b) Same as (a) but viewed on four 

sites (A1, A2, B1, and B2, shaded) in a √2 × √2 checkerboard supercell (black thin lines). The two 

orbitals become |𝑠⟩~|𝐴1⟩ + |𝐴2⟩ + |𝐵1⟩ + |𝐵2⟩, |𝑝⟩~|𝐴1⟩ + |𝐴2⟩ − |𝐵1⟩ − |𝐵2⟩. 
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FIG. 2. TFB in a square lattice. (a) Γ-point wavefunctions of a checkerboard lattice (gray lines), 

exhibiting s (upper) and p orbital symmetry (lower). Red and green dots represent respectively 

positive and negative wavefunction nodes. (b) Square lattice with (s, p) orbitals. (c) Band structure 

of (b) with hopping integrals in Eq. (2). (d) The CLS of FB in (b) on a square plaquette, illustrating 

overall zero outward hoppings. Red, green, and gray arrows represent positive, negative, and zero 

hopping integrals, respectively. (e)-(h) Same as (a)-(d) with (s, dxy) orbitals. The bands in (g) can 

be viewed as folded from (c), the inset of (g) shows the FBZs before (solid line) and after folding 

(dashed line). 
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FIG. 3. Dual TFBs in a square lattice. (a) Three Γ-point wavefunctions of a diamond-octagon lattice, 

with s (left), px (middle), and py orbital symmetry (right), respectively. (b) Square lattice with (s, 

px, py) orbitals. (c) Band structure of (b) with NN hopping integrals in Eq. (3). (d) The CLS of 

lower (left) and upper FB (right) in (c) on a square plaquette. Gray arrows indicate vanishing 

outward hoppings. 
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FIG. 4. SOC induced evolution of band structure and Berry curvature Ω of TFB in sp2 square lattice 

with hopping parameters of Eq. (3). The strength of onsite SOC is (a) λ = 10−6t, the inset shows a 

100 magnification of the tiny circle around (b) λ = 10−4t, (c) λ = 10−2t, (d) λ = 5 × 10−2t. The 

calculated Ω is for upper TFB, in units of a2 (a is lattice constant).  
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FIG. 5. TFB in a trigonal lattice. (a) Three Γ-point wavefunctions of a Kagome lattice, with s (left), 

px (middle), and py orbital symmetry (right), respectively. (b) Trigonal lattice with (s, px, py) orbitals. 

(c) Band structure of (b) with NN hopping integrals in Eq. (4). (d-f) Same as (a-c) with (s, dxy, 

dx2−y2) orbitals. The bands in (f) can be viewed as folded from (c), the inset of (f) shows the FBZs 

before and after folding. 
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FIG. 6. Dual TFBs in a hexagonal lattice. (a) Four Γ-point wavefunctions of a diatomic-Kagome 

lattice, all with d orbital symmetry. (b) Hexagonal lattice with (dxy, dx2−y2) orbitals on site A and B. 

(c) Band structure of (b) with a NN hopping integral 𝑡𝑑𝑑𝜎 = −
8

9
.  
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Table. I. Transformation from LG lattices to non-LG orbitals. 

LG lattice Non-LG orbital 

Checkerboard Square (s/dz2, p), (s/dz2, d) 

Diamond-octagon Square (s/dz2, px, py), (dx2−y2, px, py) 

Kagome Trigonal (s/dz2, px, py), (s/dz2, dxy, dx2−y2) 

Diatomic-Kagome Hexagonal (px, py), (dxy, dx2−y2) 

 


