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The quantum Hall system can be used to study many-body physics owing to its multiple internal 

electronic degrees of freedom and tunability. While quantum phase transitions have been studied 

intensively, research on the temperature-induced phase transitions of this system is limited. We 

measured the pure bulk conductivity of a quantum Hall antiferromagnetic state in bilayer graphene 

over a wide range of temperatures and revealed the two-step phase transition associated with the 

breaking of the long-range order, i.e., the Kosterlitz–Thouless transition, and short-range 

antiferromagnetic order. Our findings are fundamental to understanding electron correlation in 

quantum Hall systems. 

 

 

І. INTRODUCTION 1 

The quantum Hall state is one of the most strongly 2 

electronically correlated states owing to its quenched 3 

kinetic energy. When multiple internal electronic degrees 4 

of freedom exist, an exchange interaction stabilizes a 5 

many-body-ordered ground state if a one-particle Landau 6 

level (LL) is partially filled [1-3].  7 

A well-known example that has been intensively studied is 8 

the double-layer quantum Hall system at the total filling 9 

factor ν = 1 [3]. This system is considered as an easy-10 

plane ferromagnet of the pseudo-spin defined by the layer 11 

degree of freedom. Rich varieties of phase transitions have 12 

been investigated for control parameters such as 13 

temperature, layer separation, magnetic field, inter-layer 14 

charge imbalance, and inter-layer tunneling. Observation 15 

and characterization of the yet elusive temperature-16 

induced Kosterlitz–Thouless (KT) transition remains as 17 

one of the central and long-standing issues in this field.  18 

  As many-body-ordered states in quantum Hall systems 19 

are characterized by energy gap opening and ordering, they 20 

should have analogies with other correlated insulators such 21 

as Mott insulators and two-dimensional Moire flat band 22 

systems. Because both the interaction energy and one-23 

particle energy of the quantum Hall state can be controlled 24 

by parameters such as the carrier density (filling factor), 25 

out-of-plane and in-plane magnetic field, and out-of-plane 26 

electric field, it can be a tunable experimental platform for 27 

investigating general correlated effects and phase 28 

transitions.  29 

 Although the quantum phase transitions in quantum Hall 30 

states have been extensively studied both experimentally 31 

and theoretically, few studies have been conducted on 32 



 

 

temperature-induced classical phase transitions [4-6]. This 1 

is because, theoretically, finite temperature behavior is 2 

much more difficult to investigate than zero-temperature 3 

behavior. Furthermore, experimentally, the coexistence of 4 

the bulk and edge states makes the temperature 5 

dependence of observables more complex than in 6 

homogeneous systems.         7 

The zero-energy LL of bilayer graphene is a promising 8 

platform for studying temperature-induced phase 9 

transitions. It exhibits various ordered states owing to the 10 

interplay of spin, layer, and orbital degrees of freedom, and 11 

controllability of the layer degree of freedom by an out-of-12 

plane external electric field (displacement field D) [7-38]. 13 

At ν = 0 (half filling of the zero-energy LL), the canted 14 

antiferromagnetic (CAF) state is thought to be stabilized 15 

by the short-range Coulomb interaction under a small D, 16 

whereas the layer polarized (LP) state is favored under a 17 

large D [7-29]. The ferromagnetic state is favored for 18 

enhanced Zeeman energy by a tilted magnetic field [15-19 

18,25-28]. In this study, we focused on the CAF state, 20 

where the spins tend to align ferromagnetically within each 21 

layer and antiferromagnetically between the layers [25-28] 22 

(Fig. 1(a)). The spins tend to lie in the plane with a small 23 

canting along the out-of-plane magnetic field to minimize 24 

both the antiferromagnetic exchange energy and Zeeman 25 

energy. Under a perpendicular magnetic field, the degree 26 

of canting is estimated to be only 1~2⸰ [25], therefore we 27 

can treat the CAF state as an ideal easy-plane 28 

antiferromagnet with U(1) symmetry. It is also thought to 29 

be stabilized in the ν = 0 state of monolayer graphene 30 

without staggered potential, where the layer degree of 31 

freedom in bilayer graphene is replaced with the sublattice 32 

degree of freedom. 33 

 Importantly, the CAF state does not have a zero-gap 34 

edge state unless the edge is a zigzag edge, owing to valley 35 

scattering at the edge. This simplifies the analysis of the 36 

temperature dependence of its bulk conductivity. In 37 

addition, the energy gap of the CAF state in bilayer 38 

graphene is much larger than that in a double-layer 39 

semiconductor quantum well [2], owing to the smaller 40 

separation between layers, which increases the phase 41 

transition temperature. 42 

 The CAF state has also attracted considerable interest 43 

for its unique electronic transport properties. Long-range 44 

spin current transport arising from the easy-plane 45 

antiferromagnetic order [39-42], a new kind of charge-46 

neutral current originating from the spin-dependent layer 47 

polarization [43,44], and KT like critical behavior of the 48 

conductance [45,46] have been observed. In addition, 49 

recent theories indicate the easy-plane antiferromagnetism 50 

in magic-angle-twisted bilayer graphene, which is similar 51 

to the CAF, as an origin of its superconductivity [47]. 52 

 Previously, the temperature dependence of the 53 

conductivity of the CAF state was measured in limited 54 

temperature ranges [15,18,45]. However, few discussions 55 

have been made on temperature-induced phase transitions, 56 

as will be discussed later.   57 

 In this study, we employed Corbino samples, which 58 

eliminate any type of edge transport to certainly measure 59 

the bulk conductivity in the CAF state and to study its 60 

temperature-induced phase transition. The observed 61 

nonmonotonic temperature dependence of the bulk 62 

conductivity implies a two-step phase transition, which is 63 

explained well by the two energy scales of the CAF state: 64 

the short-range Coulomb interaction and long-range 65 

Coulomb interaction energies.  66 

Ⅱ. SAMPLES AND METHODS 67 

 Our measurements employed four samples: Corbino 1, 68 

Corbino 2, two-terminal, and a Hall bar. All the samples 69 

were dual-gated bilayer graphene encapsulated by 70 

hexagonal boron nitride (h-BN) (Fig.1b-f) and fabricated 71 

by the dry transfer technique (details are provided in 72 

Appendix A). For Corbino 1 and Corbino 2, the 73 

dimensions of the active region covered with the top gate 74 

are the same (Fig. 1b and c). While a p-doped Si substrate 75 

is used as a back gate for Corbino 1, a graphite back gate 76 



 

 

which was patterned in the same shape as the top gate is 1 

used for Corbino 2. For Corbino 2, the non-active region, 2 

which is not covered with the top gate, is heavily doped by 3 

the Si back gate. Therefore, most of the measured 4 

resistance originates from the active region. For Corbino 1, 5 

the resistance is the series resistance of the active and non-6 

active regions. Because the CAF state is established at Vtg 7 

= 0 in Corbino 1, the active and non-active regions 8 

homogeneously become the CAF state under these 9 

conditions. This ensures the validity of the temperature 10 

dependence measurement, as mentioned later. 11 

  Although the CAF state generally has no ballistic edge 12 

state owing to valley scattering at the edge [7-16,25-29], 13 

there is a possibility of diffusive edge transport owing to 14 

the hopping transport across sparsely existing zigzag edge 15 

regions [48]. The Corbino samples, which do not 16 

experience edge transport, allow for the measurement of 17 

pure bulk conductivity. We observed qualitatively similar 18 

temperature dependence in all samples above 6 K. 19 

Saturation of conductivity was observed below 6 K in Hall 20 

bar sample, which can be originated from edge transport or 21 

bulk hopping transport owing to sample dependent amount 22 

of impurities (Supplemental Material).  23 

The conductivity was measured by a four-probe 24 

technique using lock-in amplifiers (3.77 Hz) with a 25 

constant current of approximately 3 nA.   26 

 27 

Ⅱ. RESULTS AND DISCUSSIONS 28 

A. Gate dependence 29 

 In Fig. 2, we show the carrier density n and displacement 30 

field D dependence of the conductivity of Corbino 1 and 2, 31 

which was obtained from its gate voltage dependence 32 

under a perpendicular magnetic field B = 0 and 9 T at 33 

temperature T = 2.3 K. Here, n and D are determined by 34 

𝑛 =
ϵTG

𝑒𝑑TG
𝑉TG +

ϵBG

𝑒𝑑BG
𝑉BG  and 𝐷 = −

ϵTG

𝑑TG
𝑉TG +

ϵBG

𝑑BG
𝑉BG , 35 

where ϵTG and ϵBG  are dielectric constants of the 36 

insulating layers for the top gate and the back gate, e is the 37 

elementally charge, and 𝑑TG and 𝑑BG are thicknesses of 38 

the insulating layers for the top gate and back gate 39 

determined by AFM measurement, respectively. We 40 

adopted ϵh−BN ≅ 4𝜖0 and ϵSiO2 ≅ 3.58𝜖0 (detail of the 41 

conversion is provided in appendix B). Periodic 42 

conductivity dips due to the formation of LLs were 43 

observed under a magnetic field and assigned to filling 44 

factors of ±8, ±4, ±3, ±2, ±1, and 0, as indicated in Fig. 45 

2c and d. In Corbino 1, diagonal lines appeared in a 46 

direction perpendicular to the VBG axis (blue arrows in Fig. 47 

2a and c). These lines corresponded to the minimum 48 

conductivity of the inactive region not covered by the top 49 

gate. On the other hand, the inactive region in Corbino 2 50 

was highly doped by the Si back gate, and its conductivity 51 

was much higher than that of the active region. Therefore, 52 

the measured conductivity was mainly determined by the 53 

active region, and the diagonal lines were not observed. 54 

Focusing on ν= 0 (n = 0), we found that the conductance 55 

dip vanished around |D| = 0.16 V/nm in Corbino 2. The two 56 

(separated) insulating states that appeared at |𝐷| < 0.16 57 

V/nm and |𝐷|    0.16 V/nm were assigned to the CAF 58 

state and the LP state, respectively [15,25-29].  59 

 The phase transition from the CAF state to the LP state 60 

was more clearly observed in the D and B dependences at 61 

n = 0 (Fig. 2e). The displacement field D* at the boundary 62 

between the CAF and LP regions linearly increases as B 63 

increases, which is quantitatively consistent with the 64 

results of a previous study [15]. Here, we convert D* into 65 

the energy unit ∆𝐷∗using the linear relationship between 66 

the displacement field and the energy gap at a zero 67 

magnetic field:  68 

∆D∗≡ ∆(𝐷∗) ≅ 130 × 𝐷∗(V nm⁄ )  (meV)   (1). 69 

The function ∆(𝐷) = 130 meV/D (V/nm) is the energy 70 

gap induced by applying the displacement field D at a zero 71 

magnetic field [19]. 72 

 The dependence of ∆𝐷∗ on B is shown in Fig. 4a. The 73 

physical meaning of ∆𝐷∗  is the difference in the 74 

interaction energy between the CAF and LP states, which 75 

is overcome by the polarization energy at D = D *.   76 



 

 

B. Temperature dependence 1 

 Having confirmed the known gate-dependence property 2 

of the 𝜈  = 0 quantum Hall state, we studied the 3 

temperature dependence of the conductivity at the center 4 

of the CAF state (n = 0, D = 0). Owing to the gate leakage 5 

problem of Corbino 2 at high temperatures, a wide range 6 

of temperature dependences were measured for the 7 

Corbino 1, two-terminal, and Hall bar samples. This 8 

measurement for Corbino 1 was not affected by its non-9 

active region because the center of the CAF state is at VTG 10 

= 0 and VBG = 0; therefore, the entire sample was in the 11 

CAF state.  12 

 Fig. 3a shows the temperature dependence of 13 

conductivity in Corbino 1. It exhibits nonmonotonic 14 

behavior above B=4 T. At B = 8 T, it behaves as an insulator 15 

below T = 20 K, a metal at higher temperatures, and an 16 

insulator above T = 80 K (Fig. 3a). We define these three 17 

temperature regions as I, Ⅱ , and Ⅲ, respectively. We 18 

define the boundary temperature between I and II (II and 19 

III) as TC1 (TC2), where conductivity takes a local 20 

maximum (minimum), and are shown in Fig. 3d and 4a.  21 

Fig 3b is an Arrhenius plot of Fig. 3a and Fig. 3c is its 22 

magnification at high-temperature region. The temperature 23 

dependence in Region I is well fitted with the activation 24 

energy Δ I. Region III is roughly fitted by activation 25 

energy ΔIII although we observe a slight deviation around 26 

the highest temperature and we have to interpret the fitted 27 

∆
Ⅲ
 as a lower bound of activation gap, rather than actual 28 

activation gap. Magnetic field dependence of the activation 29 

gap is shown in Fig. 4a and will be further discussed in 30 

section C.  31 

 In the two-terminal sample, TC1 defined by the local 32 

maximum was not defined well under a high magnetic field 33 

greater than 6 T, although kinks were observed (black 34 

arrows in Fig. 3e, which are comparable with TC1 of the 35 

Corbino sample and might be remnants of TC1 (Fig. 3d). In 36 

the Hall bar sample, the first kinks (black arrows in Fig. 3f 37 

are comparable with TC1 of the Corbino sample (Fig. 3d). 38 

In the Hall bar sample and the two-terminal sample, TC2 is 39 

not well defined for a high magnetic field greater than 6 T. 40 

As the vanishing TC2 is only observed under a high 41 

magnetic field, they might be due to trivial edge 42 

conduction. Another possible reason is the sample-43 

dependent amount of impurity.  44 

 The nonmonotonic T-dependence has been reported in 45 

previous studies [15,18,45]. However, its origin has not yet 46 

been determined. In a previous study, it was pointed out 47 

that nonmonotonicity can originate from the coexistence of 48 

bulk and edge states [18]. However, our results in the 49 

Corbino sample revealed that the non-monotonicity of the 50 

CAF state is due to an intrinsic bulk property.  51 

 Nonmonotonicity of the temperature dependence of the 52 

conductivity was not observed at 𝜈 = ±4 and ±8 (Fig. 53 

3f and g), indicating that it is related to the electronic 54 

correlation. At 𝜈 = ±4 and ±8, temperature dependence 55 

is stronger at high temperature and weaker at low 56 

temperature. These two temperature regimes are attributed 57 

to thermal activation across the Landau levels and hopping 58 

transport, respectively, which is quantitatively consistent 59 

with previous research [49]. 60 

C. Discussion on the temperature dependence 61 

a. Characteristic energy scale 62 

We now consider the origin of the nonmonotonic T-63 

dependence and physical significance of the 64 

characteristic temperatures based on the mean-field 65 

theory of quantum Hall ferromagnetism. Generally, the 66 

energy gap of a quantum Hall FM system consists of three 67 

terms [25]: 68 

 69 

E = E1 + EL + ES    (2), 70 

 71 

E1 = 𝜇𝐵𝐵𝑡𝑜𝑡𝑎𝑙 + Δ(𝐷)     (3), 72 

EL ≃
𝑒2

4𝜋𝜖𝑙𝐵
∝ √𝐵⊥        (4), 73 

ES ≃ ∫ 𝑑𝑟2 [𝜙∗(𝑟)
𝑒2

4𝜋𝜖𝑎
𝜙(𝑟)]

2

 74 



 

 

=
1

𝑙𝐵
2 ∫ 𝑑𝑟′

2

[𝜙∗ (𝑟′)
𝑒2

4𝜋𝜖𝑎
𝜙 (𝑟′)]

2

  (𝑟′ = 𝑟 𝑙𝐵⁄ ) 2 

    ∝ 1 𝑙𝐵
2⁄ ∝ 𝐵⊥       (5), 1 

 3 

where 𝐵𝑡𝑜𝑡𝑎𝑙  (𝐵⊥) is a total (out-of-plane) magnetic field, 4 

𝜖  is the in-plane dielectric constant, 𝑙𝐵  is the magnetic 5 

length, 𝑎  is the lattice constant, and 𝜙(𝑟)  is the wave 6 

function of the zero-th landau level.  7 

 E1 represents the one-particle energy, which contains the 8 

Zeeman energy and polarization energy. In the CAF state, 9 

the polarization energy is zero; therefore E1, CAF is identical 10 

to the Zeeman energy. Since out-of-plane spin canting is 11 

around 2 ° under a perpendicular magnetic field, E1, 12 

CAF = sin 2∘ 𝜇𝐵𝐵[T] ≃ 0.025𝐵[𝑇] K . EL represents 13 

Coulomb interaction in a longer scale than lattice constant 14 

that is symmetric in the spin and valley space. Since it does 15 

not depend on lattice-scale spin and valley configuration, 16 

it is identical for any spin and valley configuration. This is 17 

proportional to the square root of the perpendicular 18 

magnetic field. Based on the theoretical calculation, EL ≃19 

10√𝐵[𝑇] K is estimated [25].  20 

 ES is the lattice-scale short-range Coulomb interaction, 21 

which is valley asymmetric and proportional to the 22 

perpendicular magnetic field. In the CAF state, a 23 

calculation gives ES, CAF ≃ 10– 20 𝐵[𝑇] K  [24]. This 24 

term is different for the different spin and valley 25 

configurations. 26 

 Here, we consider the energy gap of the CAF state 27 

ECAF = E1,CAF + EL + ES,CAF and that of LP state ELP =28 

E1,LP + EL + ES,LP  as a function of B and D. When 29 

ECAF  ELP  , the ground state is the CAF state, and vice 30 

versa. 31 

The CAF state does not have polarization, therefore E1,CAF 32 

is determined only by the Zeeman energy. Since out-of-33 

plane spin canting is around 2° under a perpendicular 34 

magnetic field, E1  in the CAF state is E1,CAF =35 

sin 2∘ 𝜇𝐵𝐵[T]K ≃ 0.025𝐵[T]K. 36 

EL is identical for any kind of state and ref. 25 gives the 37 

estimation of EL = 10√𝐵[𝑇] K  . Regarding ES  , Ref. 38 

24 gives the theoretical estimation for the CAF state 39 

ES,CAF = 10~20B[T] K. In our experimental range of the 40 

magnetic field, ES,CAF > EL ≫ E1,CAF , so we can ignore 41 

E1,CAF. 42 

 In the LP state which has the layer polarization, E1 then 43 

becomes E1,LP = ∆(𝐷) ≅ 940 × 𝐷(V nm⁄ ) K . ∆(𝐷)  is 44 

the polarization energy defined in Eq. 1.  45 

Long-range interaction is identical to any state and EL =46 

10√𝐵[𝑇] K. This value is much smaller than E1,LP when 47 

the LP state is the ground state, because E1,LP = ∆(𝐷) 48 

exceeds ES,CAF, which is much larger than EL. 49 

It is difficult to estimate the value of ES,LP. In a previous 50 

study, the energy gap of the LP state at D=0.2 V/nm 51 

measured by STM is almost independent of the 52 

perpendicular magnetic field [50]. This implies that the 53 

magnetic-field-dependent term EL + ES,LP  is much 54 

smaller than the total energy gap, that is, the total energy 55 

gap is mainly determined by E1,LP. 56 

 Fig. 4b is a schematic diagram of ECAF  and ELP  as a 57 

function of D. We note that the difference between them at 58 

D=0 is given by ∆(𝐷 ∗) = ES,CAF + ES,LP ≅ ES,CAF, where 59 

the D* is the boundary of the CAF and LP state as a ground 60 

state. 61 

In Fig. 4a, we compare the theoretically expected values of 62 

ECAF ≅ ES, CAF + EL, and EL, and energy scales in the 63 

observed nonmonotonic temperature dependence. As we 64 

discussed above, ∆(𝐷 ∗) = ES,CAF + ES,LP ≅ ES,CAF =65 

ECAF − EL is comparable with ECAF given that ES,CAF >66 

EL. Also, we find that TC1 is comparable to EL, and TC2 and 67 

Δ Ⅲ are comparable to ECAF . This indicates that TC1 68 

corresponds to the long-range Coulomb interaction and TC2 69 

corresponds to the total energy gap of the CAF state, which 70 

is mainly determined by the short-range Coulomb 71 

interaction. Therefore, the change of the temperature 72 

dependence at TC1 is associated with the breaking of the 73 

quasi-long-range order (QLRO) and the change at TC2 is 74 

associated with the breaking of the short-range order, or a 75 



 

 

excitation across the CAF energy gap. 1 

b. Origins of nonmonotonic temperature 2 

dependence  3 

We consider the origin of the nonmonotonic temperature 4 

dependence of the conductivity based on the 5 

correspondence between TC1 (TC2) and long (short)-range 6 

Coulomb interaction energy. In region Ⅲ, the temperature 7 

dependence of the conductivity is roughly fitted to the 8 

Arrhenius formula (Fig. 3b and c), and its activation energy 9 

is comparable with TC2. Therefore, the conduction 10 

mechanism should be thermal excitation across the energy 11 

gap of the CAF state, which is mainly determined by the 12 

energy scale needed to break the local antiferromagnetic 13 

order (ES, CAF).  14 

In region I, the temperature dependence is fitted to the 15 

Arrhenius formula with activation energy smaller than TC1 16 

although it slightly deviates and exhibits weaker 17 

temperature dependence below 5 K. Because the 18 

temperature of region I is significantly lower than the 19 

energy gap, the hopping of carriers excited from the 20 

impurity states should be dominant.  21 

In region II, the temperature dependence becomes metallic. 22 

As TC1 corresponds to the long-range Coulomb interaction, 23 

breaking of the QLRO is expected above TC1. Because the 24 

CAF state has in-plane rotational symmetry, this order 25 

breaking is represented by the KT transition associated 26 

with the creation of unbounded vortices and anti-vortices. 27 

The creation of vortices and anti-vortices can affect the 28 

conductivity in the following two ways. First, these 29 

vortices can act as scattering centers of the electron spin 30 

flipping process for independently excited free electrons. 31 

This increases the scattering rate of the electron and 32 

contributes to the decrease in conductivity.  33 

Second, on the other hand, vortices in quantum Hall states 34 

have electrical charges and can act as conductive carriers, 35 

which contribute to the increase of conductivity.  36 

Whether the conductivity decreases or increases above TC1 37 

depends on which are dominant carriers, individually 38 

excited free electrons or correctively excited vortices.  39 

In the next section (C. c. Vortices density above KT 40 

transition), we estimate the number of vortices and 41 

impurities. The result of the estimation indicates that the 42 

number of individually excited electrons and holes from 43 

impurity states is much larger than the number of vortices 44 

near the KT transition temperature. In such a situation 45 

where the conduction is not dominated by vortices but by 46 

individually excited carriers, the number of conductive 47 

carriers does not change significantly at the KT transition. 48 

Therefore, the creation of unbounded vortices results in a 49 

decrease in conductivity because increased vortices 50 

promote spin flips of electrons and holes, which increases 51 

the number of possible scattering processes. As the 52 

temperature increases, more vortices are created, and the 53 

scattering rate is increased. This type of conductivity 54 

reduction is generally observed in the ordered-disordered 55 

magnetic phase transition of most magnetic materials. A 56 

well-known example is a butterfly-shaped 57 

magnetoresistance at the magnetization flip of Ising 58 

ferromagnets due to increased domain wall owing to the 59 

magnetization flip [52]. It is also known that the creation 60 

of skyrmion enhances the magnetic scattering and leads to 61 

increased resistance compared to the ferromagnetic phase 62 

[60].  63 

c. Vortices density above KT transition 64 

As discussed in the previous sections, TC1 is thought to be 65 

assigned to the KT transition temperature TKT. Above TKT, 66 

free vortices and antivortices that have electrical charges 67 

are excited. Here, we estimate the free vortex density and 68 

argue that it makes a small contribution to the number of 69 

conduction carriers.  70 

The density nvtx of the vortices and antivortices is 71 

proportional to 1/𝜉KT
2  [46], where 𝜉KT is the correlation 72 

length (the typical distance between vortices and 73 

antivortices). According to the KT theory [56], the 74 

temperature dependence of 𝜉KT above the KT transition is  75 

𝜉KT = A exp (B √𝑇 𝑇KT⁄ − 1⁄ )       (5),    76 



 

 

where A  is a length-dimension constant and B is a 1 

dimensionless constant with an order of unity. Because the 2 

conductivity dominated by vortices should be proportional 3 

to nVTX [46], the temperature dependence of the 4 

conductivity arising from free vortex motion is 5 

σ
VTX

6 

∝ A−2 exp (−2 B √𝑇 𝑇KT⁄ − 1⁄ )       (6).     7 

If the free vortices are the main conduction mechanism 8 

around TC1, the conductivity should exponentially increase 9 

above TC1 according to Eq. 6. However, we observe a 10 

decrease in conductivity above TC1. This indicates that free 11 

vortices are not the main conduction mechanism at 12 

approximately TC1. To test this hypothesis, we estimated 13 

the free vortex density and compared it with another 14 

possible conduction mechanism: carriers excited from 15 

charged impurities.  16 

The proportional coefficient A of Eq. 5 is approximately 17 

0.27 × lattice constant (magnetic length) according to the 18 

theoretical calculation [57]. In the same theoretical 19 

calculation, B = 1.99 is reported. Using these values, we 20 

calculated the free vortex density 1/ 𝜉KT
2   assuming TC1 21 

=TKT and plotted it (Fig. 4c). The impurity density was 22 

calculated based on the theoretical calculation [58] from 23 

the correspondence between the impurity density and the 24 

magnetic field at which the CAF state begins to be 25 

observed. We observed the CAF state as a conductivity gap 26 

above B = 4 T in Corbino 1 at T = 2.3 K. This corresponds 27 

to the density of the impurity states of 0.1 × 1012 cm−2 28 

in the energy window of 2.3 K. Here, we assume that the 29 

density of the impurity states is constant to the energy [59]; 30 

𝐷𝑖𝑚𝑝(𝑇) = C. The density of the impurity states involved 31 

in the scattering process at temperature T is 𝑛𝑖𝑚𝑝(𝑇) =32 

C ∫ exp(− 𝜀 𝑇⁄ )
∞

∆
𝑑𝜀 = 𝑇Cexp(− ∆ 𝑇⁄ ) , where ∆  is the 33 

average energy spacing between the impurity states. By 34 

fitting the temperature dependence of the conductivity 35 

below TC1 to this function, we obtained ∆ = 2 K . Using 36 

the relation C × 2.3 = 0.1 × 1012 cm−2 , we plotted the 37 

𝑛𝑖𝑚𝑝(𝑇)  (Fig. 4c). Because the density of the non-38 

impurity states is zero in the CAF energy gap, 𝑛𝑖𝑚𝑝(𝑇) is 39 

the total density of the states of the conductive carrier 40 

below TC1. Above TC1, the free vortex can be an additional 41 

conduction carrier.  42 

Because 𝑛𝑖𝑚𝑝(𝑇)  is much larger than the free vortex 43 

density in the vicinity of TC1, the KT transition does not 44 

lead to a significant increase in the total conductive carriers 45 

above TC1, which could explain why we observe a 46 

reduction in conductivity above TC1 rather than an increase 47 

in conductivity due to the additional carriers of the free 48 

vortices. 49 

In addition, we discuss the discrepancy of the KT transition 50 

temperatures between our study and previous study in 51 

monolayer graphene [45]. In ref. 45, They measured 52 

magnetic field dependence of the conductivity at 0.3 K and 53 

interpreted it as a magnetic field-induced KT transition. In 54 

their analysis, 0.3 K is above the KT transition temperature 55 

at the magnetic field below 18 T. This estimation of the KT 56 

transition temperature is much lower than TC1 in our study. 57 

A possible reason for this discrepancy is the difference in 58 

mobility of the samples. According to theory [46], the KT 59 

transition temperature strongly depends on the density of 60 

impurities, i.e., mobility. Considering more than seven 61 

times larger mobility in our samples than that of their 62 

samples [45], the discrepancy of the KT transition 63 

temperature is consistent with the theoretical calculation 64 

[46]. 65 

 66 

D. Nonlocal transport measurement 67 

 Finally, we employ nonlocal transport measurement to 68 

get further insight into this scenario. The CAF state can be 69 

described by the Landau level splitting between different 70 

spin and valley degrees of freedom, as shown in Fig. 5a. In 71 

this state, Hall conductivity is both spin and valley 72 

contrasting. Spin-valley Hall conductivity defined by 73 

𝜎𝑆𝑉𝐻 = 𝜎𝐻,→𝐾 − 𝜎
𝐻,→𝐾

′
− 𝜎𝐻,←𝐾 + 𝜎

𝐻,←𝐾′
  is expected 74 



 

 

to be nonzero. Here, 𝜎𝐻,𝑖𝑗  denotes the Hall conductivity 1 

for the electron with right or left spin (𝑖 =→, ←) and K or 2 

K’ valley (𝑗 = 𝐾, 𝐾′), where the right and left spins are 3 

in-plane and determined by spontaneous symmetry 4 

breaking of in-plane spin rotational symmetry. 5 

𝜎𝑆𝑉𝐻 allows for the conversion between the charge current 6 

and spin-valley current, where the spin-valley current is 7 

defined by 𝑗𝑆𝑉 = 𝑗↑𝐾 − 𝑗
 ↑𝐾

′
− 𝑗 ↓𝐾 + 𝑗

 ↓𝐾′
 . Assuming 8 

that 𝜎𝑆𝑉𝐻 is homogeneous over the entire sample, we can 9 

expect nonlocal resistance in the Hall bar geometry which 10 

originates from the spin-valley current generation and 11 

detection, in analogy with spin Hall effect and valley Hall 12 

effect.  13 

In the actual sample, 𝜎𝑆𝑉𝐻  cannot be homogeneous 14 

because the CAF state has continuous spin rotational 15 

symmetry and long-range order does not exist according to 16 

Mermin-Wagner theorem. However, if the correlation 17 

length of the quasi-long-range order in the CAF state is 18 

comparable or longer than the sample dimension, 19 

integration of 𝜎𝑆𝑉𝐻 in the entire sample is not averaged 20 

out and we can expect the spin-valley Hall effect. In the 21 

case that the correlation length is smaller than the sample, 22 

𝜎𝑆𝑉𝐻  is averaged out and spin-valley Hall effect is not 23 

expected (Fig. 5d). That is why the spin-valley Hall effect 24 

is the signature of quasi-long-range order in the CAF state.  25 

In our previous study [44], we measured the nonlocal 26 

resistance in the Hall bar sample and revealed its origin. 27 

The nonlocal resistance is defined by V3-5/I2-6 with the 28 

geometry of terminals shown in Fig. 5b. By measuring the 29 

temperature and magnetic field dependence, we concluded 30 

that the main origin of the nonlocal resistance in the CAF 31 

state is the spin-valley Hall effect. In this study, we used 32 

the same Hall bar sample (Fig. 5b) and measured the 33 

nonlocal resistance in a wider temperature range. Since this 34 

sample has a comparable size with the Corbino sample, it 35 

is reasonable to compare the degree of quasi-long-range 36 

order in these two samples. 37 

Here, we measured the T-dependence of the nonlocal 38 

resistance in the range of 1.5 K to 50 K. We previously 39 

found that nonlocal resistance has a cubic scaling 40 

relationship with the local resistance at low temperatures, 41 

which is consistent with the model that assumes 42 

homogeneous spin and valley-dependent Hall conductivity 43 

in the entire sample [44]. In Fig. 5c, we show RNL/RL
3 as a 44 

function of temperature. It is nearly constant at low 45 

temperatures, indicating the homogeneous spin and valley-46 

dependent Hall conductivity. At higher temperatures, it 47 

drops and exhibits a dip (a black arrow in Fig. 5c). This 48 

drop indicates a drop in the spin and valley-dependent Hall 49 

conductivity or collapse of its homogeneity. At higher 50 

temperatures, it increases as the temperature increases, 51 

indicating another mechanism of nonlocal transport, such 52 

as the thermal effect [44,51].  53 

 We defined the dip temperature as TCNL, and plotted it in 54 

Fig. 4a. TCNL increase as B increase, and is comparable 55 

with EL and TC1. This supports the scenario that KT 56 

transition occurs and quasi-long-range order is broken at 57 

TC1. 58 

  59 

Ⅳ. CONCLUSION 60 

 In summary, we observed nonmonotonic temperature 61 

dependence of the conductivity in the CAF state 62 

characterized by two different energy scales. Based on the 63 

mean-field theory of quantum Hall ferromagnetism, we 64 

attribute these to the KT transition and the breaking of the 65 

local antiferromagnetic order. This is the first observation 66 

of a two-step temperature-induced phase transition of a 67 

quantum Hall magnet, which was theoretically argued for 68 

the ν = 0 quantum Hall state of monolayer graphene [46]. 69 

In Mott insulators, a similar two-step phase transition 70 

associated with the breaking of the long-range and short-71 

range antiferromagnetic orders is commonly observed [53-72 

55], indicating the similarity between quantum Hall 73 

systems and correlated crystals. Our study could inform 74 

further studies of temperature-induced phase transitions in 75 



 

 

quantum Hall magnetic systems as gate-controllable 1 

experimental platforms. 2 
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APPENDIX A: Fabrication detail 14 

We used a mechanical exfoliation technique to prepare 15 

bilayer graphene (BLG) and hexagonal boron nitride 16 

flakes. The number of layers in each graphene flake on 17 

the SiO2 (285 nm)/Si substrate was determined by the 18 

contrast of the optical microscope image. After choosing 19 

clean h-BN and graphene flakes using AFM, we stacked 20 

them. First, an h-BN flake was picked up using a stamp 21 

made of a polycarbonate thin film on a round PDMS. The 22 

thickness of an h-BN flake is roughly estimated to be 30–23 

50 nm from its color in an optical microscope image. We 24 

then picked up a BLG flake with the h-BN flake and 25 

released them on another h-BN flake with a thickness of 26 

approximately 30–50 nm for the Corbino 1 and two-27 

terminal samples. For the Corbino 2 and Hall bar 28 

samples, we picked up the second b-BN flake and 29 

released the h-BN/BLG/h-BN stack on the graphite, 30 

whose thickness was approximately 5–10 nm. Graphite 31 

was used as a back gate for these two samples. After they 32 

were fabricated, the h-BN/BLG/h-BN(/graphite) stacks 33 

were annealed at 380 °C in an Ar/H2 atmosphere for 1.5 34 

hours to remove the polycarbonate residue.  35 

The top gate (Pd 5 nm/Au 30 nm) and Ohmic contacts 36 

(Pd 20 nm/Au 100 nm) were defined by electron beam 37 

lithography and metal deposition by thermal evaporators 38 

(Fig. 6a). Then, for the two Corbino samples, another h-39 

BN (20–40 nm thickness) was placed on the top gate as 40 

an insulating layer between the outer Ohmic contact and 41 

electrodes for the center Ohmic contact and the top gate. 42 

We created holes on the h-BN by reactive ion etching in 43 

an Ar/O2/CF4 atmosphere (Fig. 6b), and electrical 44 

contact was made to the top gate and center Ohmic 45 

contact (Ti 5 nm/Au 250 nm) (Fig. 6c). 46 

 47 

APPENDIX B: Dual gate dependence and conversion 48 

to the n and D plot 49 

In Fig. 7a, we show the dual-gate dependence of the 50 

conductivity measured at B = 6 and 9 T with T = 2.3 K. The 51 

gate voltages were converted into the carrier density and 52 

displacement field as follows: 53 

𝑛 =
ϵTG

𝑒𝑑TG

𝑉TG +
ϵBG

𝑒𝑑BG

𝑉BG    (A1) 54 

𝐷 = −
ϵTG

𝑑TG

𝑉TG +
ϵBG

𝑑BG

𝑉BG   . (A2) 55 

 56 

Here, ϵTG  and ϵBG  are dielectric constants of the 57 

insulating layers for the top gate and the back gate, 58 

respectively, e is the elementally charge, 𝑑TG  and 𝑑BG 59 

are thicknesses of the insulating layers for the top gate and 60 

back gate, respectively. In our Corbino sample, we adopted 61 

ϵTG ≅ 4𝜖0  (h-BN) and ϵBG ≅ 3.58𝜖0  (SiO2). Here, the 62 

difference in the dielectric constants between h-BN and 63 

SiO2 for the back-gate insulating layer was ignored, which 64 

resulted in a small uncertainty of D that was less than a few 65 

percent. 66 

After the assignment of the filling factor, as shown in Fig. 67 

7a and using the expected degeneracy of LLs at B = 9 T, 68 

we derived the values of the proportional coefficients in Eq. 69 

A1 as 70 

ϵTG

𝑒𝑑TG

= 5.8 × 1015 m−2V−1, 71 

  
ϵBG

𝑒𝑑BG

= 0.71 × 1015 m−2V−1.   (A3) 72 

These coefficients correspond to the thickness of the top h-73 

BN (38.12 nm and the total thickness of SiO2 and bottom 74 

h-BN (280 nm), which agree with the expected thicknesses. 75 

By substituting these thicknesses into Eqs. A2, we derived 76 



 

 

the displacement field D and obtained the n and D plots 1 

shown in Fig. 7b.   2 

Next, we show the n and D dependences of the 3 

conductivity at B=0, 2, 4, 6, and 9 T in Corbino 1 and 2. In 4 

Corbino 1, diagonal lines appeared in a direction 5 

perpendicular to the VBG axis (blue arrow in Fig. 8). These 6 

lines corresponded to the minimum conductivity of the 7 

inactive region not covered by the top gate. On the other 8 

hand, the inactive region in Corbino 2 was highly doped by 9 

the Si back gate, and its conductivity was much higher than 10 

that of the active region. Therefore, the measured 11 

conductivity was mainly determined by the active region, 12 

and the diagonal lines were not observed. The conductivity 13 

dip at n = 0 and D = 0 indicates that the formation of the 14 

CAF state appears above B = 4 T for Corbino 1 and B = 2 15 

T for Corbino 2.  16 

 17 

APPENDIX C: Temperature dependence in the LP 18 

state 19 

We measured the temperature dependence of conductivity 20 

for various D including the layer-polarized phase in one 21 

sample, as shown in Fig. 9.  22 

In the D and T plot shown in Fig. 9a, the dome-like highly 23 

resistive region of the CAF and LP state are observed. The 24 

conductance peaks at ±D* (border between the CAF and 25 

LP state) become broader as temperature increases, but do 26 

not change their positions (value of D*). Fig. 9b shows the 27 

cut of Fig. 9a at the LP state (red, orange, light-green, and 28 

green solid curves) and the CAF state (black, blue, and 29 

purple broken curves). All curves show the saturation of 30 

conductance increase around 20 K (1/T~0.05), but the 31 

negative dependence of conductance on temperature is 32 

only seen in the CAF state and LP state at D=-0.254 V/nm 33 

(close to the CAF). The reduction of conductance is more 34 

significant in the CAF state. 35 

In the LP state, both two electrons per orbital form spin-36 

singlet and occupy the upper or bottom layer. Since they 37 

form spin-singlet at a site, it does not have magnetic 38 

ordering at least according to the existing theories [25]. 39 

Also, layer polarization symmetry in the LP state is 40 

externally broken by an out-of-plane electric field, that is, 41 

it is not a spontaneous symmetry breaking purely 42 

originated from the electron correlation. Even when the 43 

temperature exceeds the long-range Coulomb interaction 44 

energy, short-range domains are not formed in the LP state 45 

due to the external electric field. This is the essential 46 

difference between the CAF and LP states. Therefore, we 47 

do not expect a two-step phase transition in the LP state. 48 

 Nevertheless, it seems to show saturation of the 49 

conductance at a similar temperature with the CAF state. 50 

Since the long-range Coulomb interaction energy is 51 

identical to the CAF and LP state, there is a possibility that 52 

this saturation is related to long-range Coulomb interaction 53 

energy.  54 

We could measure only in a limited temperature range 55 

(2~42 K) owing to the gate leak problem that started during 56 

the measurement. Also, we do not have the data in multiple 57 

samples.  58 

To investigate the phase transition in the LP state and the 59 

evolution from the CAF to LP state, we need more data 60 

from multiple samples.  61 
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Fig. 1. Schematic of the CAF state and sample structure. (*single column figure) 

 (a) Configuration of the spins in the CAF state in bilayer graphene. The orange (blue) lines are the top (bottom) layers of 

the bilayer graphene. The red dots indicate the electrons and their spins are indicated by the purple arrows. (b, c, d, e) 

Optical microscope image of Corbino 1 (b), Corbino 2 (c), two-terminal (d), and Hall bar (e) samples. (f) Schematic cross-

section along the broken red line in (b). Bilayer graphene is encapsulated by high-quality hexagonal boron nitride (h-BN) 

crystals with a thickness of 30–50 nm and sandwiched between the gold top gate and p-doped Si back gate.  

 



 

 

   

Fig. 2. n (carrier density) and D (displacement field) dependence of the conductivity in Corbino samples. *single 

column 

(a, b, c, d) A plot of conductivity σ versus the carrier density n and displacement field D at T = 2.3 K for Corbino 1 at B 

= 0 T (a), Corbino 2 at B = 0 T (b), Corbino 1 at B = 9 T (c), and Corbino 2 at B = 9 T (d). The red numbers are the filling 

factors assigned to the conductance dips in the n axis. Blue arrows in (a) and (c) indicate the diagonal conductivity dip line 

originated from the inactive region of the sample not covered by the top gate. 

(e) A plot of σ versus the perpendicular magnetic field B and D for Corbino 2 at n = 0 and T = 2.3 K. The orange broken 

line indicates the phase boundaries between the CAF and the LP regions.   

 

 

 



 

 

 

Fig. 3. Temperature dependence of the conductivity and parameters. *double column 

(a, b) Standard plot (a) and Arrhenius plot (b) of the temperature dependence of the conductivity for Corbino 1 at T = 2.3–

200 K for a magnetic field of 0, 2, 4, 6, and 8 T. The temperature regions separated by black broken lines are regions Ⅰ, 

Ⅱ, and Ⅲ for B = 8 T.  

(c) Magnified plot of (b) around region ⸰.  

(d) Magnetic field dependence of TC1 of Corbino 1 (black dots), TC2 of Corbino 1 (blue dots), the first kink of the two-

terminal sample (black open square), TC2 of the two-terminal sample (blue open square), the first kink of Hall bar sample 

(black cross), and TC2 of Hall bar sample (blue cross).  

(e, f) Temperature dependence of the conductivity of two-terminal (e) and Hall bar (f) samples in Arrhenius plot. Black 

arrows indicate the first kink, whose magnetic field dependence is shown in (d). 

(g, h) Temperature dependence of the conductivity of Corbino 1 at 𝜈 = ±4 and 8 at B=4 T (g) and B=9 T (h). Black broken 

lines indicate the Arrhenius fitting in high-temperature region. 

 

 

 



 

 

 

 

Fig. 4. Parameters and characteristic energy of the temperature dependence and estimation of vortex and impurity densities.  

*single column 

(a) Magnetic field dependence of TC1 (black dots), TC2 (blue dots), ΔⅠ (black cross), and ΔⅢ (blue cross) in Corbino 1, 

ΔD* (orange broken line) in Corbino 2, TCNL (green dots), ES (blue shade), and ECAF (orange shade).  

(b) Energy gap (stabilization energy) of the CAF and LP state as a function of D. The Purple (orange) line is the energy 

gap of the CAF (LP) state as a function of D. Solid lines indicate that it is the ground state.  

(c) The free vortex density was calculated by 𝑛𝑣𝑡𝑥(𝑇) = A−2 exp(−2 B √𝑇 𝑇C1⁄ − 1⁄ ), where A = 0.27 × magnetic 

length (=√𝐵(= 8 T)/Φ0) and B = 1.99. The impurity density was calculated by 𝑛𝑖𝑚𝑝(𝑇) = 0.043 × 1012 cm−2 ×

𝑇exp(− 2 K 𝑇⁄ ). 

  

 

Fig. 5 Nonlocal transport measurement. *single column 

(a) Schematic of the Landau level splitting and spin and valley contrasting Hall conductivity. Vertical direction indicates 

the energy. The gray lines are the energy level of Landau levels for different spins (→,←) and valleys (K, K’). A Green 

broken line indicates zero energy.  



 

 

(b) Optical microscope image of the Hall bar sample and terminal numbers. The nonlocal resistance is defined by V3-5/I2-

6. 

(c) The plot of RNL/RL
3 as a function of temperature in the Hall bar sample. The arrows indicate TCNL for B = 8 T. The 

inset shows RNL as a function of RL at B = 8 T in the same temperature range. The black line and arrow indicate cubic 

dependence and TCNL, respectively.   

(d) Schematic of the phase transition and spin-valley Hall conductivity in the CAF state. At low temperatures (T < EL, 

bottom), vortices and antivortices are always bound, and the system has a QLRO. In this case, the average of the spin-

valley Hall conductivity over the sample is non-zero. Above T = EL, QLRO is broken, and the correlation length begins 

to exponentially decrease as the temperature increases, but antiferromagnetic orders are still preserved locally (top). 

In this case, the average of the spin-valley Hall conductivity over the sample is zero. 

 

 

 

 

 

 

 

 

Fig. 6. Sample fabrication processes. Optical microscope images of Corbino 1 after fabricating a top gate and Ohmic 

contacts (a), after making holes on the top h-BN by means of reactive ion etching (b), after fabricating electrodes for the 

top gate and Ohmic contacts (completed sample) (c). *single column 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Dual gate dependence of the conductivity in Corbino 2 measured at B = 9 T and T = 2.3 K. *single column 

(a) Conductivity versus the top gate voltage VTG and back gate voltage VBG. The red numbers indicate the filling factors for 

conductivity dips indicated by broken red lines. (b) Conductivity versus the carrier density n and displacement field D. 

This figure is identical to Fig. 2d. 

 

 

 



 

 

 

Fig. 8. n and D dependence of the conductivity in Corbino 1 (a) and 2 (b) measured at B = 0, 2, 4, 6, 9 T and T = 2.3 K. A 

blue arrow for Corbino1 at B = 0 T indicates the diagonal conductivity dip line originated from the inactive region of the 

sample not covered by the top gate. *double column 

 

 

 

 

 

Fig. 9. Temperature dependence of the conductivity for various D at B=9 T in Corbino 2.*single column 

(a) Color plot of the conductivity as a function of D and T at n=0.   

(b) Arrhenius plot at different values of D. 

 

 

 


