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In a slab geometry with large surface-to-bulk ratio, topological surface states such as Fermi arcs
for Weyl or Dirac semimetals may dominate their low-energy properties. We investigate the collec-
tive charge oscillations in such systems, finding striking differences between Weyl and conventional
electronic systems. Our results, obtained analytically and verified numerically, predict that, time-
reversal symmetry broken Weyl semimetal thin-films will host a single ω ∝ √q plasmon mode,
that results from collective, anti-symmetric charge oscillations of between the two surfaces, in stark
contrast to conventional 2D bi-layers as well as Dirac semimetals with Fermi arcs, which support
anti-symmetric acoustic modes along with a symmetric optical mode. These modes lie in the gap
of the particle-hole continuum and are thus spectroscopically observable and potentially useful in
plasmonic applications.

I. INTRODUCTION

Weyl semimetals (WSM’s) are three dimensional topo-
logical systems characterized by an even number of band-
touching points (Weyl nodes), such that, in the vicinity of
these points, the electronic states obey Weyl equations,
and as a result are chiral [1]. The unique topology of
these systems follows from the fact that the Weyl nodes
act as sources or sinks of Berry flux. A remarkable con-
sequence of this becomes apparent in slab geometries of
these materials, with surfaces oriented so that the pro-
jections of different Weyl points onto the surfaces do not
lie upon one another. In these cases one finds topolog-
ical “Fermi arcs” (FA’s), in which the two-dimensional
Fermi surface of the slab is fractured into disjoint pieces
that reside on different surfaces. Each arc connects a
pair of Weyl nodes of opposite helicity. The states of
these Fermi arcs inherit the chirality of the bulk nodes,
with velocities that disperse in a quasi-one-dimensional
manner. Examples of such materials include TaAs [2],
NbAs [3] and, more recently, Co3Sn2S2, for which Fermi
arc modes have been identified in ARPES and quasipar-
ticle interference experiments [4, 5].

Closely related to WSM’s are Dirac semimetals
(DSM’s). The electronic structures of these systems host
Dirac nodes, which may be understood as a limit in which
two Weyl nodes of opposite chirality come together at
the same momentum point. Fermi arc states can also be
present in a Dirac semimetal slab with Dirac node pairs
separated in the two-dimensional momentum space of the
slab. In such materials a surface hosts an even number
of gapless modes that carry current in opposite direc-
tions, with backscattering prohibited when a symmetry
protecting them is not violated. A possible example of
such system are the Cd2As3 family of materials [6], which
support remarkable transport properties [7–9].

When interactions among electrons are considered,
these materials should typically host collective modes, in-
cluding bulk [10–13] as well as surface plasmons mediated

by the Fermi arcs [14–23]. In contrast to thick systems,
where electrons on different surfaces have negligible in-
fluence on one another, geometries of these systems with
large surface-to-volume ratios, specifically slabs, offer a
platform in which the surface states are influential and
induce novel properties. For a thin-film geometry, which
is the primary focus of our work, FA states of opposite
surfaces can no longer be treated individually and the
low-energy Fermi surface, in the two dimension, inter-
polates states predominantly supported by the two sur-
faces and the bulk [24]. This intertwining of surface and
bulk states raises questions on the nature of the collec-
tive modes that these materials can support, how they
differ between Dirac and the Weyl semimetals, and how
both differ from analogous conventional conducting sys-
tems. A natural paradigm for the last of these is a doped
bilayer semiconductor, as might be realized in some het-
erostructures or double quantum wells. These systems
have been known for some time to support two collective
modes analogous to plasmons [25–36]. Generally, at long
wavelengths, one of these corresponds to charge oscillates
in the two layers which are in-phase, and disperses as

√
q

(with q the momentum of the excitation). The other in-
volves antisymmetric charge oscillations, and disperses
linearly in q, i.e., acoustically. The non-analytic behav-
ior of the symmetric plasmon mode dispersion is a direct
consequence of the long-range nature of the Coulomb in-
teraction. The acoustic nature of the second mode arises
because the long-range part of the interactions is screened
by the out-of-phase nature of the density oscillations.

As we show below, plasmons in WSM and DSM slabs
have some properties in common with the bilayer semi-
conductor paradigm, but also display some remarkable
differences. Most dramatically, we find that, for the case
of magnetic Weyl semimetals, WSM slab hosts a single
low-energy plasmon mode dispersing as

√
q, but that, at

long wavelengths, the density oscillations are antisym-
metric in across surfaces as is the case for the acoustic
mode of a doped bilayer semiconductor. This behavior
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turns out to be a consequence of the opposite helicities of
single-particle modes on the two surfaces, and so is a di-
rect consequence of the unusual topological nature of the
Weyl semimetal. Our prediction offers a new avenue for
demonstrating this helicity beyond direct surface trans-
port measurements [37–39]. In terms of material candi-
dates, magnetic semimetallic phases in spinel compounds
(such as VMg2O4) [40] can serve as likely systems where
such physics can be explored.

In recent years, detection of plasmons and their dis-
persions in two dimensional systems have become possi-
ble using scanning near-field optical microscopy [41, 42].
Such techniques use nanoprobes to produce and detect
the electric field of plasmons, and deduce the plasmon
dispersion by observing the wavelength of interference
patterns as a function of frequency. These techniques
could in principle be applied to thin-film geometries of
WSM’s and DSM’s, and in the former case would only be
visible for frequencies above the scale at which the charge
antisymmetry becomes sufficiently imperfect that electric
fields can escape through the film surfaces and couple to
an external probe. For lower frequencies, the electric
fields would be confined within the thin film, making the
system a natural waveguide. This suggests energy trans-
port by the system may be particularly efficient in this
low-frequency range.

II. HEURISTIC EXPLANATION

Before presenting results of our detailed analysis, we
explain qualitatively how the phenomena described above
can emerge in WSM and DSM thin films.

Below we consider a system with conducting states on
opposite surfaces of a slab separated by a dielectric bulk,
which we assume in this model to have no qualitative
effect on the collective modes. The resulting system is
similar to a pair of interacting two dimensional systems,
which, as described above, typically supports a symmet-
ric plasmon (∼ √q) mode and an antisymmetric acoustic
(∼ q) mode [25–28]. At long-wavelengths the collective
modes may be well-described in the random phase ap-
proximation (RPA). In the case of plasmons these are
self-sustained oscillations in which the electron densities
respond in the same fashion as non-interacting electrons
to an effective potential, generated by the Coulomb in-
teraction, which is induced by the density oscillation.
We write these (non-interacting) response functions as
χ1(q, ω), χ2(q, ω) for the top and the bottom surfaces,
respectively, where q = (qx, qy) is the surface momen-
tum. The bare intra- and inter-layer Coulomb interac-
tions are given by Vij(q, ω), with i, j = 1, 2. Explicitly,
V11 = V22 = αc/q and V12 = V21 = αce

−qL/q, where L
is the separation between the layers and αc = 2πe2/ε,
where ε is the effective dielectric constant of the bulk,
separating surfaces. At the RPA level, if the interact-
ing response functions are written as χ̃ij(q, ω), then (see

FIG. 1. The self-consistent equations for the interacting re-
sponse functions χ̃ab (filled), where a, b, λ = ±1 are layer
indices, written at RPA approximation with single curly lines
being the interaction Vaλ and the unfilled loop being the
non-interacting response function χabδab. The self-consistent
equation reads χ̃ab = χaδab +

∑
λ χaVaλχ̃λb.

Fig. 1):(
1− V11χ1 −V12χ1

−V21χ2 1− V22χ2

)(
χ̃11

χ̃21

)
=

(
χ1

0

)
, (1)

where for brevity, we have dropped the q, ω indices. The
matrix on the left is the dielectric matrix ε(q, ω). An
equivalent relation can be written for χ̃22 and χ̃12.

The conditions for self-sustaining collective modes are
found from Det ε(q, ω) = 0, which gives [29]:

1− V (q)
(
χ1(q, ω) + χ2(q, ω)

)
+ V (q)2(1− e−2qL)χ1(q, ω)χ2(q, ω) = 0. (2)

In the limit when L� q, this equation reduces to

(1− V (q)χ1(q, ω)) (1− V (q)χ2(q, ω)) = 0, (3)

which is the condition for decoupled collective modes for
individual surfaces.

To analyze the nature of the charge oscillation for a
plasmonic mode, it is useful to expand the χi’s as a func-
tion of q/ω in the limit when ω > vF q,

χi = µi
q

ω
+ νi

q2

ω2
+ · · · , (4)

where µi and νi are constants to be derived later.
Furthermore, in the limit of small q, when qL� 1, one

can write Eq. (2) as

1− V
(
χ1 + χ2

)
+ 2qL V 2χ1χ2 ≈ 0

⇒1−
(a1

ω
+
a2q

ω2
+ · · ·

)
+

(
b1q

ω2
+ · · ·

)
≈ 0, (5)

Here a1 = αc(µ1 + µ2), a2 = αc(ν1 + ν2), and b1 =
2Lα2

cµ1µ2.
Now, if a1 is non-zero, then, the lowest order term in

the above equation is of O(q0), and the plasmon in the
limit ω � vF q has a gap of order ∆ = a1 in the limit
q → 0. On the other hand, if a1 = 0 but a2 6= 0, which
as we explain below is the case of interest here, then to
lowest order the equation becomes

1− a2q

ω2
= 0⇒ ω =

√
a2 − b1

√
q. (6)

This is the
√
q (optical) plasmon mode. When ω and

q satisfy this dispersion relation the determinant of the
dielectric function vanishes.
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1. Polarizability of the Fermi Arcs

In the cases of WSM’s and DSM’s these surface states
may be modeled as a collection of helical states dispersing
linearly in the x̂-direction,

E(±)
s (k) = (±)s~vF kx; − k0 < ky < k0. (7)

Here s is a (pseudo-)spin index, with s = 1 on one surface
and s = −1 on the other for Weyl FA’s, and vF is the
Fermi velocity. The index smay be±1 on each surface for
Dirac FAs, and the overall ± sign in Eq. (7) applies only
to the Dirac case and indicates which surface the arcs
lie upon. For both the Weyl and Dirac cases the FA’s
are taken for simplicity to lie on straight lines between
momenta ky = ±k0.

In the limit of small q, for a given spin-sector s = 1,
for the top surface,

χ1,s=1(q, ω) =

∫
d2k

4π2

nF (Ek)− nF (Ek+q)

~ω − ~vF qx

= −
∫
d2k

4π2

∂nF (Ek)

∂Ek
q.
∂Ek

∂k

1

~ω − ~vF qx

=
k0

2π2

qx
~ω − ~vF qx

. (8)

We write ω = vF kF ω̄, qx = kF q̄x and k0 = kF k̄0, so
that ω̄, q̄x and k̄0 become dimensionless variables. Then
Eq. (8) may be written in the form

χ1,s=1(q, ω) ≡ χWSM
1 (q, ω) =

kF
2π2~vF

k̄0q̄x
ω̄ − q̄x

=
βq̄x
ω̄ − q̄x

, (9)

where β = kF k̄0
2π2~vF . Similarly,

χ1,s=−1(q, ω) ≡ χWSM
2 (q, ω) = − βq̄x

ω̄ + q̄x
. (10)

Note in the limit of small q, χWSM
1 = −χWSM

2 , a di-
rect reflection of the opposite helicities of the two surface
modes. This property plays an important role in the
WSM collective modes. The non-interacting polarizabil-
ities for the top and bottom surfaces of a Dirac semimetal
are same as one another and are given by

χDSM
1 (q, ω) = χDSM

2 (q, ω) = β
( q̄x
ω̄ − q̄x

− q̄x
ω̄ + q̄x

)
=

2βq̄2
x

ω̄2 − q̄2
x

. (11)

Expanding for small q̄/ω̄, similar to Eq. (4), one finds
µ1 = −µ2 = β cos θ, ν1 = ν2 = β cos2 θ for the Weyl FA.
For the Dirac FA, µi = 0 and ν1 = ν2 = 2β cos2 θ. (In
these expressions θ = cos−1 qx

q .)

2. Single-surface plasmon modes

For a single surface with Dirac or Weyl FA, the disper-
sions of the plasmon modes can be found by solving

1− V (q)χ(q, ω) = 0. (12)

For the Dirac FA,the equation reduces to:

ω̄2 − q̄2 cos2 θ − 2ᾱcβq̄ cos2 θ = 0,

where ᾱc = αc/kF . When q̄ � ω̄, this results in a single
plasmon mode with dispersion

ω = vF
√

2αcβ cos θ
√
q. (13)

For the Weyl FA, the same equation reduces to

ω̄ − sq̄ cos θ − ᾱcβ cos θ = 0,

resulting in a gapped, chiral plasmon mode

ω = vFαβ cos θ + svF cos θq. (14)

As such, the chirality of the plasmon mode is the result
of the helicity of the FA states.

3. Two-surface plasmon modes

For the two-surfaces of the slab-geometry, we substi-
tute the non-interacting response functions of the two
surfaces in Eq. (2) for the collective modes. For the Dirac
system, as χDSM

1 = χDSM
2 = χDSM, the equation reduces

to

1− V (q)χDSM(q, ω) = ±e−qLχDSM(q, ω). (15)

For the (+) on the right-hand-side, for qL � 1, this
results in the dispersion

ω̄2 − cos2 θq̄2 − 4ᾱcβ cos2 θq̄ = 0, (16)

For the (-) sign, for qL� 1, we obtain the dispersion

ω̄2 − cos2 θq̄2 − 2ᾱcβL̄ cos2 θq̄2 = 0, (17)

where L̄ = LkF . Keeping smallest orders in q̄, thus we
get two plasmon modes with dispersions

ω
(1)
D = vF

√
1 + 2αcβL cos θ q, ω

(2)
D = vF

√
4αcβ cos θ

√
q.

(18)

The strong anisotropies in these expressions reflect
those of the DSM Fermi arcs, but beyond this are simi-
lar to two-dimensional semiconductor bilayers in hosting
a symmetric

√
q mode and an antisymmetric acoustic

mode. By contrast, for the WSM, in the limit of qL� 1,
the equation for collective mode reduces to

ω̄2 − q̄2 cos2 θ ≈ 2ᾱcβ(1 + ᾱcβL̄) cos2 θq̄. (19)
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In the lowest order in q̄, we obtain the plasmon dispersion
(in terms of dimension full variables)

ωW = vF
√

2αcβ
√

1 + αcβL cos θ
√
q. (20)

Notice that in either case the plasmon dispersions become
steeper with increasing L, k0 and become softer with in-
creasing θ from 0o. We have verified these behaviors
numerically.

4. Charge oscillation for the
√
q mode

Remarkably, the density oscillations on the two sur-
faces turns out to be antisymmetric across the surfaces.
The effect is a direct result of the single-particle sur-
face mode helicities, and in this way reflects the unusual
topology of the WSM system. To see this, the net charge
fluctuations on the two surfaces δρi(q, ω) (i = 1, 2) are
written in terms of the response functions in the presence
of external potentials φext,i on the ith surface as(

δρ1

δρ2

)
=

(
χ̃11 χ̃12

χ̃21 χ̃22

)(
φext,1

φext,2

)
= ε−1

(
χ1φext,1

χ2φext,2

)
⇒ ε

(
δρ1

δρ2

)
=

(
χ1φext,1

χ2φext,2

)
. (21)

For self-sustained charge oscillations, (δρ1, δρ2) is the
eigenvector of the ε matrix with zero eigenvalue. This
implies

δρ1

δρ2
=

χ1V12

1− V11χ1
. (22)

For the WSM, µi 6= 0, so that for small q and for the
ω ∝ √q mode, χ1 ∝

√
q whereas V11, V12 ∝ 1/q. This

implies

δρ1

δρ2

∣∣∣∣
WSM

≈ −V12

V11
≈ −1, (23)

resulting in antisymmetric oscillation. We note that this
anti-symmetric nature also holds for the eigenvector of
the ε matrix when ω and q satisfy the plasmon mode
dispersion relation.

For the case of a Dirac semimetal (as well as for a
normal metal), for small q and for the ω ∝ √q mode,
χi ∝ q. In this case, the resulting density amplitudes
follow

δρ1

δρ2

∣∣∣∣
Dirac

≈ ν1

ν2
. (24)

As ν1 = ν2, this implies a symmetric charge oscillation.
For the ω ∝ q mode, a similar argument yields δρ1/δρ2 ≈
−V12/V11, i.e, an antisymmetric charge-oscillation mode.

This result is in stark contrast to what is found in the
DSM and in conventional semiconductor bilayers. Be-
cause of the antisymmetry, electric fields associated with

FIG. 2. Low-energy bands of the WSM slab. The n = ±1
bands contain all the FA as well as bulk states.A Fermi sur-
face at low energy is marked with states at the dotted side is
supported by one surface and the states at the dashed-dotted
side is supported by the other surface, whereas the states at
the solid sides have support dominantly in the bulk.

the WSM plasmon mode will tend to be confined within
the interior of the WSM slab. This suggests that ra-
diative losses by such plasmons will be limited, so that
energy transport by them through the slab will be long-
lived relative to comparable DSM’s and bilayer semicon-
ductor systems. In Appendix A, we consider the case of
multiple Fermi arcs, which further reveals the condition
for the existance of such

√
q modes. If we assume straight

Fermi arcs, with the ith Fermi arc, on the top surface, dis-
persing along the n̂i direction in the Brillouin-zone, each
having the same length, then the condition for the sys-
tem to support a confined plasmon mode is

∑
i cos θi 6= 0,

where cos θi = n̂i · ~q/q. This can occur in systems with
broke time-reversal symmetry.

The simple heuristic model presented here leaves out
a number of properties that are relevant to more realis-
tic models of these systems. In particular, bulk states,
which host a particle-hole continuum of excitations, may
dampen the plasmon modes. This may occur through
interactions between the surface and bulk electrons, as
well as through their direct coupling at the single-particle
state level. Moreover, the surface states may themselves
hybridize for a thin enough slab. By a numerical analysis
of a more detailed model, we now show that these modes
indeed persist in spite of these effects.

III. COLLECTIVE MODES IN A
TIGHT-BINDING MODEL

Our quantitative analysis employs a multiband band
model of a semimetal with Weyl points which is block-
diagonal in 2×2 blocks, each of which contains a pair of
Weyl nodes. The model generalizes to n-pairs of Weyl
nodes, for which the Hamiltonian consists of n-blocks of
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two band systems. The basic Hamiltonian block for the
semimetal may be written as [24, 43]

Hη = (σyqx − σxqz) + σzMη(ky), (25)

where η maybe +1 or −1. In Eq. (25) σ are Pauli-
matrices acting on spin amplitudes, and the mass is given
by Mη(ky) = η (m−cos(ky)). We have taken the lattice-
spacing a to be unity and have scaled the Hamiltonian by
~vF /a, with vF being the Fermi velocity near the nodes.
The momenta are scaled by 1/a, making all the variables
unitless. The value of m determines whether the spec-
trum is gapped: for 0 < m < 1 it contains two Weyl
nodes and, for either choice of η, these Weyl nodes sit-
uate at k = (0,±k0, 0), where 2k0 = 2 cos−1(m) is the
momentum separation between them. For a given η (say,
η = 1), the Hamiltonian Eq. (25) breaks time-reversal
symmetry. This serves as the simplest model of a WSM.
If one retains one block each of the formHη=+ andHη=−,
which are time-reversal partners, together they serve as
a four band model for a DSM.

For a slab geometry with a finite thickness L along
the z direction, the electronic states from these Hamilto-
nians can be obtained by imposing appropriate bound-
ary conditions on the surfaces [24] (for details, see Ap-
pendix B). The resulting energy bands are indexed by
n = ±1,±2 · · · (± for positive and negative energy
bands), for each η sector. We focus upon the case when
the chemical potential is positive and the system near
charge neutrality, in which case, for the low-energy col-
lective excitations, one may neglect bands other than
n = ±1. For such a choice of Fermi energy, the Fermi
surface contains the FA states of both surfaces as well as
bulk states.

To proceed we expand the second-quantized field op-
erators in eigenstates of the Hamiltonian, φη,n,k(z), as

Ψ(r, z) =
1√
LxLy

∑
k

exp(ik · r)
∑
η,n

φη,n,k(z)cη,n,k

where cη,n,k annihilates an electron from nth band in
state η,k with η = ±1 (η = 1) for a DSM (WSM). To
find the plasmon modes we consider the density response
function (see Appendix C)

χ(q, z, z′, ω) = −i
∫
dtdreiq·r+iωt〈

[
ρ(r, z, t), ρ(0, z′, 0)]

〉
,

with ρ(r, z, t) = Ψ †(r, z, t)Ψ(r, z, t), the time-dependent
density operator in the Heisenberg picture. The poles of
χ(q, z, z′, ω) denote the values of ω and q where there
are collective excitations. In the time-dependent Hartree
approximation, this response function obeys the equation

χ(q, z, z′, ω) =χ0(q, z, z′, ω)

+

∫ L

0

dz2B(q, z, z2, ω)χ(q, z2, z
′, ω), (26)

FIG. 3. Particle-hole continuum (lighter area) and the sharp
plasmonic modes (marked) as a function of q along the direc-
tion of tan−1(qy/qx) = 600. The left and the right plots are
for the WSM and DSM thin films, respectively. For numerical
results we choose L = 25, µ = 0.04,m = 0.8 and we use 51
divisions along z in finding the B matrix (see Appendix C for
details).

where

B(q, z, z2, ω) =

∫ L

0

dz1Vq(|z1 − z2|)χ0(q, z, z1, ω) (27)

contains the Coulomb interaction Vq(|z|) = αe−q|z|

q , writ-

ten in terms of α which we now set to 1 (for a generic
material, α is given by α ≈ c

vF
× 1

137 , with vF being

the Fermi velocity). In these expressions χ0 is the non-
interacting response function. To solve these equations,
the integral of the coordinate z1 is performed analytically,
while the integral over the coordinate z2 is approximated
by a discrete sum, with ∆z the interval between grid
points. The poles of the response function can then be
found by solving det[I −∆zB(q, ω)] = 0, where B(q, ω)
is a matrix whose components are given by B(q, ω, z, z′).

IV. NUMERICAL RESULTS

Fig. 3 illustrates typical results from our numerical
model. At low frequencies and wavevectors, sharp modes
are visible which are consistent with expectations from
the heuristic model discussed above. Specifically, for the
WSM, a single plasmon mode dispersing as

√
q is ap-

parent, whereas for the DSM, there is in addition an
acoustic mode. An important consideration in obtaining
these modes is whether the density response associated
with them is truly sharp, as required for a self-sustaining
mode. This can only occur if the particle-hole excitations
associated with poles of χ0, the non-interacting response,
are absent for the values of q and ω at which the plasmon
modes are present. It is here that the bulk states, absent
in our heuristic model, have an impact.

The continuum of non-interacting particle-hole excita-
tions in this system consists of two contributions: inter-
band and intra-band processes. Intra-band particle-hole
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excitations exist below any frequency ω = vF q, where
vF is the Fermi velocity. Inter-band excitations have
a gap of 2µ at q = 0, where µ is the chemical poten-
tial, which drops as q increases. It is apparent in Fig. 3
that they leave open a window of wavevectors and fre-
quencies where the plasmon modes enter and remain
sharp. Two comments are worth noting about these
particle-hole excitations: (i) they involve both the non-
interacting FA states and the bulk states of the system,
and (ii) the relevant particle-hole excitations involve only
the bands closest to zero energy; higher energy bands are
also present, but only contribute further particle-hole ex-
citations that leave open the region where the plasmon
modes are sharp. We do not include these explicitly in
our calculation, as they have no qualitative impact on
the results.

Our numerical model allows one to construct
the charge fluctuations associated with the collective
modes [44] using the eigenvectors of the density response
matrix χ(q, z, z′, ω). Results from such calculations are
illustrated in Fig. 4, and confirm the surprising difference
between the WSM and the DSM systems: charge fluctua-
tions which are antisymmetric across surfaces appear in a√
q mode for the WSM, whereas in the DSM – as in con-

ventional semiconductor bilayers – this behavior is found
in an acoustic mode. Note that for similar parameter
values, the antisymmetric mode of the WSM is consider-
ably higher in frequency than the acoustic antisymmetric
mode for the DSM, making the former more robust: the
proximity of the acoustic mode to the particle-hole con-
tinuum edge makes it more susceptible to the broadening
effects of disorder, which both relax momentum conser-
vation and smear out the sharp edge of the continuum.

Another interesting aspect of the WSM plasmon modes
is the evolution of their support on the surfaces as q in-
creases. The heuristic model discussed above suggests
their antisymmetry is eventually lost. This is indeed the
case, but rather than crossover into more standard sym-
metric behavior, we find that the modes become increas-
ingly localized on one surface or the other, depending
on the sign of q in the direction that the FA’s disperse.
Thus the plasmons become similar to what would expect
for excitations of a single FA. The crossover between this
latter behavior and the antisymmetric fluctuations occur
around q ∼ 1/L, where one expects interactions between
surfaces to become important (also see Appendix D).

V. DISCUSSION

In this study, we demonstrated that long-wavelength
plasmons in a thin-film Weyl semimetal display the long-
range nature of the Coulomb interaction by dispersing as√
q, even as the associated charge oscillations are anti-

symmetric across surfaces. This behavior contrasts with
that of Dirac semimetals and conventional conducting
bilayers, where such modes are symmetric. This phe-
nomenon is a direct result of the opposing helicities of

FIG. 4. At the condition of the plasmonic mode, one of the
eigenvalues of the matrix I − ∆zB(q, ω) vanishes. We plot
the corresponding (normalized) eigenvector ψ(z), showing the
ω ∝ √q mode in the Weyl (right most) is indeed an anti-
symmetric mode, which is contrary to the Dirac semimetal.
Parameters are the same as in Fig. 3.

Fermi arc states on different surfaces. The possibility
of observing these modes is enhanced by the diverging
slope as q → 0, which keeps them well separated from
the particle-hole continuum and the degrading effects this
can have due to disorder effects. Moreover, the dipole na-
ture of the charge fluctuations suppresses fringing fields
outside the thin film, which in practice can broaden these
sharp modes, and limit their potential utility in plas-
monic devices [45]. Interestingly, a dipole plasmon mode
has very recently been observed [46], albeit in a very
different system, with very different underlying physics
leading to the dipole nature of the mode. Nevertheless,
the line-narrowing in the plasmon response due to sup-
pression of fringing fields is indeed observed.

The finite-size gap of the bulk states plays a crucial
role in keeping the dipolar nature of the

√
q mode in-

tact, which, in turn, provides a limit to the temperature-
scale. Assuming a few-layers thickness for the slab, if
L ≈ 100Ao, and the Fermi-velocity to be of the order 105

m/s, the ‘bulk-gap’, within which one sets the chemical
potential, is of the order

~vF
1

L
∼ ~× 105

10−8
s−1 = ~× 1013s−1 ∼ 5 meV, (28)

i.e, tens of Kelvin. The effects of the bulk modes remote
from the Fermi surface may be ignored well below this
temperature scale.

In currently available WSM’s, surfaces typically sup-
port several FA’s. Interesting realizations include spinel
compounds (such as VMg2O4) [40], which have been
proposed to support two non-colinear Fermi-arcs on the
(110) surface. We expect thin films of such systems to
support the antisymmetric plasmon modes we have stud-
ied here, although the modes are likely to be much less
anisotropic with respect to wavevector. Our studies sug-
gest that thin films of this and other WSM materials
are potential platforms for exotic low-dimensional plas-
mons, with behaviors that naturally emerge from their
topological nature, making them unusually robust, and
potentially useful in plasmonic systems.
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Appendix A: Generalization to multiple FA systems

Here we consider the case of multiple Fermi arcs, which
are still assumed to be straight lines. Let us consider the
ith Fermi arc, on the top surface, to disperse along the n̂i
direction in the Brillouin-zone. Further, we assume the
length of the ith arc to be k0i and the Fermi velocity to be
vFi. Then, for the top surface, the polarization function
is given by

χ1(~q, ω) =
∑
i

k0i

2π2

q cos θi
~ω − ~vFiq cos θi

≡
∑
i

q(βivFi cos θi)

ω − qvFi cos θi
,

(S1)

where βi = (1/2π2)k0i/~vFi and cos θi = n̂i · ~q/q. In the
limit q � ω/vFi, for all i, we can write,

χ1(~q, ω) ≈ q
ω

∑
i

(βivFi cos θi)

+
q2

ω2

∑
i

(
βiv

2
Fi cos2 θi

)
+ · · · . (S2)

For the bottom surface, we write,

χ2(~q, ω) ≈− q

ω

∑
i

(βivFi cos θi)

+
q2

ω2

∑
i

(
βiv

2
Fi cos2 θi

)
+ · · · . (S3)

Following the notation of Eq. (4), we can identify

µ1 = −µ2 =
∑
i

βivFi cos θi

ν1 = ν2 =
∑
i

βiv
2
Fi cos2 θi. (S4)

Then, recalling a1 = αc(µ1 + µ2), a2 = αc(ν1 + ν2), and
b1 = 2Lα2

cµ1µ2, for small q, we have a single optical
mode

ω =
√
a2 − b1

√
q. (S5)

As long as µ1, µ2 6= 0, i.e,
∑
i βivFi cos θi 6= 0, for small

q and for the ω ∝ √q mode, χ1 ∝
√
q whereas V11, V12 ∝

1/q, and the discussion of the section II.4 can be followed.
This results in an antisymmetric oscillation for the

√
q

mode.
As an example we show numerical results for four

Fermi arcs on each surface. The Fermi arcs are oriented
on the surface 1 as shown in Fig S1(a). The Fermi arcs
on surface 2 have opposite helicities of those of 1 but
are otherwise the same. The plasmon modes are found
by solving Eq. 3 in the (q, ω) plane. Fig. S1(b) shows
that there is a single plasmon mode with a

√
q dispersion.

The antisymmetric charge oscillation associated with this
mode at small q is demonstrated by examining the eigen-
vector of the dielectric matrix with zero eigenvalue, which
is shown in the inset of S1(b).

Appendix B: Eigenstates in slab geometry

The low-energy Hamiltonian we consider in the main
text, which contains two Weyl nodes labeled by η = ±1,
is

Hη = (σyqx − σxqz) + σzMη(ky), (S1)

with Mη(ky) = η(m−cos ky). The two Weyl nodes are at
k = (0,±k0, 0) with k0 = cos−1(m/λ). For the η = +1
block, M+ < 0 between ky ∈ (−k0, k0). For a surface
perpendicular to the z direction, along the ky axis these
two points are connected by a Fermi arc on the surface
Brillouin zone. For the η = −1 block, M− > 0 between
ky ∈ (−k0, k0), and again there is a Fermi arc connecting
these points on the ky axis for the same surface. The
WSM/DSM slab is confined between z = 0 and z = L.

Following Ref. 20 of the main text, we adopt an in-
finite mass boundary conditions by taking the Hamilto-
nian of the vacuum to be same as Eq. (S1), except for the
mass term, whose form is taken to be Mvac

η = ηm0, with
m0 → ∞. This construction is required to ensure that
for ky between the Weyl nodes the effective mass term
(Mη(ky)) for the Weyl semimetal and the vacuum (Mvac

η )
are oppositely signed. By matching the wave-function at
the boundary one arrives at the transcendental equation

tanh
(
L
√
M2
η − ξ

)
L
√
M2
η − ξ

= − 1

LηMη
. (S2)
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FIG. S1. We consider four Fermi arcs, whose orientations
are shown in (a). The energy dispersion of the Fermi arcs
are respectively, E1 = ~vF kx, E2 = ~vF [(kx − d2x) cos(θ2 +
θq) + (ky − d2y) sin(θ2 + θq)], E3 = ~vF [(kx − d3x) cos(θ3 −
θq) − (ky − d3y) sin(θ3 − θq)], E4 = ~vF [(kx − d4x) cos(θ4 +

θq) + (ky − d4y) sin(θ4 + θq)]. θq = cos−1(k̂x.q̂) and ~d2, ~d3, ~d4
are the middle point of the FAs 2, 3, 4, with respect to the
middle point of the FA 1. The blue arrow lines represent the
dispersion direction of each FAs. (b): Plasmon dispersion for
four Fermi Arcs on each layer with θ1 = 45o = θq, θ2 = 75o,
θ3 = 165o, θ4 = 55o and αc = 0.5. The length of Fermi
arcs are respectively, k0,1 = 1.0, k0,2 = 0.8, k0,3 = 0.6 and
k0,4 = 0.7. There is a single plasmon mode with dispersion
ω ∝ √q and other plasmon mode disperse as ω ∝ q. Inset
of (b) shows the variation of ψ1 and ψ2 as a function of q

for ω ∝ √q mode where φ =

(
ψ1

ψ2

)
is the eigenvector of ε

matrix with zero eigenvalue.

Solutions of this equation, ξn, which we label by
the band-index n, yields the band energies En =
sign(n)

√
ξn + q2

x.

For a given solution of energy E, for the block η, defin-
ing K = Mη(ky)−E, f = qx− iqz, g = qx+ iqz, one finds
the corresponding wave-functions

φη,k(z) =
1√
N

{
(K + ηg)

(
if
K

)
eiqzz

+ (K + ηf)

(
−ig
−K

)
e−iqzz

}
.

(S3)

For real qz =
√
χ−Mη(ky)2 (when χ > m2, f = g∗) the

normalization factor has the form

N =2|K + ηf |2(K2 + |f |2)L

+ Im

[
(K + ηf)2(K2 + g2)

(
e−2iLqz − 1

qz

)]
. (S4)

For purely imaginary qz = iκ (when χ < m2), f = qx+κ,
g = qx − κ, the normalization is

N =− 2(K + ηf)(K + ηg)(K2 + gf)L

+ [(K + ηg)2(f2 +K2)e−κL

+ (K + ηf)2(g2 +K2)eκL]
sinh(κL)

κ
. (S5)

These are the full solutions of the low-energy states for
the semimetal slab.
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Appendix C: Details of the density-density response function

In terms of the wave functions, we write the charge density operator, ρ(r, z) = Ψ(r, z)†Ψ(r, z) where r = (x, y) and
Ψ(r, z) is the field operator

Ψ(r, z) =
1√
LxLy

∑
k

exp(ir.k)
∑
η,m

φη,m,k(z)cη,m,k,

where the summation over the band indices m include positive as well as negative bands. cη,m,k is the electronic
annihilation operator and the η summation is absent in the case of WSM. φη,m,k are eigenstates of the non-interacting
Hamiltonian, i.e, H0(k)φη,m,k = εη,m,kφη,m,k. The interaction Hamiltonian is then

Hint =
1

2

∫
dR1dR2Vc(|R1 −R2|) : ρ(R1)ρ(R2) :,

where R = (r, z). Using the Fourier transformed form V (|R1 −R2|) = (1/4π2)
∫
d2q1Vq1

(|z1 − z2|), where Vq(|z1 −
z2|) = 2πα exp(−q|z1 − z2|)/q, Hint can be written as

Hint =
1

8π2

∫ L

0

∫ L

0

dz1dz2

∫
d2q1Vq1

(|z1 − z2|)
∑

η1,η2,{li},k1,k2

φ†η1,l1,k1
(z1) φη1,l4,k1−q1

(z1) φ†η2,l2,k2
(z2) φη2,l3,k2+q1

(z2)

× c†η1,l1,k1
c†η2,l2,k2

cη2,l3,k2+q1
cη1,l4,k1−q1

.

The time-dependent density-density response function is defined as

χ(q, z, z′, t) = −iθ(t)
∫
dreiq·r〈

[
ρ(r, z, t), ρ(0, z′, 0)]

〉
≡ 1

LxLy

∑
η,η′,k,k′,m,m′,s,s′

χη,η′,m,m′,s,s′(k,k
′, q, z, z′, t), (S1)

where

χη,η′,m,m′,s,s′(k,k
′, q, z, z′, t) =− iθ(t) φ†η,m,k(z) φη,m′,k+q(z) φ†η′,s,k′(z

′) φη′,s′,k′−q(z′)

×
〈[

exp(iHt) c†η,m,k′ cη,m′,k+q exp(−iHt), c†η′,s,k′ cη′,s′,k′−q
]〉
. (S2)

We take time derivative of Eq. (S2) to arrive at

∂t χη,η′,m,m′,s,s′(k,k
′, q, z, z′, t) = −iδ(t) φ†η,m,k(z) φη,m′,k+q(z) φ†η′,s,k′(z

′) φη′,s′,k′−q(z′)

×
〈[
c†η,m,k′ cη,m′,k+q , c

†
η′,s,k′ cη′,s′,k′−q

]〉
−iθ(t) φ†η,m,k(z) φη,m′,k+q(z) φ†η′,s,k′(z

′) φη′,s′,k′−q(z′)

×
〈
i
[

exp(iHt) [H, c†η,m,k′ cη,m′,k+q] exp(−iHt), c†η′,s,k′ cη′,s′,k′−q
]〉
. (S3)

The commutators of the single particle terms are easily evaluated, yielding[
c†η,m,kcη,m′,k+q, c

†
η′,s,k′cη′,s′,k′−q

]
=
(
nF (εη,m,k)− nF (εη,m′,k+q)

)
δη,η′δm,s′δm′,sδk+q,k′ , (S4)[

H0, c
†
η,m,kcη,m′,k+q

]
=
(
εη,m,k − εη,m′,k+q

)
c†η,m,kcη,m′,k+q. (S5)

For the interaction term we use the Hartree approximation, so that one makes the replacement

[
Hint, c

†
η,m,kcη,m′,k+q

]
→

[
nF (εη,m′,k+q)− nF (εη′,m,k)

] ∫ L

0

∫ L

0

dz1dz2Vq1(|z1 − z2|)

× φ†η,m′,k+q(z1) φη,m,k(z1)
∑

η2,l2,l3,k2

φ†η2,l2,k2
(z2) φη2,l3,k2+q(z2) c†η2,l2,k2

cη2,l3,k2+q. (S6)
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FIG. S2. (a), (b): The variation of the two plasmon dispersions, for the ω ∝ √q and ω ∝ q modes, respectively, as a function

of the angle θ = cos−1 qx/q, for the case of the Dirac system (for Weyl system the variation for the single plasmon mode
is qualitatively similar to (a)). At θ = 90o we obtain a single mode for the Dirac system. (c), (d): Nature of the response
function for (c) Dirac and (d) Weyl system. Sharp collective modes appear for two values of ω for a given q in case of the Dirac
system and once for Weyl system. Broader modes with Imχ0 6= 0 here represent the intra-band particle-hole continuum. (e)-(g)
We plot the eigen-vector of the plasmon distribution, ψ(z) (see Sec IV) and indicate the mean value of z in this eigen-vector
〈z〉 =

∑n
i=0∆zziψ(zi), where i denotes the discretization of the z direction between 0 and L in n parts with ∆z = L/n. For

(c)-(g), parameters chosen are the same as in Fig. 2 of the main text with θ = 60o, except in Fig. (e-g), θ = 0o.

Using Eq. (S4)-(S6) in Eq. (S3) leads to the self-consistent equation

∂tχη,η′,m,m′,s,s′(k,k
′, q, z, z′, t) =− iδ(t)Fη,m,m′(k, q, z, z′)

[
nF (εη,m,k)− nF (εη,m′,k+q)

]
δη,η′ δm,s′ δm′,s δk+q,k′

+ i (εη,m,k − εη,m′,k+q)χη,η′,m,m′,s,s′(k,k
′, q, z, z′, t)

+ i
[
nF (εη,m′,k+q)− nF (εη,m,k)

] ∫ L

0

∫ L

0

dz1dz2Vq1(|z1 − z2|)Fη,m,m′(k, q, z, z1)

×
∑

η2,l2,l3,k2

χη2,η′,l2,l3,s,s′(k2,k
′, q, z2, z

′, t), (S7)

where

Fη,m,m′(k, q, z, z
′) = φ†η,m,k(z) φη,m′,k+q(z) φ†η,m′,k+q(z′) φη,m,k(z′). (S8)

Fourier transforming Eq. (S7) with respect to time, this equation may be recast as

−iω χη,η′,m,m′,s,s′(k,k
′, q, z, z′, ω) =− iFη,m,m′(k, q, z, z′)

[
nF (εη,m,k)− nF (εη,m′,k+q)

]
δη,η′ δm,s′ δm′,s δk+q,k′

+ i (εη,m,k − εη,m′,k+q)χη,η′,m,m′,s,s′(k,k
′, q, z, z′, t)

+ i
[
nF (εη,m′,k+q)− nF (εη,m,k)

] ∫ L

0

∫ L

0

dz1dz2Vq1
(|z1 − z2|)Fη,m,m′(k, q, z, z1)

×
∑

η2,l2,l3,k2

χη2,η′,l2,l3,s,s′(k2,k
′, q, z2, z

′, ω).

(S9)

Summing over the indices η, η′ m, m′, s, s′, k, k′, we obtain
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χ(q, z, z′, ω) =
1

LxLy

∑
η,k,m,m′

nF (εη,m,k)− nF (εη,m′,k+q)

ω + iη + εη,m,k − εη,m′,k+q

[
Fη,m,m′(k, q, z, z

′)

+

∫ L

0

∫ L

0

dz1dz2Vq(|z1 − z2|)Fη,m,m′(k, q, z, z1)χ(q, z2, z
′, ω)

]
= χ0(q, z, z′, ω) +

∫ L

0

∫ L

0

dz1dz2Vq(|z1 − z2|)χ0(q, z, z1, ω)χ(q, z2, z
′, ω), (S10)

where the non-interacting response function has the form

χ0(q, z, z′, ω) =
1

LxLy

∑
η,k,m,m′

nF (εη,m,k)− nF (εη,m′,k+q)

ω + iη + εη,m,k − εη,m′,k+q
Fη,m,m′(k, q, z, z

′). (S11)

The integration over z1 can be performed analytically in Eq. (S10), allowing it to be rewritten as

χ(q, z, z′, ω) = χ0(q, z, z′, ω) +

∫ L

0

dz2B(q, z, z2, ω)χ(q, z2, z
′, ω), (S12)

with

B(q, z, z2, ω) =

∫ L

0

dz1Vq(|z1 − z2|)χ0(q, z, z1, ω). (S13)

We convert the integration over z2 in Eq. (S12) into a summation over N discrete z2 points, allowing us to arrive at

χ(q, zi, zj , ω) = χ0(q, zi, zj , ω) +

N∑
k=1

∆zB(q, zi, zk, ω)χ(q, zk, zj , ω), (S14)

with ∆z = L/(N − 1) and the discretized depths zi have indices i = 1, · · · , N .

Eq. (S14) can alternatively be written in matrix form,

χ(q, ω) = χ0(q, ω) +∆zB(q, ω)χ(q, ω)

⇒ χ(q, ω) = (I −∆zB(q, ω))−1χ0(q, ω). (S15)

The entire calculation is similar for Dirac and Weyl
semimetals, except that there is no summation over η for
the case of the Weyl system. The condition for plasmon
modes then reads det[I −∆zB(q, ω)] = 0.

Appendix D: Further properties of the Plasmon
modes

Variation with θ = cos−1 qx/q

The results from the simple heuristic model, Eq. (18)
and Eq. (20), predict that the plasmon disperses more
slowly with increasing θ. To test this we numerically
computed the plasmon dispersions for a range of θ. The
results are plotted in Figs. S2(a) and (b), essentially ver-
ifying this expectation. Furthermore, for a given value
of q, the quantity -Im(Tr(χ(q, ω))) captures the collec-
tive mode density of states. Figs. S2 (c) and (d) illus-
trate how this density of states behaves in presence of the
sharp plasmon mode. Note that widths of the peaks at
the plasmon mode frequencies are due to an infinitesimal

imaginary part added to the frequency for the calculation
of the response function.

Localization of the plasmon mode

When the condition for a plasmon mode is met, one of
the eigenvalues of the matrix (I −∆zB(q, ω)) vanishes.
At this value of q and ω, χ is fully dictated by the eigen-
vector corresponding to the vanishing eigenvalue. This
can be understood in the following way: the inverse of
the matrix (I − ∆zB(q, ω)) can be written in the basis
of eigenvectors in the form

(I −∆zB(q, ω))−1 =
∑
λ

|λ〉〈λ|
λ

. (S1)

Thus when one of the eigenvalue, say λ0, approaches 0,
the sum over eigenvalues is dominated by this contribu-
tion, so that

χ ≈ |λ0〉〈λ0|
λ0

χ0. (S2)

The real space density associated with the relevant eigen-
vector as a function of z, ψ(z) = 〈z|η〉, indicates whether
the density oscillations of the mode are symmetric or
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FIG. S3. (a), (b): Plasmon dispersions for few values of the thickness L; (c), (d): Plasmon dispersions for few values of the
distance between the Weyl nodes, given by 2k0 and (e), (f): Plasmon dispersions for two values of the chemical potential µ,
both of which lies between the bands n = 1 and n = 2. All other parameters, in each cases, are the same as in Fig. 2 of
the main text. (g): Plasmon dispersion (blue line) within the particle-hole continuum (marked by black line), for a chemical
potential µ = 0.23, which lies within the n = 2 and n = 3 band. (h): The corresponding behavior of the plasmon eigen-vector,
showing significant bulk-presence.

antisymmetric with respect to z, or somewhere between
these behaviors. We plot some representative densities
as a function of z in Fig. S2(e)-(g). For small q, the
modes have relatively equal support on the two surfaces
as well as substantial support in the bulk. For larger q,
the modes are more localized near one of the surfaces.

Variation with other parameters of the model

In Fig. S3 we show how the plasmon dispersions vary
as a function of the relevant scales of the problem, such as
the thickness of the film (L), the length of the Fermi arc
(given by 2k0) in the momentum space, and the chem-
ical potential µ. In all these calculations we assumed
the chemical potential is below the n = 2 band, so that
there is a gap in the particle-hole continuum for small q.
With increasing thickness L, if the chemical potential is
still below the n = 2 band, we observe that the disper-
sions of the plasmon modes become steeper. This can
be attributed to more localized surface states with larger
thickness. In case of the WSM, when L → ∞, one ex-
pects to recover the results for a single Fermi arc, where
the plasmon mode is gapped, as predicted in Eq. (14).

An increase in the distance between the Weyl nodes

(given by 2k0 = 2 cos−1m) while keeping other parame-
ters the same increases the localization of the Fermi arc
states on the surfaces, as well as increases the surface
density of states. This results in steeper dispersions for
the plasmon modes, which is also evident from Eq. (18)
and Eq. (20).

On the other hand, increasing the chemical potential
µ, keeping other parameters the same, increases the size
of the Fermi-surface (see Fig. 1 of the main text), as
long as the chemical potential remains smaller than the
next band. This allows a longer FA. As it is clear from
Eq. (18), a longer FA is predicted to result in a steepen
plasmon dispersion (since their scale enters through the
parameter β), which is also numerically verified as shown
in Fig. S3 (e), (f).

When the chemical potential exceeds the bottom of the
n = 2 band, bulk states begin to screen the surface modes
more effectively, which weakens the dispersions of the
surface plasmon modes that are the focus of our study.
With increasing µ one expects the surface plasmons to
ultimately merge with bulk plasmons. A representative
situation is depicted in Figs. S3 (g) and (h). We leave
a full characterization of this evolution from surface to
bulk plasmons for future research.


