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We study quantum phases and phase transitions in a one-dimensional interacting fermion system
with a Lieb-Schultz-Mattis (LSM) type anomaly. Specifically, the inversion symmetry enforces any
symmetry-preserving gapped ground state of the system to be a Kitaev chain, following a LSM type
theorem that we prove. Alternatively, via the Jordan-Wigner transformation, this system describes
a spin system whose gapped ground states must break either the inversion or the Ising symmetry
associated with fermion parity. We obtain a phase diagram using analytical methods and variational
matrix product state simulations, and study the critical behaviors of the quantum phase transitions
therein using entanglement entropy, energy variance and finite size scaling of order parameters. In
particular, we observe a continuous phase transition between two ordered phases that are beyond
the Ginzburg-Landau-Wilson paradigm, in analogy to the deconfined quantum critical points in two
spatial dimensions. We show this type of 1D deconfined quantum critical point is described by the
Tomonaga-Luttinger liquid theory, and extract its Luttinger parameter and critical exponents. We
also identify a gapless phase emerged from a deconfined quantum critical point emerged from the
deconfined quantum critical point between two ordered phases, which cannot be described by a U(1)
Luttinger liquid.

I. INTRODUCTION

A paradigm beyond the Landau theory of spontaneous
symmetry breaking is the deconfined quantum critical
point (DQCP). It was firstly proposed for the Neel or-
der to valence bond solid (VBS) transition on a two-
dimensional square lattice [1, 2], as a type of continuous
quantum phase transition between two ordered phases
that cannot be related by symmetry breaking. Compared
to the Ginzburg-Landau-Wilson paradigm, a DQCP fea-
tures many novel aspects such as emergent symmetries
and self-duality [3].

Recently a lot of interests arise for revisiting one spa-
tial dimension (1D) to realize the deconfined quantum
criticality. In particular, the 1D spin-1/2 chain with
both nearest- and second-neighbor anisotropic exchange
interactions have been extensively studied [4–7], which
exhibits a DQCP between a (anti-)ferromagnetic order
and a VBS phase. The critical behaviors of this DQCP
has also been carefully examined and compared to field-
theory predictions. The phase transition between these
two gapped orders is a direct second-order quantum
phase transition, whose long-wavelength low-energy the-
ory is expected to exhibit an emergent U(1) symmetry.
On the other hand, this 1D DQCP is closely related to the
Lieb-Schultz-Mattis (LSM) theorem [8–16], which forbids
a gapped symmetric ground state that preserves both
translation and the discrete Z2×Z2 spin rotational sym-
metries [5].

In this paper, we study a 1D lattice model of in-
teracting fermions, with a different LSM-type anomaly.
In particular, any gapped ground state that preserves
a site-centered inversion symmetry must be a Kitaev
chain, with an odd number of Majorana bound states on

each boundary. Through a Jordan-Wigner transforma-
tion, it becomes a spin-1/2 chain, whose gapped ground
states must break either the inversion symmetry or the
Ising symmetry associated with the fermion parity. We
prove such a LSM-type theorem, and study a generic 1d
fermion model with nearest-neighbor couplings that pre-
serves this inversion symmetry. The phase diagram of our
model has a rich structure: there are DQCPs between dif-
ferent ordered phases beyond the Landau theory, as well
as stable gapless phases separating the ordered phases.

The rest part of this paper is organized as follows: In
Sec. II, we show our model and discuss its symmetries.
In Sec. III, the numerical methods used to study the
model are discussed. In Sec. IV, the phase diagram of
the model is obtained, using analytical solutions in the
non-interacting limit and numerical results for the inter-
acting model. In Sec. V, the critical behaviors at the
phase boundaries are carefully analyzed, focusing on the
DQCP described by the Luttinger liquid theory, and a
stable gapless phase. Finally, the concluding remarks are
given in Sec. VI.
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II. THE MODEL

A. Lattice model and its symmetries

We consider the following 1D model of interacting
fermions

H =
∑
j

(−)j
[(
tc†jcj+1 + h.c.

)
+
(

∆c†jc
†
j+1 + h.c.

)]
+
(

i∆′c†jc
†
j+1 + h.c.

)
+ V

(
nj −

1

2

)(
nj+1 −

1

2

)
.

(1)
It breaks all the global (onsite) symmetries except for

the fermion parity conservation Pf = (−1)F̂ . In fact,
assuming t > 0 is real, this Hamiltonian includes all pos-
sible nearest-neighbor (NN) coupling terms that preserve
a site-centered unitary inversion symmetry defined as fol-
lows:

cj
I−→ ic†−j . (2)

If cj ≡ γj + iηj is written in terms of Majorana fermions
γj and ηj , this very inversion symmetry permutes these
two Majorana fermions:(

γj
ηj

)
I−→
(
η−j
γ−j

)
. (3)

One can easily check that, for example, the usual con-

stant hopping term −t∑j

(
c†jcj+1 + h.c.

)
breaks the in-

version symmetry I explicitly thus it is not allowed in
Eq. (1). Though seemingly strange and unfamiliar, the
alternating real hopping tj,j+1 = (−1)jt between near-
est neighbors can be transformed into a uniform hopping
strength t by a change of basis cj → (−1)j(j−1)/2cj . The
lattice translation Tx defined as

cj
Tx−→ cj+1 (4)

is clearly not preserved in the model. In a periodic chain
with an even number of sites, the above NN-only model
instead preserves a magnetic translation symmetry T̃x
defined as

T̃x ≡ (−1)
∑
j jn̂jTx · K, nj ≡ c†jcj ; (5)

cj
T̃x−→ (−1)j+1cj+1,

where K represents the complex conjugation. This gives
rise to a link-centered anti-unitary inversion symmetry
Ĩ = I · T̃x:

cj
Ĩ−→ (−1)j+1 ic†−j−1. (6)

Besides, the model Eq. (1) also exhibits an anti-unitary
particle-hole symmetry

C̃ = C · K : cj → (−1)jc†j (7)

, where C represents the unitary particle-hole transfor-
mation. The generators {I, Ĩ} of the symmetry group
satisfy the following algebra:

Ĩ2 = 1,

I(−1)F̂I−1 = (−1)L(−1)F̂ ,
(8)

where L ∈ Z is the system size of the 1d chain. In a pe-
riodic chain of length L = 0 mod 2, the magnetic trans-
lation satisfies:

(T̃x)L = (Pf )L(L−1)/2. (9)

Using the following Jordan-Wigner transformation

cj = (−)
j(j−1)

2

∏
k<j

(−σzk)

σ−j ,
Szj ≡

σzj
2

= c†jcj −
1

2
,

the fermion model Eq. (1) can also be rewritten as a
spin- 1

2 chain:

Hspin =
∑
j

(
tσ+
j σ
−
j+1 + ∆σ+

j σ
+
j+1 + h.c.

)
+ (−)j

(
i∆′σ+

j σ
+
j+1 + h.c.

)
+ V Szj S

z
j+1

=
∑
j

∑
α=x,y,z

JαS
α
j S

α
j+1 + (−1)jΓ(Sxj S

y
j+1 + Syj S

x
j+1),

(10)
where the exchange couplings are given by

Jx = 2(t+ ∆), Jy = 2(t−∆), Jz = V,

Γ = −2∆′. (11)

This is a familiar XYZ model [4], supplemented by an ex-
tra staggered anisotropic exchange coupling of strength
Γ. The introduction of Γ terms has important conse-
quences: it leads to new gapless phases unobserved in
the XYZ model [4, 5].

The symmetry group of the spin model [17] is gener-
ated by

Pf = (−1)F̂ =
∏
r(−σzr ), (12)

T̃x = Tx · K, (13)

C̃ = (
∏
r σ

x
r ) · K, (14)

I = (
∏
r σ

x
r ) · OI . (15)

where OI is the spatial inversion operator, and the Pauli
matrix σxr = 2Sxr . In particular, the inversion symmetry
I anticommutes with the Ising symmetry Eq. (12), on a
spin chain of an odd length.

B. A generalized Lieb-Schultz-Mattis theorem for
the Kitaev chain

One significant consequence of the inversion symmetry
Eq. (2) is the following theorem of Lieb-Schultz-
Mattis [8, 9, 16, 18–20] (LSM) type:
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Theorem: In an one-dimensional spinless fermion
system preserving the inversion symmetry (2), any
gapped symmetric ground state must be a Kitaev chain.

This theorem is closely related to the family of LSM
theorems for symmetry protected topological (SPT)
phases [21, 22] discussed recently [12, 14, 15, 23], but dif-
fers in the sense that here any gapped symmetric ground
state is enforced to be a nontrivial invertible phase [24],
i.e. the Kitaev chain [25], rather than SPT phases.

Below we prove the theorem in two aspects. First we
show that when restricted to a non-interacting fermion
system with translation symmetry, we can use the polar-
ization formula of BdG bands to show a gapped ground
state must have a nontrivial Z2 topological invariant,
hence belonging to a Kitaev chain. Next, we will show
that in a generic interacting open chain with inversion
symmetry, a gapped ground state must be a Kitaev chain
with Majorana zero modes at the boundary.

Firstly, we consider a periodic fermion chain with an
even number of sites. Since each unit cell includes two
sites, they transform as(

c2r
c2r+1

)
I−→ i

(
c†−2r

c†−2(r+1)+1

)
(16)

In the basis of Majorana fermions

c2r =
χr + iηr

2
, c2r+1 =

χ′r + iη′r
2

. (17)

they transform as follows under inversion

Φk ≡

χ(k)
η(k)
χ′(k)
η′(k)

 I−→


0 1 0 0
1 0 0 0
0 0 0 e ik

0 0 e ik 0

Φ−k (18)

in the momentum space. In other words, the inversion
symmetry is implemented by unitary rotation

RI(k) =

(
1 0
0 e ik

)
~τ

⊗ µx (19)

where ~τ and ~µ are Pauli matrices for the sublattice
and Majorana indices respectively. A generic quadratic
Bogoliubov-de Gennes (BdG) Hamiltonian has the fol-
lowing form

Ĥfree =
∑

0≤k≤π

ψT−kh(k)ψk, (20)

where Hermitian matrix h(k) satisfies particle-hole and
inversion symmetries:

hT (k) = h∗(k) = −h(−k), (21)

RI(k)h(k)R−1
I (k) = h(−k). (22)

The Z2-valued topological invariant [26, 27] for such a
BdG Hamiltonian in symmetry class D is given by the
quantized polarization of the filled BdG bands:

ν = e i
∫

dkA(k) = ±1, (23)

A(k) = i
∑
εn(k)<0〈ψn(k)|∂kψn(k)〉.

where A(k) is the Berry connection of the filled bands.
The quantized ν = ±1 is a consequence of the particle-
hole symmetry (21), and inversion symmetry (22) con-
strains the Berry curvature as follows:

A(−k) = − i
∑
ε<0〈ψn(k)|R†I(k)∂kRI(k)|ψn(k)〉 −A(k)

=
∑
ε<0〈ψn(k)| 1+τz

2 |ψn(k)〉 −A(k) (24)

Particle-hole symmetry (21) and inversion symmetry (22)
further indicate that∑
ε<0

〈ψn(k)|1 + τz
2
|ψn(k)〉 =

∑
ε>0

〈ψn(−k)|1 + τz
2
|ψn(−k)〉

=
∑
ε>0

〈ψn(k)|1 + τz
2
|ψn(k)〉 =

1

2
Tr(

1 + τz
2

) = 1.

and hence∫ π
0

dkA(k) = π
2 Tr( 1+τz

2 )−
∫ π

0
dkA(−k) =⇒∫ π

−π dkA(k) = π mod 2π (25)

=⇒ ν = e i
∫

dkA(k) = −1. (26)

Therefore, for a gapped BdG Hamiltonian with a well-
defined polarization, the Z2 invariant must be nontrivial,
and hence it must be a Kitaev chain with Majorana edge
modes.

Secondly, we consider a generic interacting Hamilto-
nian preserving inversion symmetry Eq. (2), on an open
chain with an odd number of sites L = 1 mod 2. In this
case, there is one single inversion center on the middle
site, and the inversion symmetry acts as a supersymme-
try which changes the fermion parity:

I(−1)F̂I−1 = −(−1)F̂ . (27)

This implies at least 2-fold degeneracy for all energy lev-
els, hence two degenerate ground states on an open chain
with opposite fermion parities. If the bulk is gapped, this
necessarily leads to zero modes on the edge. Since there
is no extra global symmetry in the system to protect the
edge modes, they can only be an odd number of Majo-
rana zero modes (MZMs) on each edge. This indicates
the ground state is an open Kitaev chain. And its to-
tal fermion parity is flipped by the inversion symmetry,
which exchanges the MZMs on the two edges.

Therefore, we have shown that a gapped ground state
preserving inversion symmetry Eq. (2) must be a Kitaev
chain with an odd number of MZMs on each open bound-
ary. This generalized LSM theorem for Kitaev chain
in the fermion context can also be translated into the
spin chain language, via Jordan-Wigner transformation
Eq. (10). In the spin language, it manifests as the more
familiar LSM theorem:
Theorem: In an one-dimensional spin-1/2 chain

with both Ising symmetry Eq. (12) and inversion sym-
metry Eq. (15), its ground state is either gapless or
spontaneously breaks symmetries.

In other words, the spin-1/2 chain with both Ising and
inversion symmetries do not admit any short-range en-
tangled ground state.
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III. NUMERICAL METHODS

A. Spin chain representation and order parameters

For the convenience of numerical simulation, we use
the traditional Jordan-Wigner transformation:

cj =

[
j−1∏
k=0

(−σzk)

]
σ−j ,

σzj = 2c†jcj − 1,

(28)

to rewrite the fermionic model Eq. (1) as a spin chain

H =
∑
j

(−)j
(
tσ+
j σ
−
j+1 + h.c.

)
+
([

(−)j∆ + i∆′
]
σ+
j σ

+
j+1 + h.c.

)
+

1

4
V σzjσ

z
j+1,

(29)

where σ± = (σx±iσy)/2. σx,y,z are Pauli matrices. Note
that this Jordan-Wigner transformation differs from Eq.
(10) by a (−1)j(j−1)/2 sign, hence a different form of
the Hamiltonian (29) compared to (10). In this repre-
sentation, the symmetry generators of Hamiltonian (29)
writes:

Pf = (−1)F̂ =
∏
r(−σzr ),

T̃x = (
∏
r=odd σ

z
r )Tx · K,

C̃ = (
∏
r σ

x
r ) · K,

I = (
∏
r σ

x
r ) · (∏r=odd σ

z
r ) · OI .

The on-site matrix product operator (MPO) for the
Hamiltonian Eq. (10) can be written as a 5 × 5 matrix
V [j] =

1 0 0 0 0
σ+ 0 0 0 0
σ− 0 0 0 0
σz 0 0 0 0

0 tjσ
− + ∆̃jσ

+ tjσ
+ + ∆̃∗jσ

− 1
4V σ

z
1

 , (30)

where we define tj ≡ (−)jt, ∆̃j ≡ (−)j∆ + i∆′.
The boundary vectors for the open boundary condition
(OBC) are vL = (0, 0, 0, 0,1), vR = (1, 0, 0, 0, 0)T .

Recall that Pf → −Pf under the inversion operation I
in an open chain of an odd length, according to (27). As
indicated by the LSM theorem earlier, a gapped ground
state either breaks inversion I or the parity symmetry
Pf . If Pf is preserved while I is broken, it can be char-
acterized by the non-vanishing order parameters such as

MFM-z ≡
1

L

N∑
j=−N

σzj ,

MAFM-z ≡
1

L

N∑
j=−N

(−)jσzj ,

(31)

which are invariant under the symmetry Pf whereas
I−1M(A)FM-zI = −M(A)FM-z. Their MPOs can be writ-
ten in the form as

V
[j]
FM-z =

(
1 0
σz 1

)
, V

[j]
AFM-z =

(
1 0

eiπjσz 1

)
. (32)

To detect possible symmetry breaking of Pf , we use the
following inversion-symmetric order parameter

Mx =
1

L

N∑
j=−N

(−)
j(j+1)

2 σxj . (33)

Since P−1
f MxPf = −Mx, non-vanishing 〈Mx〉 implies the

spontaneous symmetry breaking of Pf . Although sponta-
neous symmetry breaking (SSB) cannot really occur on a
finite chain, DMRG tends to select a minimally entangled
ground state, which means |〈M〉| could be a good estima-
tion for the SSB. However, it can be very unstable near a
quantum critical point, where a macroscopic superposed
cat state becomes possible. To overcome this difficulty,
we can add an explicit symmetry-breaking term such as
Hh = h

(
σz−N + σzN

)
on the boundary to split the degen-

erate ground states. Alternatively, we can use root mean
square order parameter

√
〈M2〉 instead of the order pa-

rameter |〈M〉| itself to detect SSB [28, 29]. In addition
to these order parameters, another alternative way to
detect spontaneous symmetry breaking is to look at the
two point correlation function associated with the cor-
responding order parameter [30]. The advantage of the
correlation function is that it can be used in finite sys-
tems where the expectation value of the order parameter
is zero.

B. Matrix product state, variance and
entanglement

For Eq. (10) on a finite chain consisting the number of
sites L under OBC, its many-body wavefunction can be
represented by a matrix product state (MPS) as

|ψ〉 =
∑
{s}

(As0As1 . . . AsL−1) |s0, s1, . . . , sL−1〉. (34)

As0,sL−1 are two boundary vectors with dimensions 1×d
and d × 1, respectively. Here d = 2 denotes the dimen-
sion of the local Hilbert space. The exact MPS requires

the largest bond dimension χmax =
√
d
L

at the center
of the chain. However, it is not practically achievable
therefore we need to put a fixed cut-off χ to compress
the wavefunction. Written in the Schmidt basis [31] in
terms of subsystems A and B, the wavefunction can be
decomposed as

|ψ〉 =

χ−1∑
α=0

e−
ωα
2 |α〉A ⊗ |α〉B , (35)
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where {ω} is the entanglement spectrum, which is the
eigenvalue spectrum of the local entanglement Hamilto-
nian HA defined by the reduced density matrix ρA =
e−HA . |α〉A,B are the orthogonal Schmidt basis. By using
the variational method [32, 33], we can obtain the ground
state of the corresponding Hamiltonian iteratively. We
have tested that both random initial MPS and the
method of growing the system from a smaller
length to initialize [34] provide accurate ground states.
A generic and effective numerical criterion to estimate
how accurately the wavefunction is approximated by a
MPS with a fixed bond dimension is the variance [35, 36]

v2 = 〈ψ|H2 − E2
0 |ψ〉, (36)

which is easy to compute in the MPS-MPO frame-
work [33]. It is known that v is proportional to the
truncation error in the density matrix renormalization
group (DMRG) method [35]. Moreover v is essentially
determined by the distribution of the entanglement spec-
trum [37]. For a gapped state, it tends to be exponen-
tially small given a sufficient but not too large χ. When
the system is approaching criticality and becoming long-
range entangled, v would increase rapidly since the cor-
relation length ξ becomes as large as the system size
and the entanglement spectrum is much more densely
distributed, resulting in a much larger entanglement en-
tropy (EE) SA = −tr (ρA ln ρA) ∝ ln ξ in comparison to
gapped ones [38, 39]. Variance can be used to distinguish
different phases and identify the critical points between
them.

Because of the translational symmetry breaking by the
OBC on a finite lattice, the open ends can induce dimer-
ization and hence oscillations in bond energy and EE in
1d quantum many-body systems [40, 41]. Therefore, the
bipartite EE for subsystem A has the following form [4]

SA(l) = SuA(l) + (−)lSoA(l) + S0, (37)

where l = 0, . . . , L − 2 denotes the links. SuA(l) is the
uniform part and SoA(l) is the oscillation part of the EE.
SoA(l) is phenomenologically proportional to the oscilla-
tory part of the bond energy as SoA(l) = αEo(l) [40]. The
bond energy behaves as Eb(l) ≡ 〈hl〉 = Eub + (−)lEob (l)
where Eub is a constant, which can be extracted as Eub =
1
2 [Eb(L/2) + Eb(L/2 + 1)]. Once SuA(l) is extracted by
fitting and finding the optimal α, on a finite lattice with
the number of bonds L = L − 1, Cardy’s formula under
OBC reads [38]

SuA(l) =
c

6
ln

[
2L
π

sin
π(l + 1/2)

L

]
+ S0, (38)

where c is the central charge characterizing the corre-
sponding conformal field theory (CFT) which describes
the gapless system, and l = 0, . . . ,L − 1. However, for
our system on a 1d chain consisting of an odd number
of sites, EE will develop plateaus stemming from the in-
commensurate oscillations [42] and exact-zero modes in

our LSM system, which may cause an underestimated
central charge. We demonstrate this issue with a simpler
example, the 1d XY model, in the Appendix B.

IV. THE PHASE DIAGRAM

Before discussing the phase diagram of the 1d system,
we first restrict the phase space to be studied by symme-
try analysis. In the fermion model Eq. (1) parametrized
by (t,∆,∆′, V ), it is straightforward to verify the follow-
ing symmetries:

H∗(t,∆,∆′, V ) = H(t,∆,−∆′, V ),

TxH(t,∆,∆′, V )T−1
x = H(−t,−∆,∆′, V ),

e i π2
∑
r n̂rH(t,∆,∆′, V )e− i π2

∑
r n̂r = H(t,−∆,−∆′, V ).

In other words, changing the sign of hopping t, or real
pairing ∆, or imaginary pairing ∆′ does not affect the
spectrum of the 1d chain, in the thermodynamic limit.
Therefore, we set t = 1 to be a positive constant, and
restrict our numerical studies to the parameter regime
∆ > 0, ∆′ > 0. Below we present our results on the
phase diagram of 1d model as Eq. (1) or (10).

A. The non-interacting limit

If V = 0, Eq. (1) is a non-interacting model that can
be solved exactly, and it provides a good starting point
to understand the full phase diagram of the interacting
model. We consider a closed 1d chain ofN = 2N sites (or
N unit cells) under periodic boundary condition (PBC),
where we label the sites by j ∈ {0, . . . ,N − 1}. Note
that there are two inversion centers at j = 0,N/2 in
this 1d chain. There are N = N/2 unit cells, labeled as
l = 0, · · · , N − 1, with the site index j = 2l + α, l =
0, . . . , N − 1, α = 0, 1. Therefore the quadratic fermion
BdG Hamiltonian can be rewritten as

H0 =
∑
α,l

[
(−)αtc†2l+αc2l+α+1 + h.c.

]
+
∑
α,l

(
[(−)α∆ + i∆′] c†2l+αc

†
2l+α+1 + h.c.

)
.

(39)

Fourier transformations are defined as

dk,α =
1√
N

N−1∑
l=0

eiklc2l+α (40)

In the spinor basis of ηk = (dk,0, d
†
−k,0, dk,1, d

†
−k,1)T , H0

has the following form in momentum space

H0 =
∑
k>0

η†kΓ(k)ηk, (41)
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with

Γ(k) =

 0 0 t(k) ∆(k)
0 0 −∆∗(−k) −t(k)

t∗(k) −∆(−k) 0 0
∆∗(k) −t∗(k) 0 0

 , (42)

where we define t(k) ≡ t(1 − eik) = −2it sin
(
k
2

)
eik/2

and ∆(k) ≡
[
∆
(
1 + eik

)
+ i∆′

(
1− eik

)]
=

2
[
∆ cos

(
k
2

)
+ ∆′ sin

(
k
2

)]
eik/2. Note that t(−k) = t∗(k).

We can obtain the four-band dispersion relations as
±ε(±k), where

ε(k) = 2

[√
t2 sin2

(
k

2

)
+ ∆2 cos2

(
k

2

)
+ ∆′ sin

(
k

2

)]
.

(43)
We denote the two positive eigenvalues as ε0(k) >
ε1(k) > 0, ∀k > 0. Therefore the Hamiltonian will

be diagonalized to the form H0 =
∑
k>0 γ

†
kΛ(k)γk, in

which Λ(k) = diag {ε0(k),−ε0(k), ε1(k),−ε1(k)} , γk =

(fk,0, f
†
−k,0, fk,1, f

†
−k,1)T . If we set t = 1.0 as the en-

ergy unit, the non-interacting phase diagram depending
on (∆,∆′) for V = 0 is illustrated in FIG. 1. Some rep-
resentative cases are discussed as follows:

• ∆ = 0,∆′ = 1.0 is a special case where the
lower band is flat lying exactly at zero energy. It
means that gapless excitations appear for all k. If
∆′ 6= 1.0, the system features two linearly dispers-
ing Majorana modes at k0 = 0: they have different
velocities and are hence not conformally invariant.

• ∆ 6= 0,∆′ < 1.0 always give us a gapped super-
conductor, i.e. a Majorana chain. Particularly,
∆ = 1.0,∆′ = 0.0 features a flat band spectrum
of Bogoliubov quasiparticles.

• ∆ 6= 0,∆′ = 1.0 is gapless at k0 = π. The disper-
sion is expanded as ±ε1(k0+δk) ≈ ± 1

4δk
2+O(δk2),

which is quadratic near k0 = π.

• ∆ 6= 0,∆′ > 1.0 gives rise to a gapless phase with
a pair of linearly dispersing Majorana modes. The
gapless point is located at k0 = 2 arctan ∆√

∆′2−t2 .

Around this point, the dispersion relation reads
±ε1(k0+δk) ≈ ±vs(k0)δk+O(δk2), which is linear.
The speed of the Majorana mode is

vs(k0) =
t2 −∆2 −∆′2

∆′
cos

(
k0

2

)
. (44)

B. A representative study for the interacting cases:
∆ = 1.0

By fixing ∆ = 1.0 and varying ∆′, we can obtain a
rough idea of the whole phase diagram for the inter-
acting model Eq. (1). First we choose a fixed system

∆

∆′

FIG. 1. Phase diagram for Eq. (1) with V = 0. Gray area
denotes gapless phases whereas white areas denote the gapped
Kitaev chain. The axis perpendicular to (∆,∆′) plane is for
the interaction strength V .

size L = 121, which we find is large enough to ac-
curately determine the phase diagram. Note that, in
the main text, the bond dimension of all MPSs is fixed
at χ = 64, which we find is sufficient to obtain con-
verged physical measurements. A larger bond dimen-
sion is tested and verified in Appendix C. Furthermore,
we select ∆′ = 0.0, 0.5, which belong to gapped super-
conductor phases at V = 0; and ∆′ = 1.0, 1.5, which
are gapless at V = 0 as we discussed above in the non-
interacting limit. These four cases are illustrated by red
dots in FIG. 1. For V → ±∞, obviously Eq. (10) will
lead to antiferromagnetic−z (ferromagnetic−z) states,
respectively. Therefore, we restrict ourselves to scan the
parameter range −15.0 6 V 6 15.0, which turns out to
be sufficient.

After obtaining a converged ground state from a ran-
domly initialized MPS, we plot the middle-bond EE Sm
and variance v in FIG. 2 as functions of V , in which we
can identify the gapped ground states with a vanishing
variance v. EE and variance peak at the same V , im-
plying that the system is approaching a critical point.
For V > 0, we notice that that there is a robust crit-
ical point at V ≈ 4.0, which seems independent of the
choice of ∆′. While for V < 0, non-vanishing ∆′ can
expand one critical point for ∆′ = 0.0 (see FIG. 2(a))
to a finite gapless region as shown in FIG. 2(b, c, d).
Larger ∆′ induces a wider gapless phase. For example,
∆′ = 1.5 can induce a critical phase for −5.0 / V / 2.0.
Within this gapless phase, the variance v also fluctuates
and shows distinctions between V > 0 and V < 0 regions,
which implies that the negative-V gapless phase behaves
differently from the positive-V critical point. By taking
both FIG. 3(d) and FIG 2(d) into consideration, we can
conclude that the left phase boundary at V ≈ −5.0 of
the negative-V gapless phase is described by the quan-
tum Berezinsky-Kosterlitz-Thouless (BKT) [43] transi-
tion, unable to be distinguished by energy derivatives.
This is also consistent with the numerically observed cen-
tral charge c = 1 at this phase boundary. The right phase
boundary at V ≈ 2.0 is a first-order transition, as shown
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in the first energy derivatives in Fig. 3 . Different types of
quantum phases and their transitions can also be further
illustrated by the distributions of bipartite entanglement
spectrum in the ground state. We use ∆′ = 0.5, 1.5 as
two examples, which are shown in FIG. 4.

In FIG. 5, we plot two examples of EE and bond
energy for ∆ = 1.0,∆′ = 1.5. FIG. 5(a, c) are for
V = −3.0, which is deep in the gapless phase. By fit-
ting from Cardy’s formula Eq. (38), the central charge
reads c ≈ 0.574 for the odd lattice L = 121, where we
can see that the oscillations near the center of the 1d
chain is incommensurate. In comparison, in an even lat-
tice of L = 120, the central charge c ≈ 0.917 turns out
to be quite different. We address this issue in Appendix
B and attribute the underestimation of central charge on
odd lattices to the exact ground state degeneracy, due to
anti-commutation relation between inversion and parity
symmetries. Even lattices can be regarded as a pertur-
bation which opens a small finite-size gap between the
two degenerate ground states on an odd lattice, which
leads to more accurate estimations of the central charge.
In FIG. 5(b, d), V = 1.8 lies in the gapless phase but
in proximity to the first order transition into the Kitaev
chain. Compared to V = −3.0 case in FIG. 5(a, c), here
the oscillations in terms of both EE and bond energy are
quite different, with a larger period persisting into the
bulk. We found that fitting to Cardy’s formula failed to
produce a sensible central charge.

In FIG. 6, we plot the order parameters defined in
Eq. (31, 33), from which we can see that, for ∆′ = 1.5, in
the gapped phase 2.0 / V / 4.0, the non-vanishing 〈Mx〉
implies the spontaneous breaking of parity symmetry P,
pointing to a Kitaev chain. Meanwhile for V → ±∞,
non-vanishing 〈Mz〉 implies breaking of inversion symme-
try I. Because of their incompatible unbroken symme-
tries, the phase transition between these two symmetry
breaking phases is beyond the Landau paradigm of spon-
taneous symmetry breaking. It requires a more detailed
study, which we present in the next section.

C. Overview of the whole phase diagram

We also obtained data for ∆ = 0.5, 1.5, 2.0 in a range of
different ∆′. The general structure of the phase diagrams
as a function of V are similar to ∆ = 1.0 case. In partic-
ular, a larger ∆ will drive the critical point Vc between
the Kitaev chain (〈Mx〉 6= 0) and inversion-breaking su-
perconductor (〈Mz〉 6= 0) to a larger value. Based on
these numerical results, we can qualitatively draw the
schematic phase diagrams as shown in FIG. 7: (a) for a
fixed ∆ = 1.0 and (b) a three-dimensional phase diagram
as a function of (V,∆,∆′).

0.11

0.45

0.80

S
m

(a)

0.11

0.48

0.84

S
m

(b)

−10 0 10
V

0.11

0.47

0.82

S
m

(c)

−10 0 10
V

0.15

0.54

0.94

S
m

(d)

0.53

2.21

3.89

v

×10−3

0.52

2.19

3.86

v

×10−3

0.55

2.30

4.06

v

×10−3

0.71

2.98

5.25

v

×10−3

FIG. 2. Middle-bond entanglement entropy Sm (blue circle)
and variance v (purple cross) in the case of ∆ = 1.0. L = 121.
(a, b, c, d) denote ∆′ = (0.0, 0.5, 1.0, 1.5), respectively.
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∆ = 1.0. L = 121. (a, b, c, d) denote ∆′ = (0.0, 0.5, 1.0, 1.5),
respectively.

V. CHARACTERIZING THE CRITICAL
BEHAVIORS

A. Finite-size scaling analysis of the critical points

After having a basic understanding of the phase dia-
gram, we take a closer look at the critical point separating
the parity-breaking Kitaev chain (M-x order in the spin
chain language) and the inversion-breaking superconduc-
tor (AFM-z order in the spin chain language). As we have
mentioned, since the two gapped phases are not related
to each other by spontaneous symmetry breaking, this
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FIG. 5. Bond energy Eb (insets) and bipartite EE SA. ∆ =
1.0,∆′ = 1.5. (a, b) L = 121. (c, d) L = 120. (a, c) V =
−3.0. (b, d) V = 1.8. Hollow circles represent the original
data while filled circles represent the extracted uniform EE
as defined in Eq. (37).

unconventional critical point is beyond the Ginzburg-
Landau-Wilson paradigm.

In this subsection, we focus on the case with ∆ = 1.0.
In the first place, we compute the Binder cumulant [44,
45]

UL =
〈M4〉
〈M2〉2 (45)

around the unconventional critical point V ≈ 4.0. Here
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FIG. 6. Magnetic order parameters Mz and Mx in the case
of ∆ = 1.0. L = 121. For V > 0, Mz = MAFM−z. For V < 0,
Mz = MFM−z. (a, b, c, d) denote ∆′ = (0.0, 0.5, 1.0, 1.5),
respectively.

M denotes the order parameter of the broken symmetry.
It follows the finite-size scaling ansatz UL = gU

(
|δ|L1/ν

)
,

in which gU does not scale with L. ν is the critical ex-
ponent for the correlation length ξ = |δ|−ν , in which δ is
the reduced interacting parameter defined as δ ≡ V − Vc.
Since the function gU is independent of the finite lattice
sizes at the critical point, numerical data for UL given by
different lattice sizes will intersect at the same point.

In FIG. 8 we plot two Binder cumulants Uz and Ux
corresponding to MAFM−z and Mx, respectively. Fur-
thermore, if we compute the derivative of the Binder
cumulant, we can extract the correlation-length critical
exponent ν since

dU

dV
∝ L1/ν (46)

and it also reaches its maximum at the critical point [46].
For ∆′ = 0.0 as shown in FIG. 8(a), 9(a), the two

critical points determined by Uz and Ux coincide with
each other, leading to a single critical point between the
two gapped symmetry-breaking phases. This unique crit-
ical point is an analog of the DQCP in 2D [1, 2], as we
will discuss in more detail in the next subsection. As we
gradually increase ∆′ > 0, we find that this single criti-
cal point starts to split into two, hosting a stable gapless
phase in between. The two phase boundaries adjacent to
it are determined by the scaling of two order parameters
Mx and Mz. Furthermore, from the finite-size analysis
in FIG. 10, we can infer that both order parameters will
vanish within this narrow gapless phase in the thermody-
namic limit, suggesting that it preserves both inversion
and parity symmetries. This gapless nature of this phase
is also inferred by a large central charge within it, which
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FIG. 7. (a) Planar schematic phase diagram (V,∆′) with
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denote DQCPs. (b) Three-dimensional schematic phase dia-
gram (V,∆,∆′) for the model. Red faces denote continuous
second-order phase transitions. Blue face denotes discontin-
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tries, there are two symmetric gapless phases I and II.

will be discussed in details later.
After nailing down the critical points, we turn to the

finite-size scaling study for the corresponding magnetiza-
tions as

〈M〉 = L−β/νgM

(
|δ|L1/ν

)
, (47)

where β is the critical exponent for the magnetic order
parameter. Therefore, exactly at the critical point we
have 〈M〉 ∝ L−β/ν , which can be used to extract the
related critical exponents. This procedure is shown in
FIG. 10 and insets there. All these results are summa-
rized in TABLE I, where we can see that Mz,x share the
same critical exponents up to numerical errors even when
the single critical point splits into two phase boundaries.
This suggests an emergent symmetry relating the two or-
der parameters. When the two order parameters become
critical at the same point, this single critical point is a
1d DQCP as we will discuss soon.

For a larger ∆, we find that the single DQCP seems to
persist for the full range of ∆′, instead of splitting into
two phase boundaries with a gapless phase in between.
We list the critical points and exponents for ∆ = 1.5 in
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FIG. 9. Derivatives of the Binder cumulants dUz/dV (solid
markers) and dUx/dV (hollow markers) around the critical
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respectively. Dashed lines mark the peaks for dUz/dV and
dUx/dV . Insets show the finite-size logarithm fittings at the
critical point(s) marked by the dashed lines.

TABLE II. Finally, we want to mention that in addition
to the numerical error summarized in the Table, the finite
step size δV = 0.02 of data points can also lead to errors
of the critical exponents, which is hard to evaluate.
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FIG. 10. Magnetic order parameters MAFM−z (monotoni-
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TABLE I. Critical point(s) and critical exponents for ∆ = 1.0.

∆′ [V z
c , V

x
c ] νz βz/νz νx βx/νx

0.0 [4.00, 4.00] 1.01(0) 0.24(4) 1.01(1) 0.24(4)
0.5 [4.01, 4.00] 1.02(7) 0.23(9) 1.02(9) 0.23(4)
1.0 [4.03, 4.02] 1.08(5) 0.24(9) 1.08(5) 0.24(5)
1.5 [4.10, 4.03] 1.20(1) 0.22(3) 1.21(1) 0.22(8)

TABLE II. Critical point(s) and critical exponents for ∆ =
1.5.

∆′ [V z
c , V

x
c ] νz βz/νz νx βx/νx

0.0 [5.00, 5.00] 0.89(1) 0.21(5) 0.89(3) 0.21(5)
0.5 [5.00, 5.00] 0.89(7) 0.23(2) 0.91(2) 0.20(3)
1.0 [5.02, 5.02] 0.93(4) 0.21(2) 0.93(3) 0.23(7)
1.5 [5.04, 5.04] 0.99(7) 0.23(5) 1.00(3) 0.24(2)

B. Field theory description of the DQCP as a
Tomonaga-Luttinger liquid

We find that the parameter ∆ determines the proper-
ties of the critical point(s) for V > 0. By fixing ∆′ = 0.5,
we focus on two representative cases of ∆ = 0.5, 1.5. The
finite-size scaling analysis similar to the previous section
is shown in FIG. 11 and FIG. 12. The critical exponents
obtained from them are summarized in TABLE III.

For ∆ < 1.0, the two order parameters Mz,x approach
criticality at different V , leaving a narrow gapless phase
between them where both order parameters Mz,x vanish.
Such a gapless phase is allowed by the LSM theorem.

The peaks in FIG. 11(a) are also less sharp, which sug-
gests that the corresponding critical exponent ν is larger.
However, for ∆ > 1.0, Mz,x approach criticality at one
single critical point Vc. The narrow gapless phase shrinks
into a single critical point. The peaks in FIG. 11(b) are
also sharper and lead to a smaller ν. In other words, the
two phase boundaries of vanishing Mz,x join and form a
DQCP.
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FIG. 11. Derivatives of the Binder cumulants dUz/dV (solid
markers) and dUx/dV (hollow markers) around the critical
point(s). Insets show the logarithm finite-size fittings at the
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hollow markers) around the critical point. ∆′ = 1.5. (a)
∆ = 0.5. (b) ∆ = 1.5.

To get more understanding for the DQCP, we look into
the effective field theory of a U(1) Tomonaga-Luttinger
liquid (TLL) in terms of two boson variables φ and θ:

HLL[θ, φ] =
u

2π

∫
dx

[
1

g
(∂xθ)

2
+ g (∂xφ)

2

]
, (48)

where u is the renormalized velocity and g is the Lut-
tinger parameter. Here Π = ∂xθ/π is the canonical con-
jugate of phase variable φ.

In the dictionary of Abelian bosonization, the spin op-
erators in a spin- 1

2 chain can be expressed as

Sz(x)± iSx(x) ∼ e∓ iθ
[
(−1)x ± cos 2φ

]
, (49)

Sy(x) ∼ −∇φ
π

+ (−1)x cos 2φ. (50)



xi

Under the symmetry operations, the boson fields trans-
form as

I : θ(x)→ π − θ(−x), φ(x)→ π
2 − φ(−x), (51)

Pf : θ(x)→ −θ(x), φ(x)→ π
2 − φ(x) (52)

C̃ : θ(x)→ π − θ(x), φ(x)→ φ(x), (53)

T̃x : θ(x)→ θ(x+ 1), φ(x)→ π
2 − φ(x+ 1). (54)

where we have set the lattice constant as unity. Note that
C̃ and T̃x are anti-unitary symmetries while inversion I
and parity Pf symmetries are unitary.

The Jx = Jz (or equivalently 2(t + ∆) = V ) limit of
our model (10) corresponds to the XXZ spin- 1

2 chain,
characterized by [47]

Jy/Jx,z = 2(t−∆)/V = − cos(πg/2), (55)

u(2− g) =
√
V 2 − 4(t−∆)2 = 4

√
t∆ (56)

for V ≥ 2|t − ∆| in effective action (48). In particular,
the Heisenberg limit V = 2t, ∆ = 0 with g = 2 and
u = πV , characterizes the single critical point separating
the Luttinger liquid phase at V > 2(t−∆) and the Ising
antiferromagnetic phase at V < 2(t−∆).

The leading-order back-scattering terms introduced by
|Jx − Jz|, Jy and Γ couplings in (10) are

Hb.s. = gθ cos(2θ) + gy cos(4φ) + gΓ∇φ∇θ cos θ + · · ·(57)

In particular the gΓ term from the Γ (or ∆′) coupling in
the lattice model has a scaling dimension of dim(gΓ) =
2 + g

4 and is hence irrelevant, suggesting the stability of
the single critical point for a small ∆′ in the ∆ = 0 limit.
While the dimension of gy term is dim(cos 4φ) = 4/g > 2,
the gθ term has a scaling dimension of dim(cos 2θ) =
g < 2. Since the only relevant term is cos(2θ), when gθ
changes sign, the ground state goes through a transition
from the inversion-broken AFMz phase to the parity-
borken AFMx phase.

In this Luttinger liquid phase of model (10), the anti-
ferromagnetic order parameters for the AFMz,x phases
in the bosonized language read

Mz =
∑
j

(−1)jSzj ∼ cos θ, (58)

Mx =
∑
j

(−1)jSxj ∼ sin θ, (59)

and they share the same scaling dimension

dim[Mx] = dim[Mz] =
g

4
. (60)

We notice that a similar unification of two order param-
eters (FMz and VBS) at a DQCP in 1D is recently dis-
cussed by Ref.[5]. While in the context of Ref.[5] the
relation between the two order parameters is only clear
in the bosonized dual picture, here in our example of
1D DQCP a standard bosonization treatment already re-
veals the emergent symmetry between the two distinct

order parameters Mx and Mz, one (Mz) breaking inver-
sion symmetry I while the other (Mx) breaks fermion
parity Pf .

The nature of this DQCP can be revealed by looking
into the dual domain wall variables of e.g. the AFMz

phase. Here we follow the strategy of Ref.[5] to iden-
tify the projective symmetry action on the domain wall
variables {~µj+1/2|j ∈ Z} on the spin chain (10):

µxj+1/2 = σzjσ
z
j+1,

µzj−1/2ρ
z
jµ

z
j+1/2 = σxj ,

ρxj = σzj (61)

which are constraint by the Gauss’ law

µxj+1/2 = ρxj ρ
x
j+1 (62)

Here ρzj is the link variable for the Z2 gauge field, while
µzj+1/2 creates a Z2 gauge charge (i.e. domain wall of Mz

order parameter) on the dual site j + 1
2 . In terms of the

dual variables, the symmetry operations can be written
as

Pf =
∏
j ρ

x
j =

∏
j=odd µ

x
j+1/2 : µzj+1/2 → (−1)jµzj+1/2;(63)

T̃x = Tx · K : µzj+1/2 → µzj+3/2; (64)

C̃ = (
∏
j ρ

z
j ) · K : µzj+1/2 → µzj+1/2; (65)

I = (
∏
j ρ

z
j ) · OI : µzj+1/2 → µz−j−1/2. (66)

Most importantly, the Ising/parity symmetry Pf and
inversion I anticommutes on the domain wall variable
µzj+1/2 even on a periodic spin chain of an even length:

Pf · I ◦ µzj+1/2 = −I · Pf ◦ µzj+1/2. (67)

This projective symmetry action on the domain wall
variable is captured by a nontrivial projective symme-
try group [48], i.e. a nontrivial group cohomology ω ∈
H2[G,Z2] where G is the symmetry group of the spin
chain [49]. This means destruction of the AFMz phase by
condensing domain wall µzj+1/2 will inevitably breaks the

symmetry, leading to e.g. an AFMx phase which spon-
taneously breaks the Ising symmetry. This is in parallel
with 2D DQCPs where defects of one ordered phase carry
nontrivial quantum numbers of another symmetry, and
condensation of this defect will necessarily break another
symmetry while restoring the originally broken symme-
try.

Regarding the critical exponents of this critical point,
ν can be related to the scaling dimension of the relevant
perturbation cos(2θ) by

ν =
1

d− g (68)

in this TLL theory [5]. Here d = 2 is the space-time di-
mension. With the value of β/ν at hand and the general
scaling relation 2β = ν(d − 2 + η) [50], we can immedi-
ately obtain the critical exponent η, namely the anoma-
lous dimension for the two point correlation function
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Γ(n) = |n|2−d−η. The scaling dimension for the order
parameter reads dim[M ] = η/2 = β/ν.

On one hand, from TABLE III fixed with ∆′ = 1.5
we can see that, only for ∆ = 1.5, these two order pa-
rameters vanish at the same critical point. Numerical
results of the critical exponents appears to be the same
within numerical errors. Moreover, they are consistent
with Eq. (68) and (60), implying that it is indeed de-
scribed by a c = 1 TLL theory in the long-wavelength
limit. More data in TABLE II suggests that the Lut-
tinger parameter g can vary within a finite range if g < 2.
The scaling dimensions of Mx,z are also the same at the
critical point. The emergent larger U(1)θ symmetry uni-
fies these two order parameters together and can rotate
from one to the other.

On the other hand, if ∆ = 0.5, the critical points for
these two order parameters split, leading to a stable gap-
less phase between the two ordered phases. Numerical
results of the critical exponents contradict Eq. (68) and
(60), which implies that this TLL theory is not valid
any more. The analysis given by Abelian bosonization
in Eq. (60) seems to break down for a small ∆/t. How-
ever, interestingly, the scaling dimensions of Mx,z for the
two phase boundaries where Mx,z vanish respectively are
still identical within numerical errors, being smaller than
their values at the DQCP. Currently we do not have a
good theoretical understanding of this gapless phase or
how it emerges from the TLL at a larger ∆/t, and we
leave these questions for future works.

TABLE III. Critical point(s) and critical exponents for ∆′ =
1.5.

∆ [V z
c , V

x
c ] νz βz/νz νx βx/νx

0.5 [3.34, 2.88] 1.47(1) 0.19(7) 1.51(3) 0.20(6)
1.0 [4.10, 4.03] 1.20(1) 0.22(3) 1.21(1) 0.22(8)
1.5 [5.04, 5.04] 0.99(7) 0.23(5) 1.00(3) 0.24(2)

C. Finite-size analysis of the central charge

As discussed in Appendix B in detail, in a 1d chain
of an odd length, there will be two exactly degenerate
ground states with opposite fermion parities, due to the
anti-commutation relation between inversion and parity
symmetry operations. This leads an underestimated en-
tanglement entropy, and hence an underestimated central
charge (see e.g. FIG. 5(a)) by fitting the Cardy’s formula
Eq. (38) numerically.

To resolve this issue, we use an even system size, which
splits the exact degeneracy in the spectrum, as illustrated
in Appendix E. Even lattices allow us to extract the
entanglement entropy and the central charge more re-
liably. Here we consider the same parameter range as
in Sec. V B. The results are shown in FIG. 13. At the
DQCP in FIG. 13(b), ∆ = ∆′ = 1.5, the critical ex-
ponents are given by ν = 1 and g = 1 in TABLE III.

The corresponding central charge is approaching unity as
the system size increases, consistent with a Tomonaga-
Luttinger liquid (TLL). After the single DQCP splits into
two phase boundaries, within the stable gapless phase,
the central charge c→ 1.3 as we compute up to L = 1600
in FIG. 13(a). This suggests that the stable gapless
phase sandwiched by the two gapped symmetry-breaking
phases cannot be described by a TLL with c = 1.

In FIG. 13(c), we make the scaling analysis deep in
the gapless phase at a negative V = −3.0. This stable
gapless phase lies between the FMz phase and the Kitaev
chain features a central charge of c → 1, again pointing
to a TLL.
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0.92
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FIG. 13. Finite-size scaling of fitted central charge c. ∆′ = 1.5
on even lattices. χ = 256. (a) ∆ = 0.5, V = 3.00 Gapless II.
(b) ∆ = 1.5, V = 5.04 DQCP. (c) ∆ = 1.0, V = −3.00 Gapless
I.

VI. CONCLUDING REMARKS

In this paper, we studied the phase diagram and quan-
tum phase transitions in a 1D interacting fermion model
with a Lieb-Schultz-Mattis (LSM) type anomaly. In
the presence of a site-centered inversion symmetry, any
gapped symmetric ground state must be a Kitaev chain
with a Majorana zero mode on each open end. Via the
Jordan-Wigner transformation, it is equivalent to a spin-
1/2 model whose gapped ground states must break ei-
ther the inversion or an Ising symmetry, which corre-
sponds to the fermion parity in the fermion model. Such
a LSM system provides a rich playground to identify un-
conventional quantum phase transitions between differ-
ent ordered phases, not related to each other by sponta-
neous symmetry breakings, hence beyond the Ginzburg-
Landau-Wilson paradigm.

To understand the phase diagram of a generic fermion
model with symmetric nearest-neighbor couplings, we
first solve the non-interacting limit V = 0. In the in-
teracting cases with V 6= 0, we implement the varia-
tional MPS method to numerically study the model. The
phase diagram and phase boundaries are obtained using
variance, entanglement entropy and ground state energy.
Furthermore, we focus on the unconventional quantum
phase transition between the inversion-breaking phase
and the parity-breaking phase (i.e. the Kitaev chain),
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and carry out a detailed finite-size scaling analysis to ex-
tract critical exponents. This is combined with Abelian
bosonization and projective symmetry group analysis, to
understand the nature of this “deconfined”quantum crit-
ical point (DQCP), where both inversion-breaking and
parity-breaking order parameters vanish simultaneously.
We find that the numerically measured critical exponents
are captured by the Luttinger parameter in a Tomonage-
Luttinger liquid. We have also identified a stable sym-
metric gapless phase, which emerges from the DQCP and
separates the two symmetry-breaking phases. While the
nature of this gapless phase and how it emerges from the
DQCP remains unknown, we leave this interesting ques-
tion for future works. More complicated next-nearest
interactions like in Ref. Hetényi [51] can be considered
in the future. We also point out that, there is no essen-
tial difficulty to realize our model experimentally using
modern techniques [52, 53].
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Appendix A: Symmetry implementations on the
fermion chain vs. the spin chain

Here we address in detail the symmetry operations in
the fermion language vs. the spin language.

In the fermion model,

H =
∑
j

(−)j
[
t
(
c†jcj+1 + h.c.

)
+
(

∆c†jc
†
j+1 + h.c.

)]
+
(

i∆′c†jc
†
j+1 + h.c.

)
+ V

(
nj −

1

2

)(
nj+1 −

1

2

)
(A1)

By the Jordan-Wigner transformation in Eq. (10), the
above fermion model is transformed into a spin chain

Hspin =
∑
j

∑
α=x,y,z

JαS
α
j S

α
j+1+(−)jΓ

(
Sxj S

y
j+1 + Syj S

x
j+1

)
(A2)

where the exchange couplings are given by

Jx = 2(t+ ∆), Jy = 2(t−∆), Jz = V,

Γ = −2∆′. (A3)

Three symmetries are clearly present in the spin model:

Pf =
∏
j Zj : (Sxj , S

y
j , S

z
j )→ (−Sxj ,−Syj , Szj ), (A4)

C̃ = (
∏
j Xj) · K : (Sxj , S

y
j , S

z
j )→ (Sxj , S

y
j ,−Szj ), (A5)

T̃x = Tx · K : (Sxj , S
y
j , S

z
j )→ (Sxj+1,−Syj+1, S

z
j+1).(A6)

They are nothing but the magnetic translation (5),
fermion parity (i.e. Ising symmetry) (12) and anti-
unitary particle-hole symmetry (7) discussed in the
fermion context.

Although the Hamiltonian remains local in both the
fermion and the spin representations, due to the Jordan-
Wigner string, a locality-preserving symmetry operation
in one representation may appear to be non-local in the
other representation. One example is the inversion sym-
metry (2) discussed in this work. Below we write down
two possible sets of inversion symmetry operations: the
first one is non-local in the spin language; the second one
preserves locality in the spin language but looks non-local
in the fermion language. Since all numerical simulations
are carried out in the spin representation, in the main
text we will stick to the 2nd set of inversion symmetry
summarized in Appendix A 2.

1. Non-local inversion symmetry in the spin
representation

We first consider the following inversion symmetry

cj
I−→ ic†−j (A7)

in the fermion chain. On an open spin chain of length
L = 2N+1, the associated inversion symmetry generator
in the spin model (29) is

I = e i π4
∑
j(−1)j+N+1σzj · e i π4Pf (

∏
r

σxr ) · OI . (A8)

where OI is the spatial inversion operator.
In terms of the spin language, the parity operator

Pf =
∏N
l=−N

(
1− 2c†l cl

)
=
∏N
l=−N (−σzl ). Note that

σ+
j σ

z
j = −σ+

j , σ
z
jσ

+
j = σ+

j . Thus we have
{
Pf , σ+

j

}
= 0.

Similarly,
{
Pf , σ−j

}
= 0. Since we have the inverse

Jordan-Wigner transformation σzj = 2c†jcj − 1, σ−j =∏j−1
l=−N (−σzl ) cj , σ

+
j = c†j

∏j−1
l=−N (−σzl ). Thus we can

find that, under the inversion symmetry I,

σzj → −σz−j ,
σ−j → i(−)N+jσ+

−jPf = i(−)N+j+1Pfσ+
−j ,

σ+
j → i(−)N+j+1Pfσ−−j .

(A9)

Therefore, due to the Jordan-Wigner string, the above
inversion symmetry I is not a locality-preserving unitary:

Sxj
I−→ (−1)j+N+1Pf · Sy−j ,

Syj
I−→ (−1)j+N+1Pf · Sx−j ,

Szj
I−→ −Sz−j . (A10)

Interestingly, a (non-local) string order parameter is re-
quired to preserve this non-local inversion symmetry, un-
like the usual local order parameter for the case of a
locality-preserving symmetry. This is discussed in more
detail later, in Appendix D.
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2. Locality-preserving inversion symmetry in the
spin representation

Alternatively, there is also a locality-preserving inver-
sion symmetry preserved in the spin chain (A2):

I = (
∏
j

Xj) · OI (A11)

under which the spins transform as

(Sxj , S
y
j , S

z
j )

I−→ (Sx−j ,−Sy−j ,−Sz−j). (A12)

This symmetry, however does not have a local form in
the fermion language:

cj
I−→ −Pfc†−j (A13)

We shall stick to this locality-preserving inversion sym-
metry in the main text.

Appendix B: Zero-mode, entanglement entropy and
finite-size analysis in the XY model on even and odd

open chains

In this section, we use the 1d XY model as a pedagog-
ical example, to illustrate the issue of zero-mode and its
effects on the EE on even and odd lattices under OBC,
which is similar to our model when it comes to the lower
EE and underestimation of the central charge. Different
DMRG methods could also make some subtle difference.
The Hamiltonian is

HXY =

L−2∑
j=0

[(
1 + γ

2

)
σxj σ

x
j+1 +

(
1− γ

2

)
σyj σ

y
j+1

]
,

(B1)
where γ is a free parameter. γ = 0 is the critical point, at
which the system becomes gapless. Eq. (B1) is equivalent
to the 1d BdG Hamiltonian

Hf-XY =

L−2∑
j=0

[(
c†jcj+1 − c†jcj+1

)
+ γ

(
c†jc
†
j+1 − c†jc†j+1

)]
.

(B2)
By a unitary transformation, the single quasi-particle
spectrum of Eq. (B2) can be computed exactly [54] as

Hf-XY =
∑L−1
k=0 λk

(
d†kdk − 1

2

)
. The many-body excita-

tion spectrum is given by various filling combinations of
the single quasi-particle spectrum. For γ = 0, on a fi-
nite odd lattice L, we find that there is always an exact
zero-mode λ0 = 0. While on a even lattice, there is a
finite-size non-zero but very small gap λ0 6= 0. That is,
on a finite odd lattice with OBC, the two ground states

|Ψ0〉 = |0〉 and |Ψ1〉 = d†0|0〉 are precisely degenerated.
They belong to different topological sectors characterized
by the fermion parity Pf .

If the ground state of Eq. (B2) is a Slater determinant,
the reduced density matrix of a subsystem A containing

M sites can be written as ρA = e−HA/Z and its bipartite
entanglement spectrum {ω} can be analytically extracted
from the correlation matrix [55–57]. Z is the partition
function. Therefore the corresponding EE reads

SA = −tr (ρA ln ρA)

= −
M−1∑
l=0

(ωl
2

)
tanh

(ωl
2

)
+

M−1∑
l=0

ln
[
2 cosh

(ωl
2

)]
.

(B3)
We find that bond energy and EE in |Ψ0〉 and |Ψ1〉 are
the same as shown in FIG. 14. However, EE in the super-
posed state |Ψ〉 = α|Ψ0〉 + β|Ψ1〉 cannot be analytically
computed since the superposition of two Slater determi-
nants may not be written as another Slater determinant.
If we simulate the XY chain using a randomly initialized
MPS, we can converge to the minimally entangled state,
which turns out to the superposition of |Ψ0,1〉 and re-
sults in a lower EE as well as a underestimation of the
central charge. They are illustrated in FIG. 15 and we
think this is the reason for the incommensurability ob-
served in other odd spin chains [42]. If we add boundary
perturbations such as H1 = h

(
σz0 + σzL−1

)
in the early

sweeping stage to select the MPS within a fixed parity
sector, numerically we indeed can obtain the results in
FIG. 14 for odd lattices.

Next we carry out some finite-size analysis in terms of
even and odd lattices for the XY model. From FIG. 16
we can see that the variance v is sharper on odd lattices.
We consider the Neel order parameter

Mx =
1

L

L−1∑
j=0

(−)jσxj (B4)

and the corresponding Binder culmulant Ux. From
FIG. 17 and FIG. 18 we can see that on even and odd
lattices, the XY model exhibits almost similar critical
properties up to some numerical errors. However, their
EE can be dramatically different.
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FIG. 14. Bond energy Eb (insets) and bipartite EE SA in the
XY spin chain under OBC computed from the exact solution.
L = 121. Hollow circles represent the original data while
filled circles represent the extracted uniform EE as defined in
Eq. (37). (a) |Ψ0〉 without zero-mode. (b) |Ψ1〉 with zero-
mode. Both fitted central charges are c ≈ 0.962.
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FIG. 15. Bond energy Eb (insets) and bipartite EE SA in the
open XY chain obtained by MPS with χ = 64. Hollow circles
represent the original data while filled circles represent the
extracted uniform EE as defined in Eq. (37). (a) L = 120.
Fitted central charge c ≈ 0.960. (b) L = 121. Fitted central
charge c ≈ 0.375.
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FIG. 16. Variance of the open XY chain. χ = 64. Insets
show the logarithm fittings of v at the critical point. (a)
Even lattices. (b) Odd lattices.
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FIG. 17. (a) Binder cumulant’s derivative and (b) magneti-
zation in XY model on odd chains. χ = 64. Fitted critical
exponents as given by insets: νx = 1.11(1), βx/νx = 0.24(4).

Appendix C: Larger bond-dimension test

To test the convergence of our numerical computation,
we also repeat the simulation with the same parame-
ters as in FIG. 9 and FIG. 10 up to the bond-dimension
χ = 128. They are re-plotted as FIG. 19 and FIG. 20.
The critical exponents obtained with χ = 128 are sum-
marized in TABLE IV, in which we find the numbers
are almost identical to those shown in TABLE I. In this
sense, we claim that our numerical simulation has already
well converged with χ = 64 and the error-bar estimation
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FIG. 18. (a) Binder cumulant’s derivative and (b) magneti-
zation in XY model on even chains. χ = 64. Fitted critical
exponents as given by insets: νx = 1.02(9), βx/νx = 0.24(4).
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FIG. 19. Derivatives of the Binder cumulants dUz/dV (solid
markers) and dUx/dV (hollow markers) around the critical
point. χ = 128. ∆ = 1.0. (a, b, c, d) denote ∆′ =
(0.0, 0.5, 1.0, 1.5), respectively.

TABLE IV. Critical point(s) and critical exponents for ∆ =
1.0. χ = 128.

∆′ [V z
c , V

x
c ] νz βz/νz νx βx/νx

0.0 [4.00, 4.00] 1.01(2) 0.24(4) 1.01(2) 0.24(4)
0.5 [4.01, 4.00] 1.02(8) 0.23(9) 1.03(0) 0.23(3)
1.0 [4.03, 4.02] 1.08(5) 0.24(9) 1.08(5) 0.24(5)
1.5 [4.10, 4.03] 1.20(7) 0.22(3) 1.21(2) 0.22(8)

Appendix D: A string order parameter that
preserves non-local inversion symmetry (A8)

We can construct another kind of non-local string order
parameter according to the rule given by Eq. (A9). It is
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FIG. 20. Magnetic order parameters MAFM−z (monotoni-
cally increasing solid data markers) and Mx (monotonically
decreasing hollow data markers) around the critical point.
χ = 128. ∆ = 1.5. (a, b, c, d) denote ∆′ = (0.0, 0.5, 1.0, 1.5),
respectively.

invariant under the inversion symmetry I and looks like

OStr-x ≡
N∑

j=−N

1 + i(−)N+j+1Q

2
σxj

=

N∑
j=−N

σxj + (−)N+j+1σyj
∏N
l=−N,l 6=j σ

z
l

2
.

(D1)

To write OStr-x in a MPO form, we have to encode the
operator string into the productions of matrices living on
each site. It turns out that the corresponding MPO has
a dimension of D = 4N + 2 and can be written as

V
[j]
Str-x =

1

2

 1 . . . 0
...

. . .
...

σx . . . 1

 . (D2)

On different sites, V
[j]
Str-x has different forms. For j =

−N ,
(

2V
[−N ]
Str-x

)
D−1,D−2

= −σy;
(

2V
[−N ]
Str-x

)
D−1,D−2−l

=

σz, l = 1, . . . , 2N . For j = N ,
(

2V
[N ]
Str-x

)
1,0

=

−σy;
(

2V
[N ]
Str-x

)
1+l,0

= σz, l = 1, . . . , 2N . For −N < j <

N , (
2V

[j]
Str-x

)
D−1−(N+j)−l,D−2−(N+j)−l

=

{
σz, l 6= (N + j);

(−)N+j+1σy, l = (N + j)

(D3)

for l = 0, . . . , 2N .
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FIG. 21. String order parameter and z-magnetic order pa-
rameter. ∆ = 1.0. L = 121, χ = 64. (a, b, c, d) denote
∆′ = (0.0, 0.5, 1.0, 1.5), respectively.

From FIG. 21 we can see that in the gapped TSC
phases, the non-vanishing string order parameter 〈OStr-x〉
does imply the spontaneous symmetry breaking of the
associated parity symmetry Pf , which is consistent with
the results given by the local order parameter Mx.

Appendix E: Numerical results on on even lattices

On a finite lattice under OBC, although the symmetry
I is only preserved on odd lattices as we discussed in
the main text, we can regard the even ones as a kind of
perturbation on the boundary by removing one site.

1. Critical exponents at the critical point(s)

In TABLE V we perform the finite-size analysis on
even lattices following the same parameters in TABLE I,
which show that although specific numbers are different
but they are close and follow the same trend.

TABLE V. Critical exponents at ∆ = 1.0 on even lattices

∆′ [V z
c , V

x
c ] νz βz/νz νx βx/νx

0.0 [4.00, 4.00] 1.00(7) 0.24(4) 1.00(7) 0.24(4)
0.5 [4.01, 4.00] 1.02(3) 0.24(1) 1.02(3) 0.23(7)
1.0 [4.04, 4.01] 1.06(8) 0.23(6) 1.07(1) 0.23(2)
1.5 [4.13, 4.01] 1.14(9) 0.19(3) 1.16(3) 0.20(9)
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2. Central charge in the negative-V gapless phase

Away from the phase boundaries namely deeply in the
gapless phase induced by non-vanishing ∆′, we believe
that Cardy’s formula could work well. In FIG. 22 we
show that the fitted central charge as well as the variance
on an even lattice L = 120. Furthermore, we also present
several other representative examples using larger lattices
up to L = 1000 as well as with larger bond dimensions
to make more accurate estimation of the central charge,
which are shown in TAB. VI.

−7.5 −5.0 −2.5 0.0
V

0.14

0.61

1.07

c

0.79

3.29

5.80

v

×10−3

FIG. 22. Fitted central charge c and variance v in the gapless
I phase for ∆ = 1.0 and ∆′ = 1.5 on an even lattice L = 120.
χ = 64.

TABLE VI. Fitted central charge c in the gapless I phase for
∆ = 1.0,∆′ = 1.5 on other larger even lattices. χ = 256 for
L = 400, 800. χ = 512 for L = 1000.

V -4.0 -3.0 -2.0 -1.0 0.0 1.0
L = 400 0.949 0.961 0.982 0.988 0.988 0.974
L = 800 0.964 0.971 0.987 0.991 0.991 0.979
L = 1000 0.970 0.975 0.992 0.996 0.995 0.989
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