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We introduce the dissipation-assisted operator evolution (DAOE) method for calculating transport
properties of strongly interacting lattice systems in the high temperature regime. DAOE is based on
evolving observables in the Heisenberg picture, and applying an artificial dissipation acting on long
operators. We represent the observable as a matrix product operator, and show that the dissipation
leads to a decay of operator entanglement, allowing us to follow the dynamics to long times. We
test this scheme by calculating spin and energy diffusion constants in a variety of physical models.
By gradually weakening the dissipation, we are able to consistently extrapolate our results to the
case of zero dissipation, thus estimating the physical diffusion constant with high precision.

Introduction.— Despite their complexity, thermaliz-
ing quantum many-body systems often exhibit univer-
sal hydrodynamical features in their low-frequency, long-
wavelength limit [1–8]. Although these features are rou-
tinely measured in transport experiments, quantitatively
connecting them to the underlying microscopic dynamics,
e.g., deriving the transport coefficients from first princi-
ples, is notoriously difficult in practice [2, 9–13]. Es-
tablished methods face an exponentially increasing cost,
either with time or with system size, often leading to
unreliable results [4, 14–17]. While methods have been
proposed to circumvent these issues in certain cases [18–
28], it remains unclear whether one can really overcome
the exponential barrier for generic systems.

The purpose of this paper is to introduce a numerical
method that tackles this problem and calculates trans-
port properties from first principles in a controlled man-
ner, while avoiding finite size and time restrictions. We
achieve this by focusing on the Heisenberg picture dy-
namics of conserved densities. Motivated by recent re-
sults on operator spreading [29–32], we introduce an ar-
tificial dissipation that removes operators based on their
‘length’, which we define below. As a consequence, the
time-evolved operator may be stored more compactly us-
ing standard tensor network techniques. The resulting
dynamics depends on the specifics of the dissipative pro-
cedure, but in the limit of weak dissipation, the differ-
ent methods all appear to converge. This allows us to
estimate the physical result (here, a spin or energy dif-
fusion constant) through extrapolation. Our results sug-
gest that the simulation of transport in ergodic systems
has a qualitatively smaller computational cost than solv-
ing the full many-body dynamical problem.

Numerical method.— We work with one-dimensional
lattice models, labeling sites by j = 1, . . . , L. Con-
sider the local density, qj , of some conserved quantity
Q =

∑
j qj (e.g., charge or energy). We are interested in

dynamical correlations of these densities, 〈qi(0)qj(t)〉eq,
evaluated in some equilibrium state. We focus on infi-
nite temperature, so that 〈. . .〉eq ≡ Tr[. . .]/N , with N

FIG. 1. Dissipation-assisted operator evolution (DAOE)
method. (a) Sketch of the non-unitary evolution (2) as a
sum over paths in operator space. For ∆t→ 0, γ →∞, paths
that leave the ` ≤ `∗ subspace are discarded immediately.
Making ∆t finite, we keep paths that wander off from this
subspace but return before the next integer multiple of ∆t.
Finally, when ∆t, γ are both finite, all paths are kept, but the
weight of those that spend time outside the ‘slow’ subspace is
gradually reduced. (b): The operator (MPO) qj can be rein-
terpreted as a state (MPS) |qj〉 on a doubled Hilbert space.
(c): One period of the DAOE as a tensor network. |qj〉 is
evolved with the TEBD algorithm up to time ∆t. Then the
dissipator D`∗,γ is applied as a bond dimension `∗ + 1 MPO.

the Hilbert space dimension. Here qj(t) is evolved uni-
tarily in the Heisenberg picture, with a Hamiltonian H
that conserves Q, [H,Q] = 0. Transport properties can
be extracted from such correlations, as we detail below.

In what follows, we shall find it useful to think of op-
erators as vectors in an enlarged Hilbert space of size
N 2. In a matrix product operator (MPO) representa-
tion, this is equivalent to combining the two physical
legs into a single leg, turning it into a matrix product
state (MPS), as illustrated by Fig. 1(b). We use the no-
tation |qj〉 for the ‘vectorized’ operator, and introduce
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an inner product on this space as 〈A|B〉 ≡ 〈A†B〉eq.
The Heisenberg equation of motion can be rewritten as
∂t|qj〉 = i[H, qj ] ≡ iL|qj〉, which defines the Liouvillian
superoperator, L. This is solved by |qj(t)〉 = eiLt|qj〉.
Importantly, we are only interested in the matrix ele-
ments of eiLt in the ‘slow’ subspace, spanned by the con-
served densities: 〈qi|eiLt|qj〉 = 〈qiqj(t)〉eq. This projected
evolution is generically no longer unitary.

We wish to approximate this non-unitary evolution by
gradually taking into account the effect of the ‘bath’,
meaning all the remaining operators that we are not pro-
jecting onto. We will do this in a more general way,
where we include not only conserved densities, but all
sufficiently local operators in the slow subspace. To be
concrete, let us imagine a spin-1/2 chain. Then a basis of
all 4L operators is given by Pauli strings, products of the
four Pauli matrices 11, X, Y, Z. To each Pauli string S,
we can associate a length `S , which is simply the num-
ber of non-trivial Paulis occurring in it. For example,
11, Xj , ZiYj have lengths ` = 0, 1, 2, respectively. We can
then define a dissipation superoperator that decreases the
weight of all strings longer than some cutoff length `∗ as

D`∗,γ [S] =

{
S if `S ≤ `∗
e−γ(`S−`∗)S otherwise.

(1)

The cutoff length `∗ is introduced to ensure that the phys-
ically most relevant operators, such as conserved densi-
ties, are not affected by the dissipator.

We are now in a position to describe our proposed
method. We define a modified time evolution, by ap-
plying the dissipator with period ∆t. That is, for time
t ∈ [N,N + 1)∆t (for N ∈ N), we consider the time
evolved local density defined by

|q̃j(t)〉 = eiL(t−N∆t)
(
D`∗,γeiL∆t

)N |qj〉; (2)

we dub this dissipation-assisted operator evolution
(DAOE). Eq. (2) is clearly very different from the true,
unitarily evolved operator |qj(t)〉. However, we propose
that the dissipative evolution can be made to correctly
capture the correlations with other slow operators, par-
ticularly conserved densities, 〈qi|q̃j(t)〉 ≈ 〈qi|qj(t)〉.

Intuitively, ∆t and 1/γ both play a similar role, limit-
ing the amount of time an operator is allowed to spend
outside the ` ≤ `∗ subspace. While at ∆t → 0, γ → ∞
the dynamics is projected down to this subspace [33],
making either ∆t or γ finite allows the operators to
go outside, but only for a limited amount of time (in
fact, when γ is small, results depend on the ratio γ/∆t
only [34]). One can think of this as summing up cer-
tain contributions in a path-integral representation of
the propagator 〈qi|eiLt|qj〉, as illustrated in Fig. 1(a).
Unitary evolution is recovered by taking either γ → 0,
∆t → ∞ or `∗ → ∞. In practice, we shall find it most
useful to take the first option, keeping `∗ and ∆t fixed

while approaching the unitary limit through decreasing
γ. The spirit of this approximation is closely related to
the well-known memory matrix formalism [2, 9–12, 35–
38], with the ‘short’ (` ≤ `∗) and ‘long’ (` > `∗) operators
playing the role of the ‘slow’ and ‘fast’ subspaces, and ∆t
and γ providing a cutoff for the memory time

The correlators considered are affected by the dissi-
pation through ‘backflow’ processes [31], wherein a long
Pauli string in qj(t

′) at time t′ < t develops a component
on a short operator, such as qi, by time t. DAOE relies
on the assumption that such backflow is weak in generic
systems, which we expect to hold for two reasons. First,
simple entropic arguments show that operators are more
likely to grow in size than to shrink. Second, the many
different backflow paths are expected to come with effec-
tively random phases, leading to destructive interference.
In the absence of conservation laws, one can easily argue
that these lead to backflow effects being exponentially
suppressed in `∗. With conservation laws, the situation
is more complicated [31, 32]. The largest contribution
is expected from cases when qi evolves into a product
of several densities, qi1 . . . qi` , and then back. Such prod-
ucts are ‘slow’ operators and have significant components
that fail to grow ballistically. Nevertheless, we posit that
these processes are still suppressed exponentially in `.
A key insight is that the decays of the densities mul-
tiply together, resulting in a behavior ∼ t−`/2, with `
appearing in the exponent. A detailed analysis of back-
flow processes, supporting this conclusion, is provided in
Ref. 39.

To reap the benefits of the dissipation, we represent
|q̃j(t)〉 as an MPS. The unitary part of the evolution
can then be done with standard MPS techniques; for the
nearest-neighbor Hamiltonians studied below, the time-
evolving block decimation (TEBD) algorithm [15, 16, 40,
41] provides an efficient solution. In this language, the
superoperator D`∗,γ becomes a matrix product operator
(MPO) [15, 41, 42]. One can then straightforwardly eval-
uate Eq. (2), as illustrated in Fig. 1(c). As we will show,
this can be done accurately with relatively low bond di-
mension, even for large systems and long times, provided
that the dissipation is sufficiently strong.

D`∗,γ in fact has an exact MPO representation with
bond dimension `∗+1. We label the local basis ‘states’ by
n = 11, X, Y, Z (generalization to higher spin is straight-
forward). We then write the local MPO tensor, Wnn′

ab , as
a matrix acting on the virtual indices a, b = 0, 1, . . . , `∗.
They read W 1111

ab = δa=b and WXX
ab = WY Y

ab = WZZ
ab =

δa=b−1 + e−γδa=b=`∗ , all others being zero. The MPO is
contracted with the vector vL = (1, 0, . . . , 0) on the left,
and vR = (1, . . . , 1, 1) on the right. It is easy to check
that this reproduces the desired result.

The main limitation in the MPS representation of |q̃j〉
is the operator entanglement [43–48], SvN[q̃j(t)], defined
as the half-chain von Neumann entropy of the normalized
state |q̃j(t)〉/

√
〈q̃j(t)|q̃j(t)〉. For generic unitary dynam-
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FIG. 2. Testing DAOE on the Ising model (4). (a) shows how
the dissipation (for `∗ = 2, ∆t = 0.25) suppresses operator
entanglement (measured in units of ln 2). (b) shows that the
MSD (3) is correctly captured to long times by the DAOE
(same `∗,∆t; γ = 0.03, using bond dimensions χ = 512), by
comparing to exact results on small chains (L = 9, 13, 17, 21).

ics, it tends to increase linearly [49, 50], SvN[qj(t)] ∝ t.
In this case, the bond dimension χ needed for a faith-
ful MPO/MPS representation grows exponentially with
t, cutting short the times one can simulate [15, 16]. We
find that applying the dissipator decreases the operator
entanglement, and this effect always becomes dominant
at long times (see Fig. 2(a)); a similar effect was noted
very recently in another context in Ref. 51. This key ob-
servation means that we can calculate |q̃j(t)〉 with high
precision, up to very long times, with a finite χ.

Results.— We use our method to calculate the dy-
namical correlations between the central site i = L+1

2
(we take L odd) and all other positions, Cj(t) ≡
Tr[qj q̃L+1

2
(t)]/N . We normalize these such that∑

j Cj(0) = 1. One can characterize the spreading of
correlations by the mean-square displacement (MSD),

d2(t) ≡
∑

j

Cj(t)j
2 −


∑

j

Cj(t)j




2

. (3)

In the strongly interacting, non-integrable systems we
study, high-temperature transport of conserved quan-
tities is expected to be diffusive [2, 3, 52, 53], which
manifests in a linear growth of the MSD at long times,
d2(t) ∝ t. This suggests defining a time-dependent diffu-
sion constant [4, 54–57] as 2D(t) ≡ ∂td

2(t). The phys-
ical diffusion constant is then D ≡ limt→∞D(t) (as-
suming L → ∞ first). Further information about the
frequency- and wavevector-dependence of the conductiv-
ity can be obtained by looking at space-time dependence
of Cj(t) [4, 6, 58].

Our approach is as follows. We calculate D(t) for the
dissipative evolution, and then approach the unitary dy-
namics by decreasing γ, while keeping ∆t and `∗ fixed.
We decrease γ until we observe signs of convergence, al-
lowing us to extrapolate the results for D back to γ → 0.
We can estimate the accuracy of this extrapolation by
comparing different values of `∗. As stated above, the
value of ∆t is in principle irrelevant, as one finds a scal-
ing collapse as a function of γ/∆t for small γ. However,

in practice, ∆t should be small enough so that one can
follow the full dynamics up to ∆t with the given bond di-
mension. It is also numerically more efficient not to make
∆t too small, in order to reduce the number of MPO-to-
MPS multiplications we need to perform. We find that
∆t ≈ 1 (in units of microscopic couplings) works well.
We investigate two Hamiltonians which we expect to be
generic; further results on discrete circuit models are pre-
sented in [34].

Energy transport in the Ising chain. We first consider
the Ising model in a tilted field,

H =
∑

j

hj ≡
∑

j

(
gxXj + gzZj +

Zj−1Zj + ZjZj+1

2

)
.

(4)

We fix gx = 1.4 and gz = 0.9045. At these values, we ex-
pect the model to be strongly chaotic [59, 60], and hard to
simulate exactly, due to fast entanglement growth. Here,
hj is the energy associated to site j. This is the only
local conserved density in the model, and its correlations
capture energy (or heat) transport [60]. We therefore
take qj ≡ hj in this case, and evolve hL+1

2
, as an MPO,

according to Eq. (2). We perform the unitary part of the
dynamics with TEBD, using a small Trotter time-step
0.01. We take large enough systems (L = 51) such that
finite size effects are negligible at the times we study.

Fig. 2(a) confirms that the dissipation limits the opera-
tor entanglement growth, so that the entropy SvN[h̃j(t)]
peaks and then decreases. The time and height of the
peak increase as γ gets smaller, but for any non-zero γ,
dissipation dominates at long times. Moreover, we find
that after the peak, SvN approaches 1 in units of ln 2, in-
dicating that the operator is increasingly dominated by
the local densities, h̃L+1

2
(t) ≈∑j Cj(t)hj .

We benchmark our method by comparing it to exact
results on small systems, calculated using the canoni-
cal typicality approach [14, 61, 62], for up to L = 21
sites. In this case, finite-size effects limit the times
one can reach to t ≈ 10. We compare these to the
dissipative method for a particular set of parameters,
`∗ = 2,∆t = 0.25, γ = 0.03, which we expect to be
close to being converged to the physical diffusion con-
stant (see below). The results for the MSD are presented
in Fig. 2(b). The curve from the dissipative evolution
follows the exact results, and then continues to grow lin-
early to much longer times, well beyond the reach of exact
numerics. This is despite the fact that at these times, the
dissipation already had a large effect (as measured, for
example, by the decay of SvN), and h̃L+1

2
(t) is far from

the true time-evolved operator. Note that the dissipa-
tion is essential in allowing us to reach long times; for
the same bond dimension (χ = 512), TEBD without dis-
sipation starts deviating from the exact results around
times t ≈ 7− 8 due to truncation errors.

Having established the potential of the DAOE method,



4

0 0.1 0.2 0.3 0.4 0.5
�

1.25

1.30

1.35

1.40

1.45
D

`⇤ = 1

`⇤ = 2

`⇤ = 3

`⇤ = 4

0 0.1 0.2 0.3 0.4 0.5
�

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 5 10 15 20
Time t

1.0

1.1

1.2

1.3

1.4

D
(t

)

`⇤ = 3

0 5 10 15 20
Time t

0.2

0.4

0.6

0.8

� = 100.00

� = 1.00

� = 0.50

� = 0.25

� = 0.20

� = 0.15

(a) (b)

(c) (d)

FIG. 3. Estimating the diffusion constant. (a,c) show data
for the Ising chain (4) and (b,d) for the XX ladder (5). We
fix ∆t = 1 and use bond dimensions up to χ = 768. In
(c) and (d) we show results for the time-dependent diffusion
constant at a fixed `∗ = 3 for varying γ, showing clear signs
of convergence. In (a,b) we show the estimate for D (taken
as the average of D(t) in the interval t ∈ [15, 20]). Data for
the weakest dissipations is well fit by a linear extrapolation,
and results for different `∗ give consistent estimates for the
physical diffusion constant. In (b) and (d), the I and dotted
line represent the estimate D = 0.95 from Ref. 63.

we now embark on the strategy outlined above, ap-
proaching the unitary limit by decreasing γ gradually
from γ = ∞. For each set of parameters, we calcu-
late a time-dependent diffusion constant D`∗,∆t(t; γ). In
the limit γ → 0 one would recover the physical result,
limγ→0D`∗,∆t(t; γ) = D(t), for any `∗ and ∆t. In prac-
tice, we are limited to some minimal γ we can simulate
with a certain bond dimension, while avoiding truncation
errors. However, as we show, one can extrapolate from
the data to get an estimate for the diffusion constant at
γ = 0. Estimates for different `∗ then allow us to check
the accuracy of this extrapolation.

The results are shown in Fig. 3(a,c), for ∆t = 1 and
`∗ = 2, 3, 4. D(t) saturates to a γ-dependent constant.
When γ is made sufficiently small, we find that the re-
sults converge. The last few data points are well fitted
by a straight line, which allows us to extrapolate D back
to γ = 0. The extrapolated results for different choices of
`∗ all agree to within ≈ 1% error, supporting our conclu-
sions that we indeed reached the physical diffusion con-
stant (in this case, D ≈ 1.40). This constitutes strong
evidence that our method can successfully capture trans-
port coefficients to a high precision.

Spin transport in the XX ladder. Next, we study a
spin-1/2 model on a two-leg ladder. We denote by j =
1, . . . , L the rungs of the ladder, and use a = 1, 2 for the
two legs. Pauli operators on a given site are specified as

Xj,a, etc. The Hamiltonian then reads

H =

L∑

j=1

∑

a=1,2

(Xj,aXj+1,a + Yj,aYj+1,a)

+

L∑

j=1

(Xj,1Xj,2 + Yj,1Yj,2) . (5)

Besides energy, this model also conserves the spin z
component,

∑
j,a Zj,a. We examine the transport of

the corresponding local conserved density qj = Zj ≡
(Zj,1 + Zj,2)/2 along the chain. We take a system of
L = 41 rungs, which is large enough to avoid finite-size
effects, up to the times (t ≈ 20) that we simulate.

Spin transport in this model has been studied in a num-
ber of previous works, finding clear evidence of diffusive
behavior with a diffusion constant D ≈ 0.95 [23, 63, 64].
Here we show that our method reproduces this result on
much larger systems. We perform the same analysis as in
the Ising model, comparing D for different γ and extrapo-
lating back to γ = 0; the results are shown in Fig. 3(b,d).
We find that the extrapolated results are all within the
range D ≈ 0.96 − 0.98 (even for `∗ = 1, where energy-
conservation is violated). The fact that these values are
all very close to one another, and to the previous result,
strongly supports the validity of our method.

Conclusions.— We introduced a controlled numerical
method for computing transport properties in strongly
interacting quantum systems at high temperatures. Our
method is based on neglecting ‘backflow’ from compli-
cated to simple operators. We provided a simple imple-
mentation of this method, using matrix product states,
which allowed us to calculate dynamical correlations
without finite-size or finite-time limitations. We demon-
strated the utility of this approach on two spin models,
showing that it can be used to estimate diffusion con-
stants with high precision. An interesting open question
is whether the method could be further improved by us-
ing ideas from Refs. 24, 27, and 65.

There are a variety of physical problems that would be
interesting to explore with this method, such as transport
in 1D quantum magnets [66–69], disordered models [70–
74] or long-range interacting [75] systems, where existing
methods are even more limited. There might also be ap-
plications in quantum chemistry, where tensor network
methods are becoming increasingly important [76–80].
A natural extension of our method is to finite temper-
atures. We expect it to work well at high temperatures,
where the thermal density matrix is dominated by short
operators [81–86], while it presumably breaks down as
the low-temperature limit is approached. Precisely when
and how this happens is itself an interesting question.

Acknowledgements.–The authors thank David Huse,
Philipp Dumitrescu, Tarun Grover, Andrew Green,
Fabian Heidrich-Meisner, Sean Hartnoll, Vedika Khe-
mani, Minki Jeong, Xiangyu Cao and Daniel Parker for



5

stimulating discussions, and in particular Ehud Altman
for his talk at the KITP Conference “Novel Approaches
to Quantum Dynamics” that in part inspired our work.
CvK is supported by a Birmingham Fellowship. FP is
funded by the European Research Council (ERC) un-
der the European Unions Horizon 2020 research and in-
novation program (grant agreement No. 771537). FP
acknowledges the support of the DFG Research Unit
FOR 1807 through grants no. PO 1370/2-1, TRR80,
and the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence
Strategy EXC-2111-390814868. This work was initiated
at KITP where TR, CvK, and FP were supported in
part by the National Science Foundation under Grant
No. NSF PHY-1748958 (KITP) during the “Dynamics
of Quantum Information” program. TR further acknowl-
edges the hospitality of KITP as part of the graduate fel-
lowship program of the Fall of 2019, during which some
of this work was performed.

[1] Paul M Chaikin and Tom C Lubensky, Principles of
condensed matter physics, Vol. 10 (Cambridge university
press Cambridge, 1995).

[2] Dieter Forster, Hydrodynamic fluctuations, broken sym-
metry, and correlation functions (CRC Press, 2018).

[3] Leo P Kadanoff and Paul C Martin, “Hydrodynamic
equations and correlation functions,” Annals of Physics
24, 419 – 469 (1963).

[4] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
R. Steinigeweg, and M. Znidaric, “Finite-temperature
transport in one-dimensional quantum lattice models,”
(2020), arXiv:2003.03334.

[5] Hong Liu and Paolo Glorioso, “Lectures on non-
equilibrium effective field theories and fluctuating hy-
drodynamics,” in Proceedings of Theoretical Advanced
Study Institute Summer School 2017 ”Physics at the Fun-
damental Frontier” — PoS(TASI2017) (Sissa Medialab,
2018).

[6] Xinyi Chen-Lin, Luca V. Delacrétaz, and Sean A. Hart-
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coming the entanglement barrier when simulating long-
time evolution,” (2019), arXiv:1904.11999.

[27] Daniel E. Parker, Xiangyu Cao, Alexander Avdoshkin,
Thomas Scaffidi, and Ehud Altman, “A universal oper-
ator growth hypothesis,” Phys. Rev. X 9, 041017 (2019).

[28] A. Hallam, J. G. Morley, and A. G. Green, “The lya-
punov spectra of quantum thermalisation,” Nature Com-
munications 10 (2019), 10.1038/s41467-019-10336-4.

[29] Adam Nahum, Sagar Vijay, and Jeongwan Haah, “Op-
erator spreading in random unitary circuits,” Phys. Rev.
X 8, 021014 (2018).

[30] C. W. von Keyserlingk, Tibor Rakovszky, Frank Poll-
mann, and S. L. Sondhi, “Operator hydrodynamics,
otocs, and entanglement growth in systems without con-
servation laws,” Phys. Rev. X 8, 021013 (2018).

[31] Vedika Khemani, Ashvin Vishwanath, and David A.
Huse, “Operator spreading and the emergence of dissi-

http://online.kitp.ucsb.edu/online/dynq_c18/altman/
http://dx.doi.org/ https://doi.org/10.1016/0003-4916(63)90078-2
http://dx.doi.org/ https://doi.org/10.1016/0003-4916(63)90078-2
http://arxiv.org/abs/arXiv:2003.03334
http://dx.doi.org/10.22323/1.305.0008
http://dx.doi.org/10.22323/1.305.0008
http://dx.doi.org/10.22323/1.305.0008
http://dx.doi.org/ 10.1103/PhysRevLett.122.091602
http://dx.doi.org/ 10.1103/PhysRevLett.122.091602
http://arxiv.org/abs/arXiv:1912.08496
http://dx.doi.org/10.1103/PhysRevA.89.053608
http://dx.doi.org/https://doi.org/10.1016/0370-1573(75)90019-8
http://dx.doi.org/https://doi.org/10.1016/0370-1573(75)90019-8
http://dx.doi.org/ https://doi.org/10.1016/0370-1573(95)00077-1
http://dx.doi.org/ https://doi.org/10.1016/0370-1573(95)00077-1
http://dx.doi.org/10.1007/bfb0044591
http://dx.doi.org/10.1007/bfb0044591
http://dx.doi.org/10.1103/PhysRevE.99.022105
http://arxiv.org/abs/arXiv:2001.05289
http://dx.doi.org/https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/https://doi.org/10.1016/j.aop.2019.167998
http://dx.doi.org/10.1007/978-3-540-48651-0
http://dx.doi.org/10.1007/978-3-540-48651-0
http://dx.doi.org/ 10.1088/1742-5468/2009/02/p02035
http://dx.doi.org/ 10.1088/1742-5468/2009/02/p02035
http://dx.doi.org/10.1103/PhysRevB.99.035143
http://dx.doi.org/10.1103/PhysRevB.99.035143
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevB.94.165116
http://arxiv.org/abs/arXiv:1702.08894
http://dx.doi.org/10.1103/PhysRevB.97.024307
http://dx.doi.org/10.1103/PhysRevB.97.024307
http://dx.doi.org/ 10.1103/PhysRevB.97.035127
http://dx.doi.org/https://doi.org/10.1016/j.aop.2018.06.001
http://dx.doi.org/https://doi.org/10.1016/j.aop.2018.06.001
http://arxiv.org/abs/arXiv:1904.11999
http://dx.doi.org/ 10.1103/PhysRevX.9.041017
http://dx.doi.org/10.1038/s41467-019-10336-4
http://dx.doi.org/10.1038/s41467-019-10336-4
http://dx.doi.org/10.1103/PhysRevX.8.021014
http://dx.doi.org/10.1103/PhysRevX.8.021014
http://dx.doi.org/10.1103/PhysRevX.8.021013


6

pative hydrodynamics under unitary evolution with con-
servation laws,” Phys. Rev. X 8, 031057 (2018).

[32] Tibor Rakovszky, Frank Pollmann, and C. W. von
Keyserlingk, “Diffusive hydrodynamics of out-of-time-
ordered correlators with charge conservation,” Phys. Rev.
X 8, 031058 (2018).

[33] Approximations of this sort have appeared in other con-
texts [87–89].

[34] See online supplemental material for details.
[35] Robert Zwanzig, “Memory effects in irreversible thermo-

dynamics,” Phys. Rev. 124, 983–992 (1961).
[36] Hazime Mori, “Transport, collective motion, and brown-

ian motion,” Progress of Theoretical Physics 33, 423–455
(1965).

[37] P. Jung, R. W. Helmes, and A. Rosch, “Transport in
almost integrable models: Perturbed heisenberg chains,”
Phys. Rev. Lett. 96, 067202 (2006).

[38] Peter Jung and Achim Rosch, “Lower bounds for the con-
ductivities of correlated quantum systems,” Phys. Rev.
B 75, 245104 (2007).

[39] C. W. von Keyserlingk, Frank Pollmann, and Tibor
Rakovszky, “Operator backflow and the classical simu-
lation of quantum transport,” (2021), arXiv:2111.09904.

[40] Guifré Vidal, “Efficient classical simulation of slightly en-
tangled quantum computations,” Phys. Rev. Lett. 91,
147902 (2003).

[41] F. Verstraete, V. Murg, and J.I. Cirac, “Matrix prod-
uct states, projected entangled pair states, and vari-
ational renormalization group methods for quantum
spin systems,” Advances in Physics 57, 143–224 (2008),
https://doi.org/10.1080/14789940801912366.

[42] B Pirvu, V Murg, J I Cirac, and F Verstraete, “Ma-
trix product operator representations,” New Journal of
Physics 12, 025012 (2010).

[43] Paolo Zanardi, “Entanglement of quantum evolutions,”
Phys. Rev. A 63, 040304 (2001).

[44] Jayendra N. Bandyopadhyay and Arul Lakshminarayan,
“Entangling power of quantum chaotic evolutions via op-
erator entanglement,” (2005), arXiv:quant-ph/0504052.
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FIG. 4. Convergence of results with bond dimension χ in the Ising chain (4) for dissipation parameters `∗ = 4, ∆t = 1, γ = 0.2.
(a): Truncation error per TEBD step, summed over all bonds in the chain (L = 51 sites). (b) Convergence of results for D(t)
(see main text for definition). (c) Errors in the energy conservation, as measured by the sum of the coefficients of local energy
density terms Cj(t).

Appendix A: Additional data for the Ising chain and XX ladder models

1. Convergence with bond dimension

In the main text, we showed that the dissipation leads to a decay of the operator entanglement at long times.
Crucially, this makes the maximal operator entanglement encountered during the evolution independent of system
size, depending only on the parameters of the dissipation. As we argued, we can therefore capture the diffusive
spreading of correlations up to arbitrarily long times, without significant finite-size or truncation effects. Here we
show explicitly how the curves for D(t) converge as we increase the bond dimension χ.

The results are shown in Fig. 4 for the tilted field Ising model. We fix parameters `∗ = 4, ∆t = 1, γ = 0.2 (same as
in Fig. 2(b)) and compare results for different bond dimensions χ = 32, 64, 128, 256, 512. As the operator entanglement
peaks and decreases (see Fig. 2(a)), the truncation error of the unitary TEBD time step also starts decreasing. While
for small χ, the truncation errors encountered around the peak time are already significant, they decrease (roughly
linearly) with χ. This also shows up in the results for the time-dependent diffusion constant, D(t). While at small χ
the truncation effects are clearly visible, the curves quickly converge as χ is increased.

Another way of testing the effects of truncation is by looking at whether the conservation law (in this case, of
energy) is satisfied. We consider the correlations Cj(t) and normalize them such that

∑
j Cj(0) = 1. The exact

dissipative dynamics would maintain this normalization at all subsequent times due to energy conservation (assuming
`∗ is larger than the support of the terms in the Hamiltonian, in this case `∗ ≥ 2). This is crucial for correctly capturing

transport properties. We find that the errors in the conservation law, as measured by
∣∣∣1−

∑
j Cj(t)

∣∣∣ quickly decrease

as χ becomes larger. We conclude that it is possible to simulate the dissipative dynamics (2) up to long times, with
a bond dimension that is independent of total system size.

2. Scaling collapse as a function of γ/∆t

Here, we justify our claim in the main text that when γ is sufficiently small, the results (in particular, estimates
of D) are functions of the ratio γ/∆t only. This can be seen by utilizing the Baker-Campbell-Hausdorff formula to
rewrite the evolution operator (2) as

(
D`∗,γeiL∆t

)N ≡
(
e−K`∗γeiL∆t

)N
=
(
e−K`∗γ+iL∆t+O(γ∆t)

)N
= e−K`∗Nγ+iLN∆t+O(γN∆t) = et(iL−K`∗

γ
∆t )+O(γt),

(A1)

where t = N∆t and we have introduced the logarithm of the dissipator, acting on a Pauli string as

K`∗ [S] =

{
0 if `S ≤ `∗
(`S − `∗)S otherwise.

(A2)
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FIG. 5. Scaling collapse as a function of γ/∆t. (a,b): comparison of time-dependent diffusion constants for two curves with
different ∆t but the same ratio γ/∆t. When γ is sufficiently small, the results remain close to each other even at long times.
(c): Estimates of D ≡ limt→∞D(t), comparing ∆t = 1 and ∆t = 1/4. In the small γ regime, relevant for extrapolation, the
curves with the same `∗ collapse when plotted as function of γ/∆t.

In the second equality of Eq. (A1) we assumed γ � 1 to drop higher order terms that scale as γ2∆t. We also assume
that ∆t is at most an O(1) quantity, so that terms that scale as γ∆t2 are of the same order as γ∆t.

Eq. (A1) shows that the dynamics only depends on the ratio γ/∆t, and not on the individual value of γ and ∆t, up
to times t ≈ 1/γ. As such, it does not directly constrain the diffusion constant, which is extracted from the long-time
limit. However, in practice we find that D(t) saturates to a constant at a finite time tsat. While tsat itself depends on
γ and ∆t (as well as on the Hamiltonian), we find that this dependence is relatively weak; in particular, tsat should
converge to a finite, O(1) value as γ → 0. Therefore, estimate of D should also depend only on the ratio γ/∆t,
provided that we are in the regime where γtsat . 1.

Testing this expectation on the Ising chain (4), we find that it works remarkably well, even for γ ≈ 1 (we also find
that it works increasingly well as `∗ gets larger). This is shown in Fig. 5. Figs. 5(a,b) show that curves with identical
ratio γ/∆t are the same at early times, and, moreover, their late time saturation values are also close to one another,
provided that we are in a regime with sufficiently small γ. Consequently, the estimates for D show a scaling collapse
when data for the same `∗ but different ∆t, are plotted as a function of γ/∆t, see Fig. 5(c).

3. Operator weights

In the main text, we noted that the operator von Neumann entropy of the dissipatively evolving local density
approaches 1 (in units of ln 2) at long times. This suggests a long-time behavior where the evolving operator is in-
creasingly dominated by its diffusive, ‘conserved’ part, q̃0(t) ≈∑j Cj(t)qj . We now further support this interpretation
by calculating the weight of various operators in q̃0 (in this section we use a different notation from the main text,
with 0 denoting the center site).

To define what we mean by the weight of an operator, let us expand q̃0 in the basis of Pauli strings, q̃0 =
∑
S cS(t)S;

the weight of the Pauli string is then the squared coefficient, |cS |2. The total weight on operators with length ` is
given by

W`(t) ≡
∑

S
`S=`

|cS(t)|2. (A3)

For unitary evolution one would have a conserved total weight,
∑
S |cS(t)|2 =

∑
`W`(t) = 1. During evolution, the

weight gets redistributed from short operators to an essentially random superposition of long ones, such that at time t
the operator is dominated by strings of length ` ∼ vBt, with vB the butterfly velocity. This leads to the linear growth
of operator entanglement with time.

The dissipator fundamentally changes this picture, as it removes operator weight from long strings. This reverses
the effect of the unitary dynamics, making the contribution of short operators dominant at long times, which leads to
the observed decay in the entanglement. While short operators, with ` ≤ `∗, are not affected directly by the dissipator,
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FIG. 6. Total weight on strings of size ` as a function of time. The majority of the remaining (not yet dissipated) weight is on

1-site strings as decays as t−1/2. The weight of longer strings decays as t−3/2. Data shown for ∆t = 1, `∗ = 5 with γ = 0.05
(left) and γ = 0.25 (right).

their weight also decreases as they get converted into longer strings which are subsequently dissipated. However, due
to the hydrodynamic nature of transport, we find that the weight associated to local densities, |Cj |2 ≡ |cqj |2 decreases
parametrically more slowly than those of non-conserved operators, so that they dominate at long times.

To show this, we consider the XX ladder (5) and consider the evolution of the spin density, Z̃0(t). Calculating
operator weights for this object, we find that the weight on local densities decays as W`=1 ∼ t−1/2, as expected
from the diffusive nature of spin transport [31, 32]. Considering larger `, we find two things. First, for ` > `∗, the
weight decreases exponentially with `, as expected from the form of the dissipator. More importantly for the present
discussion, we also find that the weights for ` > 1 decay parametrically faster in time, W`>1 ∼ t−3/2 (even when
1 < ` ≤ `∗); this is shown in Fig. 6.

This behavior is consistent with the operator spreading picture developed in Refs. 31 and 32. In this picture, one
rewrites the time evolved density q0(t) as

q0(t) = qD
0 (t) + qB

0 (t) (A4)

where qD
0 (t) ≡ ∑

x C(x, t)qx is the diffusive part of the operator and we assume that C(x, t) ≡ 〈qx|q0(t)〉 is well
approximated by an unbiased diffusion kernel. qB

0 (t) contains the contributions from all remaining Pauli strings, and
is dominated by those with length ` = 2vBt, with vB the operator butterfly velocity [29, 30]. The unitary dynamics
leads to a conversion of weight from the diffusive to the ballistic part, whose local rate is given by ‘current’ squared,
|∂xC(x, t)|2. In this way, at each time step qD

0 sources new ballistically growing operators which thereafter form part
of qB

0 . This picture can be used to deduce the behaviour of W` as a function of time. According to the above picture,
operators of support ` would correspond to terms in qB which have been ballistically growing for a time interval
t− τ = `/(2vB). The weight of such terms is therefore expected to be

∫
dx (∂xC(x, τ))

2 ∼
[
D

(
t− `

2vB

)]−3/2

.

This shows that the weight on length ` operators at time t� `
2vB

goes as (Dt)−3/2.

Appendix B: Spin diffusion in Floquet circuits

We now complement the results shown for energy-conserving, Hamiltonian dynamics in the main text, with data
on time-periodic models. We construct these as circuits of local unitary gates, with a ‘brick-wall’ structure and
consequently, a strict light cone. This structure is illustrated in Fig. 7(a). We use the same two-site unitary u in each
gate, such that the system has translation invariance in space (with unit cells composed of two sites) and in time (by
two layers of the circuit).

We want our circuit to conserve the total spin-z component. For a spin-1/2 chain, such a circuit is fully parametrized
by three numbers, and it corresponds to a Trotterized version of an XXZ chain with a staggered magnetic field

u = e−i(Jxy(Sx1S
x
2 +Sy1S

y
2 )+JzzS

z
1S

z
2 +g(Sz1−S

z
2 )), (B1)
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FIG. 7. Diffusion constants in Floquet curcits. (a) The circuits have a brick-wall structure, updating even/odd bonds in turn.
Every gate is given by the same Sz-conserving two-site unitary u. (b,c) Estimates of the spin diffusion constant for the circuit
defined by Eq. (B1), for spin-1/2 and spin-1 chains.

where we have now used spin operator Sα instead of Pauli matrices (the two differ by a factor of 2), and the subscripts
refer to the two sites on which the gate acts. We choose irrational values of the three couplings, Jxy = 2

√
7, Jzz = 2

√
5,

g = 2
√

3.
We apply our dissipative evolution method for this circuit model, applying the dissipator after every second layer

of the circuit (i.e., one Floquet period). We extract spin diffusion constant in the same way as in the main text. The
results for the spin-1/2 circuit are plotted in Fig. 7(b). We find that the convergence to γ = 0 is less clear than in the
Hamiltonian models we studied in the main text. In particular, for `∗ = 1, 2 we observe a strong non-monotonicity
with γ, while `∗ = 3, 4 do appear to converge linearly to compatible values of D. Nevertheless, we note that the
variations in D are all relatively small.

Our interpretation is that the apparent lack of convergence in Fig. 7(b) is not related to the Floquet circuit nature
of our model; rather, it has to do with the fact that it is close to an integrable point. It was recently shown [90] that
for g = 0, the model in Eq. (B1) is integrable; this is closely related to the integrability of the XXZ Hamiltonian. In
the latter case, a staggered field is known to break integrability [62, 91, 92], so we expect that for generic g our circuit
is also non-integrable. However, we believe that the nearby integrable point is responsible for the non-trivial behavior
we observe (for example some almost-conserved operator of length ` = 3 could explain why the `∗ ≤ 2 curves have a
qualitatively different behavior from `∗ ≥ 3).

To test this intuition, we also consider the spin-1 version of the same model. That is, we use the same definition of
the two-site gate as in Eq. (B1), but with Sα1,2 standing for spin-1 operators. The results for this case are shown in
Fig. 7(c). While we find that getting to smaller γ becomes quite difficult in this case, due to a quick initial growth
of operator entanglement, so that our results are not as precisely converged as for the models presented in the main
text, we find no evidence of strong non-monotonicities in the regime we can simulate. This reinforces our belief that
the peculiar behavior exhibited by the spin-1/2 model is tied to the presence of nearby integrable points.
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