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We show theoretically that double photoemission (2e-ARPES) may be used to identify the pair-
ing state in superconductors in which the Cooper pairs have a nonzero center-of-mass momentum,
qcm. We theoretically evaluate the 2e ARPES counting rate, P (2), for the cases of a dx2−y2 -wave
superconductor, a pair-density-wave (PDW) phase, and a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)

phase. We show that P (2) provides direct insight into the center-of-mass momentum and spin state
of the superconducting condensate, and thus can distinguish between these three different supercon-
ducting pairing states. In addition, P (2) can be used to map out the momentum dependence of the
superconducting order parameter. Our results identify 2e-ARPES as an ideal tool for identifying
and probing qcm 6= 0 superconducting pairing states in superconductors.

I. INTRODUCTION

Identifying the pairing symmetries of unconventional
superconductors has remained one of the most impor-
tant and fundamental challenges in quantum materials
research. Its difficulty arises from the absence of two-
particle spectroscopies that directly probe the proper-
ties of the Cooper pair wave-function, which determine
the spin structure and momentum dependence of the su-
perconducting order parameter. Single-particle spectro-
scopies such as tunneling [1] or angle-resolved photoe-
mission spectroscopy (ARPES) [2] can only measure the
magnitude of the superconducting order parameter (or
the gap) but not its phase, while macroscopic Joseph-
son interference measurements can probe its phase, but
only if the order parameter is spatially uniform and suit-
able junctions can be prepared [3, 4]. The difficulties
are even more acute for superconductors in which the
Cooper pairs possess a nonzero center-of-mass momen-
tum, qcm, such as the Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) phase [5, 6] or the predicted pair density wave
(PDW) [7], in which the superconducting order parame-
ter is modulated in real space.

In this article we demonstrate that two electron coinci-
dence spectroscopy (2e-ARPES), in which the absorption
of a single photon leads to the emission of two coinci-
dent photo-electrons [8], can directly reveal the micro-
scopic character of finite-momentum pairing states in su-
perconductors. The experimental 2e-ARPES signal, the
photo-electron counting rate P (2), which is related to a
two-particle spectral function [9], is the probability per
unit time that a single photon leads to the emission of
a correlated pair of photo-electrons with defined energy
and momentum, as measured by two separate detectors.
Moreover, as spin-filters in the form of 3D spin VLEED or
Mott detectors can be employed to identify the spin state
of each electron independently, 2e-ARPES experiments

can measure a spin-dependent P (2). We show theoreti-
cally that the dx2−y2 -wave superconducting, FFLO and
PDW phases have distinct spectroscopic signatures in
P (2) that are directly sensitive to the center-of-mass mo-
mentum and spin state of the Cooper pair wave-function.
2e-ARPES is therefore a promising technique for identi-
fying and studying spatially modulated superconductors
generally.

There are two distinct processes that can cause a single
photon to lead to the ejection of a correlated pair of elec-
trons [Fig. 1(a),(b)] [8, 10–16]. In the first, the photon is
absorbed and excites a valence band electron into a free
photo-electron state, which subsequently ejects a second
valence electron via an electron energy-loss (EELS)-like
scattering event [Fig. 1(a)]. In the second process, the
first photo-electron is excited from a core-level, which is
subsequently filled by a valence electron, leading to the
emission of a second valence electron through an Auger
process [Fig. 1(b)]. While both processes lead to a very
similar energy, momentum and spin dependence of P (2)

[see Appendices A and B], the use of lower photon en-
ergy, laser based XUV sources will not allow 2e-ARPES
experiments to directly probe core states, rather render-
ing them more sensitive to valence band effects. We thus
restrict our theoretical analysis to first type of process,
shown in Fig. 1(a).

II. THEORETICAL FORMALISM

We compute the 2e-ARPES photo-electron counting
rate P (2) in the sudden approximation whereby we
neglect relaxation pathways during the photo-electron
emission process and work with plane wave electrons at
the detector and valence electron states in a sample [17].
As mentioned above, we focus on the two-step process
shown in Fig. 1(a) involving the emission of a first photo-
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FIG. 1. Schematic representation of the two distinct 2e
ARPES processes involving the absorption of a single photon,
and the ejection of two photo-electrons: (a) The incident pho-
ton excites a valence electron into a free photo-electron state
with E > Evac which in turn ejects a second valence electron
through an EELS-like scattering event. Here, Evac = EF + Φ
where EF is the Fermi energy and Φ is the work function,
(b) The incident photon excites an electron from a core level
which is then filled by a valence electron, emitting a second
valence electron though an Auger process.

electron upon absorption of a photon, and the subse-
quent scattering (EELS-like) process between the emit-
ted photo-electron and a conduction electron, which leads
to the emission of a second photo-electron. We assume
that scattering process between the photo-electron and
conduction electron is mediated by a (screened) Coulomb
interaction. This entire process is then described by the
Hamiltonian

Hsc =
∑

k,q,σ,ν

γν(q)d†k+q,σck,σ

(
aq,ν + a†−q,ν

)
+

∑
k,p,q,α,β

V (q)d†k+q,αd
†
p−q,βdp,βck,α + h.c. (1)

Here, γν(q) is the effective electron-photon dipole in-

teraction, d†k,σ(ck,σ) creates (destroys) a photo-electron

(conduction electron) with momentum k and spin σ,
and V (q) = V0/

(
q2 + κ2

)
is the Fourier transform of

the (screened) Coulomb interaction, with κ−1 being the
screening length. For all results shown below, we con-
sider for concreteness κ−1 = 10a0 (see also Appendix C).
Moreover, since the photon momentum is much smaller
than typical fermionic momenta, we set it equal to zero,
and as the out-of-plane momentum is not conserved upon
absorption of the photon, we take γν(q) = γ0 to be inde-
pendent of the in-plane momentum. We note that due to
the coupling of photo-electrons and conduction electrons
via the Coulomb interaction, the actual electron opera-
tors are a superposition of photo-electron operators and
conduction electron operators. The Coulomb interaction
is given in terms of the actual electron operators, which
then yields the form of the Coulomb interaction presented
in Eq.(1) above. There are of course other terms that

arises from writing the actual electron operators in terms
of the photo-electron and conduction electron operators
(such as terms containing 2 c and 2 d operators, or 1d
and 3 c operators), but these terms are irrelevant for the
2e-ARPES scattering process.

The initial and final states of the entire system, |Ψa〉
and |Ψb〉 respectively, are described by

|Ψa〉 = |Φa〉|1q,λ〉p|0〉pe
|Ψb〉 = |Φb〉|0〉p|1k′1,σ′11k′2,σ′2〉pe . (2)

Here, |1qλ〉p describes the initial photon state contain-
ing one photon with momentum q and polarization λ,
and |1k′1,σ′11k′2,σ′2〉pe represents the final photo-electron
state containing two photo-electrons with momenta k′1,2
and spin σ′1,2. The initial and final states of the super-
conductor are described by |Φa,b〉, respectively. The 2e-
ARPES signal, which depends on the two photo-electron
momenta and spin projections, is then computed via

P (2)(k′1, σ
′
1,k
′
2, σ
′
2) =

1

Z

∑
a,b

e−βEa

∆t

∣∣∣〈Ψb|Ŝ(2)(∞,−∞)|Ψa〉
∣∣∣2

(3)
where Z is the partition function, the sum runs over all
states |Φa,b〉 of the superconductor, ∆t is the time over
which the photon beam is incident in the superconduc-
tor, and Ŝ(2) is the second-order contribution to the S-
matrix arising from Hsc. Note that P (2) depends on the
two photo-electron momenta and spin projections. The
detailed derivation of P (2) for a uniform dx2−y2 -wave su-
perconductor, the PDW and the FFLO phases is carried
out in Appendix A. While we consider for concreteness
a cuprate-like Fermi surface, as shown in Fig. 2(a), our
results shown below are quite general and applicable to a
wide variety of superconductors with varying Fermi sur-
face structure.

III. RESULTS

We begin by discussing the case of a uniform, spin-
singlet dx2−y2-wave superconductor (band parameters
are given in Appendix A) in which the Cooper pairs pos-
sess a zero center of mass momentum. For P (2) to directly
probe the superconducting condensate, we need to re-
quire that the two photo-electrons also have a zero center-
of-mass momentum, i.e., k′2 = −k′1, and opposite spins,

i.e., σ′2 6= σ′1. In this case, we obtain P (2) = P
(2)
SC + P

(2)
2cp

where (at T = 0)

P
(2)
SC = 2πδ(ωq − 2εk′1)

∣∣∣∣∣∑
k

γ0V (k− k′1)

ωq − Ek − εk + iδ

∆k

2Ek

∣∣∣∣∣
2

P
(2)
2cp = 2π

∑
k

∣∣∣∣ γ0V (k− k′1) v2
k

ωq + Ek − εk + iδ

∣∣∣∣2 δ(ωq − 2εk′1 − 2Ek) ,

(4)
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where Ek =
√
ξ2
k + ∆2

k (ξk) is the conduction elec-
tron dispersion in the superconducting (normal) state,
v2
k = [1− ξk/Ek] /2, ωq is the incident photon energy,

and εk′1 is the sum of the kinetic energy and work function
of a photo-electron. ∆ω = ωq−2εk′1 represents the excess
energy of the photon over the energies of the two photo-

electrons. The first term, P
(2)
SC , directly reflects the exis-

tence of a superconducting condensate, as described by
∆k, and arises from the breaking and subsequent creation
of a Cooper pair. This term vanishes in the normal state,
and is absent when the two detected photo-electrons do
not possess the same center of mass momentum, or spin
structure as the superconducting condensate. As such,

the photo-electron pairs that contribute to P
(2)
SC reside in

an entangled state and are therefore Einstein-Podolsky-
Rosen (EPR) pairs. Note that the momentum depen-
dence of the Coulomb interaction plays a crucial role in

observing a non-zero P
(2)
SC in a dx2−y2-wave superconduc-

tor since for a momentum independent V (q), P
(2)
SC van-

ishes identically due to the symmetry of the dx2−y2 -wave
order parameter. In contrast, the photo-electron pairs

that contribute to the second term, P
(2)
2cp, arise from the

breaking of two Cooper pairs. As P
(2)
2cp is weighted by

the particle-like coherence factors of the broken Cooper
pairs, i.e., (v2

k)2, it does not vanish in the normal state.

Note that P
(2)
SC in Eq.(4) scales as N2 (where N is the

number of sites in the system), while P
(2)
2cp scales as N .

This difference arises since P
(2)
SC describes the breaking

of a single Cooper pair, while P
(2)
2cp describes that of two

Cooper pairs, with the probability of finding a second

Cooper pair scaling as ∼ 1/N . To plot P
(2)
SC and P

(2)
2cp

in the same graph, as shown below, we have scaled them

with overall factors of
(
4π2/N

)2
and 4π2/N , respectively.

In Fig. 2(b) we present P (2) in the normal and super-
conducting state for opposite photo-electron momenta
k′2 = −k′1 near the anti-nodal points [indicated by the
filled blue circles in Fig. 2(a)]. In the normal state, P (2)

shows an onset at ∆ω = 0, as conduction electrons can be
excited from the filled Fermi sea for ∆ω ≥ 0. In contrast,
in the superconducting state, P (2) exhibits two distinct
features. The first one is a peak at ∆ω = 0, previously

identified in Ref. [18], arising from P
(2)
SC in Eq.(4) that is

a direct signature of the superconducting condensate, as
discussed above. The second feature is a continuum, de-

scribed by P
(2)
2cp, with onset energy ∆ωc ≈ 2∆k′1

(we will

refer to this contribution as the 2CP continuum). The

latter immediately reveals that P
(2)
2cp reflects the measure-

ment of 2 photo-electrons arising from the breaking of 2
Cooper pairs, requiring an energy of 2∆k′1

. That the gap
between the condensate peak at ∆ω = 0 and the contin-
uum is indeed 2∆k′1

is a direct consequence of the mo-
mentum dependence of the Coulomb interaction, V (q),
which suppresses large momentum transfers during the
scattering process. As a result, the main contribution
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FIG. 2. (a) Fermi surface of the cuprate superconductors. (b)

- (d) P (2) in a dx2−y2 -wave superconductors for two photo-
electrons with opposite momenta k′2 = −k′1 along the Fermi
surface, as indicated by the set of filled circles in (a), and

opposite spins, σ′1 6= σ′2. P (2) for photo-electrons (e) with
momenta indicated by green circles and opposite spins, and
(f) with momenta indicated by blue circles and equal spins.

to P
(2)
2cp arises from those momentum states k along the

Fermi surface with k ≈ ±k′1.
This result allows one to map out the momentum de-

pendence of the superconducting gap (similar to conven-
tional ARPES experiments [2]) by measuring the energy

distance between the ∆ω = 0 peak arising from P
(2)
SC , and

the peak at ∆ω ≈ 2∆k′1
arising from P

(2)
2cp as a function of

k′1,2, as shown in Fig. 2(b)-(d). As k′1,2 are moved along
the Fermi surface from the antinodal points towards the

nodal points, the peak in P
(2)
2cp located at ∆ω ≈ 2∆k′1

moves down in energy as the superconducting dx2−y2-

wave gap decreases. For k′1,2 at the nodal points, P (2) in
the superconducting state is nearly identical to that in
the normal state, due to the vanishing superconducting
gap. The small differences arise from the fact that the
momentum sums in the calculation of P (2) [see Eq.(4)]
probe a small momentum region in the vicinity of the
nodal points where the superconducting gap is non-zero,
but small.

A qualitatively new feature of 2e-ARPES is that it
can be used to identify the center-of-mass momentum of
the Cooper pairs, qcm. To demonstrate this, we plot in
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Fig. 2(e) P (2) for photo-electron momenta indicated by
filled green circles in Fig. 2(a). While each of these mo-
menta by itself is symmetry-related to the momentum in-
dicated by blue circles in Fig. 2(a), their sum (i.e., their
center-of-mass momentum) is non-vanishing, qcm 6= 0.
As such, P (2) for these two momenta does not exhibit
a zero-energy peak [see Fig. 2(e)] as the condensate pos-
sesses qcm = 0. In contrast, the onset energy for the con-
tinuum, ∆ωc is still located at the same energy 2∆k′1

as
in Fig. 2(b), as it arises from the breaking of two Cooper
pairs.

Further, P (2) even reveals the spin-state of the Cooper
pairs. In Fig. 2(f) we present P (2) for two photo-electrons
with the same momenta as in Fig. 2(b) (filled blue cir-
cles), but possessing equal spins. In this case, P (2) does

not exhibit a zero-energy peak (i.e., P
(2)
sc ≡ 0), as the

electrons in a Cooper pair form a spin-singlet state. Thus
only a measurement of photo-electrons that are in oppo-
site spin states will exhibit a zero-energy peak in P (2).

In contrast, the continuum in P
(2)
2cp is the same for equal

and opposite spin states of the photo-electrons, as it
arises from the breaking of two Cooper pairs. These re-
sults demonstrate that 2e-ARPES experiments provide
unprecedented insight into the center-of-mass momentum
and spin state of the superconducting condensate, as well
as the momentum dependence of the superconducting or-
der parameter.

To demonstrate the sensitivity of 2e-ARPES exper-
iments to detecting the center-of-mass momentum of
Cooper pairs, we next consider two distinct supercon-
ducting phases with non-zero qcm. The first is the PDW
phase which has been proposed as a possible explana-
tion for the puzzling phenomenology of the pseudo-gap
region of the cuprate superconductors [7, 19]. In this
phase, electronic states with non-zero center-of-mass mo-
mentum +Q and −Q are simultaneously paired, with Q
connecting the anti-nodal points near (0,±π), as shown
in Fig. 3(a). This leads to a pairing of states near
(±Q/2,±π), such as the ones indicated by red (green)
circles in Fig. 3(a) with center of mass momentum qcm =
±Q. For P (2) to directly probe the PDW condensate
arising from this pairing, we need to select two photo-
electrons with center-of-mass momentum qcm = ±Q [red
and green circles in Fig. 3(a)] as shown in Fig. 3(b). P (2)

is identical for both sets of photo-electrons, exhibiting a
peak at ∆ω = 0 that is separated by from the contin-
uum by 2∆PDW (k′1,2). Similar to the case of a uniform
dx2−y2-wave superconductor discussed above, the peak at
∆ω = 0 directly reflects the existence of a PDW conden-
sate with center of mass momentum qcm = ±Q. Thus,
for photo-electrons with opposite momenta and zero cen-
ter of mass momentum, as indicated by dashed blue cir-
cles in Fig. 3(a), P (2) does not exhibit a zero-energy peak,
as shown in Fig. 3(c). We note that the continuum’s
peak in Fig. 3(b) is considerably higher than was the
case for the uniform dx2−y2-wave case discussed in Fig. 2.
The reason for this large intensity is the electronic struc-
ture in the PDW phase near k′1,2 = (Q/2,±π), shown in
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FIG. 3. (a) Schematic representation of superconducting pair-
ing in the PDW phase, with qcm = ±Q. For the chosen elec-
tronic structure, we have Q = (2π/3, 0). (b) P (2) for photo-
electrons with opposite spins and qcm = ±Q, as indicated by
the sets of filled red and green circles in (a). The inset shows

a zoom-in around ∆ω = 0. (c) P (2) for photo-electrons with
opposite spins and opposite momenta, and hence qcm = 0,
as indicated by the open blue circles in (a). (d) Electronic
dispersion in the PDW phase as a function of kx for ky = π.

Fig. 3(d) where we plot the energy dispersion along kx for
ky = π, i.e., perpendicular to the Fermi surface. As be-
fore, due to the momentum structure of the Coulomb in-
teraction, the main contribution to P (2) arises from con-
duction electrons near k′1,2. The continuum peak arises
from the breaking of two Cooper pairs, one of which is lo-
cated on the red branch of the dispersion, and the other
one on the green branch. Due to the linear dispersion
near k′1,2, the energy required to break these two Cooper
pairs is essentially constant and equal to 2∆PDW over
an extended range of kx. This implies that, in contrast
to the uniform dx2−y2 -wave case, for a fixed ∆ω there
is an extended momentum range of conduction electron
states perpendicular to the Fermi surface that contribute
to P (2), yielding the large continuum peak.

Finally, we consider the FFLO phase where the pairing
occurs between states with a single non-zero center-of-
mass momentum (strictly speaking, this corresponds to
the Fulde-Ferrell phase [5]). While there currently is no
evidence for an FFLO phase in the cuprate superconduc-
tors, the FFLO phase was reported [20] to occur in the
heavy fermion dx2−y2-wave superconductor CeCoIn5 [22].
To allow explicit comparison with the results for a uni-
form dx2−y2-wave superconductor (Fig. 2) and the PDW
phase with qcm = ±Q (Fig. 3), we choose for the FFLO
phase qcm = +Q. By assumption, then, pairing occurs
between momentum states with k1+k2 = Q, represented
by filled green circles in Fig. 4(a), but not between states
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with k1 + k2 = −Q, as represented by filled red circles
in Fig. 4(a). As expected, we find for the FFLO phase

Q
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FIG. 4. (a) Schematic representation of superconducting pair-

ing in the FFLO phase, with qcm = +Q. P (2) for photo-
electrons with opposite spins and (b) qcm = +Q [filled green
circles in (a), the inset shows a zoom-in around ∆ω = 0], (c)
qcm = −Q [filled red circles in (a)], and (d) qcm = 0 [open
blue circles in (a)].

that P (2) exhibits a zero-energy peak for k′1 + k′2 = Q
[green dots in Fig. 4(a)] that is separated from the con-
tinuum contribution by 2∆FFLO [Fig. 4(b)]. In contrast,
momentum states with k′1 + k′2 = −Q, are unpaired and
hence ungapped, such that P (2) in the FFLO phase is
simply suppressed in comparison to that in the normal
state for these momenta. Furthermore, P (2) for these two
momenta does not exhibit a zero-energy peak or a gap
towards 2CP continuum excitations [Fig. 4(c)], in stark
contrast to the PDW phase [Fig. 3(b)]. Interestingly,
for photo-electrons with opposite momenta [dashed blue
circles in Fig. 4(a)], P (2) again exhibits a gap towards
2CP continuum excitations, but its onset energy is shifted
from that of the normal state only by ∆FFLO, as only

one of the momentum states is paired.

IV. CONCLUSIONS

We have developed a theory for the photo-electron
counting rate P (2) measured in 2e-ARPES experiments
in a uniform dx2−y2-wave superconducting, PDW and

FFLO phases. A comparison of P (2) shown in Figs. 2 - 4
demonstrates that 2e-ARPES measurements can identify
the center-of-mass momentum (or even multiple center-
of-mass momenta, as in the PDW phase), as well as the
spin state of Cooper pairs, and thus distinguish between
different superconducting pairing states. In addition, it
is possible to map out the momentum dependence of the
superconducting gap. 2e-ARPES experiments thus pro-
vide a valuable new tool for the study of unconventional
superconducting pairing states.
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Appendix A: Theoretical Formalism

In the following, we provide more details regarding
the derivation of the 2e-ARPES photo-electron counting
rate, P (2), arising from the process shown in Fig.1(a).
This process is described by the Hamiltonian of Eq.(1).
The starting point for the calculation of P (2) is Eq.(3)
with the initial and final states of the system defined
in Eq.(2). For the calculation of Ŝ(2)(∞,−∞), we note
that there exists only single combination of scattering
processes that connects |Ψa〉 and |Ψb〉 yielding

Ŝ(2)(∞,−∞) =

∫ ∞
−∞

dt1dt2T

 ∑
k2,p,l

∑
σ, σ̄

V (l)d†k2+l, σ̄(t1)d†p−l,σ(t1)dp,σ(t1)ck2,σ̄(t1)
∑
k1,σ1

γυ(q)d†k1+q,σ1
(t2)ck1,σ1(t2)aq,υ(t2)


(A1)

Assuming that the photon beam is incident between times −∆t/2 ≤ t ≤ ∆t/2, we obtain
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〈Ψb| Ŝ(2)(∞,−∞) |Ψa〉 =

= 〈Ψb|
∫ ∞
−∞

dt1dt2T

 ∑
k2,p,l

∑
σ, σ̄

V (l)d†k2+l, σ̄(t1)d†p−l,σ(t1)dp,σ(t1)ck2,σ̄(t1)
∑
k1,σ1

γυ(q)d†k1+q,σ1
(t2)ck1,σ1(t2)aq,υ(t2)

 |Ψa〉

= 〈Ψb|
∫ ∆t/2

−∆t/2

dt2

∫ ∞
t2

dt1
∑
k2,p,l

∑
σ, σ̄

V (l)d†k2+l, σ̄(t1)d†p−l,σ(t1)dp,σ(t1)ck2,σ̄(t1)
∑
k1,σ1

γυ(q)d†k1+q,σ1
(t2)ck1,σ1(t2)aq,υ(t2) |Ψa〉

=

∫ ∆t/2

−∆t/2

dt2

∫ ∞
t2

dt1
∑
k2,p,l

∑
σ, σ̄

V (l)
∑
k1,σ1

γυ(q) 〈Ψb| d†k2+l, σ̄(t1)d†p−l,σ(t1)dp,σ(t1)ck2,σ̄(t1)d†k1+q,σ1
(t2)ck1,σ1(t2)aq,υ(t2) |Ψa〉

(A2)

Setting the photon momentum equal to zero with γυ(q)→ γ0 yields

〈Ψb| d†k2+l, σ̄(t1)d†p−l,σ(t1)dp,σ(t1)ck2,σ̄(t1)d†k1,σ1
(t2)ck1,σ1

(t2)aq,υ(t2) |Ψa〉

= pe

〈
1k′2,σ′21k′1,σ′1

∣∣
p〈0| 〈Φb| d†k2+l, σ̄(t1)d†p−l,σ(t1)dp,σ(t1)ck2,σ̄(t1)d†k1,σ1

(t2)ck1,σ1
(t2)aq,υ(t2)|Φa〉|1q,λ〉p|0〉pe

= e−iωqt2eiεk1
t2ei(−εp+εp−l+εk2+l)t1

pe

〈
1k′2,σ′21k′1,σ′1

∣∣
p〈0| 〈Φb| d†k2+l, σ̄d

†
p−l,σdp,σck2,σ̄(t1)d†k1,σ1

ck1,σ1
(t2)aq,υ|Φa〉|1q,λ〉p|0〉pe

= −e−iωqt2eiεk1
t2ei(−εp+εp−l+εk2+l)t1

pe

〈
1k′2,σ′21k′1,σ′1

∣∣ d†k2+l, σ̄d
†
p−l,σdp,σd

†
k1,σ1

|0〉pe p〈0| aq,υ|1q,λ〉p 〈Φb| ck2,σ̄(t1)ck1,σ1
(t2)|Φa〉

(A3)

with ωq being the incident photon energy. We finally obtain

〈Ψb| Ŝ(∞,−∞) |Ψa〉 =

− γ0

∫ ∆t/2

−∆t/2

dt2

∫ ∞
t2

dt1
∑
k 1,k2

δk1+k2−k′1−k′2,0

{
V (k1 − k′2) e−iωqt2eiεk1

t2e
i
(
−εk1

+εk′2
+εk′1

)
t1 〈Φb| ck2,σ′2

(t1)ck1,σ′1
(t2) |Φa〉

−V (k1 − k′1) e−iωqt2eiεk1
t2e

i
(
−εk1

+εk′1
+εk′2

)
t1 〈Φb| ck2,σ′1

(t1)ck1,σ′2
(t2) |Φa〉

}
. (A4)

where we used

p〈0| aq,υ|1q,λ〉p =1

pe

〈
1k′2,σ′21k′1,σ′1

∣∣ d†k2+l, σ̄d
†
p−l,σdp,σd

†
k1,σ1

|0〉pe =
[
δk′1,k2+lδσ̄,σ′1δk′2,p−lδσ,σ′2 − δk′1,p−lδσ,σ′1δk′2,k2+lδσ̄,σ′2

]
δp,k1

δσ1,σ (A5)

To further evaluate the above term, we need to rewrite
the term involving the fermionic annihilation operators
using the respective Bogoliubov transformations for a
uniform dx2−y2-wave superconductor, the PDW and the
FFLO phases, which we will consider in the following.

1. 2e-ARPES in a uniform dx2−y2-wave
superconductor with zero center-of mass momentum

a. k′2 = −k′1 and σ′2 6= σ′1

For a uniform dx2−y2 -wave superconductor with zero
center-of-mass momentum, the Bogoliubov transforma-
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tion is given by

c−k2,↓ = −vk2
α†k2

+ u−k2
β−k2

ck1,↑ = uk1
αk1

+ v−k1
β†−k1

(A6)

At T = 0, the contribution to P (2) that directly reflects

the presence of a superconducting condensate, P
(2)
SC [see

Eq.(4) in the main text], arises from terms of the form

〈Φb|αk(t1)α†k(t2) |Φa〉

〈Φb|βk(t1)β†k(t2) |Φa〉 (A7)

Terms of these forms, however, can only emerge from
Eq.(A4) if k2 = −k1 and σ′1 6= σ′2. Since momentum

conservation in Eq.(A4) requires that

k1 + k2 − k′1 − k′2 = 0

this immediately implies k′2 = −k′1, i.e., the center-
of-mass momentum of the two photo-electrons is zero.
Moreover, σ′1 6= σ′2 implies that the two photo-electrons
are in a spin-singlet state. Thus, we obtain a non-

zero P
(2)
SC contribution only if the center-of-mass mo-

mentum and the spin state of the two photo-electrons
is the same as that of the condensate. We then obtain
P (2) = P

(2)
SC + P

(2)
2cp where

P
(2)
SC = 2πδ

(
ωq − 2εk′1

) 1

Z

∑
α

e−βEα 〈Φa| |I(k′1)|2 |Φa〉

(A8)

and

I(k′1) = γ0

∑
p

V (k′1 − p)
∆p

2Ep

[
n̂αp + n̂βp

ωq + Ep − εp + iδ
−

1− n̂αp + 1− n̂βp
ωq − Ep − εp + iδ

]
(A9)

with n̂αp = α†pαp and n̂βp = β†pβp. Moreover, Ep =√
ξ2
p + ∆2

p (ξp) is the electronic dispersion in the super-

conducting (normal) state. The normal state dispersion
is given by

ξp = −2t (cos px + cos py)− 4t′ cos px cos py − µ (A10)

with t′/t = −0.4, µ/t = −0.5, and t = 300meV, giving
rise to the characteristic cuprate Fermi surface shown in
Fig. 2(a) of the main text. Moreover, the superconduct-
ing dx2−y2-wave gap is given by

∆p =
∆0

2
(cos px − cos py) (A11)

with ∆0 = 25 meV. At T = 0, P
(2)
SC simplifies to the ex-

pression which is given in Eq.(4) of the main text. Simi-
larly, we obtain

P
(2)
2cp = 2πγ2

0

∑
p

[
δ
(
ωq − 2εk′1 − 2Ep

) ∣∣∣∣ V (k′1 − p)

ωq + Ep − εp + iδ

∣∣∣∣2 v4
p

〈(
1− n̂αp

) (
1− n̂βp

)〉
+δ
(
ωq − 2εk′1 + 2Ep

) ∣∣∣∣ V (k′1 − p)

ωq − Ep − εp + iδ

∣∣∣∣2 u4
p

〈
n̂αpn̂

β
p

〉]
(A12)

where v2
p = [1− ξp/Ep] /2, and u2

p = [1 + ξp/Ep] /2 are
the superconducting coherence factors. At T = 0, this
result simplifies to the expression given in Eq.(4) of the
main text. b. k′2 6= k′1 and σ′2 6= σ′1

We next consider the case where the two photo-
electrons possess a non-zero center-of-mass momentum,
i.e., k′1 + k′2 = l 6= 0, and opposite spins. In this case,
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P
(2)
SC ≡ 0, and P

(2)
2cp = P

(2)
αα + P

(2)
αβ + P

(2)
βα + P

(2)
ββ where

P (2)
αα = 2πγ2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′2)

∣∣∣∣ 1

εk′1 + εk′2 − εk1
+ Ek2

+ iδ
+

1

εk′1 + εk′2 − εk2
− Ek1

+ iδ

∣∣∣∣2 v2
k2
u2
k1

〈
nαk1

(
1− nαk2

)〉
×δ
(
εk′1 + εk′2 − ω0 − Ek1

+ Ek2

)
P

(2)
αβ = 2πγ2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′2)

∣∣∣∣ 1

εk′1 + εk′2 − εk1
− Ek2

+ iδ
+

1

εk′1 + εk′2 − εk2
− Ek1

+ iδ

∣∣∣∣2 u2
k2
u2
k1

〈
nαk1

nβk2

〉
×δ
(
εk′1 + εk′2 − ω0 − Ek1 − Ek2

)
P

(2)
βα = 2πγ2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′2)

∣∣∣∣ 1

εk′1 + εk′2 − εk1 + Ek2 + iδ
+

1

εk′1 + εk′2 − εk2 + Ek1 + iδ

∣∣∣∣2 v2
k2
v2
k1

×
〈(

1− nβk1

) (
1− nαk2

)〉
δ
(
εk′1 + εk′2 − ω0 + Ek1

+ Ek2

)
P

(2)
ββ = 2πγ2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′2)

∣∣∣∣ 1

εk′1 + εk′2 − εk1
− Ek2

+ iδ
+

1

εk′1 + εk′2 − εk2
+ Ek1

+ iδ

∣∣∣∣2 v2
k1
u2
k2

×
〈
nβk2

(
1− nβk1

)〉
δ
(
εk′1 + εk′2 − ω0 + Ek1 − Ek2

)
(A13)

c. Equal spin polarization of the photo-electrons, and
k′2 = −k′1

We next consider the case where the two photo-
electrons possess the equal spin polarization, and a zero

center-of-mass momentum, i.e., k′2 = −k′1. In this case

P (2) = P
(2)
αα + P

(2)
αβ + P

(2)
ββ where

P (2)
αα = 4πγ2

0

∑
k

[V (−k′1 − k)− V (k′1 − k)]
2

∣∣∣∣ 1

ωq − εk − Ek + iδ

∣∣∣∣2 u4
k

〈
nαkn

α
−k
〉
δ
(
ωq − 2εk′1 + 2Ek

)
P

(2)
ββ = 4πγ2

0

∑
k

[V (−k′1 − k)− V (k′1 − k)]
2

∣∣∣∣ 1

ωq − εk + Ek + δ

∣∣∣∣2 v4
k

〈(
1− nβk

)(
1− nβ−k

)〉
δ
(
ωq − 2εk′1 − 2Ek

)
P

(2)
αβ = 2πγ2

0δ
(
ωq − 2εk′1

)∑
k

[V (−k′1 − k)− V (k′1 − k)]
2

∣∣∣∣ 1

ωq − εk − Ek + iδ
+

1

ωq − εk + Ek + iδ

∣∣∣∣2
×
(

∆k

2Ek

)2 〈(
1− nβk

)
nαk

〉
(A14)

Note that at T = 0, P (2) does not possess a contribution

similar to P
(2)
SC in Eq.(4) of the main text, as two photo-

electrons with the same spin-projection cannot emerge

from the same Cooper pair. For T 6= 0, P
(2)
αβ exhibits a

peak at ∆ω = ωq − 2εk′1 = 0, similar to P
(2)
SC in Eq.(4)

as the breaking of Cooper pairs by thermal excitations
allows for the ejection of two electrons with equal spin at
∆ω = 0. However, for photo-electron momenta near the
anti-nodal points, as considered in Fig. 2 of the main text,

P
(2)
αβ is exponentially suppressed ∼ exp [−∆k/(kBT )],

and thus negligible at typical experimental temperatures

due to the large superconducting gap in the cuprate su-
perconductors.

2. 2e-ARPES in the FFLO phase

We next consider the photo-electron counting rate in
the FFLO phase [5, 6], where superconducting pairing
occurs between two electrons with center-of-mass mo-
mentum Q (strictly speaking, this corresponds to the
Fulde-Ferrell phase [5]), as described by the mean-field
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Hamiltonian

H =
∑
k,σ

ξkc
†
k,σck,σ −

∑
k

(
∆FF (k)c†k+Q/2,↑c

†
−k+Q/2,↓

+∆FF (k)c−k+Q/2,↓ck+Q/2,↑
)

(A15)

Note that ∆FF (k) also depends on Q, and in general
needs to be self-consistently computed [23]. However,
since in the main text, we consider only photo-electron
momenta near the antinodal points (see Fig. 4 in the
main text), and due the suppression of large momentum
transfer due to the Coulomb interaction, we can neglect
the detailed momentum dependence of the superconduct-
ing gap in the FF phase and simply set ∆FF equal to a
constant value, with ∆FF = 50 meV.

To diagonalize the Hamiltonian, we next use the Bo-
goliubov transformation

c†k+Q/2,↑ = ukα
†
k+Q/2 + vkβ−k+Q/2

c−k+Q/2,↓ = −vkα†k+Q/2 + vkβ−k+Q/2 (A16)

which yields

H =
∑
k

Eαk+Q/2α
†
k+Q/2αk+Q/2

+Eβ−k+Q/2β
†
−k+Q/2β−k+Q/2 (A17)

where

Eαk+Q/2 =

√(
ε+
k

)2
+ ∆2

FF (k) + ε−k

Eβ−k+Q/2 =

√(
ε+
k

)2
+ ∆2

FF (k)− ε−k

ε±k =
εk+Q/2 ± ε−k+Q/2

2
(A18)

and the coherence factor are given by

ukvk =
∆FF (k)

2

√(
ε+
k

)2
+ ∆2

FF (k)

u2
k =

1

2

1 +
ε+
k√(

ε+
k

)2
+ ∆2

FF (k)


v2
k =

1

2

1−
ε+
k√(

ε+
k

)2
+ ∆2

FF (k)


(A19)

a. k′1 + k′2 = Q

In order to obtain a non-zero P
(2)
SC in the FF phase,

Eq.(A4) needs to contain terms of the form

〈Φb|αk+Q/2(t1)α†k+Q/2(t2) |Φa〉

〈Φb|β−k+Q/2(t1)β†−k+Q/2(t2) |Φa〉 (A20)

which together with momentum conservation

k + Q/2 + (−k + Q/2)− k′1 − k′2 = 0

implies k′1 + k′2 = Q, requiring that the center-of-mass
momentum of the two photo-electrons be Q. In this case,

we then obtain P (2) = P
(2)
SC + P

(2)
2cp where

P
(2)
SC = 2πδ

(
ωq − εk′1 − εk′2

) 1

Z

∑
α

e−βEα 〈Ψα
s | |I(k′1)|2 |Ψα

s 〉 (A21)

and

I(k′1) = γ0

∑
p

upvpV (k′1 − (−p + Q/2))

[
1− nβ−p+Q/2

ωq − εp+Q/2 − Eβ−p+Q/2 − iδ
+

1− nαp+Q/2

ωq − ε−p+Q/2 − Eαp+Q/2 − iδ

−
nαp+Q/2

ωq − εp+Q/2 + Eαp+Q/2 − iδ
−

nβ−p+Q/2

ωq − ε−p+Q/2 + Eβ−p+Q/2 − iδ

]
(A22)

Similarly, we obtain
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P
(2)
2cp = 2πγ2

0

∑
p

V 2(k′1 − (−p + Q/2))


∣∣∣∣∣ 1

−εp+Q/2 + εk′2 + εk′1 + Eαp+Q/2 + iδ
+

1

−ε−p+Q/2 + εk′1 + εk′2 + Eβ−p+Q/2 + iδ

∣∣∣∣∣
2

× v4
p

〈(
1− nβ−p+Q/2

)(
1− nαp+Q/2

)〉
δ
(
εk′2 + εk′1 − ω0 + Eβ−p+Q/2 + Eαp+Q/2

)
+

∣∣∣∣∣ 1

−εp+Q/2 + εk′2 + εk′1 − E
β
−p+Q/2 + iδ

+
1

−ε−p+Q/2 + εk′1 + εk′2 − E
α
p+Q/2 + iδ

∣∣∣∣∣
2

× u4
p

〈
nβ−p+Q/2n

α
p+Q/2

〉
δ
(
εk′2 + εk′1 − ω0 − Eαp+Q/2 − E

β
−p+Q/2

)}
(A23)

b. k′1 + k′2 6= Q

We next consider the case when k′1 + k′2 = l 6= Q In

this case, we obtain P (2) = P
(2)
αα + P

(2)
αβ + P

(2)
βα + P

(2)
ββ

where

P (2)
αα = 2πγ2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′2 + εk′1 + Eαk2+Q/2 + iδ
+

1

−εk2+Q/2 + εk′2 + εk′1 − E
α
k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′2 − k1 −Q/2) (vk2uk1)
2
〈
nαk1+Q/2

(
1− nαk2+Q/2

)〉
δ
(
εk′2 + εk′1 − ω0 + Eαk2+Q/2 − E

α
k1+Q/2

)
P

(2)
αβ = 2πγ2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′2 + εk′1 + Eαk2+Q/2 + iδ
+

1

−εk2+Q/2 + εk′2 + εk′1 + Eβ−k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′2 − k1 −Q/2) (vk2vk1)
2
〈(

1− nβ−k1+Q/2

)(
1− nαk2+Q/2

)〉
δ
(
εk′2 + εk′1 − ω0 + Eαk2+Q/2 + Eβ−k1+Q/2

)
P

(2)
βα = 2πγ2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′2 + εk′1 − E
β
−k2+Q/2 + iδ

+
1

−εk2+Q/2 + εk′2 + εk′1 − E
α
k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′2 − k1 −Q/2) (uk2
uk1

)
2
〈
nαk1+Q/2n

β
−k2+Q/2

〉
δ
(
εk′2 + εk′1 − ω0 − Eαk1+Q/2 − E

β
−k2+Q/2

)
P

(2)
ββ = 2πγ2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′2 + εk′1 − E
β
−k2+Q/2 + iδ

+
1

−εk2+Q/2 + εk′2 + εk′1 + Eβ−k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′2 − k1 −Q/2) (uk2
vk1

)
2
〈(

1− nβ−k1+Q/2

)
nβ−k2+Q/2

〉
δ
(
εk′2 + εk′1 − ω0 + Eβ−k1+Q/2 − E

β
−k2+Q/2

)

(A24)

3. 2e-ARPES in the PDW phase

We next consider the 2e-ARPES photo-electron count-
ing rate P (2) in the PDW phase, whose mean-field Hamil-
tonian is given by
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H =
∑
k

′ (
c†k,↑, c

†
k+Q,↑, c

†
k−Q,↑, c−k,↓, c−k+Q,↓, c−k−Q,↓

)

ξk 0 0 0 ∆ ∆
0 ξk+Q 0 ∆ ∆ 0
0 0 ξk−Q ∆ 0 ∆
0 ∆ ∆ −ξk 0 0
∆ ∆ 0 0 −ξk−Q 0
∆ 0 ∆ 0 0 −ξk+Q





ck,↑
ck+Q,↑
ck−Q,↑
c†−k,↓
c†−k+Q,↓
c†−k−Q,↓


=
∑
k

′
Ψ†kĤkΨk (A25)

where the primed sum runs over the Brillouin zone of the
PDW phase. Here, ∆ = ∆PDW is the superconducting
gap in the PDW phase which depends on k and Q, and in
general needs to be self-consistently computed. However,
since in the main text, we consider only photo-electron
momenta near the antinodal points (see Fig. 3 in the
main text), and due the suppression of large momentum

transfer due to the Coulomb interaction, we can neglect
the detailed momentum dependence of the superconduct-
ing gap in the PDW phase and simply set ∆PDW equal
to a constant value, with ∆PDW = 50 meV.

We next diagonalize the Hamiltonian using the unitary
transformation

(
c†k,↑, c

†
k+Q,↑, c

†
k−Q,↑, c−k,↓, c−k+Q,↓, c−k−Q,↓

)
=
(
γ†1,k, γ

†
2,k, γ

†
3k, γ

†
4,k,, γ

†
5,k, γ

†
6,k

)
Û†k = Γ†kÛ

†
k

ck,↑
ck+Q,↑
ck−Q,↑
c†−k,↓
c†−k+Q,↓
c†−k−Q,↓

 = Û


γ1,k

γ2,k

γ3k

γ4,k,

γ5,k

γ6,k

 = ÛkΓk (A26)

with Û being a unitary matrix consisting of the eigenvec-
tors of Ĥk. Thus, we obtain

H =
∑
k

′
Ψ†kĤkΨk =

∑
k

′
Γ†kÛ

†
kĤkÛkΓk =

∑
k

′
Γ†kÊkΓk

(A27)

with

Êk =


E1,k 0 0 0 0 0

0 E2,k 0 0 0 0
0 0 E3,k 0 0 0
0 0 0 E4,k 0 0
0 0 0 0 E5,k 0
0 0 0 0 0 E6,k

 (A28)

and Ei,k(i = 1, .., 6) are the eigenenergies of Ĥk.

a. k′1 + k′2 = ±Q

In this case, we obtain P (2) = P
(2)
SC + P

(2)
2cp where

P
(2)
SC =2πδ

(
ωq − εk′2 − εk′1

) 1

Z

∑
αβ

e−βEα 〈Ψα
s | |I(k′1)|2 |Ψα

s 〉 (A29)

with
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I(k′1) = γ0

∑
p

V (k′1 − (p + Q))
∑
i=1,6

[
Ûp

]
5i

[
Ûp

]
1i

[
n

(i)
F (p)

ωq − εp + Ei,p + iδ
−

1− n(i)
F (p)

ωq − εp − Ei,p + iδ

]
(A30)

with
[
Ûp

]
ij

being the (ij) element of the matrix Ûp, and

P
(2)
2cp = 2πγ2

0

∑
p

V 2 (k′1 − (−p + Q))
∑
i6=j

([
Ûp

]
5i

[
Ûp

]
1j

)2 ∣∣∣∣ 1

−εp + εk′2 + εk′1 + Ei,p + iδ
+

1

−εp + εk′2 + εk′1 − Ej,p + iδ

∣∣∣∣2
δ
(
εk′2 + εk′1 − ω0 + Ei,p − Ej,p

) 〈(
1− n(i)

F (p)
)
n

(j)
F (p)

〉
(A31)

b. k′1 + k′2 = 0

In this case, we obtain

P (2) = 2πγ2
0

∑
p

V 2 (k′1 − p)
∑
i 6=j

([
Ûp

]
4i

[
Ûp

]
1j

)2 ∣∣∣∣ 1

εk′1 + εk′2 − εp + Ei,p + iδ
+

1

εk′1 + εk′2 − εp − Ej,p1 + iδ

∣∣∣∣2
×
〈
n

(j)
F (p)

(
1− n(i)

F (p)
)〉

δ
(
εk′1 + εk′2 − ω0 + Ei,p − Ej,p

)
(A32)

Appendix B: Auger process contribution to the
2e-ARPES photo-electron counting rate for a

uniform dx2−y2-wave superconductor

We next consider the contribution to the 2e-ARPES
photo-electron counting rate involving the Auger pro-

cess, P
(2)
Aug, shown in Fig.1(b) of the main text. In

a uniform dx2−y2 -wave superconductor, for two photo-
electrons with momenta k′2 = −k′1 and opposite spin,
σ′2 6= σ′1, we obtain at T = 0

P
(2)
Aug = 8πδ

(
2εk′1 − ω0

) 〈
nfk′1

〉
γ2

0

∣∣∣∣ 1

εk′1 + ζk′1 + iδ

∣∣∣∣2
∣∣∣∣∣∑

p

U (p− k′1)
∆p

2Ep

∣∣∣∣∣
2

+8πγ2
0

〈
nfk′1

〉 ∑
p

δ
(
2εk′1 − ω0 + 2Ep

)
v4
p

∣∣∣∣ U (p− k′1)

εk′1 + ζk′1 + 2Ep + iδ

∣∣∣∣2 (B1)

where ζk′1 is the energy of the core state electron,
〈
nfk′1

〉
is

the occupation of the core electron state, and U(p− k′1)

is the interaction describing the Auger process. P
(2)
Aug

possesses the same structure as the result shown in Eq.(4)
of the main text, albeit with different weighting factors.

Note that the calculation of P
(2)
Aug thus requires knowledge
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of the detailed momentum and energy structure of the

core levels, and that P
(2)
Aug is only non-zero if there exist

occupied core electron states with the same momenta as
those of the two photo-electrons probed in the detectors.

Appendix C: Effect of a screened Coulomb
interaction on the photo-electron counting rate in a

uniform dx2−y2-wave superconductor

As discussed in the main text, the momentum depen-
dence of the Coulomb interaction is crucial for the obser-
vation of a non-zero P

(2)
SC due to the momentum struc-

ture of the superconducting order parameter. One might
therefore wonder how a change in the screening length
κ−1 of the Coulomb interaction, V (q) = V0/

(
q2 + κ2

)
affects the energy dependence of P (2). To investigate
this question, we computed P (2) for two photo-electrons
with zero center-of-mass momentum, i.e., k′2 = −k′1, and
opposite spin polarization, i.e., σ′2 6= σ′1, in a uniform
dx2−y2-wave superconductor, for two different screening
length, as shown in Fig. 5. While the qualitative struc-
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FIG. 5. P (2) in a uniform dx2−y2 -wave superconductor for
two photo-electrons with k′2 = −k′1, σ′2 6= σ′1, and momenta
at the antinodal points [see filled blue circles in Fig. 2(a)]
and two different screening lengths: (a) κ−1 = 10a0, and (b)
κ−1 = 20a0.

ture of P (2) does not change with increasing κ−1, albeit
with an overall intensity increase, we find that the rela-

tive height between the peaks arising from P
(2)
SC and P

(2)
2cp

decreases with increasing κ−1. We remind, however, that

P
(2)
SC and P

(2)
2cp are scaled with overall factors of

(
4π2/N

)2
and 4π2/N , respectively, such that even an increase in
κ−1 will not significantly affect the much larger intensity

of the peak in P
(2)
SC .
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