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Ferrimagnets (FIMs) can function as high-frequency antiferromagnets while being easy to detect
as ferromagnets, offering unique opportunities for ultrafast device applications. While the physical
behavior of FIMs near the compensation point has been widely studied, there lacks a generic un-
derstanding of FIMs where the ratio of sublattice spins can vary freely between the ferromagnetic
and antiferromagnetic limits. Here we investigate the physical properties of a model two-sublattice
FIM manipulated by static magnetic fields and current-induced torques. By continuously varying
the ratio of sublattice spins, we clarify how the dynamical chiral modes in a FIM are intrinsically
connected to their ferro- and antiferro-magnetic counterparts, which reveals unique features not
visible near the compensation point. In particular, we find that current-induced torques can trigger
spontaneous oscillation of the terahertz exchange mode. Compared with its realization in antiferro-
magnets, a spin-torque oscillator using FIMs not only has a reduced threshold current density but
also can be self-stabilized, obviating the need for dynamic feedback.

I. INTRODUCTION

Antiferromagnetic (AFM) spintronics has been a surg-
ing frontier interconnecting fundamental physics and
electrical engineering, bringing about novel functional-
ities for next-generation magnetic devices [1–4]. As a
defining advantage, AFM materials can typically be op-
erated at the terahertz (THz) regime that outpaces the
established ferromagnetic (FM) materials by more than
two orders of magnitude in speed, which holds great
promise for ultrafast device applications not even theo-
retically possible in established paradigms. However, one
intractable problem hindering the progress of AFM spin-
tronics is that the vanishing magnetization, which should
otherwise be a merit, makes the detection of AFM order,
hence the reading mechanism in device engineering, very
difficult.

One way out of this dilemma is to use ferrimag-
nets (FIMs) in which magnetic moments are anti-aligned
similar to their AFM counterparts, while maintain-
ing an uncompensated magnetization very easy to de-
tect. In FIMs, spin dynamics breaks up into different
branches well separated in frequency. For example, a
two-sublattice FIM admits two dynamical modes of op-
posite chirality: a right-handed mode lying in the GHz
frequency range and a left-handed mode lying in the THz
frequency range [5–7]. When the low-frequency spin dy-
namics is excited, a FIM behaves just as an ordinary
FM material as if the sublattice spins are locked to-
gether. For a long time, archetypal FIMs such as YIG
have been treated this way [8, 9]. Therefore, to achieve
the functionalities of AFM materials using FIMs, the key
is to leverage the high-frequency spin dynamics known as
the exchange mode (or optical mode), in which the non-
collinearity among sublattice spins becomes prominent
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such that the spin dynamics is driven by the strong ex-
change interaction.

In existing studies, various AFM-like behavior of FIMs
has been recognized in the vicinity of the compensation
points [5, 10–16], where either the spins or the magnetic
moments of different sub-lattices cancel within a mag-
netic unit cell (i.e. when the system approaches the AFM
limit). However, there lacks a general understanding of
FIMs that allows us to freely vary the ratio of sublat-
tice spins between the FM and the AFM limit. Such a
generic picture can not only reveal the unique features
not visible near the compensation point but also unifies
the spin dynamics in FIMs with that in FM and AFM
materials.

In this paper, we study the static and dynamical prop-
erties of a representative two-sublattice FIM manipulated
by magnetic fields and current-induced torques. By vary-
ing the ratio of sublattice spins continuously, we clar-
ify the intrinsic connection between the chiral modes in
FIM and their FM and AFM counterparts. Depending
on the direction of a driving current, the low-frequency
FM mode and the high-frequency exchange mode can
be selectively excited. While the former evolves into a
magnetization switching, the latter evolves into a steady-
state oscillation in the THz regime. We find that the
threshold current density triggering the auto-oscillation
of the exchange mode depends on the ratio of sublattice
spins, where a minimum is identified between the FM and
the AFM limits. In addition to the reduced threshold,
THz spin-torque oscillators realized in FIMs can be self-
stabilized, i.e., jumping directly into the spin-flop con-
figuration beyond the threshold is avoided, whereas their
AFM counterparts call for a dynamic feedback mecha-
nism to achieve this goal.

The paper is organized as the following. In Sec. II, we
study the static properties of our model FIM by mini-
mizing the free energy, where the equilibrium spin con-
figuration is obtained as a function of the magnetic field.
In Sec. III, we solve the uniform chiral modes under a
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varying magnetic field, where we identify an important
chirality flip below the spin-flop transition. In Sec. IV,
we study the current-induced dynamics of the model FIM
including its spontaneous oscillations, where we plot a se-
ries of dynamical phase diagrams benchmarking against
the FM and the AFM limits. These findings are con-
cluded in Sec. V with physical remarks and outlooks.

II. STATIC PROPERTIES

Let us consider a two-sublattice FIM characterized by
two macrospin variables S1 and S2 that are antiferromag-
netically coupled. Correspondingly, the sublattice mag-
netic moments areM1 = γ1S1 andM2 = γ2S2 where the
gyromagnetic ratios γ1 and γ2 may in general be different
and the competition between these unequal magnetiza-
tions switches at the temperature of angular momentum
compensation [17–19]. However, in typical FIMs con-
sisting of Fe, Co and Gd ions, γ1 and γ2 differ by only
a few percent. Therefore, to a good approximation, we
only consider γ1 = γ2 = γ, which serves as an acceptable
simplification to capture the most essential behavior of
FIMs. Correspondingly, the ratio of sublattice spins and
that of sublattice magnetization can be described by the
same parameter ξ = |S2/S1| = |M2/M1|. Throughout
this paper, we assume that S = |S1|+ |S2| is a constant,
which follows that Ms ≡ γS = |M1|+ |M2| is a constant.
Accordingly,

|M1|
Ms

=
1

ξ + 1
, (1a)

|M2|
Ms

=
ξ

ξ + 1
. (1b)

By definition, ξ can be varied continuously from 0 to 1.
When ξ → 0, one sublattice vanishes and the system
effectively becomes a FM material. On the other hand,
if ξ → 1, the two sublattices fully compensate thus the
system becomes an AFM material. The wide range of
ξ covers not only a broad class of FIMs with different
chemical compositions but also physically interesting re-
gions not accessible by varying temperature, revealing
profound implications not necessarily achievable in real
materials.

We study the ground state in terms of two dimension-
less vectors m1 = M1/Ms and m2 = M2/Ms. (Note:
they are not unit vectors) To this end, we consider the
free energy density

E = Jm1 ·m2 −
A

2
[(m1 · x̂)2 + (m2 · x̂)2]

+
K

2
[(m1 · ẑ)2 + (m2 · ẑ)2]−MsH0 · (m1 +m2), (2)

where H0 is the external magnetic field, and J , A and
K are the AFM exchange coupling, the easy-axis and the
hard-axis anisotropy, respectively, all taken to be positive
and have absorbed the factor of S. A sublattice-specific

form of anisotropy is hard to derive and not universal
in FIMs, so here we follow the common simplification
that treats the anisotropy energies for both sublattices
on an equal footing [5, 6, 33]. In addition, since typi-
cally K � A, inducing an out-of-plane rotation requires
an unreasonably large magnetic field. So, to study the
ground states, we restrict our discussion to an in-plane
field parameterized by an azimuthal angle φ as illustrated
in Fig. 1(a). When φ varies, m1 and m2 experience in-
plane rotations characterized by θ1 and θ2. Therefore,
we are able to simplify E as a function of three angles:

E =
~ξ

(ξ + 1)2

[
ωJ cos(θ1 − θ2)− ωA

2
(cos2 θ1 + ξ2 cos2 θ2)

]
− ~ωH
ξ + 1

[cos(φ− θ1) + ξ cos(φ− θ2)], (3)

where ~ωJ = J , ~ωA = A, ~ωH = H0Ms, and a constant
term proportional to K has been omitted. The equilib-
rium state can then be obtained by minimizing E with
respect to θ1 and θ2 under given field strength ωH and
field angle φ. Here, we scale all parameters into angu-
lar frequencies because this is a convenient convention
for the simulation of spin dynamics to be discussed later.
We further choose ωJ = 1 such that ωA and ωH are both
normalized to the exchange energy.

Before changing ξ, we first look into the system’s re-
action to an increasing magnetic field and how it differs
from the AFM case for a particular value ξ = 0.5 (i.e.,
S2 = S1/2). Figure 1(b) plots θ1 and θ2 with a sweep-
ing field strength ωH at different angles. When φ = 0,
i.e., H0 is along the easy axis, the two spins remain un-
changed until a spin-flop (SF) transition takes place at
around ωH = 0.4, where they undergo an abrupt rotation
towards a canted configuration. Beyond this SF point,
the two spins fold towards the field direction until they
are fully polarized at about ωH = 0.95, after which the
system enters the spin-flip phase [20–23] . This behavior
is quite similar to that in AFM systems. The difference is
that θ1 and θ2, in spite of the sudden rotation at the SF
point, are continuous everywhere, while in the AFM limit
they both jump by nearly π/2 across the SF point. For
finite field angles, the SF phase boundaries are smeared
out in a way that not only θ1 and θ2 but also their deriva-
tives with respect to ωH become continuous.

Next, we study the ground state configuration by
changing the field angle φ continuously from 0 to 2π.
Figure 1(c)–(f) plots the absolute values of parallel and
perpendicular components of m = (m1 + m2)/2 and
n = (m1 −m2)/2 relative to the field direction as func-
tions of φ for four different field strengths (two below
the SF transition, one within the SF phase, and one
in the spin-flip phase). While the parallel components
m‖ and n‖ do not exhibit significant variations with φ,
the perpendicular components m⊥ and n⊥ show distinct
features in different phases: there are two lobes in the
collinear phase; a single lobe in the SF phase; and four
tiny lobes in the spin-flip phase. Regardless of the field
strength, all components repeat themselves in φ ∈ [0, π]
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FIG. 1. (a) Schematic illustration of system geometry. The
vectors m1, m2, and B are characterized by θ1, θ2, and φ
relative to the positive x̂ direction. The unit vector of to-
tal magnetization m = (m1 + m2)/2 and the Nel vector
n = (m1 − m2)/2 are represented by dotted arrows. (b)
θ1 (red) and θ2 (blue) as functions of the field strength ωH

along different field angle φ, where a SF phase (shaded) is
clearly seen for φ = 0. (c)-(f) The perpendicular and parallel
components of m and n with respect to the field direction
when φ varies from 0 to 2π at different field strengths. Blue
and orange curves are below the SF transition, red curves are
within the SF phase, and green curves are in the spin-flip
phase. ξ = 0.5 and ωA = 0.08 are used for all plots.

and φ ∈ [π, 2π], so in the following we will focus on the
range φ ∈ [0, π] only.

To further understand the equilibrium properties, we
focus on the perpendicular component m⊥ where the SF
phase is more conspicuous. Figure 2 extends Fig. 1(e) to
arbitrary field strength ωH at different values of ξ, where
the horizontal and vertical cuts in the special case of
ξ = 0.5 correspond to the curves plotted in Fig. 1(b) and
Fig. 1(c)–(f). We can clearly see that the SF phase is en-
closed by an ear-shaped contour near φ = 0 and π, which
grows (shrinks) with an increasing (decreasing) ξ. For
ξ = 0.1, the SF phase is almost invisible. If the FM limit
ξ → 0 (not shown) is reached, the SF phase will vanish
identically. The variation of ξ shown in Fig. 2 intuitively
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FIG. 2. Density plot of |m⊥| as a function of ωH (relative
to ωJ) and φ for 9 different values of ξ. For ξ = 0.5, the
red and the green cuts correspond to the curves plotted in
Fig. 1(b) and Fig. 1(c)–(f), respectively. The SF phase is
enclosed by an ear-shaped contour near φ = 0 and π, which
expands (shrinks) with an increasing (decreasing) ξ towards
the AFM (FM) limit.

demonstrates how FIM is intrinsically connected to its
FM and AFM limits at equilibrium.

To close the discussion of this section, we mention that
J , A andK appearing in Eq. (2) may also depend on tem-
perature, hence implicitly depending on ξ. As a result, ξ
is not sufficient to quantitatively describe a FIM. How-
ever, the temperature dependence of ξ and other param-
eters are material specific and quite often unclear. Our
goal is to unravel the unique but universal properties of
FIMs directly related to their non-equivalent sublattices
rather than a case study of a specific material. There-
fore, we restrict our discussion to the simplified model
consisting of a single tunning parameter ξ.

III. DYNAMICAL MODES

Having obtained the equilibrium spin configuration of
the model FIM, we now turn to the dynamical eigen-
modes – the way magnetic moments precess around their
equilibrium positions. Even though finding the ground
state can be simplified into a two-dimensional problem
when H0 is confined in the easy plane, dynamical prop-
erties are intrinsically three dimensional as spin preces-
sions unavoidably involve out-of-plane motions. In the
presence of a magnetic field,m1 andm2 can become non-
collinear. So, we introduce two local coordinate frames
to describe their dynamical precessions around their in-
dividual equilibrium positions [24, 25], which is schemat-
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ically illustrated in Fig. 3(a). Under this geometry, the
free energy in Eq. (3) can be rewritten as

E =
~ωJξ

(ξ + 1)2
[Z1Z2 + (X1X2 + Y1Y2) cos (θ1 − θ2)

+(X1Y2 − Y1X2) sin (θ1 − θ2)] +
~ωK

2(ξ + 1)2
(Z2

1 + ξ2Z2
2 )

− ~ωA
2(ξ + 1)2

[
X1 cos2 θ1 + Y1 sin2 θ1

+ ξ2(X2 cos2 θ2 + Y2 sin2 θ22)

−2(X1Y1 cos θ1 sin θ1 + ξ2X2Y2 cos θ2 sin θ2)
]

− ~ωH
ξ + 1

[
X2

1 cos(φ− θ1) + ξX2
2 cos(φ− θ2)

−Y 2
1 sin(φ− θ1) + ξY 2

2 sin(φ− θ2)
]
, (4)

where Xi, Yi and Zi stand for the components of mi

(i = 1, 2) normalized in the associated local coordinate
frame. Writing the Landau-Lifshitz-Gilbert (LLG) equa-
tion ṁi = fi ×mi with fi = −δE/~δmi in terms of
Xi, Yi and Zi, we are able to linearize the spin dynamics
to obtain the eigenfrequencies and the eigenmodes. In-
cluding the Gilbert damping αmi × ṁi causes a slight
frequency shift while the essential feature of the spectrum
is kept, so in this section we omit the damping effect for
simplicity. However, damping effects will become crucial
in the next section.

We begin with the simplest case where the hard axis
anisotropy vanishes (ωK = 0) and H0 is applied along
the easy axis (φ = 0). In this circumstance, the sys-
tem assumes rotational symmetry around the easy axis,
which guarantees a collinear ground state. Similar to the
collinear AFM case, the rotational symmetry leads to
two circularly polarized modes. Their eigenfrequencies
are solved as (in the exchange approximation ωA � ωJ)

ωF =

√
ω2
A + 2ωJωA + β2ω2

J

2
− β

2
(ωJ − ωA) + ωH ,

(5a)

ωex =

√
ω2
A + 2ωJωA + β2ω2

J

2
+
β

2
(ωJ − ωA)− ωH ,

(5b)

where the subscript “F” (“ex”) indicates the FM (ex-
change) mode lying in the GHz (sub-THz) regime, and

β ≡ 1−ξ
1+ξ ranges from 0 (AFM limit) and 1 (FM limit).

In the AFM limit β → 0 (or ξ → 1), Eq. (5) re-

duces to ω± =
√
ω2
A + 2ωJωA/2± ωH , reproducing Kit-

tel’s formula for AFM materials. Here, the additional
factor of 1/2 originates from the definition in Eq. (1):
|Mi|/Ms → 1/2 as ξ → 1. In the FM limit β → 1 (or
ξ → 0), we have ωF = ωH while ωex = ωJ − ωH if
ωA → 0. Figure 3(b) schematically illustrates these two
chiral modes for β → 1 and ωA → 0: 1) The FM mode
exhibits a right-handed precession in which the two mag-
netic moments are kept collinear. Even though a finite
ωA will make the cone angle of m1 (the longer spin)
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FIG. 3. (a) Schematics of the model FIM in the presence of
an in-plane magnetic field, where two local coordinates are
defined based on the equilibrium orientations of m1 and m2.
(b) Illustration of the two circularly-polarized eigenmodes in
an easy-axis FIM (ωK = 0) when H0 is applied along x̂. (c)
and (d) plot the two eigenfrequencies as functions of the ap-
plied field along three different directions for easy-axis and
easy-plane FIM, respectively, for ξ = 0.5 (or β = 1/3) and
ωA = 0.08. The FM mode and the exchange mode (dashed
curves) become degenerate at a critical field below the SF
threshold if and only if ωK = 0 and φ = 0. Either a finite
hard-axis anisotropy ωK or a non-zero field angle φ (or both)
will lift the degeneracy. (e) and (f) are zoom-in plots of the
avoided crossing corresponding to (c) and (d) for φ = π/3, re-
spectively. Here, the chirality of m1 (m2) is illustrated by red
(blue) ellipse as seen from the +x1 (−x2) direction. In the FM
mode, m1 (m2) becomes linearly polarized when the mag-
netic field reaches point ¯ (­), across which m1 (m2) flips
its chirality of precession. The ¯ and ­ points separate re-
gions of distinct elliptical precessions colored differently. The
exchange mode follows a somewhat reversed pattern, which
are marked by ± to µ.
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slightly larger than that of m2 (the shorter spin), this
mode is essentially driven by the Zeeman interaction,
hence a lower frequency. 2) By contrast, the exchange
mode exhibits a left-handed precession in which m2 has
an apparent larger cone angle than m1, leveraging the
strong exchange interaction to drive the precession of the
magnetic moments, hence a much higher frequency. In
general, when neither limit is close, the two modes cross
each other at a field below the SF transition, as plotted
by the red curves in Fig. 3(c).

If the magnetic field is tilted away from the easy-axis,
the rotational symmetry will be broken. As a result,
the two circularly polarized modes will hybrid as their
eigenfrequencies approach, leading to an avoided crossing
as shown by the blue and black curves in Fig. 3(c). This
anti-crossing gap can be enlarged appreciably by a finite
hard-axis anisotropy ωk, which also breaks the rotational
symmetry, as plotted in Fig. 3(d).

To better understand the hybridization of the chiral
eigenmodes in the absence of rotational symmetry, we
zoom in in the vicinity of the anti-crossing gap and show
the evolution of chirality for each magnetic moment in
their local frame in Fig. 3(e) and (f). For the FM mode,
m1 (m2) flips its chirality as the magnetic field crosses
point ¯ (­), which separates regions of opposite chirality
for m1 (m2). The exchange mode follows a somewhat
reversed pattern, where m1 flips its chirality first, fol-
lowed by m2, with a sweeping magnetic field. A hard
axis anisotropy enlarges the gap and broadens the win-
dow in which the two magnetic moments exhibit opposite
chirality, i.e. ® for the FM mode and ³ for the exchange
mode.

Finally, we study the influence of ξ—the central pa-
rameter in our model—on the eigenmodes. Figure 4(a)
plots the two eigenfrequencies as functions of the sweep-
ing magnetic field along different in-plane directions for
ξ = 0.2, 0.5 and 0.8, where for the case of ξ = 0.5 we have
colored the collinear, SF and spin-flip phases differently.
In Fig. 4(b), we plot the polarization of each sublattice
magnetic moment in terms of the ratio of principal axes
of the elliptical trajectory in the local frame, εy/εz, for
φ = π/3 at the three corresponding values of ξ. The
diverging (vanishing) locations are where the magnetic
moment becomes linearly polarized along the in-plane Y
(out-of-plane Z) direction in the local frame. Since now
the plot has been extended to a much higher field com-
pared with Fig. 3, an additional chirality flip taking place
in the SF phase shows up.

IV. SPIN-TORQUE OSCILLATORS

Given the static properties and dynamical modes, it
is natural to ask how FIMs react to, thus being ma-
nipulated by, applied currents. Similar to those in FM
and AFM materials, the chiral dynamical modes can
be excited by absorbing angular momenta from exter-
nal currents through damping-like torques. For instance,
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FIG. 4. (a) Eigenfrequencies versus magnetic field along dif-
ferent in-plane directions for ξ = 0.2, 0.5 and 0.8. The
collinear, SF and spin-flip phases are shaded in different col-
ors for the case of ξ = 0.5 and φ = 0. (b) Polarization of
each sublattice magnetic moment expressed as the ratio of
the principal axes of elliptical trajectory in the local frame
for φ = π/3 at corresponding values of ξ. The diverging (van-
ishing) locations indicate linear polarization along the local
in-plane Y (out-of-plane Z) direction. The first two diver-
gences correspond to the two chirality flips depicted in Fig. 3.
The third one takes place inside the SF phase.

if a damping-like torque competes with the intrinsic
Gilbert damping (anti-damping effect), it will pump en-
ergy and angular momenta against equilibrium into the
system. When its strength surpasses a threshold, the
Gilbert damping will be overwhelmed, which then trig-
gers a dynamical instability that typically manifests as
a spontaneous oscillation (a.k.a. auto-oscillation) of the
magnetic moments. By realizing this phenomenon, the
current-controlled magnetic system is regarded as a spin-
torque(ST) oscillator, which converts dc inputs into high-
frequency ac outputs. While ST oscillators have been
widely studied in FM and AFM materials [26–32], they
are much less understood in FIM materials, especially
when the ratio of sublattice moments can be varied con-
tinuously. While previous theoretical investigations of
ST oscillators in FIM materials are conducted near the
compensation point [33, 34], we explore the behavior of
ST oscillators in a wide range of ratio of sublattice spins.

By navigating ξ freely between the FM and AFM lim-
its, we strive to understand the ST-induced oscillations
in FIMs as an interposition smoothly connected to its
FM and AFM counterparts. In particular, we will figure
out whether exciting the sub-THz exchange mode can
emulate the performance of an ultrafast AFM system.
To this end, we focus on the damping-like ST which
can be generated by either the spin Hall effect or the
interfacial Rashba spin-orbit coupling. Specifically, the
ST acting on the sublattice moment mi (i = 1, 2) is

τi = mi × (ωs ×mi) [33?] , where ωs = ωsp and ωs
is proportional to the current-induced spin accumulation
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FIG. 5. ST-driven dynamics of chiral modes. Trajectories of
magnetic moments for p ‖ x (a) and p ‖ −x (b), where the
left-handed exchange mode grows and saturates at a steady-
state oscillation whereas the right-handed FM mode evolves
into a magnetic switching. (c) Terminal frequency of the ex-
change mode as a function of ωs and ξ, where the threshold
diverges as the FM limit is approached. Inset: zoom-in dis-
play of the phase boundary near ξ → 1. (d) Terminal spin
configuration as a function of ωs and ξ, where the switching
threshold diverges in the AFM limit ξ → 1. The easy-axis
anisotropy is taken to be ωA = 10−4ωJ .

scaled into the frequency dimension. Here p is the unit
vector of magnetic moment associated with the current-
induced spin accumulation which adsorbs the γ factor.
The spin dynamics is then described by the coupled LLG
equation

ṁi = fi ×mi +
α

mi
mi × ṁi + τi, (6)

where fi = −δE/~δmi and α is the Gilbert damping
constant. The damping term comes with a ratio α/mi to
ensure the conservation of angular momentum. In the fol-
lowing, we focus on field-free dynamics, so ωH = 0. Other
parameters are given representative values ωA = 10−4ωJ
and α = 0.005. (Note that in the previous section, ωA
has been amplified for demonstration purposes.) Since x
is the easy-axis, we use the initial conditions m1 ‖ +x
and m2 ‖ −x. Since the free energy density Eq. 2
uses macrospin approximation, we do not consider non-
uniform spin dynamics.

We first revisit the two chiral modes discussed in the
preceding section and figure out how they react to the ST.
To this end, we set ωK = 0 and consider p along the ±x
axis. Figure 5(a) and (b) show the simulated trajectories
of an FIM with ξ = 0.5 driven by the ST with p ‖ x and
p ‖ −x, respectively. In the former, the ST excites the
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FIG. 6. (a) Output frequency (normalized to ωJ) and (b)
DC spin pumping (in arbitrary unit) of an ST oscillator in
the presence of hard-axis anisotropy (along z) driven by an
in-plane spin accumulation (along x) as functions of ωs and
ξ. Panels (1)–(3) are schematics of the spin configurations
and trajectories associated with different phases in (b), where
sub-phases (2a) and (2b) are separated by the dotted orange
curve.

left-handed exchange mode whose amplitude grows to-
wards a saturation, arriving at a steady-state oscillation
of sub-THz frequency. In the latter, the right-handed
FM mode is initiated, which grows without bound and
inevitably evolves towards a magnetic switching. Fig-
ure 5(c) and (d) are the dynamical phase diagrams corre-
sponding to (a) and (b), respectively. In Figure 5(c), the
terminal frequency of auto-oscillation is plotted as a func-
tion of the applied ST ωs and ξ, where in the AFM limit
(ξ → 1) the threshold ST reduces to ωth

s = α
√
ωAωJ [35]

(see the enlarged plot in the inset) and in the FM limit
(ξ → 0) the auto-oscillation threshold disappears com-
pletely. This feature is quite understandable because
the exchange mode does not exist in the FM limit; it
is intrinsically a multi-sublattice property. If the driv-
ing ST ωs is too large, however, the system will undergo
an ST-induced SF transition without a sustainable auto-
oscillation [31, 36]. In Figure 5(d), the terminal states
are separated into the switching (blue) and non-switching
(red) regions, where the switching threshold diverges for
ξ → 1, i.e. no switching in the AFM limit. In fact, the
threshold cannot diverge because a sufficiently large ωs
will lead to an SF transition.

Next, we turn on the hard axis anisotropy and take
ωK = 10−2ωJ as a representative value to study the
dynamical behavior of the high-frequency left-handed
mode. Besides the auto-oscillation frequency shown in
Fig. 6(a), we also plot the dc component of spin pump-
ing Idc = g↑↓x̂ ·

∑
imi × ṁi in Fig. 6(b), where we as-

sumed that the spin-mixing conductance g↑↓ is the same
for both sublattices. The legitimacy of the form of Idc
will be discussed in the following section. Comparing
Fig. 5(c) with Fig. 6(a), we see that the introduction
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of hard-axis anisotropy considerably changes the phase
boundary in the AFM limit ξ → 1. The output fre-
quency alone is insufficient to capture the physics of the
auto-oscillation, we also need to look into the topology of
trajectories. In this regard, we identify two sub-phases of
auto-oscillation interpolating the static phase (1) and the
SF phase (3), which are schematically illustrated by (2a)
and (2b) as labeled in Fig. 6(b). While both sublattice
magnetic moments precess with the left-handed chiral-
ity, their trajectories lie on the same (different) hemi-
sphere(s) in phase (2b) [phase (2a)]. With increasing ST
strength, the output frequency increases monotonically
as the system evolves from phase (2a) to (2b), whereas
the dc spin pumping is apparently non-monotonic and
the maximum value takes place inside phase (2b). This
complicated behavior is attributed to the fact that spin
pumping not only depends on the projection of magnetic
moments onto the quantization axis but is also propor-
tional to the output frequency.

Compared with the case of uniaxial FIM shown in
Fig. 5(a) and (c), the auto-oscillation threshold [phase
boundary separating (1) and (2a)] in the presence of
hard-axis anisotropy reaches a minimum at about ξ =
0.87—a value depending on the strength of the hard-axis
anisotropy ωK . In the AFM limit (ξ → 1), phase (2a)
disappears so that the oscillator jumps directly from the
static phase (1) to phase (2b), which has been discussed
for AFM nano-oscillators [31]. A larger ωK results in a
larger reduction of the threshold at the minimum com-
paring to what it is in the AFM limit. When ωK be-
comes even larger, phase (2b) on the AFM line ξ = 1
can be destroyed so that the oscillator undergoes an ST-
induced SF transition from (1) to (3), skipping any auto-
oscillation phase. This is because we have not included
any feedback mechanism which is essential to stabilize an
ST-oscillator by allowing its amplitude to be controlled
continuously by ωs. Away from the AFM limit, however,
an auto-oscillation phase is always achievable regardless
of ωs or feedback mechanism. In other words, an FIM os-
cillator can stabilize on its own and afford an ST-driven
auto-oscillation without external feedback. The lowered
threshold ST plus the self-sustainability are unique ad-
vantages of FIMs, which can function as a high-frequency
AFM when the exchange mode is stimulated. It should
be noted that in our work both easy-axis and hard-axis
anisotropy are included, while previous works only con-
sidered either easy-axis or hard-axis anisotropy but not
both [33, 34], and more importantly, ξ does not span the
full range between the FM and AFM limits.

To further understand the dynamical behavior of FIM
oscillators, we now derive the threshold ST by linearizing
the LLG equations (6), which yields the characteristic
equation

(ω2
I+αωJωI + fA)(ω2

I + αωJωI + fK)

+
(ωJωs

2
+ ∆ωJωI

)2
= 0, (7)

where ωI = iω + ∆ωs/2 with ω the (complex valued)
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FIG. 7. (a) Output frequency and (b) DC spin pumping of an
ST oscillator driven by an out-of-plane spin accumulation as
functions of ξ and ωs. The red dashed lines marking the static
phase (1) is added for visual clarity (because ωA = 10−4ωJ is
very small, so is the threshold). Panels (1)–(4) are schemat-
ics of the spin configurations and trajectories associated with
different regions in (b), where sub-phases (3a) and (3b) are
separated by the dotted orange curve.

eigenfrequency and ∆ωs = ωs|m1 −m2|, and 2fA(K) =

−αωJ∆ωs + ωJωA(K)(1 + |m1 − m2|2). While the so-
lution to Eq. (7) in the AFM limit reduces to 2ω =

iαωJ±[(ωA+ωK)ωJ−α2ω2
J±ωJ

√
(ωK − ωA)2 − 4ω2

s ]1/2,
which is consistent with the AFM result [31, 36], the
general solution is too complicated in expression unless
we set ωK = 0. The imaginary part Im(ω) determines
the dissipation of the oscillator, which in general results
from the competition between the Gilbert damping and
the damping-like ST. When ωs exceeds a critical value,
Im(ω) will flip sign, marking the onset of auto-oscillation.
Therefore, solving Im(ω) = 0 gives the phase boundary
of auto-oscillation in Fig. 6.

Finally, we consider the case of out-of-plane spin accu-
mulation (i.e. p along +z axis), which can be generated
by polarizing the electrons with a perpendicularly mag-
netized FM layer in conjunction with the FIM layer. But
again, different from existing studies [33], we considered
the full rang of ξ connecting the FM and the AFM limit
rather than the neighborhood of the compensation point.
The numerical result is shown in Fig. 7 using the same
parameters as those in Fig. 6. Compared to the case
of in-plane spin accumulation, the present situation ex-
hibits more dynamical phases. In Fig. 7, phase (1) is the
static phase where the magnetic moments do not move
but are slightly perturbed away from the easy axis. Since
the in-plane anisotropy in the simulation is very small
(ωA = 10−4ωJ), it is hard to visualize this static phase,
so we manually add red dashed lines in Figs. 7(a) and
(b). With larger ωs, the magnetic moments are able to
precess on different hemispheres and the system reaches
phase (3a). Further increasing ωs, we observe compli-
cated behavior with varying ξ: when ξ is smaller than
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about 0.75, there exists a spin-reorientation phase [phase
(2)] in which the two magnetic moments are switched
from the easy x axis to the hard z axis without auto-
oscillation. When ξ is larger than about 0.75, there are
two sub-phases of distinct topology of precessional tra-
jectories in the auto-oscillation region labeled by (3a) and
(3b), similar to what is shown in Fig. 6. However, the
rotational axis in this case is the z axis rather than the
x axis.

V. DISCUSSIONS

In the preceding section, we assumed that the
damping-like torques act on different sublattice magnetic
moments independently. That is to say, we didn’t in-
clude cross terms such as m1 × (ωs ×m2) intertwining
the two sublattices. While this assumption is valid in
the AFM limit as it satisfies the combined symmetry un-
der spin-flip and sublattice exchange operations, it be-
comes questionable when m1 6= m2. Correspondingly,
the form of spin pumping will involve cross terms like
m1 × ṁ2 [37, 38]. When the inter-sublattice contribu-
tions to the ST and spin pumping are considered, the
result shown in Fig. 6 can be very different. However,
it remains an open question as to how strong the inter-
sublattice terms may become in a specific system, which
calls for a detailed calculation of the spin-dependent scat-
tering on the interface. The central point of this paper
is that an FIM with variable ratio of sublattice moments
can exhibit highly non-trivial dynamics even with the
simplest form of ST. Moreover, we didn’t include the
field-like torques in our study. The field-like torques do
not compete with the Gilbert damping thus do not induce
auto-oscillations. But they can shift the eigenfrequency
of an oscillator similar to an applied magnetic field. The
relative strength of damping-like and field-like torques
depend on how the ST is created. If the ST arises from
the spin Hall effect in a heavy metal, the field-like com-

ponent is indeed negligible, which is supported by recent
experiments [39].

In real FIM materials such as the alloys of Fe, Gd and
Co, the gyro-magnetic ratios for the two sublattices are
typically 10% different [18, 19], which may lead to devia-
tions from our predictions based on equal gyro-magnetic
ratios. Nevertheless, concerning spin pumping and ST-
driven dynamics discussed in the previous section, our
theory remains essentially valid because the interfacial
spin transmissions respect the conservation of angular
momenta rather than that of the magnetic moments.
Therefore, if we interpret ξ in the dynamical phase dia-
grams shown in the previous section as the ratio of spins
rather than the magnetic moments, our predictions are
still applicable even though the phase boundary may be
subject to a minor deformation. What could be slightly
different for the case of γ1 6= γ2 is that the net magneti-
zation does not fully compensate even when ξ → 1.

Finally, the present study can be generalized into non-
collinear ferrimagnets with more than two sublattices.
We notice that coherent spin dynamics in non-collinear
AFM materials aroused attentions recently, where spin
pumping [40] and spin-torque oscillators [41] had been
studied at a similar level of depth as their counterparts
in collinear AFM materials. On the same base, we antic-
ipate that non-collinear FIMs will be an active direction
of research in the near future. Furthermore, going be-
yond uniform spin dynamics by considering the spin-wave
excitations (for finite momenta k) will be an important
subject. In particular, the role of varying ξ for spin waves
will be a key issue.
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