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The intrinsic dissipation of systems into a shared reservoir introduces coherence between two systems, en-
abling anti-Parity-Time (anti-PT) symmetry. In this paper, we propose an anti-PT symmetric converter, consist-
ing of a microwave cavity coupled dissipatively to a ferromagnetic sphere, which supports significant improve-
ments in the conversion efficiency when compared to coherently coupled setups. In particular, when only the
ferrite sample is driven, the strong coherence induced by the vacuum of the mediating channel leads to much
stronger enhancements in the intended conversion. The enhancement is an inalienable artifact of the emergence
of a long-lived, dark mode associated with a quasi-real singularity of the hybrid system. In addition, we observe
considerable asymmetry in the efficiencies of microwave-to-optical and optical-to-microwave conversions, in
spite of the symmetrical structure of the trilinear optomagnonic coupling stimulating both the transduction phe-
nomena. The nonreciprocity stems from the intrinsic asymmetry in the couplings of the microwave and optical
fields to the cavity-magnon network as well as the phase coupling entailed by the spatial separation.

I. INTRODUCTION

Nonlinear three-wave interactions constitute the bedrock of
several exotic nonlinear optical phenomena, including stim-
ulated Raman and Brillouin scattering1, first observed by
Woodbury et al.2 and later explained by Garmier et al3 and
Bloembergen and Shen4,5 employing a coupled wave formal-
ism. Quantum mechanically, such an interaction can be un-
derstood as the conversion of an incident pump quantum into
two energy-conserving daughter quanta and vice versa. How-
ever, such exchanges do not require all fields to be optical or
lie in overlapping frequency domains. For instance, in the last
few decades, such three-mode interactions have been widely
investigated in the context of the interconversion between op-
tical and microwave fields, both of which are pivotal to an ef-
ficient information processing network. A coherent reversible
transduction of signals between microwave and optical fre-
quencies can leverage the strengths of optical signals, includ-
ing low-loss transmission, long-time memory and low thermal
occupancy, while simultaneously facilitating control over the
electrical system with the application of microwave signals. A
variety of experimental systems have been explored, includ-
ing, for example, optomechanical systems6–9 cold atoms10,11,
spins12,13, trapped ions14,15 and electro-optic16,17. A con-
version efficiency close to 10% between microwave signals
of a few GHz into optical domain was demonstrated in an
experiment9 using optomechanical systems.

Recently, the interconversion between microwave and op-
tical waves was demonstrated in a hybrid cavity-magnonic
setup by coherently coupling a microwave cavity to the col-
lective spin excitations in a yttrium iron garnet (YIG) sample
through the Purcell effect and by exploiting a trilinear Faraday
interaction between two optical modes and a Kittel mode18.
Subsequently, Ihn et al. generalized this result to the mul-
timode case by accounting for both the Kittel mode and a
higher-order space-varying magnetostatic mode19. The pri-
mary challenge posed by these setups is the weakness of the
nonlinear parametric interaction between the optical modes

and the magnonic frequencies as they lie in widely disjoint
regimes. While much progress has been accomplished with
regard to improving the conversion efficiency in optomechani-
cal configurations or by coupling an erbium-doped crystal20 to
both a microwave and an optical cavity, mitigating the adverse
impact of weak optomagnonic couplings remains a central dif-
ficulty. However, all these studies were based on dispersively
coupled systems, while the recent years have seen a flourish-
ing of interest in anti-PT symmetry21–31 achieved via the en-
gineering of dissipative couplings. Anti-PT symmetry is the
characteristic of an effective Hamiltonian that changes sign
under the joint application of parity and time-reversal trans-
formations. While coherent coupling stems from the spatial
overlap between two modes, a dissipative type of coupling32

can be engineered by the inclusion of a shared reservoir cou-
pled independently to the two modes. Subsidiary to this
development is the proliferation of experimental pursuits in
cavity-magnonics33–47, courtesy of the high spin-density and
low dissipation rates of YIGs. The applications of cavity-
magnonics include, but are not restricted to, quantum and clas-
sical sensing31,48–50, non-reciprocity51,52, multistability46 and
many more. Some experiments have probed dissipative cou-
plings as well53,54.

In an earlier work, a scheme to engineer an augmented re-
sponse to weak nonlinear perturbations was expounded in a
dissipatively coupled cavity-YIG apparatus by exploiting the
anti-PT symmetry of the configuration31. In view of the im-
mense potential of anti-PT symmetry, we hereby extend its
application to the problem of interconversion between mi-
crowave and optical fields in the specific context of cavity-
magnonics. Our key observation is that the anti-PT symme-
try allowed by dissipative frameworks offers a noticeable im-
provement in efficiency. In fact, when only the YIG sphere
is driven, the same arrangement will enable improvements
by a few orders of magnitude for strong dissipative cou-
plings in otherwise low-loss environments. This is an up-
shot of the emergence of a long-lived eigenmode induced by
the coherence. Furthermore, owing to the dissipative cou-
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pling between the two modes, we observe a strong asymme-
try in the efficiencies of microwave-to-optical and optical-to-
microwave conversions. Note that, in general, it is challeng-
ing to engineer non-reciprocity55–58 in physical systems; how-
ever, in waveguide-integrated photonic devices, the reservoir-
mediated phase coupling naturally brings in nonreciprocal at-
tributes.

The structure of the paper is summarized below: Follow-
ing a concise review of the theoretical formulation underpin-
ning the conversion model in Sec. II, we explain the two
possible schemes vis-à-vis the microwave-to-optical transduc-
tion mechanism in Sec. III. Finally, in Sec IV, we derive
the efficiency of the reverse conversion, viz. optical to mi-
crowave, and demonstrate the nonreciprocity of the two con-
version pathways.

II. THEORETICAL CONVERSION MODEL

We consider a hybrid cavity-magnonic model in which a
rectangular microwave cavity and a YIG interacts dissipa-
tively via a one-dimensional (1D) microwave transmission
line. Unlike the previously explored scenario where the YIG
is wedged inside the cavity resonator to enhance the coherent
coupling between them through the Purcell effect18,19, the in-
terposing waveguide here acts as the mediator of a long-range
coupling between the two. For the purpose of the conversion
process, the YIG sphere is evanescently coupled to an ancil-
lary optical fiber withal. The transduction mechanism could
be initiated by the application of a microwave drive at a fre-
quency ωµ, duly complemented by an intense laser drive at a
frequency Ω0 sent along optical fiber targeting the YIG sam-
ple. The converse mechanism of optical-to-microwave trans-
fer proceeds via the administration of two orthogonally polar-
ized optical inputs at frequencies Ω and Ω0 respectively, such
that the frequency discord |Ω −Ω0| is closely resonant with a
Kittel mode frequency, which lies in the microwave regime.

At the outset, we overview a first-principle description of
the exchange dynamics enabling the mode conversions. In the
most general case, the full Hamiltonian H = Hs + Hmicro +

Hoptical of the driven cavity-YIG system would comprise of
the following contributions:

Hs =~ωaa†a − ~γeB0S z,

Hmicro =H
(a)
micro +H

(m)
micro,

Hoptical =

∫ T

0
dt ~gMx(t)sx(t)c. (1)

Here, Hs represents the free Hamiltonian of the cavity-YIG
composite, where a (a†) denotes the annihilation (creation)
operator of the cavity, B0 the applied bias magnetic field and
S z the collective spin operator of the YIG along the z direc-
tion, and γe is the gyromagnetic ratio. The HamiltonianHmicro
captures the typical interplay between incident microwave
photons and the cavity-YIG network, with the first termH (a)

micro
encapsulating the coupling of the microwave drive to the cav-
ity. The second term H (m)

micro = −~γe~S .~Bmicro characterizes the

exchange interaction between a large number of spins in the
YIG and the local microwave field ~Bmicro. The specific ex-
pressions for these two contributions would be introduced in
due course based on contextual considerations about the in-
cident fields. In addition, two linearly polarized optical field
modes selectively couple to the ferromagnetic material which
is magnetized along the z direction. The parameter T cor-
responds to the Faraday interaction time, g is the coupling
strength between the optical field modes and the ferromag-
netic sample, c is the velocity of light, Mx and sx denote the
x-components of the magnetization and the relevant stokes op-
erator respectively. Owing to the circular birefringence of the
medium, the linearly polarized light rotates with components
along the perpendicular directions, producing the trilinear in-
teraction Hoptical. This phenomenon is known as the Faraday
effect, generating optical sidebands displaced by ωm = γeB0
on either flank of the Ω0-band, and thereby, converting those
incident microwave photons into optical photons. By the same
token, the application of two orthogonally polarized optical
beams stimulates the production of a microwave field oscil-
lating at a frequency equaling the difference between the two
optical frequencies, a phenomenon commonly known as the
inverse Faraday effect. These two phenomena constitute the
physical foundation of the conversion scheme.

YIG is a ferrite compound having a high ferric iron (Fe3+)
density which is approximately 4.22 × 1027m−3, diameter
d = 1 mm and total number of spins N ≈ 1018. Employ-
ing the Holstein-Primakoff transformation in the high-spin-
density limit, we can recast the raising and lowering spin op-
erators into S + =

√
5Nm, S − =

√
5Nm†, where {m,m†} fol-

low the Bosonic algebra. This reduces the Hamiltonian of
the magnons effectively to ~ωmm†m, with ωm = γeB0. The
magnetostatic Kittel mode being a spatially uniform mode,
the magnetization has a simple form in terms of the collective
spin operator, M = γeS/V , where V is the volume of the YIG
sample. Further, the Stokes operator sx of the input optical
field can be expressed as sx = −i[b†z by − bzb

†
y], with by(t) and

bz(t) representing two optical field operators along the y and
z directions respectively. Now, since bz(t) is a strongly driven
optical mode, we switch to a classical treatment of this mode

whereby bz(t) is superseded by the c-number
√

P0
~Ω0

e−i(Ω0t−θ),
where P0 is the input laser power and θ is the phase acquired
by the wave in its transit across the fiber from the cavity to
the YIG. Finally, assuming a clear distinction between the
timescales of the interaction and the magnonic oscillation, i.e.
T � 1/ωm, we can tailor the optomagnonic interaction in (1)
into

Hoptical = −i~
√
κo(m + m†)[byeiΩ0t − b†ye−iΩ0t], (2)

where κo =
g2c2T 2NP0

8V2~Ω0
is the opto-magnonic coupling

strength18, and a redefinition by → byeiθ has been used to
eliminate the θ-dependence. The dissipative non-Hermitian
coupling between the cavity and the YIG has to be formalized
at the level of a master equation for the system by treating
the common waveguide as a thermal bath. We can obtain the
master equation for the density operator by adiabatically elim-
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FIG. 1: First scheme for microwave-to-optical conversion. The bottom microwave waveguide couples to both
the cavity and the YIG sphere, whereas the itinerant vacuum mode by in the top fiber, polarized along y-
axis, addresses the collective magnonic excitation. A microwave signal aµ is launched through the bottom chan-
nel, in conjunction with an intense optical laser drive bz, polarized along the z-axis and shone on the YIG.
This induces both the Stokes and the anti-Stokes optical sidebands at the output port of the optical fiber.

inating the slowly evolving waveguide degrees of freedom. A
rigorous derivation of the same appears in the Appendix.

III. TRANSDUCTION FROM MICROWAVE TO OPTICAL
FIELD

Apropos of the microwave-to-optical conversion process,
the magnons in mode m are driven by a classical microwave
drive frequency ωµ, while concurrently interfacing with an
optical waveguide that delivers and channels the optical
component by. In Fig. 1, which conveys a particular modality
of exciting the system, the input microwave drive is launched
through the bottom fiber. An alternative means would involve
directly impinging a maser on the YIG sample, which we
would discuss as a separate scheme. The Faraday interaction
Hoptical, prompted by the pump laser bz at the frequency
Ω0 sent along the optical channel, entails the Stokes and
anti-Stokes sidebands relative to Ω0 in the optical spectrum.
The indirect coupling Γ engineered between the cavity
and the magnons through the interceding transmission line
consolidates the coupling of the YIG to the microwave
photons via the Purcell effect. The sideband outputs can be
empirically reconstructed from the amplified, beat-down,
heterodyne signal between the carrier and the side modes. In
principle, there could be two possible schemes of effecting
the conversion: (i) by guiding the microwave drive field along
the microwave fiber, or (ii) by directly shining a maser on the
YIG. In what follows, we develop explicit results for the two
schemes separately.

A. Scheme 1: Microwave field launched through the
waveguide

When the microwave field is launched through the trans-
mission line, the magnons encounter a phase-translated input
relative to the intracavity field, which promptly simplifies the
components inHmicro to

H
(a)
micro = −i~

√
κa[a†aµe−iωµt − aa†µeiωµt],

H
(m)
micro = −i~

√
κm[m†aµe−i(ωµt−φ) − ma†µei(ωµt−φ)], (3)

where κa and κm symbolize the leakage rates of the cavity and
the magnons respectively into the interfacing microwave line,
and aµ is the microwave drive. Fig. 1 portrays the overar-
ching ladder network. It is convenient to redefine the sys-
tem variables as ã = aeiωµt, m̃ = meiωµt, and, depending
on whether we consider the Stokes or anti-Stokes process,
b̃y = byei(Ω0−ωµ)t or b̃y = byei(Ω0+ωµ)t. The operation dispels
the explicit time-dependence in H , when the fast-oscillating
terms are expunged. The first process pertains to a parametric-
amplification type process, whereas the second is associated
with a beam-splitter type interaction. We now develop the
Langevin equations for the two respective processes, to the
lowest order in the optomagnonic coupling rate

√
κ0. For no-

tational simplicity, we drop the tildes over the mode variables.
Stokes output: Pursuant to the master equation derived in

Appendix A, the mean-value dynamics of the cavity and the
magnon modes reduces, in this case, to

ȧ = −(i∆a + γa)a − Γeiφm −
√
κaaµ,

ṁ = −(i∆m + γm)m − Γeiφa −
√
κmaµeiφ +

√
κob†y . (4)

where γa = κa + κ̃a and γm = κm + κ̃m encompass the dissi-
pative effects. The decay rate κ̃a (κ̃m) stands for the intrinsic
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FIG. 2: Stokes conversion efficiencies for the microwave-to-
optical conversion pertaining to scheme 1, are plotted under
anti-PT symmetric conditions and comparable couplings Γ =

J in both dissipative and coherent setups. In (a), we impose
γ = 2Γ and in (b), we consider γ = 1.1Γ. The EPs are identi-
fied via the dotted vertical lines. The regions between the ver-
tical lines denote the symmetry-broken phases. The absolute
efficiencies in both (a) and (b) have been scaled up by a factor
of S = 1.4 × 105, for Γ ≈ π × 25 MHz and κ0 ≈ π × 0.3 mHz.

damping of the cavity (magnon) mode into the non-waveguide
modes. Based on the input-output formulation, the output
Stokes wave would be accorded by the relation

by,out = −
√
κom†, (5)

since the input mode by, in this case, can be taken to be the
thermal vacuum. Eq. (4) can be condensed into the form

Ẋ = −iMX − F −
√
κoG, (6)

where X = (a m)T , F = aµ(
√
κa
√
κmeiφ)T , G = (0 b†y)T ,

andM =

(
∆a − iγa −iΓeiφ

−iΓeiφ ∆m − iγm

)
. If by,out has to be solved to the

lowest (here, linear) order in
√
κ0, it follows that the long-time

solution to X could be obtained by dropping the final term in
(6), leading to

X = iM−1F . (7)

Hence, the solutions to the intracavity field and the magnonic
oscillation stand as

a =
iaµ[
√
κa(∆m − iγm) + i

√
κme2iφΓ]

(∆a − iγa)(∆m − iγm) + Γ2e2iφ ,

m =
iaµeiφ[i

√
κaΓ +

√
κm(∆a − iγa)]

(∆a − iγa)(∆m − iγm) + Γ2e2iφ . (8)

By virtue of Eq. (5), we educe the Stokes conversion effi-
ciency to be

η(d.c)
s =

∣∣∣∣∣∣by,out

aµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ iΓ
√
κoκa + (∆a − iγa)

√
κoκm

(∆a − iγa)(∆m − iγm) + Γ2e2iφ

∣∣∣∣∣∣, (9)

For comparison, we recall the efficiency factor in a coher-
ent environment, where a (double-sided) microwave cavity
addresses the magnons in the YIG by means of a Hermi-
tian coupling J(a†m + am†). In that case, M is replaced by

(
∆a − iγa J

J ∆m − iγm

)
and F by aµ(

√
κa 0)T , when the mi-

crowave cavity is driven. Then, the same input-output relation
would yield a conversion efficiency18

η(c.c)
s =

∣∣∣∣∣∣by,out

aµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ J
√
κoκa

(∆a − iγa)(∆m − iγm) − J2

∣∣∣∣∣∣. (10)

Since the solution to X determines the Stokes sideband
of the optical spectra, its efficiency of conversion from
the microwave input pivots on the symmetry properties of
M. Two principal symmetries are PT-symmetry, defined by
(P̂T )H(P̂T ) = H, and anti-PT symmetry, with (P̂T )H(P̂T ) =

−H. In this manuscript, we focus on the anti-PT symmetric
case, which can be engineered in the bimodal framework by
devising the constraints ∆a = −∆m = ∆, γa = γm = γ and
φ = nπ, with n being a natural number. With the correspond-
ing eigenvalues given by −iγ ±

√
∆2 − Γ2 in the symmetric

phase, i.e., |∆| > Γ, and by −iγ ± i
√

Γ2 − ∆2 in the broken-
symmetry phase, i.e., |∆| < Γ, the transition points |∆| = Γ sig-
nify the exceptional points (EPs). Figures 2(a) and 2(b) plot
the conversion factors for both dissipatively coupled and dis-
persively coupled systems for comparable system parameters
and similar coupling strengths (Γ ≈ J), under the constraint
of anti-PT symmetry. It is interesting to note the broadband
nature of the profiles for anti-PT symmetry. The vertical lines
running through these profiles mark the EPs. Although the
efficiency undergoes a smooth transition at either of the EPs,
the rate of transition is sensitive to the total damping rate γ.
A smaller value of γ begets a larger transition rate around the
EP.

While the order of magnitude does not change dramatically
by switching to a dissipative configuration, it does turn out
that dissipative couplings can predominantly outstrip the ef-
ficiency of coherent setups under anti-PT conditions. From
Eqs. (9) and (10), the figure of merit quantified as an advan-
tage gained through anti-PT symmetry in dissipative environ-
ments can be simplified as

η(d.c)
s

η(c.c)
s

=

[
{∆2 + (γ − Γ)2}{∆2 + γ2 + Γ2}

Γ2{∆2 + γ2 − Γ2}

]1/2
, (11)

where κa ≈ κm and Γ ≈ J has been assumed. For large
dampings or frequency detunings in the range ∆ ≥ Γ, the
expression above exceeds 1, demonstrating the superiority of
these couplings. In the complementary regime, the situation
is not so cut and dry, and numerical means become the
imperative.

Anti-Stokes output: An identical calculation for the anti-
Stokes process yields the same efficiency factor as above, i.e.,

η(d.c)
as =

∣∣∣∣∣∣by,out

aµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ iΓ
√
κoκa + (∆a − iγa)

√
κoκm

(∆a − iγa)(∆m − iγm) + Γ2e2iφ

∣∣∣∣∣∣, (12)

where the relevant input-output relation, by,out = −
√
κom,

has been employed. Thus, the input microwave photons
of frequency ωµ, upon interacting with the optical wave of
frequency Ω0, are converted into output traveling light modes
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FIG. 3: Second scheme for microwave-to-optical conversion. The microwave input as
well as the laser drive are targeted on the YIG sphere, generating the optical sidebands.

FIG. 4: Stokes conversion efficiencies for the scheme 2 with
the chosen parameters γ = 1.1Γ (i.e., ε = 0.1) and γ = 1.01κ
(i.e., ε = 0.01), under anti-PT symmetry. The graph with the
lowest peak corresponds to a non-anti-PT-symmetric system
with ∆a = ∆,∆m = −∆ + 0.5Γ, γ = 1.1Γ. The absolute ef-
ficiencies have been scaled up by S (ε = 0.1) = 1.4 × 105

and S (ε = 0.01) = 1.4 × 104. The two graphs in the
anti-PT symmetric case have peaks in close proximity of
each other, which vindicates the proportionality in Eq. (15).

with frequencies Ω0−ωµ and Ω0 +ωµ pertaining to the Stokes
and anti-Stokes bands respectively.

B. Scheme 2: Direct excitation of the magnons by a microwave
pump

This protocol of selectively driving the YIG sphere, as
demonstrated in Fig. 3, can exploit a spectral singularity of
dissipatively interacting systems in drawing out an enhanced

steady-state response in the hybrid system. The vacuum of
the quantized field in a reservoir induces coherence between
any two systems coupled to it. When optimally strong, the
coherence can push one of the poles in the linear response
to the real axis, under anti-PT symmetric conditions. With
the corresponding linewidth suffering a stark suppression, the
resonant response shoots up, only to be regularized by intrin-
sic anharmonicites present in any of the modes. This fea-
ture in a two-mode dissipatively coupled system has been tai-
lored into a convenient mechanism for sensing weak nonlin-
ear perturbations31. Although, for our current analysis, we
do not meander into the nonlinear domain, we throw light on
the feasibility of ramping up the efficiency of our conversion
model by operating in the neighborhood of this singularity.
With this constraint, it is easy to see that the poles in Eq. (9)
approach zero as ∆ → 0 and Γ → γ. This is possible un-
der the circumstance when extraneous decoherence is strongly
overshadowed by the coherence produced by the shared reser-
voir. However, around this point, the numerator also becomes
small, precluding sizable enhancements in the output fields
procreated via scheme 1. To mitigate the pernicious role of
the numerator, we can merely resort to shining a maser beam
on the YIG sample. While the microwave-YIG interaction
becomes H (m)

micro = −i~
√

2κm[m†aµe−i(ωµt−φ) − ma†µei(ωµt−φ)],
the cavity gets decoupled from any external driving fields.
Therefore, the termH (a)

micro drops out. The Langevin equations
for the mode amplitudes corresponding to the Stokes process
would, then, be remodeled as

ȧ = −(i∆a + γa)a − Γeiφm,

ṁ = −(i∆m + γm)m − Γeiφa −
√

2κmaµeiφ +
√
κob†y . (13)

The input-output relation pertaining to the optical mode by
remains intact, which yields the Stokes efficiency factor to be

η(d.c)
s =

∣∣∣∣∣∣by,out

aµ

∣∣∣∣∣∣ =

√
2κoκm(∆2

a + γ2
a)∣∣∣(∆a − iγa)(∆m − iγm) + Γ2e2iφ

∣∣∣ (14)
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To bring out the significance of the anti-PT symmetry, we look
at the behavior of the above expression under this constraint,
i.e., ∆a = −∆m = ∆, γ1 = γ2 = γ and φ = nπ . The efficiency
is plotted in Fig. 4, which unveils a spike around the origin
∆/κ = 0. When γ is only slightly larger than Γ, such that
γ = Γ(1 + ε) for ε � 1, the above expression reduces, in the
limit ∆/Γ→ 0, to

η(d.c)
s ≈ (ε/2)−1(κo/κa)1/2. (15)

Consequently, the smallness of ε has a direct bearing on the
scaling up of the figure of merit characterizing the conversion
scheme. For instance, when ε becomes one-tenth, there is
about a tenfold amplification observed in the optical output.
This is evident from the comparative plot in Fig. 4, since the
deviations of γ from Γ are respectively one and two orders of
magnitude smaller than Γ. For ε ≈ 0.1, the value of η(d.c)

s ap-
proximates to 0.025%, which signifies a remarkable improve-
ment over the coherent setting. In the same figure, we also
contrast the symmetric system with a non-symmetric one sat-
isfying ∆a = ∆, ∆m = −∆ + 0.5Γ and γ = 1.1Γ. A substantial
reduction in the peak conversion efficiency - by about a factor
of 2.5 - is observed near the origin in the non-symmetric case,
testifying to the role of anti-PT symmetry in boosting up the
conversion potential.

This property in a dissipatively coupled system can also be
justified from the perspective of bright and dark states pertain-
ing to radiating and non-radiating modes of the system. On
defining two linearly independent modes c± = 1/

√
2(a ± m),

we find that the mode c− evolves as ċ− = −εΓc− − i∆c+ −√
κmaµ +

√
κ0b†y . Thus, the mode c− acts as a long-lived mode,

akin to a dark state, as ε becomes small. The other mode c+

decays significantly faster at the rate of 2Γ. The emergence of
a dark state explains the coherent buildup in the output signal
around the singularity ε = 0.

IV. OPTICAL-TO-MICROWAVE CONVERSION:
NONRECIPROCITY DUE TO DISSIPATIVE COUPLING

The reverse procedure of light getting transformed into mi-
crowave photons is made feasible by the inverse Faraday ef-
fect. The initial conditions are now translated into inject-
ing two copropagating phase-coherent laser inputs (by and bz)
along the optical transmission line, with the relevant frequen-
cies in the optical domain and separated by a microwave fre-
quency. If the difference frequency coincides with a Kittel
mode frequency, the resonance imparts an oscillatory magne-
tization to the magnons in the YIG, which, in turn, elicit trav-
eling microwave photons at this difference frequency. With

the plane-wave ansatz by =

√
P
~Ω

e−iΩt, where P is the drive
power, we can derive the induced microwave output at fre-
quency ω+ = Ω0 − Ω (Stokes scattering) or ω− = Ω − Ω0
(anti-Stokes scattering), depending on whichever is positive,
by solving the dynamical equations in time domain. On rotat-
ing the variables as m → meiωµt and a → aeiωµt, and defining

the input amplitude β =

√
P
~Ω

, we reduce the evolution equa-

FIG. 5: Nonreciprocal Stokes’ conversion efficiencies (M: Mi-
crowave, O: Optical) pertaining to the scheme 1, for the sys-
tem parameters ∆a = −∆m = δ (for M→O) and δ(+)

a = −δ(+)
m =

δ (for O→M), plotted against δ for two sets of the phase sepa-
ration φ. We choose γa = γm = 1.1Γ. The conversion is, how-
ever, reciprocal when φ is an integer multiple of π. The M→O
graphs refer to Eq. (9), and the O→M graphs refer to Eq. (19).

tions as

ȧ = −(iδ(±)
a + γ1)a − Γeiφm,

ṁ = −(iδ(±)
m + γ2)m − Γeiφa ±

√
κoβ, (16)

where the detunings δ(±)
a = ωa − ω± and δ(±)

m = ωm − ω± have
been introduced, and the rapid oscillations neglected. Since
no classical microwave drive needs to be applied, the corre-
sponding interaction term has been dropped. It is now a sim-
ple exercise to evaluate the scattered microwave field in the
long-time limit. Clearly, the long-time solutions X± would
correspond to fresh microwave oscillations at ω+ or ω−, as
the case may be, as an artifact of the nonlinear interaction be-
tween the two optical beams and the driven magnons. Eq. (16)
yields the solutions

X± = ∓i
√
κ0βH

−1
(
0
1

)
. (17)

Invoking the input-output relation for the field transmitted
across the microwave waveguide, we find that

a±out = −(
√
κaeiφa± +

√
κmm±)

= ∓iβ
[ iΓe2iφ √κ0κa +

√
κoκm(δ±a − iγ1)

(δ±a − iγ1)(δ±m − iγ2) + Γ2eiφ

]
. (18)

This allows us to infer the conversion efficiencies for the two
possible microwave bands,∣∣∣∣∣∣a±out

β

∣∣∣∣∣∣ =

∣∣∣∣∣∣ iΓe2iφ √κoκa + (δ±a − iγ1)
√
κoκm

(δ±a − iγ1)(δ±m − iγ2) + Γ2e2iφ

∣∣∣∣∣∣. (19)

where the upper sign refers to the Stokes band and the lower
to the anti-Stokes generation.

Strikingly, there is a structural disparity between the ex-
pression in Eqs. (9) or (14), and that in Eq. (19), indicat-
ing nonreciprocal transductions. In the case of scheme 1, for
φ = nπ, the microwave-to-optical conversion efficiency and
vice versa resemble each other up to a reinterpretation of the
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FIG. 6: Nonreciprocity in the Stokes’ conversion efficien-
cies (M: Microwave, O: Optical) pertaining to scheme 2,
for the system parameters ∆a = −∆m = δ (for M→O)
and δ(+)

a = −δ(+)
m = δ (for O→M). We use the same

damping parameters as in Fig. 5. The M→O graphs re-
fer to Eq. (14), and the O→M graphs to Eq. (19).

detunings. However, there is a palpable quantitative asym-
metry in the two mechanisms pertaining to an arbitrary phase
for an otherwise commensurate set of system parameters, as
demonstrated in Fig. 5(a,b). The discrepancy between the two
efficiency factors is even more evident in scheme 2, whereby
the two conversion processes ensue with starkly disparate ef-
ficiencies, regardless of the choice of phase. We illustrate this
effect in Fig. 6(a,b). Fundamental to the nonreciprocity in ei-
ther scheme is the factor that microwave fields are directly or
indirectly linked up with both the cavity and the YIG, whereas
the optical fields interact purely with the YIG. In addition,
the phase-sensitive asymmetry pertinent to scheme 1 can be
traced down to the existence of the reservoir-mediated phase-
coupling between the cavity and the YIG, that is a characteris-
tic of dissipatively coupled systems. This is veritably distinct
from the symmetric nature of conversion observed in coher-
ently coupled setups, where both the conversion mechanisms
unfold with equal efficiencies. Note that this nonreciprocity in
the conversion mechanisms exists in spite of the symmetrical
interaction between the two optical modes and the magnons,
as embodied inHoptical.

V. CONCLUSION

In conclusion, we have demonstrated the efficient intercon-
version between optical and microwave fields in the context of
cavity-magnonicsa dissipatively coupled optomagnonic setup.
As reported in the manuscript, dissipatively coupled sys-
tems with anti-PT symmetry perform significantly better than
coherent settings for comparable system parameters. We
have explicated two disparate schemes for the microwave-to-
optical conversion, one of which involves injecting the mi-
crowave field through the shared waveguide and the other
where the ferromagnetic sample is directly subject to an exter-
nal pump. While the two schemes showcase improved conver-
sion efficiencies compared to the coherently coupled systems,
the second scheme, which directly drives the magnetic sam-
ple, manifests remarkable improvements when the dissipative
coupling dominates the extraneous dissipations. This supe-

rior conversion efficiency stems from the emergence of a long-
lived dark mode, and consequently, the linear response suffers
a tremendous boost. The transduction protocols achieved via
strong phase-sensitive dissipative couplings also demonstrate
strong nonreciprocity, with apparent discrepancies in the effi-
ciencies of microwave to optical conversion and vice versa.
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Appendix A: Derivation of the master equation for a chain of
emitters coupled to a waveguide

As depicted in Fig. 7, we consider an N-mode system
(S) interacting dissipatively through a shared one-dimensional
bath (B) aligned along the x-axis. Keeping the model very ba-
sic, we split the net Hamiltonian H into three contributions
given by

HS = ~
N∑
λ=1

ωλc†λcλ,

HB = ~
∑

k

ωka†kak,

HS B = i~
∑

k

2∑
λ=1

gkλ(akeikxλ − a†ke−ikxλ )(cλ + c†λ), (A1)

where we assume that the mode cλ is coupled to the waveg-
uide at the location x = xλ. The coupling coefficients gkλ’s are
assumed to be real. Here,HS B exemplifies a typical two-body
interaction among spatially separated modes with electromag-
netic field quantized in a one-dimensional geometry. We can
adiabatically eliminate the reservoir degrees of freedom to ob-
tain the master equation under the Markov approximation as

ρ̇S (t) = −
i
~

[HS , ρS (t)]

−
1
~2

∫ ∞

0
dτTrB[HS B, [HS B(−τ), ρS (t)ρB]] (A2)

where O(−τ) = exp
[
− i
~
(HS +HB)τ

]
O exp

[
i
~
(HS +HB)τ

]
,

and ρB is the initial state of the bath59. Idealizing the bath
to be a thermalized vacuum at zero temperature, the reser-
voir signatures would encoded as 〈akak′〉 =

〈
a†kak′

〉
= 0 and〈

aka†k′
〉

= δk,k′ . Substituting these expressions into (21), we
obtain τ−integrals which, for the moment, can be expressed
in terms of

T
(±)
kµ =

∫ ∞

0
dτei(ωµ±ωk)τ = πδ(ωµ ± ωk) + iP

1
(ωµ ± ωk)

,

(A3)
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FIG. 7: An array of N single-mode quantum emitters coupled to the evanescent field of
a one-dimensional waveguide, with γα = καα denoting the individual coupling rates. The
waveguide can be adiabatically eliminated to yield the master equation of the emitter chain.

where P(1/x) denotes the Cauchy Principal Value of its argu-
ment. Since ωk’s are all positive, terms of the form δ(ωµ +ωk)
can be stamped out. In light of these simplifications, we can
compactify (21) into the form

ρ̇S = −
i
~

[HS , ρS ] −
1
~2

N∑
α,β=1

(Wαβ +W
†

αβ), (A4)

where a typical contribution would appear as

Wαβ =
∑

k

gkαgkβeik(xα−xβ)
[
T

(−)
kβ (c†αcβρS − cβρS c†α)+

T
(+)
kβ (cαc†βρS − c†βρS cα)

]
. (A5)

We have dropped the fast-oscillating terms that go as cαcβ
or c†αc†β under the purview of the rotating wave approxima-
tion. Using a linearized approximation to the reservoir fre-
quencies by letting ωk ≈ vg|k|, we take the continuum limit∑

k →
L
2π

∫
dk in computingWαβ andW†

αβ. With the identi-

fication Λ± = 1
π
P
∫ ∞
−∞

dk eik(xα−xβ)

ωβ±vg |k|
and the assumption that the

coupling to the modes is independent of the field’s propa-
gation direction, the cardinal intermediate relations could be
codified as∫ ∞

−∞

dke±ikxαβδ(ωβ − vg|k|) =
2
vg

cos
(
kβxαβ

)
,

Λ+ + Λ− =
2
vg

sin
(
kβxαβ

)
, (A6)

where xαβ =
∣∣∣xα − xβ

∣∣∣ and kβ = ωβ/vg. Terms like
P
∫ ∞
−∞

dk 1
ωβ±vg |k|

get reflected as small frequency shifts in ω1

and ω2, which can be neglected. Then, collecting the like
terms together in (23) and exploiting the preceding relations
in (24) and (25), we obtain the full master equation for the
dissipative dynamics of S:

ρ̇S = −
i
~

[HS , ρS ] −
N∑

α,β=1

καβ(c†αcβρS − 2cβρS c†α + ρS c†αcβ)

−i
∑
α,β

Ωαβ[c†αcβ, ρS ],

(A7)
where the off-diagonal coefficients καβ, for α , β, signify dis-
sipative couplings, while Ωαβ simulate dispersive interactions.
The relevant coefficients are given by

καβ =
g2
αL
vg

δαβ + Γαβ cos φαβ(1 − δαβ),

Γαβ = (καακββ)1/2 =
gαgβL

vg
,

Ωαβ = Γαβ sin φαβ, (A8)

where, in view of the proximity between the transition
frequencies, it is assumed that kλ ≈ k0 = ω0/vg ∀λ ∈ {1,N}.
gkα ≈ gα, and {k0, ω0} is the central waveguide mode in
the vicinity of which the linear dispersion holds valid. The
phases φαβ are defined as φαβ = k0xαβ, and gkλ’s are taken
to be k-independent. When φαβ’s are integral multiples of
π, the couplings are purely dissipative. Note that the decay
parameter καα =

g2
αL
vg

deduced here accounts only for the
waveguide’s contribution to the dynamics. When other
decohering channels are considered in parallel, additional
dissipative effects are tacked onto these terms.
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