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Under the Born-Oppenheimer approximation, the electronic ground state evolves adiabatically
and can accumulate geometrical phases characterized by the molecular Berry curvature. In this
work, we study the effect of the molecular Berry curvature on the lattice dynamics in a system
with broken time-reversal symmetry. The molecular Berry curvature is formulated based on the
single-particle electronic Bloch states. It manifests as a non-local effective magnetic field in the
equations of motion of the ions that are beyond the widely adopted Raman spin-lattice coupling
model. We employ the Bogoliubov transformation to solve the quantized equations of motion and
to obtain phonon polarization vectors. We apply our formula to the Haldane model on a honeycomb
lattice and find a large molecular Berry curvature around the Brillouin zone center. As a result, the
degeneracy of the optical branches at this point is lifted intrinsically. The lifted optical phonons
show circular polarizations, possess large phonon Berry curvature, and have a nearly quantized
angular momentum that modifies the Einstein-de Haas effect.

I. INTRODUCTION

The Born-Oppenheimer approximation assumes an
adiabatic evolution of electronic states following motion
of the ions1. During the evolution, the electronic ground
state can accumulate nontrivial geometrical phase in the
absence of time-reversal symmetry2,3. The influence of
this phase on the ion’s dynamics was discussed first by
Mead and Truhlar in molecules2, which was later identi-
fied as an electronic Berry phase with respect to the ion’s
displacement3 and dubbed as a molecular Berry phase4.
In magnetic molecules, the molecular Berry phase can in-
duce vibration modes with nonzero angular momentum5.

In a periodic lattice, the molecular Berry curvature
associated with this phase can influence directly the
lattice dynamics and therefore the properties of the
phonons6–13. In the long-wavelength limit, this Berry
curvature manifests as a Hall viscosity8–10 that can mod-
ify the dispersion, polarization, and transport properties
of the long-wavelength phonons6,7,11,12. By considering a
finite overlap between electronic wavefunctions on neigh-
boring sites, a recent work studied the molecular Berry
curvature induced by a magnetic fieldB in a nonmagnetic
insulator in the linear order of B14. However, the molec-
ular Berry curvature in a Bloch system without a uniform
magnetic field has not been explicitly studied15. A Bloch-
wavefunction-based formula of the molecular Berry cur-
vature is highly desired16.

In this work, we explore the effect of molecular Berry
curvature on the lattice dynamics in the absence of a uni-
form magnetic field. In an electronic system that breaks
the time-reversal symmetry and respects the transla-
tional symmetry we formulate the molecular Berry curva-
ture by using single-particle Bloch wavefunctions and as-
suming the many-body electronic ground state as a Slater
determinant. The molecular Berry curvature influences
the lattice dynamics as an effective magnetic field, which

however is nonlocal. We then employ the Bogoliubov
transformation to solve the quantized equation of mo-
tions and to obtain the spectrum and polarization vector
of the phonons.

We apply the formula to the Haldane model of a hon-
eycomb lattice. The molecular Berry curvature exhibits
a peak value at the Brillouin zone center. The peak value
depends strongly on the electronic band gap and the elec-
tronic band topology. The narrow distribution of the
molecular Berry curvature in momentum space indicates
that, in real space, one atom can be influenced by the
velocity of another atom far away. With the molecu-
lar Berry curvature, the double degeneracy of the optical
phonons at the Brillouin zone center is lifted intrinsically,
in contrast to the splitting induced extrinsically by the
magnetic field17–24. The polarization vectors become left
and right-handed, separately, which carry nonzero angu-
lar momenta contributing to a nonzero zero-point angu-
lar momentum of the lattice vibration25. The phonon
modes also carry nonzero phonon Berry curvature and
contribute to the phonon thermal Hall effect, which at-
tracts much attention in experiments recently26–29.

II. MOLECULAR BERRY CURVATURE AND
PHONON POLARIZATION

A. Molecular Berry curvature

Under the Born-Oppenheimer approximation, elec-
trons stay at their instantaneous ground state |Φ0({R})〉
at a given time with lattice configuration {R}. When
the lattice configuration evolves, the electronic ground
state evolves adiabatically and accumulates a geometri-
cal phase, which in turn can modify the lattice dynam-
ics. The geometrical phase manifests itself as a gauge
field Al,κ in the lattice Hamiltonian (it was originally re-
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ported by Mead and Truhlar2 and an alternative deriva-
tion is shown in Appendix A)

HL =
∑
l,κ

1

2Mκ

(
pl,κ − ~Al,κ({R})

)2
+ Veff({R}) (1)

where pl,κ = −i~∇l,κ with∇l,κ = ∂/∂Rl,κ is the canon-
ical momentum of the κ-th atom at the l-th unit cell with
a coordinate Rl,κ and a mass Mκ. The scalar potential
Veff({R}) is contributed from the Coulomb interaction of
the ions and the electrons whereas the vector potential
Al,κ({R}) = i〈Φ0({R})|∇l,κΦ0({R})〉 is the molecular
Berry connection that describes the geometrical phase
of the electronic ground state. Although the molecular
Berry connection is gauge dependent, it can give rise to
a gauge invariant molecular Berry curvature7,30

Gκακ′β(Rl,Rl′) = 2Im
〈 ∂Φ0

∂Rl′,κ′β

∣∣∣ ∂Φ0

∂Rl,κα

〉
(2)

where the indices α, β represent the Cartesian compo-
nents of the coordinates. One can proceed further under
the assumption that every lattice point vibrates around
its equilibrium position with {R} = {R0

l,κ + ul,κ, l =

1, . . . , N ;κ = 1, . . . , r} where the equilibrium position
R0
l,κ ≡ R0

l + dκ with R0
l being the equilibrium position

of the l-th unit cell, dκ being the relative position of the
κ-th ion, and ul,κ being its displacement. At the equi-
librium configuration, the Berry curvature Gκακ′β(Rl,Rl′)

exhibits translational symmetry that depends on R0
l−R0

l′

only.
In the following, we consider a symmetric gauge31,

which exists near the equilibrium position as shown in
Appendix B, such that

Al,κα = −1

2

∑
κ′,β,l′

Gκακ′β(R0
l −R0

l′)ul′,κ′β . (3)

By taking the advantage of the translational invariance,
we express the lattice Hamiltonian in momentum space

HL =
∑
k,κ

1

2Mκ

[
pκ(−k)− ~Aκ(−k)

] [
pκ(k)− ~Aκ(k)

]
+ Veff

(
{u(k)}

)
(4)

where the momentum-space Berry connection

Aκα(k)
.
=

1√
N

∑
l

Al,καe
−ik·R0

l = −1

2

∑
κ′,β

Gκακ′β(k)uκ′β(k)

with

uκ(k) =
1√
N

∑
l

ul,κe
−ik·R0

l

pκ(k) =
1√
N

∑
l

pl,κe
−ik·R0

l

Gκακ′β(k) =
1

N

∑
l

∑
l′

Gκακ′β(R0
l −R0

l′)e
−ik·(R0

l−R
0
l′ ).

(5)

We further express the momentum-space molecular
Berry curvature in a gauge invariant form by employ-
ing a set of many-body wavefunction {|Φn〉} with the
completeness relation

∑
n |Φn〉〈Φn| = 1 and associated

eigenenergy En. By using the identity 〈Φn|Mk,κα|Φn′〉 =

〈 ∂Φn
∂u−k,κα

|Φn′〉(En −En′) for n′ 6= n, the molecular Berry

curvature reads

Gκακ′β(k) = i
∑
n 6=0

[
〈Φ0|Mk,κα|Φn〉〈Φn|M−k,κ′β |Φ0〉

(En − E0)2

]
− {Mk,κα ↔M−k,κ′β} (6)

where E0 is the energy of the electronic ground state, En
is for the excited states, Mk,κα = ∂He

∂u−k,κα
|u−k,κα→0 rep-

resents the electron-phonon coupling with He being the
electronic Hamiltonian that depends on the atomic coor-
dinates. By further taking {|Φn〉} as Slater determinant,
the above formula can be expressed in terms of single-
particle Bloch wavefunctions as detailed in Appendix D.
This expression can readily be applied to a specific model
using the first-principles approach.

B. Phonon Polarization Vectors

We further simplify the notation by normaliz-
ing the coordinates and expressing the Hamilto-
nian in terms of matrices. We first define col-

umn vectors pk =
(
. . . pκα(k)/

√
Mκ . . .

)T
and uk =(

. . .
√
Mκuκα(k) . . .

)T
. For the two dimensional sys-

tem studied in this work, there are 2r elements. We
also define the matrix G̃k with elements G̃k(κα, κ′β) =

~
2
√
MκMκ′

Gκακ′β(k) (see Appendix E). By expressing the

potential energy in a quadratic form32 Veff

(
{u(k)}

)
=

1
2u
†
kKkuk, the lattice Hamiltonian reads

HL =
∑
k

1

2

(
uk
pk

)†(
Dk G̃†k
G̃k 1

)(
uk
pk

)
(7)

where Dk = Kk + G̃†kG̃k. It is noted that Dk here is dif-
ferent from that in Ref. 7. The corresponding canonical
equations of motion are33:(

u̇k
ṗk

)
=

(
∂HL
∂p−k

− ∂HL
∂u−k

)
=

(
G̃k 1
−Dk G̃k

)(
uk
pk

)
. (8)

We then introduce the canonical transformation

uk =
∑
ν

√
~
ω0

(
γ∗νb
†
−k,ν + γνbk,ν

)
(9)

pk =
∑
ν

i
√

~ω0

(
γ̄∗νb
†
−k,ν − γ̄νbk,ν

)
(10)
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to diagonalize the Hamiltonian as

HL =
∑
k,ν

~ωk,ν
(
b†k,νbk,ν +

1

2

)
(11)

where b†−k,ν and bk,ν are the creation and annihilation
operators of the phonon modes. These operators are

constrained by the commutation relation [bk,ν , b
†
k′,ν′ ] =

δk,k′δν,ν′ and the Heisenberg equations of motion

ḃk,ν = −iωk,νbk,ν
ḃ†−k,ν = iω−k,νb

†
−k,ν .

(12)

Assisted by these identities, the phonon energy ωk,ν and

the polarization vector ψν =
(
γν , γ̄ν

)T
need to satisfy the

eigenvalue equation

ωk,νψν =

(
iG̃k ω0
Dk

ω0
iG̃k

)
ψν (13)

which can be obtained by substituting Eqs. (9) and (10)
into Eq. (8). The eigenvalues show particle-hole symme-
try like property6, i.e., ων,k = −ω−ν,−k. Only the posi-
tive branches are physically allowed since only the wave-
functions for those branches can make the commutation
relation [bk,ν , b

†
k′,ν′ ] = δk,k′δν,ν′ valid with the normal-

ization condition ψ†νσxψν = 1.
One can transform the non-Hermitian problem to a

Hermitian one. By multiplying Eq. (13) with σx from
left, one can find that

ωk,νσxψν = Ωkψν (14)

with the Hermitian matrix

Ωk =

(
Dk

ω0
−iG̃†k

iG̃k ω0

)
.

Multiplying Eq. (14) with Ω
1
2

kσx from left side and in-

troducing a new set of eigenstates ψ̃ν = Ω
1
2

kψν , where

Ω
1
2

k is also Hermitian, we come to a Hermitian eigenvalue
problem as

ωk,νψ̃ν = Ω
1/2
k σxΩ

1/2
k ψ̃ν = Heffψ̃ν (15)

where the effective Hamiltonian Heff is Hermitian.

III. LATTICE DYNAMICS IN HALDANE
MODEL

A. Electronic Model and Molecular Berry
curvature

In this section, we present a case study on the dynam-
ics of the honeycomb lattice. In the harmonic approxi-
mation, the atoms are considered connected by springs

FIG. 1. (a) Electronic band structure represented in the Bril-
louin zone. Gap openings at the K and K′ points are due
to broken time-reversal symmetry. (b) Real part of the elec-
tronic contribution to the molecular Berry curvature GAxAy at
the k = 0 limit (Γ point). (c) Real part of the molecular
Berry curvature GAxAy in the phonon Brillouin zone. Largest
electronic contributions come from the K and K′ points (see
FIG. 1b). (d) Dependence of the peak of the Berry curvature
GAxAy(k = 0) on the lattice parameters ∂dt, t, and t′.

with longitudinal and transverse spring constantsKL and
KT , respectively. Details of this model can be found in
Appendix E.

The time-reversal symmetry is broken by the electronic
property described by the Haldane model34 with a tight-
binding Hamiltonian

He =−
∑
〈i,j〉

ta†i bj + h.c.

−
∑
〈〈i,j〉〉

t′eiφija†iaj −
∑
〈〈i,j〉〉

t′e−iφij b†i bj

=
∑
q

(
a†q b†q

)
H(q)

(
aq
bq

) (16)

where ai (a†i ) and bi (b†i ) are electron creation (annihi-
lation) operators of A and B sublattices respectively in
the i-th unit cell. The first line represents the nearest
neighbor hopping with the hopping energy t while the
second line represents the next-nearest neighbor hopping
with a flux φij attached to it. We set φij = ±π/2 for
clockwise/anti-clockwise hoppings. The lattice Hamil-
tonian can also be expressed in momentum space with
kernel H(q) and q running over the first Brillouin zone.
The single-particle Bloch eigenstates for the conduction
and valence bands are denoted as φc,vq with correspond-
ing eigen-energies εc,vq . The Bloch bands are plotted in
Fig. 1(a).

The phonons couple to the electronic system through
the dependence of the hopping energies t and t′ on the
lattice displacement {u}. The nearest-neighbor hopping
energy t depends on the relative distance d between the
two atoms. When the inter-atomic distance changes by
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δd due to atomic displacement, t changes by ∂dtδd. Here
we set t′ as a constant for simplicity.

In this work, we consider the electronic insulating sys-
tem with the lower Bloch band being completely filled.
In the non-interacting case, the many-body ground state
|Φ0〉 and the excited one |Φn〉 can be expressed as the
Slater determinant of single-particle states. One thus can
calculate the Berry curvature shown in Eq. 6 by using the
single-particle states. We can take the Berry curvature
induced by the motion of A sublattices along x and y
directions as an example, which can be expressed as

GAxAy(k) =
i

N

∑
q

[
φv†q Mk,Axφ

c
q+k

] [
φc†q+kM−k,Ayφ

v
q

]
(εcq+k − εvq)2

− i

N

∑
q

[
φv†q+kM−k,Ayφ

c
q

] [
φc†qMk,Axφ

v
q+k

]
(εcq − εvq+k)2

(17)

where M±k,Ax/Ay represent the electron-phonon cou-
plings as detailed in Appendix D that couple the elec-
tronic states with a momentum difference of k. In Fig.
1(b), we plot the contribution from each electronic mo-
mentum q to the molecular Berry curvature GAxAy(k) at
k = 0. This corresponds to the phonon induced vir-
tual direct inter-band transition process with the peak
contribution concentrating at K and K ′ valley. The de-
pendence of GAxAy(k) on k is plotted in Fig. 1(c) where
one can find that the Berry curvature shows a peak
at the phonon Brillouin zone center. By using reason-
ably realistic parameters, e.g., t = 3 eV, t′ = 0.02 eV,
∂dt = 1 eV/Å, we find that the peak of molecular Berry
curvature corresponds to an effective magnetic field of
∼ 103 Tesla. Thus, the effect of molecular Berry cur-
vature can be large in materials with narrow electronic
band gap, e.g., topological materials. In the small gap
limit, we find an analytical formula for the peak value
GAxAy(k = 0) = 3

2πa2C(∂dt/t)
2 where C is the Chern num-

ber of the system as plotted in the Fig. 1(d). It is noted
that the molecular Berry curvature vanishes at K and
K ′ points due to the vanishing of the matrix elements in
∂x,yH between conduction and valence bands at different
valleys in this model.

The formula above can be adopted by the first prin-
ciple calculation directly, which is thus essential for ex-
ploring the phonon Hall effect in magnetic materials. The
GAxAy is an analogy of the effective magnetic field in the

Raman spin-lattice coupling model35–40. In the Raman
spin-lattice coupling model, the motion of ul,Ax can only
be influenced by u̇l,Ay on the same site. In contrast, the
molecular Berry curvature distributes sharply around the
Brillouin zone center. This distribution indicates that, by
Fourier transforming back to the real space, the displace-
ment ul,Ax can be influenced by the velocity u̇l′,Ay that
is far away.

Moreover, the G matrix also has off-diagonal blocks
with nonzero matrix element GAxBy, which reflects the cor-
relation between the motions of the A and the B atoms.

FIG. 2. (a) Phonon spectrum in the presence of molecular
Berry curvature. Gap opening of the optical bands (upper
two bands) around the Γ point is due to the effect of molecular

Berry curvature, where δω = ∆
√

KL
M

. HereKL = 10−3eV/Å
2

is an in-plane longitudinal and KT = KL/4 is an in-plane
transfers effective spring constants. Inset: Two separate
phonon modes corresponding to the frequency at the Γ point.
The upper phonon band (red color) corresponds to the cir-
cular vibrations of atoms in the clockwise direction, and the
lower band (blue color) corresponds to the circular vibration
in the counter-clockwise direction. The difference of energies
of these two modes is δE = ~δω. (b) Phonon Berry curva-
ture of the upper optical band with the corresponding color
plot. The upper and lower optical bands have corresponding
Chern numbers of +1 and −1, respectively. Acoustic bands
have zero Chern numbers.

The amplitude of this term is comparable with GAxAy such

that GAxAy = −GAxBy at k = 0. The off-diagonal block is
thus important, which was completely neglected in the
traditional Raman spin-lattice coupling, and can lead
to a gap opening of the degenerate acoustic bands6,7.
Therefore, the molecular Berry curvature is a better
choice to explore the influence of electronic states on
phonons in a unified way.

B. Phonon spectrum and chiral optical phonons

Once the Berry curvature is calculated for our model
we can find the phonon spectrum using Eq. (15). The
result of the numerical calculation of this equation is pre-
sented in FIG. 2. In this figure, we can see a gap opening
between the optical branches at the Γ point. This band
gap is proportional to the molecular Berry curvature. To
show this relation, we employ the perturbation method

since G̃†kG̃k � Kk. From Eq. (14), one can find that

ω2
k,νγν = Kkγν + 2iωk,νG̃kγν . (18)

The second term on the right hand side is treated as
a perturbation. The unperturbed eigenvalues ω1,2 and
eigenstates γ0

1,2 for the optical branches at the Γ point

can be obtained from ω2
kγ

0
ν = Kkγ

0
ν . The solutions are

ω1,2 = ωΓ and γ0
1 =

√
ω0

4ωΓ

(
1 0 −1 0

)T
and γ0

2 =√
ω0

4ωΓ

(
0 1 0 −1

)T
. In the presence of the perturba-

tion, the general eigenstate can be expressed as a linear



5

combination γ̃ = c1γ
0
1 + c2γ

0
2 with c1 and c2 being some

constants to be determined. By expanding the phonon
eigenvalue at the Γ point to the first order as ω = ωΓ+δω,
one can find that

δω

(
c1
c2

)
=

2iωΓ

ω0

(
γ0

1
†
G̃kγ

0
1 γ0

1
†
G̃kγ

0
2

γ0
2
†
G̃kγ

0
1 γ0

2
†
G̃kγ

0
2

)(
c1
c2

)
(19)

where γ0
i
†
γ0
j = ω0

2ωΓ
δij is employed. Since G̃†k = −G̃k,

the matrix on the right hand side is Hermitian. Thus
the diagonal terms are zero. We find that, by setting
c1 = 1/

√
2 and c2 = ±i/

√
2, the above matrix can

be diagonalized with the phonon energy shifts δω =
± ~
MRe

[
G(k = 0)

]
. Therefore, the optical phonons are

split and the phonon polarizations become right- and left-
handed polarized. The splitting of the phonon branches
at the Brillouin zone center is expected to be observable
in optical spectral experiments.

We would like to point out that, in the absence of the
molecular Berry curvature, the dynamical matrix can be
written as a real matrix at the Brillouin zone center. As
a result, the phonons are always linearly polarized. In
the presence of the molecular Berry curvature, however,
phonons at the Γ point become circularly polarized. This
is different from the chiral phonon at the Brillouin zone
corner, which has a degenerate state at the opposite mo-
mentum.41

By using the phonon wavefunction, one can also de-
fine a phonon Berry connection and phonon Berry cur-
vature38. In Fig. 2(b), we plot the phonon Berry curva-
ture along the high-symmetric line for the higher optical
branch. Peaks appear at the points where the phonon
polarization changes from circular around the Γ point
to linear away from that point. The phonon Berry cur-
vature contributes to a nonzero Chern number 1. The
Chern number for the lower optical branch is −1 whereas
the acoustic branches have zero Chern numbers. Associ-
ated with the spectrum splitting, the Berry curvature of
optical branches can also contribute to the thermal Hall
effect26–29.

C. Phonon angular momentum

The circular polarization of phonons also give rise to
non nonzero phonon angular momentum25 that can be
expressed as

Jph =
∑
lα

ulα × u̇lα. (20)

For a 2-dimensional system, the vertical component of
the angular momentum becomes Jph

z =
∑
l,κ(uxlκu̇

y
lκ −

uylκu̇
x
lκ). It can also be written in a matrix product form

Jph
z =

∑
k

u†kLu̇k =
∑
k

u†kL
(
pk + G̃kuk

)
(21)

FIG. 3. (a) Contribution of each phonon band to the total
phonon angular momentum, where lzk,ν represents the angular
momentum of each branch without the distribution, such that

〈Jph
z 〉 =

∑
k J

z(k) =
∑

k,ν l
z
k,ν

(
1
2

+f(ωk,ν)
)

(b) Spectrum of

total phonon angular momentum Jz(k) from all four branches
in the limit T → 0K. (c) Phonon angular momentum of each
unit cell in real space. The angular momentum vanishes in a
classical limit T →∞.

where L is a real 2r × 2r antisymmetric matrix for a
system with r atoms per unit cell. By using the sec-
ond quantized expression for the canonical variables of
atoms (Eqs. (9)-(10)), we calculate the angular mo-
mentum for each phonon branch (Fig. 3(a)). We find
that the phonon angular momentum of both acoustic
branches vanish whereas the circularly polarized opti-
cal branches are nearly quantized. This is in contrast
with the phonon angular momentum obtained by using
the Raman spin-lattice model which neglects the non-
local effective magnetic field25,42. In those calculations,
the acoustic phonons at the Brillouin zone center split
and can carry nonzero energy and nonzero angular mo-
mentum. The splitting of the acoustics bands is induced
by breaking the Galilean translational symmetry due the
Raman spin-lattice coupling term that meant to serve
as an analogy to a uniformly charged lattice under a real
magnetic field. This symmetry is respected by the molec-
ular Berry curvature.

By summing over the angular momentum of all the
phonon branches, we find a nonzero value as illustrated
in Fig. 3(b). This indicates a finite zero-point lattice
angular momentum in the zero temperature limit. At
finite temperature, the thermal averaged phonon angular
momentum is

〈Jph
z 〉 = −

∑
k,ν

γ†νLγν

(
i2~ωk,ν
ω0

)(1

2
+ f(ωk,ν)

)
. (22)

Here we used bk,νb
†
k,µ = δµ,ν + b†k,µbk,ν , 〈b†k,µb

†
k′,ν〉 =

〈bk,µbk′,ν〉 = 0 and 〈b†k,µbk,ν〉 = f(ωk,ν)δµ,ν , where

f(ωk,ν) = 1

eβ~ωk,ν−1
is the Bose-Einstein distribution. In
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low temperature regime, the phonon angular momentum
has a finite value as shown in Fig. 3(c). In this limit, an
analytic expression for the phonon angular momentum
at the Γ point can be found by using the perturbative
approximation as:

〈Jph
z 〉Γ =

~2

MωΓ
Re
(
G(k = 0)

)
(23)

which is consistent with the numerical calculations of Eq.
(22). As the temperature increases, the thermal averaged
phonon angular momentum tends to go to zero. As T →
∞, Eq. (22) approximates to

〈Jph
z 〉 = −

∑
k,ν

γ†νLγν

(
2ikBT

ω0
+

i~2ω2
k,ν

6ω0kBT

)
(24)

where the first term vanishes because
∑
ν γ
†
νLγν = 0 (see

Appendix G) and the second term decreases as 1/T .

IV. SUMMARY

We formulated the molecular Berry curvature by using
the single-particle Bloch wavefunctions in the absence of
a uniform magnetic field. We studied its effect on the
lattice dynamics and thus phonons. The quantized equa-
tions of motion of the lattice are solved by using the Bo-
goliubov transformation. We applied our theory to the
Haldane model of a honeycomb lattice. For this model,
the molecular Berry curvature is narrowly distributed
around the Brillouin zone center, which indicates that,
in real space, the motion of an ion can be influenced by
the velocity of another atom that is far away. This is
different from the Lorentz force on the nuclei induced by
a magnetic field as well as the widely adopted Raman
spin-lattice coupling model. The molecular Berry curva-
ture lifts the degeneracy of optical phonons at the Γ point
forming chiral phonons with left- and right-handed polar-
izations. These modes carry nonzero angular momentum
and contribute to a nonzero total angular momentum in
the low temperature limit and thus modify the Einstein-
de Haas effect. These optical branches also carry nonzero
phonon Berry curvature that can contribute to the ther-
mal Hall effect.
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APPENDIX

A. Effective lattice Hamiltonian from the
time-dependent variational principle

The state of electrons is governed by the time-
dependent Schrödinger equation. By assuming a nor-
malized condition, it can be derived from the time-
dependent variational principle with Lagrangian Le =
〈Φ0|i~dt−He|Φ0〉 by minimizing the action with respect
to any variation of 〈Φ0| in the bra space. Under the Born-
Oppenheimer approximation, the electronic state lies at
the instantaneous ground state of the Hamiltonian He

that depends on the lattice configuration {R}. With
known instantaneous ground state, one can integrate out
the electronic degree of freedom to get the effective La-
grangian of lattice that reads

L =
∑
l,κ

Mκ

2
Ṙ2
l,κ + 〈Φ0|i~dt −He|Φ0〉

=
∑
l,κ

Mκ

2
Ṙ2
l,κ + 〈Φ0|i~dt|Φ0〉 − Veff({R})

=
∑
l,κ

Mκ

2
Ṙ2
l,κ + ~Al,κ · Ṙl,κ − Veff({R})

(25)

where Rl,κ labels the position of the κ-th atom in the l-
th unit cell with mass Mκ. Al,κ = 〈Φ0|i∇Rl,κ |Φ0〉 is the
the Berry connection. Veff({R}) is the total energy of the
electrons and ions at the configuration {R} that forms
the potential landscape of the ion. In the equilibrium
configuration {R0}, Veff takes its minimum. From the
Lagrangian, one can reveal the Hamiltonian Eq. 1 by
Legendre transformation, which agrees with that derived
by Mead and Truhlar2.

B. The existence of a symmetric gauge near the
equilibrium configuration

We consider a lattice where each atom vibrates around
its equilibrium position with a displacement ul where,
in this paragraph, we use shorthand notation for these
indices as {l, κα} → l and {l′, κ′β} → l′. In the
small {ul} limit, we can expand the Berry connection
Al = 〈Φ0|i∂l|Φ0〉 to the linear order of {ul} as Al =
A0
l + ∂l′Alul′ where the coefficients ∂l′Al are taken in

the limit of {ul} → 0 and thus are independent of {ul}.
It is noted that the Berry connection Al is expressed
in a parameter space of high dimension. It is question-
able whether there exists a gauge transform such that
Ãl = Al − ∂lχ = −1/2

∑
l′ Gl,l′ul′ with gauge invari-

ant Gll′ = ∂lAl′ − ∂l′Al = ∂lÃl′ − ∂l′Ãl. The answer
is yes. One can first define δAl = Al − Ãl. By defini-
tion, δAl = A0

l +i
∑
l′ ul′(

1
2 〈∂l′Φ0|∂lΦ0〉+ 1

2 〈∂lΦ0|∂l′Φ0〉+
〈Φ0|∂l′∂lΦ0〉). It can be verified that ∂lδAl′−∂l′δAl = 0.
According to Poincaré’s Lemma, there always exists lo-
cally a scalar function χ such that δAl = ∂lχ. One can
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thus perform such a gauge transformation eiχ|Φ0〉 to ob-
tain the Berry connection in the symmetric form.

We can now express the Berry connection (gauge field)
in a symmetric gauge. The gauge invariant Berry curva-
ture can be written as

Gκακ′β(R0
l −R0

l′) =

[
∂Al′,κ′β
∂ul,κα

− ∂Al,κα
∂ul′,κ′β

]

= i

[〈 ∂Φ0

∂ul,κα

∣∣∣ ∂Φ0

∂ul′,κ′β

〉
−
〈 ∂Φ0

∂ul′,κ′β

∣∣∣ ∂Φ0

∂ul,κα

〉]
(26)

Near the equilibrium position, the Berry connection in
the symmetric gauge is

Aκα(R0
l ) = −1

2

∑
l′,κ′β

Gκακ′β(R0
l −R0

l′)uκ′β(R0
l′) (27)

and in momentum space:

Aκα(k) = −
∑
κ′,β

1

2
Gκακ′β(k)uκ′β(k) (28)

C. Symmetry constraints on the molecular Berry
curvature

In the presence of time reversal symmetry, the Berry
curvature Gκακ′β(R0

l −R0
l′) = 0 as shown below. We con-

sider the electronic ground state that preserves time re-

versal invariance and is nondegenerate. Therefore, un-
der time reversal operation Θ, the ground state |Φ0〉 be-

comes |Φ̃e〉 = |ΘΦ0〉 = eiφ|Φ0〉 with a possible phase
difference. Therefore, the Berry connection obtained
from |Φ̃e〉 is Ãl,κα = Al,κα + ∂l,καφ. Alternatively,

Ãl,κα = i〈ΘΦe|∂l,κα|ΘΦe〉 = i(〈Φe|∂l,κα|Φe〉)∗ by the def-
inition of the time reversal operator Θ with ∗ being the
complex conjugate. Thus, Ãl,κα = −Al,κα. As a result,
Al,κα = ∂l,καφ/2. The corresponding Berry curvature
Gκακ′β(R0

l −R0
l′) = ∂l,καAl′,κ′β − ∂l′,κ′βAl,κα = 0.

Since the Berry curvature in real space is real number
and Gκακ′β(R0

l −R0
l′) = −Gκ′βκα (R0

l′−R0
l ), it can be shown

by definition that Gκακ′β(k) = −Gκ′βκα (−k) = −Gκ′βκα (k)∗.

Thus, G(k) = −G(k)†.
Considering the translational symmetry, one can find

that when all the displacement vectors ul,κ change by
the same small amount δu, the Berry connections do
not change, i.e., Al,κα({u} + δu) = Al,κα({u}). Thus,
δu
∑
l′,κ′β ∂l′,κ′βAl,κα = 0. Therefore,

∑
l′,κ′β G

κα
κ′β(R0

l −
R0
l′) = 2Im

∑
l′,κ′β ∂l′,κ′βAl,κα = 0.

D. Molecular Berry curvature in non-interacting
electronic system

The molecular Berry curvature can be expressed in
general by the many-body wavefunction {Φn} where
n = 0 stands for the ground state and the n > 0 are
excited states

Gκακ′β(k) =
1

N

∑
l

∑
l′

Gκκ
′

αβ (R0
l −R0

l′)e
−ik·(R0

l−R
0
l′ )

=
1

N

∑
l,l′,n6=0

i

[〈 ∂Φ0

∂ul,κα

∣∣∣Φn〉〈Φn

∣∣∣ ∂Φ0

∂ul′,κ′β

〉
− (ul,κα ↔ ul′,κ′β)

]
u→0

e−ik·(R
0
l−R

0
l′ )

=
i

N

∑
n 6=0

 〈Φ0|
∑
l
∂He
∂ul,κα

e−ik·R
0
l |Φn〉〈Φn|

∑
l′

∂He
∂ul′,κ′β

eik·R
0
l′ |Φ0〉

(En − E0)2


−

 〈Φ0|
∑
l′

∂He
∂ul′,κ′β

eik·R
0
l′ |Φn〉〈Φn|

∑
l
∂He
∂ul,κα

e−ik·R
0
l |Φ0〉

(En − E0)2


=

i

N

∑
n 6=0

〈Φ0|Mk,κα|Φn〉〈Φn|M−k,κ′β |Φ0〉 − 〈Φ0|M−k,κ′β |Φn〉〈Φn|Mk,κα|Φ0〉
(En − E0)2

(29)

where Mk,κα =
∑
l
∂He
∂ul,κα

e−ik·R
0
l =

√
N ∂He
∂u−k,κα

in the

ul → 0 limit. In this limit, the Mk,κα involves only
single electron scattering process.

In the non-interacting system, the ground state is a
product state composed of single-particle states below
the chemical potential µ with |Φ0〉 = Πεm,q<µc

†
m,q|0〉 and

c†m,q being the creation operator of the state at the mo-
mentum q of the m-th band. The excited states can be
expressed |Φn′〉 is the many body states with one occu-
pied excited state and a hole. One can then express the
Berry curvature in single particle wavefunction as
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Gκακ′β(k) =
i

N

∑
q

∑
εm<µ
εm′>µ

φ†m,qMk,καφm′,q+kφ
†
m′,q+kM−k,κ′βφm,q

(εm,q − εm′,q+k)2
−
φ†m,q+kM−k,κ′βφm′,qφ

†
m′,qMk,καφm,q+k

(εm,q+k − εm′,q)2
(30)

In the following, we focus on the Haldane model to
calculate the molecular Berry curvature explicitly. We
take GAxAy(k) as an example by setting ul,κα = ul,Ax and
ul′,κ′β = ul′,Ay. For this particular case, we have:

Mk,Ax =
∑
l

∂He

∂ul,Ax
e−ik·R

0
l

=
∑
l,i

−(
∂ti

∂ul,Ax
b†l,−Rial + h.c.)e−ik·R

0
l

where ti with i = 1-3 represents the hopping from site
A in the unit cell R0

l to the site B in the unit cell of

R0
l − Ri with R1 = (a/2, a

√
3/2),R2 = (a, 0),R3 =

(0, 0) as shown in Fig. 4. Here, we have ∂t1
∂ul,Ax

= 0,

∂t2
∂ul,Ax

=
√

3
2 ∂dt,

∂t3
∂ul,Ax

= −
√

3
2 ∂dt which are independent

of l and ∂dt represents the gradient of the hopping energy
between two adjacent sites along the bond between them,
which we take to be ∂dt = 1 eV/Å.

By using the Fourier transformation al =
1√
N

∑
q aqe

iq·R0
l , we find that

Mk,Ax =

√
3∂dt

2

∑
q

b†qaq+k

(
eiq·R2 − e−iq·R3

)
+

√
3∂dt

2

∑
q

a†qbq+k

(
e−i(q+k)·R2 − ei(q+k)·R3

)
=
∑
q

(
a†q b†q

)
∂xH

(
aq+k
bq+k

)
(31)

where ∂xH is a 2 × 2 matrix with only off diagonal ele-
ments:

(∂xH)12 =

√
3

2
∂dt
(
e−i(q+k)·R2 − ei(q+k)·R3

)
(∂xH)21 =

√
3

2
∂dt
(
eiq·R2 − e−iq·R3

)
.

Similarly, we have ∂t1
∂ul,Ay

= −∂dt, ∂t2
∂ul,Ay

= ∂dt
2 ,

∂t3
∂ul,Ay

= ∂dt
2 . We thus can obtain that

M−k,Ay =
∑
l

∂He

∂ul,Ay
eik·R

0
l =

=
∑
l,i

[
− ∂ti
∂ul,Ay

a†l bl+δie
ik·R0

l − ∂ti
∂ul,Ay

b†l+δiale
ik·R0

l

]

=
∂dt

2

∑
q

a†k+qbq

(
2e−iq·R1 − e−iq·R2 − eiq·R3

)
+

+
∂dt

2

∑
q

b†k+qaq

(
2ei(k+q)·R1 − ei(k+q)·R2 − e−i(k+q)·R3

)
=
∑
q

(
a†q+k b†q+k

)
∂yH

(
aq
bq

)
(32)

with:

(∂yH)12 =
∂dt

2

(
2e−iq·R1 − e−iq·R2 − eiq·R3

)
(∂yH)21 =

∂dt

2

(
2ei(k+q)·R1 − ei(k+q)·R2 − e−i(k+q)·R3

)
.

This is an expression in terms of a single particle wave-
functions and eigenstates. Since only the relative motion
of atoms generate the Berry curvature urel = u1−u2 ⇒
du1 = −du2, where u1 and u2 are displacements of two
different atoms, all 16 different combinations of atoms
will generate only 4 independent values of Berry curva-
ture:

GAxAx(k) = −GAyAy(k) = GBxBx
∗
(k) = −GByBy

∗
(k) ≡ G1(k)

GAxAy(k) = −GAyAx
∗
(k) = GBxBy

∗
(k) = −GByBx(k) ≡ G2(k)

GAxBy(k) = −GAyBx(k) = GBxAy
∗
(k) = −GByAx

∗
(k) ≡ G3(k)

GAxBx(k) = GAyBy(k) = GBxAx(k) = GByAy(k) ≡ 0

E. Phonon modes of a honeycomb lattice

1. Hamiltonian for the lattice dynamics

A semi-classical Hamiltonian of the lattice in the adi-
abatic approximation can be written in a matrix form as
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FIG. 4. Honeycomb model to describe the effective spring
constant of a unit cell. In plane longitudinal and transverse
spring constants are KL and KT respectively

(Eq. 1):

HL =
∑
l

1

2
(pl − ~Ãl)T (pl − ~Ãl) + V ({ul})

=
∑
k

1

2
(pk − ~Ãk)†(pk − ~Ãk) + V ({uk})

=
∑
k

1

2
(pk + G̃kuk)†(pk + G̃kuk) +

∑
k

1

2
u†kKkuk

(33)
where the first term is a kinetic energy of atomic vi-
brations and the latter is the effective interaction of the
atoms mediated by the dynamics of electrons. Here the
masses have been absorbed into the definition of momen-
tum and displacement vectors. For a lattice with 2 atoms
per unit cell, such as a honeycomb lattice, the momentum
and displacement vectors can be expressed as:

pk =


pk,Ax√
MApk,Ay√
MApk,Bx√
MBpk,By√
MB

 ; uk =


√
MAuk,Ax√
MAuk,Ay√
MBuk,Bx√
MBuk,By

 ;

and a gauge field matrix as:

G̃k =
~
2


G1(k)
MA

G2(k)
MA

0 G3(k)√
MAMB

−G2(k)∗

MA

−G1(k)
MA

−G3(k)√
MAMB

0

0 G3(k)∗√
MAMB

G1(k)∗

MB

G2(k)∗

MB

−G3(k)∗√
MAMB

0 −G2(k)
MB

−G1(k)∗

MB


which is a skew-Hermitian matrix by definition. Here Kk
is a force constant matrix (in units of eV/(uÅ

2
), u-atomic

mass unit) defined as25:

Kk =

 K01+K02+K03

MA
−K02+K01e

−ik·R1+K03e
−ik·R2√

MAMB

−K02+K01e
ik·R1+K03e

ik·R2√
MAMB

K01+K02+K03

MB


where k · R1 = kxa/2 +

√
3kya/2 and k · R2 = kxa,

with a being a distance between two neighboring unit
cells with unit vectors (a, 0) and (a/2, a

√
3/2). Here

K01 = U(π/2)KxU(−π/2), K02 = U(π/6)KxU(−π/6)

and K03 = U(−π/6)KxU(π/6) where Kx =

(
KL 0
0 KT

)
is a spring constant matrix constructed from longitudi-
nal and transverse spring constants KL and KT , and

U(θ) =

(
cos θ − sin θ
sin θ cos θ

)
is a 2-dimensional rotation op-

erator in x− y plane. Combining all these we obtain the
lattice Hamiltonian as in Eq. (33).

Considering all these the lattice Hamiltonian can be
written as:

HL =
∑
k

1

2

[
p†kpk + u†kDkuk + (p†kG̃kuk + h.c.)

]
(34)

where Dk = Kk + G̃†kG̃k. We then can get a pair of
canonical equations of motion

ṗk = − ∂H

∂u−k
= G̃kpk −Dkuk (35)

u̇k =
∂H

∂p−k
= pk + G̃kuk. (36)

2. Second quantization with Bogoliubov transformation

After introducing the second quantization of displace-

ment and momentum as33 uk =
√

~
2ω0

(
a†−k + ak

)
=√

~
2ω0

ūk and pk = i
√

~ω0

2

(
a†−k − ak

)
=
√

~ω0

2 p̄k, where

a†−k and ak represent column vectors of creation and an-
nihilation operators, the canonical equations of motion
can be combined into a matrix form:(

˙̄uk
˙̄pk

)
=

(
G̃k 1ω0

−Dk

ω0
G̃k

)(
ūk
p̄k

)
(37)

Now replacing

(
ūk
p̄k

)
=

(
1 1
1i −1i

)(
a†−k
ak

)
we can ob-

tain:
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(
−1i 0

0 1i

)(
˙̃a†−k
ȧk

)
=

1

2

(
Dk

ω0
+ 1ω0 − 2iG̃k

Dk

ω0
− 1ω0

Dk

ω0
− 1ω0

Dk

ω0
+ 1ω0 + 2iG̃k

)(
ã†−k
ak

)
= Ω̃∗k

(
ã†−k
ak

)
(38)

where Ω̃∗k is an 8×8 positive semi-definite Hermitian ma-

trix. The notations Ω̃∗k was chosen for the convenience
that will be clear shortly. Now we introduce the Bogoli-
ubov transformation as43:

ak =
∑
ν

(
ανbk,ν + β∗νb

†
−k,ν

)
(39)

ã†−k =
∑
ν

(
α∗νb
†
−k,ν + βνbk,ν

)
(40)

where the tilde represents the transpose of the vector
and the summation is over all the branches. Here bk,ν
(b†−k,ν) are single valued Bogoliubov operators corre-
sponding to each branch and αν and βν are column vec-
tors of 4 elements corresponding to each degree of free-
dom. We require that each Bogoliubov operators repre-
sent the eigenstates with a specific frequency ωk,ν , such

that ḃk,ν = −iωk,νbk,ν and ḃ†−k,ν = iω−k,νb
†
−k,ν . Using

this transformation we can obtain the following equa-
tions:

ωk,νσzχ = Ω̃kχ (41)

ω−k,νσzχ
∗ = Ω̃∗−kχ

∗ (42)

where χ =

(
αν
βν

)
and Ω̃k is same as was defined in

Eq. (41). Now, if we introduce a new eigenstate as

χ̃ = Ω̃
1/2
k χ, we can obtain a new eigenvalue equation

as

ωk,ν χ̃ = Ω̃
1/2
k σzΩ̃

1/2
k χ̃ = H̃effχ̃ (43)

where H̃eff is an effective Hamiltonian which is an 8 × 8
Hermitian matrix and can be solved to find the ωk,ν .

As Eq. (43) suggests, we will obtain 8 different phonon
branches but only 4 of them should have physical mean-
ing as we have only 4 physical degrees of freedom. In
the following discussion we will show how to pick those 4
physical branches. Using Eq. (41) we can get a relation:

ωk,ν

(
α†ναν − β†νβν

)
=
(
α†ν β†ν

)
Ω̃k

(
αν
βν

)
(44)

This expression will help us to identify the 4 branches we
are looking for. For that, we first need to put constraints
on the Bogoliubov transformation. Initial bosonic oper-
ators had the commutation relations as[

ak,d, a
†
k′,d′

]
= δkk′δdd′ (45)[

ak,d, ak′,d′
]

=
[
a†k,d, a

†
k′,d′

]
= 0 (46)

After the transformation we require that the new opera-
tors should obey similar bosonic commutation relations.
For that we write[

bk,ν , b
†
k′,µ

]
= δkk′δµν (47)[

bk,ν , bk′,µ
]

=
[
b†k,ν , b

†
k′,µ

]
= 0 (48)

From these two conditions it is easy to show the following
relations: ∑

ν

(
ανdα

ν
d′
∗ − βνd

∗βνd′
)

= δdd′ (49)∑
d

(
αµd
∗
ανd − βνd

∗βµd

)
= δµν (50)

where the first one can be defined as the completeness
relation and the second one as orthonormal condition.
From this we can see that for the Bogoliubov transfor-
mations to preserve the bosonic commutation relations
we should have α†ναν − β†νβν = +1, i.e it should be a
positive number, and this appears on the left hand side
of Eq (50). It can also be shown that Ωk is a positive
semidefinite matrix and we conclude that only positive
solutions of ωk,ν should be considered as physical.

Alternatively, if we switch to a new basis as γν =
1√
2

(αν + βν) and γ̄ν = 1√
2

(αν − βν) Eq. (44) can be

rewritten as

ωk,ν

(
γν
γ̄ν

)
=

(
iG̃k ω0
Dk

ω0
−iG̃†k

)(
γν
γ̄ν

)
(51)

with the normalization condition resulted from Eq. (44):

γ†ν γ̄ν + γ̄†νγν = 1 (52)

From this we can construct a more compact eigenvalue
problem: multiplying both sides of Eq. (57) by σx we
obtain

ωk,νσxψν =

(
Dk

ω0
−iG̃†k

iG̃k ω0

)
ψν = Ωkψν (53)

where ψν =

(
γν
γ̄ν

)
. Here Ωk is again a semi-definite posi-

tive matrix and for that we can introduce new eigenstate

as ψ̃ν = Ω
1/2
k ψν and obtain:

ωk,νψ̃ν = Ω
1/2
k σxΩ

1/2
k ψ̃ν = Heffψ̃ν (54)

where effective HamiltonianHeff introduced above is Her-
mitian and can be solved to find the eigenvalues ωk,ν .
The result of numerical calculation of this equation is
same as the one obtained from Eq. (46).
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F. Determinant of the eigenvalues and related

The effective Hamiltonian can be written as Heff =

Ω
1/2
k (σx ⊗ Id)Ω1/2

k where Id is the identity matrix with
the dimension d being that of the K matrix. Thus the de-
terminant detHeff = det Ω·(detσx)d. From the definition
of the Ω, we can find that det Ω = det(ω0Id) ·det(D/ω0−
iG(ω0Id)

−1iG) = det(D+G2) = det(D−GG†) = detK.

By the definition of Ω, one can find that
Ω−k = U†Ω∗kU with U = σz. Thus,

Heff(−k) = (U†Ω∗kU)1/2σx(U†Ω∗kU)1/2. By noting

that (U†Ω∗kU)1/2 = U†Ω
∗1/2
k U , one can find that

Heff(−k) = −U†Heff(k)∗U .

G. Phonon angular momentum

A classical angular momentum phonons is defined as:

Jph
z =

∑
l,κ

(uxlκu̇
y
lκ − u

y
lκu̇

x
lκ)

=
∑
l,κ

(
uxlκ
uylκ

)T (
0 1
−1 0

)(
u̇xlκ
u̇ylκ

)

=
∑
k,κ

(
uκ,xk
uκ,yk

)†(
0 1
−1 0

)(
u̇κ,xk
u̇κ,yk

)
(55)

For a system with n = 2 atoms per unit cell, such as
honeycomb lattice, the total phonon angular momentum
can be written as:

Jph
z =

∑
k


uA,xk
uA,yk
uB,xk
uB,yk


†

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



u̇A,xk
u̇A,yk
u̇B,xk
u̇B,yk


=
∑
k

u†kLu̇k =
∑
k

u†kL (pk +Gkuk) (56)

We replace the canonical variables with

uk =
∑
ν

√
~
ω0

(
γ∗νb
†
−k,ν + γνbk,ν

)
and pk =∑

ν i
√
~ω0

(
γ̄∗νb
†
−k,ν − γ̄νbk,ν

)
using which we can

get the expression for the phonon angular momentum

as:

Jph
z =

∑
k,µ,ν

~
(
iγTµLγ̄

∗
ν +

1

ω0
γTµLGkγ

∗
ν

)
b−k,µb

†
−k,ν

+
∑
k,µ,ν

~
(
−iγ†µLγ̄ν +

1

ω0
γ†µLGkγν

)
b†k,µbk,ν

+
∑
k,µ,ν

~
(
−iγTµLγ̄ν +

1

ω0
γTµLGkγν

)
b−k,µbk,ν

+
∑
k,µ,ν

~
(
iγ†µLγ̄

∗
ν +

1

ω0
γ†µLGkγ

∗
ν

)
b†k,µb

†
−k,ν (57)

We can calculate the thermal average of this expres-

sion. Since bk,νb
†
k,µ = δµ,ν + b†k,µbk,ν and 〈b†k,µbk,ν〉 =

f(ωk,ν)δµ,ν , 〈b†k,µb
†
k′,ν〉 = 〈bk,µbk′,ν〉 = 0, where

f(ωk,ν) = 1

eβ~ωk,ν−1
is the Bose-Einstein distribution, we

can write:

〈Jph
z 〉 =

∑
k,ν

~
(
iγTν Lγ̄

∗
ν +

1

ω0
γTν LGkγ

∗
ν

)(
1 + f(ωk,ν)

)
+
∑
k,ν

~
(
−iγ†νLγ̄ν +

1

ω0
γ†νLGkγν

)
f(ωk,ν)

=
∑
k,ν

~
(

1

ω0
γ†νLGkγν − iγ†νLγ̄ν

)(
1 + 2f(ωk,ν)

)
=
∑
k,ν

~γ†νL

(
G̃k
ω0

γν − iγ̄ν

)(
1 + 2f(ωk,ν)

)
= −

∑
k,ν

γ†νLγν

(
i~ωk,ν
ω0

)(
1 + 2f(ωk,ν)

)
(58)

Here we show that
∑
ν γ
†
νLγν = 0.∑

ν

γ†νLγν = Trψ†L̂ψ

= Trψ̃†Ω̃
−1/2
k L̂ωk,νΩ̃

−1/2
k ψ̃

= Trψ̃†Ω
−1/2
k L̂σxΩ

1/2
k ψ̃

= TrΩ
1/2
k ψ̃ψ̃†Ω

−1/2
k L̂σx

= TrL̂σx = 0 (59)

where ωk,ν is the eigen-energy, which is a diagonal ma-

trix, and L̂ =

(
L 0
0 0

)
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