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The collective light-matter interaction in microcavities gives rise to the intriguing phenomena of
cavity-mediated transport that can potentially overcome the Anderson localization. Yet, an accurate
theoretical treatment is challenging as the matter (e.g., molecules) is subject to large energetic
disorder. In this article, we develop the Greens function solution to the Fano-Anderson model and
use the exact analytical solution to quantify the effects of energetic disorder on the spectral and
dynamical properties in microcavities. Starting from the microscopic equations of motion, we derive
an effective non-Hermitian Hamiltonian and predict a set of scaling laws: (i) The complex eigen-
energies of the effective Hamiltonian exhibit an exceptional point, which leads to underdamped
coherent dynamics in the weak disorder regime, where the decay rate increases with disorder, and
overdamped incoherent dynamics in the strong disorder regime, where the slow decay rate decreases
with disorder. (ii) The total density of states of disordered ensembles can be exactly partitioned
into the cavity, bright-state and dark-state local density of states, which are determined by the
complex eigen solutions and can be measured via spectroscopy. (iii) The cavity-mediated relaxation
and transport dynamics are intimately related such that both the energy-resolved relaxation and
transport rates are proportional to the cavity local density of states. The ratio of the disorder-
averaged relaxation and transport rates equals the molecule number, which can be interpreted as
a result of a quantum random walk. (iv) A turnover in the rates as a function of disorder or
molecule density can be explained in terms of the overlap of the disorder distribution function and
the cavity local density of states. These findings reveal the significant impact of the dark states
on the local density of states and consequently their crucial role in optimizing spectroscopic and
transport properties of disordered ensembles in cavities.

I. INTRODUCTION.

The control of polaritons in microcavities has seen
rapid experimental and theoretical progress in recent
years, in particular in the field of molecular polaritons [1].
Experiments have revealed intriguing phenomena such
as large Rabi splittings [2–4] and enhanced transport
properties in organic semiconductors [5]. The intriguing
physics originates from the collective light-matter inter-
action, which is induced by the strong photon confine-
ment in the cavity. This leads to an effective Rabi split-
ting proportional to the square root of the total number
of quantum emitters (e.g., molecules as specified in this

article)
√
N . The large Rabi splitting is a consequence of

the formation of a collective bright state, which couples
coherently to the light field, resulting in two polaritonic
states. Yet, the overwhelming number of states are de-
coupled from the light field. These states are denoted as
’dark states’ and ’dark state reservoir’ in the literature.

Bright and dark states are theoretically well-
understood for homogeneous systems without disorder.
In the presence of disorder, the nature of these states is
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qualitatively understood in terms of photon borrowing,
i.e., a mixing of the dark states and the cavity mode me-
diated by disorder [6–14]. While the physical properties
of polaritons have been characterized in the weak dis-
order regime [15–17], the nature of the bright and dark
states for arbitrary disorder has not been investigated
quantitatively and rigorously.

For systems with only local couplings, disorder gives
rise to Anderson localization, which is particularly promi-
nent in low-dimensional systems [18]. For an one-
dimensional system, an infinitesimal amount of disorder
induces a localization of the wave function, which results
in an exponentially suppressed conductivity. It is well
known that the coupling of a quantum system to a ther-
mal bath gives rise to environment-assisted transport,
which can help to overcome the localization of an exci-
tation or charge such that the energy mismatch between
different sites can be compensated by a noise-induced
level broadening of the local site energies [19]. This
mechanism is relevant in excitation transport in light-
harvesting systems and molecular semiconductors [20–
26]. In the latter case, charge mobility or exciton dif-
fusion shows a turnover as a function of the system-
environment coupling, where quantum transport is en-
hanced by spatial coherence at small couplings but ex-
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FIG. 1. Sketches of the system which consists of N molecules
(or atoms etc.) labeled by j, which are coupled to a single
cavity mode (C). The blue arrows depict the tree-like cou-
pling structure of the model. (a) depicts two spectroscopic
experiments which measure the cavity absorption χC(ω) and
the matter absorption χM (ω). (b) depicts a relaxation pro-
cess, where an initial excitation on the donor j = 1 spreads
over all molecules as illustrated by the red arrows. (c) depicts
a transport process, where an initial excitation on the donor
is transported to the reservoir (R), which is coupled to the
acceptor molecule j = N . As illustrated by the red arrows,
the excitation will spread over the molecules first before being
finally transported to the reservoir.

ponentially suppressed by dynamic localization (i.e., the
polaron effect) at strong couplings. In contrast, static
disorder has predominately a detrimental effect on the
transport properties even in the presence of long-range
hopping [27]. The disorder-assisted transport in cavities
studied here is a rare exception.

For matter interacting with the electromagnetic field
in a microcavity, enhanced [28–30] and unaffected trans-
port efficiency [31] for molecular excitations and charges
has been observed depending on the experimental setup.
Theoretical studies using numerical and analytical meth-
ods have also been reported [32–36]. However, a thorough
theoretical understanding of the cavity-mediated trans-
port properties based on simple concepts is lacking, as
the theoretical treatment of disorder is challenging.

This article has two major objectives. First, we intro-
duce a non-perturbative theoretical framework to inves-
tigate polarition dynamics using the Green’s functions in
Laplace space. Second, we use this framework to estab-
lish a simple and unified picture describing the spectro-
scopic, relaxation and transport properties of disordered
ensembles.

Theoretical framework. We employ Green’s func-
tions based on the equations of motion and generalize
methods developed in Ref. [37, 38]. The treatment in the
Laplace space enables a microscopic derivation of an ef-
fective Hamiltonian describing the cavity mode and the
bright state. Its non-Hermitian structure incorporates
the effect of the dark states, and its complex eigenval-

ues give new insight into the polariton dynamics. We
consider a Lorentzian energetic disorder, which allows
for compact expressions for spectroscopic and transport
properties. Moreover, we develop two new analytical
methods: (i) The first method is the polynomial per-
turbation theory (PPT), which unifies the standard de-
generate and non-degenerate perturbation theories. This
unified perturbation theory is thus suitable for systems
with a continuous energy spectrum as considered here.
(ii) The second method is the exact stochastic mapping
(ESM). It maps one system configuration to another,
which has the same stochastical properties but a more
convenient structure for further analytical calculations.

Physical picture. The central quantity of this uni-
fied physical picture is the cavity local density of states
(LDOS), which reveals the mixing of bright and dark
states in the presence of disorder and can be measured
by cavity absorption as shown in Fig. 1(a). The linewidth
of the cavity LDOS exhibits a turnover: The width first
increases with small disorder as more dark states become
coupled to the cavity field, and then decreases with large
disorder as more dark states move out of resonance with
the cavity field.

The second half of the article explores the effects of
disorder on the cavity-mediated relaxation and trans-
port processes for the experimental setups sketched in
Fig. 1(b,c), respectively. As a key result, both the energy-
resolved relaxation rate and the resonant transport rate
can be expressed in terms of the cavity LDOS. The
two processes are intimately related as the ratio of the
disorder-averaged relaxation rate and transport rates ex-
actly equals the number of molecules, which can be in-
terpreted in terms of a quantum random walk. Interest-
ingly, the rate can be optimized as a function of disorder
or molecular density, which is a consequence of the over-
lap of the cavity LDOS and the disorder distribution.
This type of turnover has been observed as a function
of dephasing rate in noise-assisted quantum transport,
where disorder usually suppresses coherence and trans-
port [20, 22–26, 39–41]. Now, due to the collective cou-
pling to the cavity field, the disorder-assisted transport
can also exhibit the intriguing turnover behavior.

Layout. This article is organized as follows. In Sec. II,
we explain the system and introduce the Green’s func-
tion based on the exact equations of motion. In Sec. III,
we investigate the LDOS of different constituents and
relate them to spectroscopic properties as sketched in
Fig. 1(a). In Sec. IV, we investigate the relaxation dy-
namics sketched in Fig. 1(b). In Sec. V, we analyze the
transport process sketched in Fig. 1(c). In Sec. VI, we
summarize the results and provide future research per-
spectives. In the appendix, we provide detailed deriva-
tions. In particular, the PPT and the ESM, which are
applied in the calculations of the relaxation and trans-
port properties, are explained in detail in App. C.
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II. SYSTEM AND METHODS

A. Hamiltonian

We consider a microcavity containing N quantum
emitters labeled by j as sketched in Fig. 1. To enable
analytical calculations, we describe the electromagnetic
field in the cavity with a single mode labeled by (C). The
Hamiltonian describing the system reads

Ĥ = ĤL + ĤM + ĤLM , (1)

where the light, matter and light-matter interaction
Hamiltonians are given as

ĤL = EC â
†â,

ĤM =

N∑
j=1

EjB̂
†
j B̂j ,

ĤLM =

N∑
j=1

gj âB̂
†
j + h.c., (2)

respectively. The cavity mode is quantized by the pho-
tonic operator â and has energy EC . The two-level sys-
tems, which are described by the operators B̂j , refer to
general quantum emitters, such as atoms, charges, exci-
tons, spins, electronic or vibrational levels of molecules.
In the following, we focus on molecular excitations be-
cause of their experimental relevance, but our findings are
generally valid for the other before mentioned systems.
The excitation energies Ej are distributed according to
the Lorentz function

P (Ej) =
1

π

σ

(Ej − EM )
2

+ σ2
, (3)

where EM is the center of the probability distribution and
σ is its width, i.e., the disorder parameter. We emphasize
that many of our results hold for arbitrary disorder dis-
tributions. The light-matter couplings can be expressed

in terms of physical quantities as gj =
(

~EC
2ε0V

)(1/2)

dj · Ê,

where V is the volume of the cavity, dj is the dipole mo-

ment of the j-th molecule and Ê is the polarization of
the cavity mode. For simplicity, we assume here a ho-
mogeneous coupling gj = g, but generalizations to the
inhomogeneous case are straightforward. Many calcula-
tions are performed in a thermodynamic limit which is
defined as g → 0 and N →∞ such that g

√
N is constant.

As g ∝ V −1/2, the thermodynamic limit implies a large
cavity volume, but a constant molecule density.

The Hamiltonian in Eq. (1) is the celebrated Fano-
Anderson model, which has been originally developed to
understand the impact of continua on discrete levels and
asymmetries in absorption spectra [42]. Besides other
applications, this and generalized Fano-Anderson mod-
els are also deployed to investigate transport through
nano and mesoscopic systems [43–46]. A recent inves-

tigation of the spectral and transport properties for a
disorder distribution with compact support can be found
in Refs. [47, 48], which make use of the exact expression of
the eigenstates instead of the unifying Green’s function
approach considered here. We note that the transport
setup investigated in Refs. [47] is different from the one
considered in our work in Sec. V.

B. Bright and dark states in the homogeneous
system

The homogeneous system is defined for vanishing dis-
order σ = 0. For simplicity, we focus here on the res-
onant system EM = EC . Using the excited states of

the molecules |ej〉M = B̂†j |g〉, where |g〉 is the collec-
tive ground state of the molecule ensemble, we define
the collective excitations |ek〉M = 1√

N

∑
j e
ikj |ej〉M with

k = 2πl/N and l = 0, ..., N − 1. The Fock states of the
cavity mode are denoted by |n〉L. In terms of these states,
the two special eigenstates of the Hamiltonian∣∣ψup/down〉 =

1√
2

(|g〉M |1〉L ± |ek=0〉M |0〉L) , (4)

with energies ε0,1 = EM ± g
√
N are called the upper

and lower polaritons, respectively. Their energy differ-
ence ΩR = 2g

√
N , which increases with the square root

of the molecule number, can be measured as a collective
Rabi splitting ΩR in spectroscopic experiments. The ho-
mogeneous state |BS〉M = |ek=0〉M , which mixes with
the cavity light field, is commonly denoted as the bright
state. In contrast, the states |DSk〉M = |ek 6=0〉M , which
have energy εk = EM , completely decouple from the cav-
ity light field and are denoted as dark states. We note
that the bright and dark states can be also defined for an
inhomogeous coupling gj . In this case, the bright state
reads |BS〉M ∝

∑
j gj |ej〉M , and the dark states are or-

thogonal to this state.
For the disordered system, the dark states are no longer

eigenstates of the system, but all eigenstates have con-
tributions of the cavity mode, the bright state and the
dark states, as the matrix elements 〈BS| ĤM |DSk〉 6= 0
of the matter Hamiltonian in Eq. (2) become finite. The
respective contributions of the cavity mode, the bright
state and the dark states to the eigenstate is given re-
spectively by the bright-state LDOS and the dark-state
LDOS, which will be introduced in Sec. III. The mix-
ing of bright and dark states influences the spectroscopic
spectra in Sec. III and leads to the turnover in the relax-
ation and transport rates in Secs. IV and V.

C. Single-molecule Green’s function

As shown in Fig. 1, the Fano-Anderson model has a
tree-shaped coupling structure, which can be solved an-
alytically in Laplace space as shown in Appendix A. In
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FIG. 2. (a,b) real and (c,d) imaginary parts of the eigenener-
gies in Eq. (15) of the effective non-Hermitian Hamiltonian for
g = 0.001EM and N = 2000. (a,c) depicts the resonant sys-
tem with EC = EM = 1eV and (b,d) depicts the off-resonant
system with EC = 1.05eV and EM = 0.95eV .

doing so, we find an explicit expression of the single-
particle retarded Green’s functions

GX,Y (t) ≡ iΘ(t)
〈
ÂX(t), Â†Y

〉
, (5)

where X ∈ {C, j,BS,DSk}, and Θ(t) denotes the

Heavysite function. Thereby, Â†C = â†, Â†j = B̂†j and

Â†BS (Â†DSk ) creates a bright state (dark state) excita-
tion. In Laplace space, the Green’s functions read [37, 38]

GC,C(z) =
1

(z + iEC(z))
,

GC,j(z) = −i g

(z + iEC(z)) (z + iEj)
= Gj,C(z),

Gi,j(z) =
δi,j

z + iEj
− g2

(z + iEi) (z + iEC(z)) (z + iEj)
,

(6)

with the auxiliary function

EC(z) = EC +

N∑
j=1

g2

z + iEj
. (7)

Up to factors (z + iEj), the nominator of the third term
in Eq. (6) defines a polynomial P(z) of order N + 1,

P(z) = (z + iEC(z))

N∏
j

(z + iEj), (8)

which is equivalent to the characteristic polynomial of the
Hamiltonian (1) when replacing z → −iE. The inverse
Laplace transformation can be expressed in terms of the
roots of the characteristic polynomial, i.e., the poles of

the Green’s function, as

GX,Y (t) =

N+1∑
α=1

Aαe
zαt, (9)

where Aα = 2πi lim
z→zα

(z − zα)GX,Y (z). Note that the

pole of the first term in Gj,j(z) of Eq. (6) is not a pole
of Gj,j(z), as it cancels with a pole of the second term.

D. Thermodynamic limit and effective Hamiltonian

Here, we consider the system in the thermodynamic
limit N → ∞ and g → 0 such that g2N = const.,
and derive an effective Hamiltonian which exactly repro-
duces the dynamics of the single-particle Green’s func-
tion. The disorder-averaged Green’s function in the ther-
modynamic limit is defined by

GX,Y (z) ≡
∫
dE1...

∫
dENGX,Y (z)P (E1)...P (EN ),

(10)
where P (Ej) is the disorder distribution function of

Ej . When evaluating GX,Y (z),
∑N
j=1

g2

z+iEj
→ Π(z) in

Eq. (7) becomes a smooth function which depends on
the statistics of Ej . Moreover, Gi1,j1(z) = Gi2,j2(z) and

GC,j1(z) = GC,j2(z) for all i1, i2, j1, j2, i.e., the disorder-
averaged Green’s function is homogeneous. As a con-
sequence, the Green’s function is block-diagonal in the
basis of bright and dark states introduced in Sec. II B,
i.e., Gek1 ,ek2 (z) ∝ δk1,k2 and GC,ek(z) ∝ δk,0. We use the
disorder-averaged Green’s function to define an effective
Hamiltonian by

G(z) ≡ 1

z + iHeff (z)
. (11)

Note that the effective Hamiltonian depends on z and
the distribution of Ej . The block structure of G(z) in
the basis of bright and dark states translates into a block
structure of Heff (z), i.e.,

Heff (z) =


H

(C,BS)
eff (z) 0

H
(DS)
eff (z)

. . .

0 H
(DS)
eff (z)

 ,
(12)

where H
(C,BS)
eff (z) ∈ C2×2 describes the interaction of

the cavity mode and the bright state and H
(DS)
eff (z) ∈ C

describes the dynamics of the dark states. As the effec-
tive dark state Hamiltonians are equal for all k 6= 0, we
have suppressed the index k. The effective Hamiltonian
Eq. (12) appears to suggest that the dynamics of the
bright and dark states is decoupled. Yet, the influence
of the dark states is incorporated in the non-Hermitian
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FIG. 3. Analytical and numerical calculations of the cavity LDOS (a,d,g,j), the bright-state LDOS (b,e,h,k), and the total
density of states (c,f,i,l) as a function of energy. Overall system parameters are g = 0.001eV and N = 2000. Specific parameters
are EC = EM = 1eV , σ = 0.04eV < σEP in (a-c), EC = EM = 1eV , σ = 0.15eV > σEP , EC = 1.05eV,EM = 0.95eV ,
σ = 0.04eV < σEP in (d-e), EC = 1.05eV,EM = 0.95eV , σ = 0.04eV in (g-h) and EC = 1.05eV,EM = 0.95eV , σ = 0.15eV in
(j-l). The LDOS in all panels are depicted in units of 1/eV .

nature of Heff (z), which effectively leads to a dissipative
dynamics.

E. Effective Hamiltonian for the Lorentz
distribution

For the Lorentz distribution in Eq. (3), the evalua-
tion of the disorder-averaged Green’s function is straight-
forward and is equivalent to simply replacing Ej →
EM − iσ ≡ E

(σ)
M [49, 50]. Because of this simple re-

placement rule, the thermodynamic limit considered in
Eq. (10) is actually equivalent to the disorder average,
such that the following results are also valid for finite
molecule numbers. The disorder-averaged Green’s func-
tions are explicitly given as

GC,C(z) =
1

(z + iEC(z))
, (13)

GC,j(z) = −i g

(z + iEC(z))
(
z + iE

(σ)
M

) = Gj,C(z),

Gi,j(z) =
δi,j

z + iE
(σ)
M

− g2(
z + iE

(σ)
M

)
(z + iEC(z))

(
z + iE

(σ)
M

) ,

where now EC(z) = EC + g2N/(z+E
(σ)
M ). Transforming

this into the basis of the bright and dark states, the blocks
of the effective Hamiltonian in Eq. (12) are given as

H
(C,BS)
eff =

[
EC

Ω
2

Ω
2 E

(σ)
M

]
(14)

with the Rabi frequency of the homogeneous system

Ω = 2g
√
N and H

(DS)
eff = E

(σ)
M . Note that the z-

independence of the effective Hamiltonian is a conse-
quence of the Lorentz distribution of Ej . The complex-

valued eigenenergies of H
(C,BS)
eff in Eq. (14)

ε1,2 =
EC + E

(σ)
M

2

± 1

2

√(
EC − E(σ)

M

)2

− Ω2 (15)

generalize the eigenenergies of the two polaritons for the
disordered case. As it will become more clear when dis-
cussing spectral properties, the real part is related to
the spectral position and the imaginary part to the spec-
tral width of the absorption lineshape. The Rabi split-
ting of the disordered system can be thus defined as
ΩR ≡ Re (ε2 − ε1). The finite imaginary part appears
due to the mixing of the bright and dark states, which
eventually gives rise to a decaying occupation of the sub-
system consisting of cavity mode and bright state.
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Resonant system. For the resonant system EC =
EM , the eigenenergies are given as

ε1,2 = EM − i
σ

2
± 1

2

(
Ω2 − σ2

) 1
2 (16)

and are depicted in Fig. 2(a,c). For very small or very
large σ, they approximately read

σ � Ω : εµ = EM − i
σ

2
±
(

Ω

2
− σ2

Ω

)
, (17)

σ � Ω : εµ =

{
EM − iσ + iΩ2

2σ µ = 1

EM − iΩ2

4σ µ = 2.
(18)

These two limiting cases can be clearly seen in Fig. 2(a,c).
For small σ, the two roots have different real parts, and
equal imaginary parts. For large σ, the real parts are
equal, but the imaginary parts differ. The agreement of
either the real or the imaginary part is a consequence of
EC = EM . Interestingly, for σ = Ω ≡ σEP ≈ 0.09eV , we
observe an exceptional point, which has been frequently
investigated recently [51]. In Sec. III A and Sec. III B, we
discuss signatures of the exceptional point in the absorp-
tion spectrum. In the following, we denote the region be-
fore and after the exceptional point as the underdamped
(small σ) and overdamped (large σ) regime, respectively.

Off-resonant system. For the off-resonant system
with EM < EC in Fig. 2(b,d), the real and imaginary
parts of both eigenvalues are well separated for all values
of σ. Even for a small detuning of EM and EC , the ex-
ceptional point observed in the resonant system does not
exist. The eigenvalue ε1 is dominated by the molecular
excitations, while ε2 is dominated by the cavity excita-
tion. The imaginary part (describing the spectral width)
of ε2 is much smaller than the imaginary part of ε1, as
the light and matter become increasingly decoupled for
larger disorder due to the decreasing density at Ej ≈ EC
in the off-resonant system.

III. LOCAL DENSITY OF STATES AND
SPECTROSCOPIC PROPERTIES

Spectroscopic and transport observables can be ex-
pressed in terms of the LDOS associated with system con-
stituents X ∈ {C, j,BS,DSk}. These LDOS are defined
in terms of the diagonal elements of the single-particle
retarded Green’s function

νX(ω) = − lim
δ→0+

Im
1

π
GX,X(−iω + δ), (19)

which quantifies how much a specific system state X
contributes to the eigenstates in the energy interval
[ω, ω + dω]. The total density of states is given by
ν(ω) =

∑
X∈{C,j} νX(ω). As we explain in the follow-

ing, the cavity and bright-state LDOS can be measured
with spectroscopic experiments.

A. Cavity absorption spectrum

First, we investigate the spectroscopic response of the
cavity related to the perturbation operator V̂ = â + â†,
which will be denoted as the cavity absorption spectrum
in the following. In terms of the Green’s function, the
cavity absorption can be expressed as

χC(ω) = −Im GC,C
(
−iω + 0+

)
= πνC(ω) (20)

and is thus directly proportional to the cavity LDOS.
For the Lorentz distribution in the thermodynamic limit,
we evaluate Eq. (20) using the disorder-averaged Green’s
function GCC(z) given in Eq. (13), which can be trans-
formed into

χC(ω) =
∑
µ=1,2

−1

π
Im

[
Aµ

ω − εµ

]
,

Aµ =
−iεµ + iEM + σ

−iεµ + iεµ
, (21)

where the coefficients Aµ can be evaluated in terms of
the energies εµ in Eq. (15). Details of the derivation
can be found in Appendix B 1. We have introduced µ as
µ 6= µ for a compact notation. If Aµ is real-valued, the
cavity absorption spectrum is given by two Lorentz func-
tions centered at Re εµ and having spectral width Im εµ.
For complex-valued Aµ, the shape deviates from the pure
Lorentzian function. As the finite imaginary part of the
eigenenergies describes the mixing of the bright and dark
states, the dark states thus determine the functional form
of the cavity LDOS.

In Fig. 3 (a,d), we depict the cavity absorption spec-
trum for the resonant case EM = EC in the under-
damped and overdamped regimes, respectively. In the
underdamped regime, we observe two Lorentzian peaks
symmetrically located around EM . Here, the eigenener-
gies fulfill (−ε1 + EM ) = (ε2 − iEM )∗ as can be seen in
Fig. 2, which explains the symmetry of the peaks when
evaluating Eq. (21). In the overdamped regime, we ob-
serve a single peak with Lorentzian shape. Here, the
eigenenergies fulfill ε1 + iσ/2 = ε2− iσ/2, such that there
are actually two Lorentzian peaks centered at the same
position EM . The eigenenergy ε2 with a small imaginary
part dominates the spectrum. Using Eq. (18) to evaluate
A1, we find that A1 → 0 for σ → ∞, such that the sig-
natures of the eigenenergy ε1 are strongly suppressed. A
physical interpretation of the eigenenergies in the over-
damped regime is given in the next section.

Figure. 3 (g,j) depicts the cavity absorption spectrum
for the off-resonant system EM < EC in the under-
damped and overdamped regimes, respectively. Similar
to the resonant system, we observe a peak close the posi-
tion of the cavity frequency EC ≈ Re ε2. In Fig. 3 (g), we
mark a second peak related to the molecular eigenenergy
ε1 located close to EM , which is very small as the corre-
sponding A1 → 0 for large |EC − EM |. The observations
in the overdampend regime in panel (j) are very similar,
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but the molecule peak is now completely suppressed.

B. Matter absorption spectrum

Next, we consider the absorption spectrum which
is related to the perturbation operator V̂ =∑
j Dj

(
B̂j + B̂†j

)
, which we denote as matter absorp-

tion in the following. The coupling coefficients between
the molecules and the probe field are Dj = dj ·Êp, where

Êp is the probe field. It measures directly the spectro-
scopic properties of the molecules instead of the cavity
field as in Sec. III A. Assuming a homogeneous Dj = D,
we can express the matter absorption spectrum in terms
of the single-particle Green’s functions as

χM (ω) = −D2
N∑

i,j=1

Im Gi,j(−iω + 0+)

= ND2πνBS(ω). (22)

In contrast to the absorption spectrum of uncorrelated
molecules, where only the diagonal elements of the
Green’s function are taken into account, the absorption
of the molecular polaritons includes all elements of the
Greens’ function as the cavity induces strong coherences
between the molecules.

The summations in Eq. (22) project the Green’s func-
tion onto the bright state introduced in Sec. II B, such
that the matter absorption spectrum is directly propor-
tional to the bright-state LDOS. We note that the rela-
tion of the matter absorption and the bright-state den-
sity of states in Eq. (22) is also correct for inhomogeneous
couplings as long as gj ∝ Dj , i.e., the polarizations of the
cavity and the probe field are parallel.

For the Lorentz distribution in the thermodynamic
limit, we can use the disorder-averaged Green’s function
in Eq. (13) to evaluate the matter absorption, such that
we find after some steps

χM (ω) =
∑
µ=1,2

−D2

π
Im

[
Aµ

ω − εµ

]
,

Aµ =
g2

(−εµ + iEM + σ) (−iεµ + iεµ)
. (23)

As explicitly demonstrated in Appendix B 2, the matter
absorption spectrum can be expressed in terms of the
cavity single-particle Green’s function as

χM (ω) = ND2Im GCC (iω + iEM + iEC + σ) , (24)

i.e., using a complex frequency ω → −ω+EM +EC + iσ.
Thus, the absorption spectra of the cavity mode and of
the matter are directly related to each other.

The molecular absorption is depicted in Fig. 3(b,e) for
the resonant system EM = EC . Because of Eq. (24),
χM (ω) has the same functional dependence as the cav-
ity absorption Eq. (21) except for the complex-valued

frequency. The discussions about the cavity absorption
are thus also valid for the matter absorption. In the un-
derdamped regime in panel (b), we find two peaks cor-
responding to the two polaritons which approximately
have a Lorentzian shape, similar to the cavity absorption
in panel (a). Interestingly, in panels (b,e,h,k) the matter
absorption vanishes completely at ω = EM due to level
repulsion of the molecules which are in resonance with
EC . In contrast, the level repulsion for the cavity LDOS
in Fig. 3(a,d,g,j) is not complete as the cavity mode is
interacting with a continuous spectrum which leads to a
coarse graining of the level repulsion.

The complete suppression of the absorption in Fig. 3
is reminiscent of the electromagnetically-induced trans-
parency [52] (EIT) and the related vacuum-induced
transparency (VIT) [49, 53] appearing in atomic and
molecular three-level systems. In fact, the absorption
suppression in Fig. 3 (b,e,h,k) can be also understood
as a destructive interference between two excited states.
However, in contrast to the EIT and VIT, which consid-
ers individual three-level atoms or molecules coupled by a
light field, in this paper, the light field itself is also a quan-
tum state and couples the molecules collectively. More-
over, the suppressed absorption observed here is based on
a non-local superposition of the quantum emitters (as-
sociated with the bright state) and is thus a collective
effect, while the EIT and VIT are based on a destructive
interference effect within individual atoms or molecules.

In the overdamped regime depicted in Fig. 3 (e,k), the
matter absorption strongly deviates from the cavity ab-
sorption despite their close relationship via Eq. (24). In
contrast to the cavity absorption, both eigenenergies de-
picted in Fig. 2 are now relevant. The matter absorption
is a superposition of two Lorentz functions which have
different widths Im ε1 and Im ε2, but the same peak po-
sition of ω = EM = EC . One peak has a positive ampli-
tude, while the other has a negative amplitude, leading to
a complete destructive interference at the cavity energy
EC . This complete destructive interference is a conse-
quence of the level repulsion of the cavity mode and the
molecular excitation energies with Ej = EC . While the
two peaks in the underdamped regime can be associated
with the two polaritons, this picture breaks down in the
overdamped regime. The distinct behavior can be un-
derstood in terms of the imaginary parts in Fig. 2. For
an increasing disorder σ, the molecular excitations and
the cavity mode gradually decouple. The spectral fea-
tures of the molecular excitations thus approach the orig-
inal Lorentz distribution with width σ, while the spectral
width of the cavity continuously vanishes. In this regime,
the polaritonic excitations are not well defined.

The off-resonant system EM < EC in the under-
damped regime depicted in Fig. 3 (h) is not symmet-
ric. The molecule peak close to ω = EM is significantly
broader than the cavity peak close to ω = EC , which is
directly related to the Im ε1,2 in Fig. 2. The cavity LDOS
is thus only weakly influenced by the energetic disorder
because of the energy splitting. The observations in the
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overdamped regime in Fig. 3 (k) are similar to panel (e)
but not symmetric.

C. Density of states

Finally, we consider the total density of states to clar-
ify the role of the bright and dark states introduced in
Sec. II B in the presence of disorder. As the total den-
sity of states does not depend on the basis, it can be
expressed either in the local basis of the molecules j or
in the basis of bright and darks states,

ν(ω) ≡ νC(ω) +
∑
j

νj(ω)

= νC(ω) + νBS(ω) +

N−1∑
k=1

νDSk(ω), (25)

i.e, it can be partitioned in the cavity LDOS, νC(ω),
the bright-state LDOS, νBS(ω), and N − 1 terms of the
dark-state LDOS. In the thermodynamic limit, the cav-
ity and bright-state LDOS converge to their respective
limits given in Sec. III A and Sec. III B, while the dark-
state LDOS converge to νDSk(ω)→ (N − 1)P (ω). Thus,
from the LDOS of the molecules in the non-interacting
case g = 0, which is NP (ω), one molecules is subtracted,
which now forms the bright-state LDOS νBS(ω).

In the homogeneous and resonant system dis-
cussed in Sec. II B, we have νC(ω) = νBS(ω) =
1
2

(
δ(ω − EM + g

√
N) + δ(ω − EM − g

√
N)
)

and

νDS(ω) = (N − 1)δ(ω − EM ). Comparing these ex-
pressions with the LDOS considered in this section,
we find that the disorder turns the delta functions
into distribution functions with finite widths. In the
homogeneous case the molecular excitations can be
either classified as bright or dark states. Because of
the disorder, bright and dark states are now mixed and
both contribute to the formation of the eigenstates. On
the average, the contributions are thereby proportional
to νBS(ω) or νDS(ω), respectively. We recall that the
dark states determine the functional shape of νC(ω) and
νBS(ω), as the dark states are coupled to the bright
state for a finite disorder.

In realistic spectroscopic experiments, one simultane-
ously measures the cavity and matter absorption, i.e.,
χ(ω) = αC · χC(ω) + αM · χM (ω) with coefficients αC
and αM . For a fixed Rabi-frequency Ω2 = 4g2N ∝ N/V ,
one can thus harness the scaling χC ∝ νC and χM ∝
N · νBS ∝ V · νBS to distinquish experimentally be-
tween both contributions via changing the cavity volume
V while keeping the molecule density constant.

IV. RELAXATION DYNAMICS

In this section, we evaluate the relaxation dynamics
of an excitation, which is initially located on the donor

molecule j = 1 and finally spreads over all molecules.
The process is sketched in Fig. 1(b). In the thermody-
namic limit, the donor will be finally completely depleted.
As we demonstrate in the following, the relaxation dy-
namics of the cavity system is proportional to the cavity
LDOS considered in Sec. III A. In Sec. IV A, we derive
the relaxation rate. Readers interested in the physical
interpretation can proceed directly to Sec. IV B.

A. Derivation of the relaxation rate

To begin with, the occupation of the donor is given as

n1(t) = |G1,1(t)|2 , (26)

where the Green’s function is defined in Eq. (6). To fa-
cilitate an analytical treatment, we apply the disorder
average in the thermodynamic limit defined in Eq. (10).
Yet, to account correctly for the microscopic dynamics
of the donor occupation, the average is not applied to
E1. Specifying for the Lorentzian disorder, the Green’s
function can be written in Laplace space as

G1,1(z) =
1

z + iE1
− g2 (z + iEM + σ)

(z + iE1)P(z)
. (27)

Thereby, the roots of the polynomial P(z) = P0(z) +
P1(z) with

P0(z) = (z + iEC) (z + iEM + σ) (z + iE1) ,

+g2N (z + iE1) ,

P1(z) = g2 (zα + iEM + σ)

determine the inverse Laplace transformation in Eq. (9).
Note that z = −iE1 is not a root of G1,1(z) as the corre-
sponding terms cancel exactly. The third-order polyno-
mial is partitioned into the two parts P0(z) and P1(z).
The first part can be solved analytically and we obtain

the unperturbed roots z
(0)
1 = −iε1 and z

(0)
2 = −iε2 and

z
(0)
3 = −iE1, with ε1,2 given in Eq. (15). The pertubative

part P1(z) gives a correction to z
(0)
µ in leading order of

g2 and is found by applying the PPT in Eq. (C4) intro-
duced in App. C 1. In doing so, we find that the two roots

z1 = z
(0)
1 = −iε1 and z2 = z

(0)
1 = −iε2 remain unchanged

in leading order, while the third root obtains a finite real
part such that z3 = −iE1−γ(E1)+iO

(
g2
)
+O

(
g4
)

with

γ(ω) = g2νC(ω), (28)

where the cavity LDOS in Eq. (21) can be explicitly writ-
ten as

νC(ω) =
1

π

κσ

(−ω + EC − κ (−ω + EM ))
2

+ κ2σ2
,

κ =
g2N

(−ω + EM )2 + σ2
. (29)
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We note that Eq. (28) agrees with the result in Ref. [47].
The imaginary part shift ∝ g2 (i.e., the energy shift) can
be neglected as it is not the leading order term. Using
the roots to perform the inverse Laplace transformation,
the Green’s function becomes as a function of time

G1,1(t) = A1e
z1t +A2e

z2t +A3e
z3t,

A1 =
g2(z1 + iEM + σ)

(z1 + iE1)
2

(z1 − z2)
→ 0,

A2 =
g2(z2 + iEM + σ)

(z2 + iE1)
2

(z2 − z1)
→ 0,

A3 =
g2(−iE1 + iEM + σ)

γ(E)(−iE1 − z1)(−iE1 − z2)
→ 1. (30)

In the thermodynamic limit N → ∞, g → 0, which we
have assumed throughout the calculation, the amplitudes
A1, A2 → 0, such that the occupation of n1(t) is solely
determined by the real part of the root z3. For consis-
tency, we finally average γ(E1) in Eq. (29) over the donor
energy E1, which is distributed according to the Lorentz
distribution in Eq. (3), such that the disorder-averaged
relaxation rate reads

γ =

∫
dE1γ(E1)P (E1)

=
g2

π

σ + g2N
2σ

(EM − EC)
2

+
(
σ + g2N

2σ

)2 , (31)

whose physical behavior will be discussed in the next
section.

We note that the relaxation rate in Eq. (28) is exact in
the thermodynamic limit g → 0, N → ∞ and holds also
for general disorder distributions. The derivation is still
valid for a Green’s function with an arbitrary number
of poles. Possible branch cuts of the Green’s function
vanish in the thermodynamic limit as the second term in
Eq. (27) is proportional to g2.

B. Discussion of the relaxation dynamics

The energy-resolved relaxation rate in Eq. (29) and the
disorder-averaged relaxation rate in Eq. (31) are depicted
in Fig. 4 and Fig. 5. The solid lines depict the analytical
results, while the symbols depict the numerical results
of the finite-size simulations, which are described in de-
tails in Appendix D. Several points are worthwhile to be
discussed:

Disorder dependence. The energy-resolved relax-
ation rate γ(E1) is shown in Fig. 4(a,b) as a function
of disorder σ for different values of E1 for the resonant
EM = EC and off-resonant EM < EC systems. We ob-
serve a turnover as a function of σ for all values of E1.
For E1 6= EM and/or EM 6= EC , we find from Eq. (29)

FIG. 4. (a,b) Energy-resolved relaxation rate γ(E1) for the
resonant system EC = EM = 1eV (a), and for the off-resonant
system EC = 1.05eV,EM = 0.95eV (b). In both (a) and (b),
g = 0.001eV and N = 2000. (c,d) Disorder-averaged relax-
ation rate γ for the same parameters as in (a,b) for different
molecule numbers. Symbols represent the finite-size simula-
tion to verify the analytical treatment, where the number of
disorder samples MS is such that MS ·N = 106.

FIG. 5. Same as in Fig. 4 but as a function for molecule
number N . The disorder in (a,c) is σ = 0.04eV and in (b,d)
σ = 0.15eV .
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in the limiting cases

γ(E1) ∝

{
σ
N σ � g

√
N

N
σ σ � g

√
N
. (32)

Only in the special case E1 = EM = EC , γ(E1) is mono-
tonically decreasing as a function of σ (not shown). As
γ(E1) ∝ νC(E1), the relaxation rate depends on the dis-

tance from the peak γ(E1) ∝ (E1 − Re εµ)
2

and the peak
width γ(E1) ∝ Im εµ of the peaks in Fig. 3(a,d,g,j).

For example, in the resonant case EM = EC for an
energy E1 > EM and E1 − EM � ΩR, the right peak
in Fig. 3(a,d) related to the eigenenergy ε2 determines
γ(E1) ∝ νC(E1). For small σ, we find from Eq. (18) that

Re εµ − EM ∝
√
N and Im εµ ∝ σ, which explains the

behavior for small σ in Eq. (32). Likewise for large σ,
we find from Eq. (18) that Re εµ = EM = const. and
Im εµ ∝ N/σ, which explains the behavior for large σ in
Eq. (32).

Energy dependence. Overall, the relaxation rate
is larger for energies |E1 − EC | ≈ 0. For the selected
energies in Fig. 4(a,b), the energies E1 = 0.9375eV and
E1 = 1.025eV exhibit the largest relaxation rates, while
the energies E1 = 0.85eV and E1 = 1.2eV exhibit the
smallest relaxation rates. This is due to the shape of
νC(E1), which decays with 1/ (E1 − EC)

2
away from the

peaks according to Eq. (28). We further observe that the
maximum position in (a,b) as a function of σ depends on
the value of E1. For the resonant system, the maxima are
located around the same value, while for the off-resonant
system, the maximum for the E1 = 0.9375eV curve is
reached earlier than the other curves.

Disorder-averaged relaxation rate. The disorder-
averaged relaxation rate is depicted in Fig. 4(c,d) as a
function of σ for different molecule numbers. In panel
(c) for the resonant case, we observe a turnover which
is a consequence of the turnovers of the energy-resolved
relaxation rates in panel (a). According to the exact
expression in Eq. (31), the disorder-averaged relaxation
rate scales as

γ ∝

{
σ
N σ � g

√
N

1
σ σ � g

√
N
, (33)

in the two limiting cases, which is similar to Eq. (32) ex-
cept for a factor N for large disorder and can be clearly
recognized in Fig. 4(c). For small σ, the width of the
Lorentzian distribution increases with σ, which results in
an increasing overlap with the cavity LDOS, whose spec-
tral width also increases according to the imaginary part
of the eigenvalues in Fig. 2. For large σ, the cavity LDOS
νC(E1) becomes very narrow as discussed in Sec. III A
and shown in Fig. 3(d), while the Lorentz distribution
broadens and scales as P (E1) ∝ 1/σ for E1 ≈ EM . As a
defining property, the integral of νC(E1) over all energies
equals one, such that the overall relaxation rate scales as
in Eq. (33).

The off-resonant case depicted in Fig. 4(d) exhibits

two maxima for N = 100 and N = 1000. This is
a consequence of the energy-resolved relaxation rate,
whose peak position depends on the donor energy as can
be seen in panel (b). Overall, the exact shape of the
disorder-averaged dissipation rate sensitively depends on
the shape of νC(E1) and thus on the system parameters.

Molecule number dependence. The energy-
resolved relaxation rate is depicted in Fig. 5(a,b) as a
function of molecule number in the underdamped and
overdamped regimes for the resonant system EM = EC .
In both panels we observe a similar behavior. Inter-
estingly, the rates exhibit a turnover in both regimes.
The maximum position sensitively depends on the donor
energy E1, where the maximum for small |E1 − EC | is
reached earlier than for large |E1 − EC |. The limiting
cases of γ(Ej) ∝ N for small N and γ(Ej) ∝ 1/N for
large N can be directly infered from Eq. (29). For large
N , the relaxation rate γ(E1) becomes independent off
E1 as this limit is equivalent to a rescaling of the system
energies E1/g

√
N → 0.

The disorder-averaged relaxation rate γ is depicted
in Fig. 5 (c,d). For small N , the rate γ is approxi-
mately constant in agreement with Eq. (33). For large

N (i.e., g
√
N � σ), the factor 1/N can be explained

by the shape of νC(ω) discussed in Sec. III A: for the
resonant system, the polariton peaks in Fig. 3(a) are lo-

cated around Epeak = EM ±g
√
N and decay as νC(E) ∝

1/(E − Epeak)2 with increasing distance from the peak
center. When the donor energy is distributed around
EM for small σ/g

√
N , then the cavity mode overlap con-

tributes the extra factor 1/N .
Finite-size simulation. In Figs. 4 and 5, the analyt-

ical solutions are compared with finite-size simulations,
which are represented as symbols. Overall, both calcu-
lations agree very well with each other, except for devi-
ations for very small σ in Figs. 4(a,b). The deviations
occur for donor energies E1 away from the center of the
Lorenz distribution EM . For these energies, the density
of states is very low, such that the continuum limit, which
has been applied in the derivation, is not justified. This
problem is even more prominent when the donor energy
E1 is close to EC as can be seen for E1 = 1.125eV and
2.0eV in Figs. 4(b), as the level repulsion leads to a deple-
tion of the cavity LDOS in this region. However, these
deviations are not visible in the disorder-averaged rate
as the energies in the sparse spectral regime hardly con-
tribute to the disorder average. In Fig. 5 we clearly ob-
serve the improvement of the analytical calculation when
approaching the thermodynamic limit N →∞.

V. TRANSPORT

Here, we consider the transport of an excitation which
is initially located at the donor j = 1 to the reservoir
which is coupled to the acceptor molecule j = N . The
transport process is sketched in Fig. 1(c) and consists
of three phases: excitation of the donor, relaxation as
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considered in Sec. IV, and trapping at the reservoir. The
first two steps are fast compared to the trapping process,
as the excitation has to find the acceptor in a random-
walk fashion, i.e., it scales with number of molecules N .
The transport rate, which we consider in the following,
is defined as the inverse of the mean first-passage time of
the trapping process.

The derivation involves the following two steps: In
Sec. V A, we introduce the transport Hamiltonian, which
is amended by the acceptor reservoir, and derive an ef-
fective characteristic polynomial describing the transport
dynamics. In Sec. V B, we determine the roots of the
effective characteristic polynomial, whose real parts de-
termine the transport rate. For the analytic treatment,
we apply the PPT and the ESM introduced in App. C.
Readers only interested in the physical content can skip
the derivations and directly proceed to the discussion in
Sec. V C.

A. Transport Hamiltonian and Green’s function

To calculate the transport dynamics, we couple the
Hamiltonian in Eq. (1) to an additional reservoir at the
acceptor j = N as depicted in Fig. 1(c). The amended
Hamiltonian is then given by

Htr = H + ĤR + ĤAR,

ĤR =
∑
k

εk ĉ
†
k ĉk,

ĤAR =

NR∑
k=1

gRB̂
†
N ĉk + h.c., (34)

where the reservoir is described by the operators ĉk,
which are coupled with strengths gR to the acceptor. The
transport behavior of this and similar Hamiltonians has
been numerically investigated in Ref. [33–36, 54].

Initially, the system is excited at the donor j = 1 such
that the relevant Green’s functions are

GC,1(z) = −i g

(z + iEC(z)) (z + iE1)
(35)

+ i
g3

(z + iEC(z))
2

(z + iEN (z)) (z + iE1)
,

Gj 6=N,1(z) =
δj,1

z + iE1

− g2

(z + iEj) (z + iEC(z)) (z + iE1)

+
g4

(z + iEj) (z + iEC(z))
2

(z + iEN (z)) (z + iE1)
,

GN,1(z) = − g2

(z + iEN (z)) (z + iEC(z)) (z + iE1)
,

where the two auxiliary functions are defined by

EC(z) = EC +

N−1∑
j=1

g2

z + iEj
, (36)

EN (z) = EN +
∑
k

g2
R

z + iEk
+

g2

z + iEC(z)
. (37)

For an appropriate multiplication with the factors (z +
iEj) and (z + iEk), the denominators of the respective
last terms in Eq. (35) define the polynomial

P(z) = (z + iEN (z)) (z + iEC(z))

×
N∏
j

(z + iEj)

NR∏
k

(z + iEk), (38)

which is equivalent to the characteristic polynomial of
the Hamiltonian in Eq. (34) (with a replacement of
z → −iE). It is not possible to find all roots of this
polynomial, which has order N+NR+1. As in Sec. II D,
we can take the thermodynamic limit in the second term
of Eq. (37). Under the assumption that Ek is distributed
according to the Lorentz distribution, we can simply re-
place Ek → ER + Σ, where ER denotes the center of
the reservoir distribution and Σ is its width. Yet, as
the transport rate is determined by the microscopic dy-
namics of the molecular excitations, the disorder average
is not applied to the auxiliary function EC(z). After
the disorder average of the reservoir states, the effective
characteristic polynomial reads

P(z) = (z + iEC(z)) (z + iEN (z)) (z + iER + Σ)

×
N−1∏
j

(z + iEj), (39)

whose N + 2 complex roots zµ determine the inverse
Laplace transformation in Eq. (9).

B. Transport rate

To determine the transport rate, it is not necessary to
calculate the exact time evolution of the Green’s func-
tions in Eq. (35), as the coherent dynamics does not

change the occupation within the system Ĥ. The roots
of Eq. (39) determine the transport rates Γµ = −Re zµ
corresponding to the energies Eµ = −Im zµ. In the ther-
modynamic limit g → 0, N → ∞, the transport rate
Γ(E) is a smooth function (after an appropriate disorder
average over the eigenstates in an infinitesimal energy in-
terval [E,E + dE]). Because of the weak coupling g, the
donor state is a superposition of eigenstates with E ≈ E1,
such that the energy-resolved transport rate is given by
Γ(E1).

The roots zµ of the characteristic polynomial in
Eq. (39) cannot be determined analytically as the order
of the polynomial is N + 2. However, we can evaluate
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the roots in a stochastic fashion, which is sufficient to
calculate the transport rate in the thermodynamic limit.
To this end, we apply the ESM and the PPT introduced
in App. C: we partition the effective characteristic poly-
nomial in Eq. (39) as

P(z) = P0(z) + P1(z) (40)

P0(z) =

N∏
µ=1

(z + iEµ) ,

×
[
(z + iEN (z)) (z + iER + Σ) +NRg

2
R

]
,

P1(z) =

[
g2
∑
µ

sµ
z + iEµ

]∏
µ

(z + iEµ) (z + iER + Σ) ,

which defines the unperturped and perturbation parts of
the characteristic polynomial. The term

N∏
µ=1

(z + iEµ) (41)

=

z + iEC +

N−1∑
j=1

g2

z + iEj

N−1∏
j=1

(z + iEj)

represents the factorized characteristic polynomial of the
molecules j = 1, ..., N −1 and the cavity mode under the
assumption that gN → 0. This is a formal representation,
where the corresponding roots −iEµ are assumed to be
given. The second factor of P0(z) represents the acceptor
j = N and its coupling to the reservoir. The unperturbed
roots of P0(z) are thus given by

z(0)
µ = −iEµ,

z
(0)
(N+1),(N+2) = −1

2

(
iEA + iE

(Σ)
R

)
± 1

2

√(
iEA − iE(Σ)

R

)2

− 4g2
RNR,

(42)

where E
(Σ)
R = ER − iΣ. The perturbative polynomial

term P1(z) describes the coupling between the cavity sys-
tem and the acceptor. To enable an analytical treatment
we have applied the ESM to the term

1

z + iEC(z)
→
∑
µ

sµ
z + iEµ

, (43)

appearing in the auxilary function in Eq. (37). After
identifying the left hand side of Eq. (43) with GC,C(z)
in Eq. (6), comparing with the definition of the LDOS in
Eq. (19), and applying the ESM rule in Eq. (C7), we find
that the expansion coefficients are sµ = νC(Eµ)/ν(E).
In Eq. (43) we have used the same Eµ as in the formal
expression of P0(z).

Using the PPT given in Eq. (C4) of Sec. C 1, we can

find the corrections δµ to the roots z
(0)
µ resulting from

the perturbative polynomial. In the lowest order of g the

roots of P(z) then read zµ = z
(0)
µ + δµ, where

δµ = g2sµ
1

−iEµ + iEN +
NRG2

R

−iEµ+iER+Σ

+O
(
g4
)
.

(44)

Replacing sµ and identifying the fraction as the local
density of states of the acceptor νN (E), we obtain the
roots in the thermodynamic limit

zµ = −iEµ − Γ(Eµ) + iO
(
g2
)

+O
(
g4
)
,

z(N+1),(N+2) = z
(0)
(N+1),(N+2) + iO

(
g2
)

+O
(
g2
)
, (45)

where

Γ(E) = g2 νC(E)

ν(E)
νN (E) (46)

is the transport rate. We have neglected the correction
in the imaginary part in zµ and the complete shift in
z(N+1),(N+2) as they have a vanishing influence in the
thermodynamic limit g → 0. Yet, the finite real part
Γ(E) describes the exponential decay of the system occu-
pation and thus determines the transport rate. We note
that, even though a Lorentz distribution of the reser-
voir state energies Ek is assumed, the derivation can
be straightforwardly generalized to more general disor-
der distributions of the reservoir, for which additional
roots and possible branch cuts have no influence on the
final outcome.

C. Discussion of the transport rate

We emphasize that the transport rate in Eq. (46) is
exact in the thermodynamic limit. We recall that the
transport rate has to be evaluated at the donor energy,
i.e., Γ(E1). Its inverse τ(E1) = 1/Γ(E1) denotes the time
to deplete the corresponding eigenstates, i.e., the mean
first-passage time. Recalling that νN (E) and νC(E) are
proportional to the absorption of the acceptor and the
cavity, the transport rate thus resembles the celebrated
Förster rate, weighted by the inverse density of states
ν(E). The following points are worthwhile to discuss in
details.

Resonant transport rate. For a weak reservoir
coupling, the acceptor LDOS is strongly peaked around
EN . For the following discussion, we consider a resonant
donor-acceptor configuration with E1 = EN and assume
the acceptor LDOS to be a constant νN (E1) = ν0 for
simplicity. The resulting resonant energy transport rate

Γr(E1) = g2ν0
νC(E1)

ν(E1)
(47)

is proportional to the relaxation rate in Eq. (28), but
renormalized with the total density of states. The renor-
malization describes a competition of the eigenstates for
the overlap with the cavity mode. The more eigenstates
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FIG. 6. Resonant transport rate in Eq. (47) as a function of
disorder (a,b) and molecule number (c,d). The light-matter
coupling is g = 0.001eV in all panels. The specific parameters
are (a) EC = EM = 1eV,N = 2000, (b) EC = 1.05eV,EM =
0.95eV,N = 2000, (c) EC = EM = 1eV, σ = 0.04eV , (d)
EC = 1.05eV,EM = 0.95eV, σ = 0.15eV . The disorder-
averaged transport rate Γ has the same functional dependence
as the disorder-averaged relaxation rate γ in Figs. 4 and 5, i.e,
Γ = γ/N .

exist at a given energy, the smaller is the overlap with
the cavity mode, which suppresses the coherent coupling
between donor and acceptor.

Disorder dependence of the resonant transport
rate. Figure 6 (a,b) plots Γr(E1) as a function of the
disorder in the resonant EM = EC and off-resonant
EM < EC systems. In both cases, the overall behavior is
qualitatively the same. We observe that Γr(E1) is inde-
pendent off the disorder in the small and large disorder
regimes. The limits of the total density of states (which
converges to a Lorentz function in the thermodynamic
limit, cf. Eq. (25)) are ν(E1 6= EM ) ∝ σ for small σ and
ν(E1 6= EM ) ≈ 1/σ for large σ. Combining this with the
limiting cases of νC(E1) given in Eq. (32) explains the
disorder independent regimes. Thus, the overlap of the
individual eigenstates with the cavity remains constant in
the small (large) disorder regime due to the cancellation
of the simultaneous increase (decrease) of the density of
states and the increase (decrease) of cavity LDOS.

Molecule number dependence of the resonant
transport rate. Figure 6 (c,d) plots Γr(E1) as a func-
tion of the molecule number in the underdamped and
overdamped regimes. In both regimes, the resonant
transport rate exhibits a similar behavior. For small
molecule numbers, Γr(E1) is independent off N , while it

decreases as N−2 for large molecule numbers. Combining
the scaling properties of the density of states ν(E) ∝ N
with the limiting cases in Eq. (32), explains these obser-
vations. Thus, for small molecule numbers the scalings
of the cavity LDOS and the total density of states cancel,
while for large molecule numbers the scalings contribute
constructively.

Disorder-averaged transport rate. For a weak
reservoir coupling, the acceptor LDOS is strongly peaked
such that it converges to νN (E)→ δ(E−En) in the ther-
modynamic limit. Assuming that E1 and EN are dis-
tributed according to the Lorentz distribution in Eq. (3),
we can average the energy-resolved transport rate in
Eq. (46) to obtain the disorder-averaged transport rate

Γ =

∫
dE1

∫
dENΓ(E1)P (EN )P (E1)

=
1

N

∫
dE1νC(E1)P (E1)

=
1

N
γ, (48)

which is thus direct proportional to the disorder-averaged
relaxation rate in Eq. (31). We note that the disorder-
averaged transport rate in Eq. (48) considers independent
donor and acceptor energies, which is different from the
resonant transport rate in Eq. (47). Formally, the factor
1/N appears because of the factor ν(E) → NP (E) in
Eq. (46). The inverse of the rates τγ = 1

γ and τΓ = 1
Γ

are

the mean first-passage times of the relaxation and trans-
port processes. In a classical picture, a jump from one
molecule to another takes τγ . In a random walk fashion,
the number of jumps to reach the acceptor is on the or-
der of N , so the mean first-passage time is τΓ ∝ Nτγ .
The quantum calculation arrives at the exact relation
τΓ = Nτγ . We note that the derivation in Sec. V B can
be straightforwardly generalized to a system with NA ac-
ceptors as long as NA � N . In doing so, one finds that
Γ = NA/Nγ, which underpins the interpretation of the
transport picture as a quantum random walk process.

Because of the close relation of the disorder-averaged
relaxation and transfer rates in Eq. (48), the qualita-
tive discussion in Sec. IV B is valid also for the trans-
port process. The turnover as a function of disorder in
Fig. 4(c) appears to be reminiscent of the turnover as
a function of system-environment coupling or tempera-
ture, which is often associated with environment-assisted
transport [22–26, 39–41]. However, we emphasize that
the underlying physical mechanisms are different. For
weak disorder, the cavity-mediated transport observed in
Fig. 4(c) is enhanced because of an increasing overlap of
the cavity local density of states and the quantum emit-
ter energy distribution. For large disorder, the cavity-
mediated transport vanishes as the quantum emitter en-
ergy is increasingly distributed over a larger energy re-
gion, such that fewer quantum emitters are energetically
resonant with the cavity mode. Consequently, quantum
emitters and cavity mode decouple such that the cavity
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mode is subject to less decoherence.

VI. DISCUSSION AND OUTLOOK

A. Summary

Using the Green’s function method to analytically
solve the Fano-Anderson model, we have predicted the
spectroscopic, relaxation and transport features of po-
laritons in microcavities in the presence of energetic dis-
order. The central physical findings of this article are
summarized as follows:

• Complex eigenenergy. The average over energy
disorder results in an effective Hamiltonian, which
exhibits an exceptional point in its eigen solutions
in the resonance case (i.e. EC = EM ). This ex-
ceptional point defines two dynamical regimes: un-
derdamped coherent dynamics in the weak disor-
der regime, where the decay rate increases linearly
with disorder and the collective Rabi frequency
decreases quadratically with disorder, and over-
damped bi-exponential dynamics in the strong dis-
order regime, where the slow decay rate decreases
with disorder and the fast decay rate increase with
disorder.

• Spectroscopy. The contributions of the cavity
mode and the bright state to the eigenstates of the
disordered system define the cavity LDOS, νC , and
bright-state LDOS, νBS , which can be measured
via the cavity absorption and the matter absorp-
tion, respectively. In the weak disorder regime,
the complex eigen solutions leads to two spectral
peaks separated by the effective Rabi splitting. In
the strong disorder regime, the cavity spectrum ex-
hibits a central peak dictated by the slow eigen so-
lution, whereas the matter spectrum results from
the destructive interference of the two eigen solu-
tions. Intriguingly, the matter spectrum exhibits
a complete absorption suppression at the energy
of the cavity mode which is reminiscent of the
electromagnetically-induced transparency [52, 55]
and the related vacuum-induced transparency ef-
fects [49, 53]. In contrast to these effects, which
appear in individual atoms or molecules, the ab-
sorption suppression observed in νBS of Fig. 3 is
a consequence of the collective destructive inter-
ference of the two-level quantum emitters and the
cavity mode.

• Energy-resolved relaxation rate. For all donor
energies E1, the energy-resolved relaxation rate,
γ(E1), exhibits a turnover as a function of disorder
or molecule number. Specifically, we have γ(E1) ∝
σ/N in the weak disorder regime of σ � g

√
N

and γ(E1) ∝ N/σ in the strong disorder regime

of σ � g
√
N .

• Disorder-averaged relaxation rate. The
turnover in γ(E1) translates into a turnover in the
disorder-averaged relaxation rate γ as a function of
disorder but a monotonic decay of γ as a function
of the molecule number. Further, the disorder av-
erage modifies the scaling behavior. For σ � g

√
N

we find γ ∝ σ/N , while for σ � g
√
N we find

γ ∝ 1/σ.

• Resonant transport rate. For the transport
from a donor to an acceptor which are in res-
onance E1 = EN , the rate is proportional to
Γr(E1) ∝ νC(E1)/ν(E1). Because of the presence

of the total density of states ν(E1), for σ � g
√
N ,

the resonance transport rate decreases with the
molecule number as Γr(E1) ∝ 1/N2, whereas for

σ � g
√
N , Γr(E1) is independent of both disorder

and molecule number.

• Disorder-averaged transport rate. The
disorder-averaged relaxation rate γ and transport
rate Γ are related as Γ = γ/N . The relaxation
process is from the donor to molecule ensemble,
whereas the transport process is from donor to ac-
ceptor, one of the N molecules, which explains the
factor N . Overall, the relaxation and transport de-
pend quadratically on the light-matter interaction
g when keeping the Rabi frequency Ω = 2g

√
N con-

stant.

B. Discussion

In the following, we elaborate on the new methods and
new physical pictures established in this article.

Analytical methods. The Green’s functions ap-
proach is a flexible tool which yields rich insight into the
polarition dynamics. The disorder average enables the
derivation of an effective Hamiltonian, which reduces a
continuum of states to a non-Hermitian two-state Hamil-
tonian. Its complex-valued eigeneneriges represent the
damping dynamics of the two polaritions. This non-
Hermitian feature accurately describes the mixing of the
bright and dark states induced by the disorder and pre-
dicts the spectroscopic properties in the thermodynamic
limit. The Green’s function approach applied here al-
lows for compact derivations of various observables on an
equal footing, which clearly reveal the underlying physics.

The relaxation rate is calculated by evaluating the
imaginary part of the complex eigenenergies. To this end,
we have developed the polynomial perturbation theory
(PPT), which unifies the degenerate and non-degenerate
perturbation theories. The calculation of the transport
rate requires to evaluate N + 2 roots of an effective char-
acteristic polynomial. As this is analytically infeasible,
we have developed the exact stochastic mapping (ESM),
which maps one sample of parameters to another sample
of the same stochastic properties, but with a more con-
venient structure for the further analytical treatment.
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Bright and dark states. We have shown that the
total density of states ν(E) can be written as a sum of
the cavity LDOS, νC(ω), the bright-state LDOS, νBS(ω),
and the dark-state LDOS, νDS(ω), as explicitly given in
Eq. (25). The bright-state and dark-state LDOS quantify
the contributions of the bright and dark states of the
homogeneous system to the eigenstates of the disordered
system. The spectral shape of νC(ω) and νBS(ω) reflect
the mixing of the bright state to the dark states in the
presence of disorder.

The components of the total density of states can be
accessed via spectroscopy. A realistic spectroscopic ex-
periment simultaneously measures the cavity and matter
absorption, i.e., χ(ω) = αCχC(ω)+αMχM (ω) with coef-
ficients αC and αM . One can use the scaling properties
χC(ω) ∝ νC(ω) and χM (ω)· ∝ V νBS(ω) to differentiate
between the two contributions in a spectroscopic experi-
ment by varying the volume V while keeping the molecule
density constant.

Relaxation and transport. The relaxation and
transport rates are primarily determined by the cavity
LDOS. As the functional shape of the cavity LDOS is
strongly influenced by the dark states, they have a sub-
stantial impact on the relaxation and transport prop-
erties. The analytic treatment predicts a simple re-
lation between the relaxation and transport processes:
Γr(E1) ∝ γ(E1)/ν(E1), where Γr(E1) is the resonant
transport rate and γ(E1) is the energy-resolved relax-
ation rate. We have analytically explained the behavior
of the relaxation and transport processes in the limiting
cases of σ � g

√
N and σ � g

√
N , respectively. In-

terestingly, the resonant transport rate is independent
of disorder and molecular number in the strong disorder
regime σ � g

√
N as can be seen in Fig. 6.

The disorder-averaged relaxation rate γ and the trans-
port rate Γ are related as Γ = γ/N . This relation can
be classically understood as a quantum random walk of
the excitation, where the dwell time of the excitation on
a specific molecule is 1/γ. Consequently, the ratio of
the relaxation and transport rates increases linearly with
the number of molecules N . The quantum calculation,
i.e., the quantum random walk, shows that the ratio of
these two rates is exactly N . The transport rate exhibits
a turnover as a function of disorder, which is a conse-
quence of the turnover of the energy-resolved relaxation
rate.

Our calculation thus explains the turnover in the trans-
port efficiency numerically observed in Ref. [33]. How-
ever, their numerical investigation finds an overall scaling
of ∝ 1/N2 for all parameters of σ instead of two scaling
behaviors for small (∝ N−2) and large disorder (∝ N−1)
regimes found in this work. This discrepancy might be a
consequence of the average of the logarithmic transport
efficiency adopted in Ref. [33]. We note that the resonant
transport rate scales also with ∝ N−2 for large disorder
as shown in Fig. 6, which is weighted more heavily by
an average of the logarithm. Moreover, our findings in
Fig. 4(d) suggest that the disorder-independent regime

observed in Ref. [33] is a specific result of the chosen
parameters rather than a general feature.

The observed turnover is in strict contrast to the An-
derson localization, for which the conductivity monoton-
ically decreases with increasing disorder. For charge and
exciton transport in molecules, it is known that noise can
lead to a turnover, yet, this is a different mechanism as
the disorder enhancement discussed here.

Finite-size simulations and thermodynamic
limit. The Green’s function solutions in Eqs. (6)
and (35) are exact expressions and thus valid for arbi-
trary molecule numbers. In the derivation of the spectro-
scopic properties in Sec. III, the disorder average of the
Green’s functions with the Lorentz disorder in Eq. (10)
is formally equivalent to the thermodynamic limit. Con-
sequently, the expressions for the cavity absorption (i.e.,
cavity LDOS) and the matter absorption (i.e., bright-
state LDOS) are also valid for a finite molecule number.
In contrast, the relaxation rate and the transport rate
are valid only in the thermodynamic limit g → 0 and
N → ∞, as we have applied the PPT in the deriva-
tion. This can be seen in the finite-size simulation in
Fig. 4(a,b), which strongly deviate from the thermody-
namic limit for low density of states.

Implications. The turnover as a function of disor-
der is in strong contrast to the Anderson localization,
for which the conductivity is monotonically decaying for
increasing disorder. An experimental verification of this
turnover will have a strong technical impact on the design
of photovoltaic devices and photo detectors. In order to
harness the full spectrum of the sun light, photovoltaic
devices usually work with a broad energy spectrum. This
requires that the organic molecules, often deployed in
such devices, have either a broad spectral width or a
substantial energetic disorder, both have a detrimental
influence on the transport efficiency [56]. An increas-
ing efficiency for larger disorder would thus circumvent
this problem. We note that, even though the article fo-
cuses on energy transport, our findings are also valid for
charge transport via electron-hole excitations such as in
Ref. [30].

C. Outlook.

The Green’s function solution in combination with the
PPT and the ESM methods is a comprehensive tool,
which can be applied to related problems of disordered
ensembles. For example, given the analytical expression
for the single-particle Green’s function, it is possible to
deal with nonlinear perturbations. The coherent poten-
tial approximation will be an alternative approach and
will be considered elsewhere [57–59]. Due to the absence
of local couplings, the Fano-Anderson model lacks a spa-
tial dimension. In Refs. [33] the total flux is the sum of a
cavity-induced contribution and a local-coupling contri-
bution. The latter vanishes exponentially with the sys-
tem size along with the Anderson localization. A local
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coupling term justifies the random-walk picture on a lat-
tice. Further study along this line includes the multi-
mode generalization of the cavity field, dissipation due
to the interaction with thermal baths, and long-range
dipolar coupling, i.e., Förster transport.
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Appendix A: Solution of the equation of motion in
Laplace space

In this appendix, we derive the Green’s function based
on the equations of motion in Laplace space, which is
defined by

B̂(z) =

∫ ∞
0

B̂(t)e−ztdt (A1)

for operators in the Heisenberg picture B̂(t). Transform-
ing the Heisenberg equation of motion of the operators â
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and B̂j into Laplace space, we find [37, 38]

zâ(z)− â0 = −iEC â(z)− ig
N∑
j=1

B̂j(z),

zB̂j(z)− B̂0
j = −iEjB̂j(z)− igâ(z), (A2)

where â0 = â(0) and B̂0
j = B̂j(0) denote the Heisenberg

operators at time t = 0. Due to the tree structure of the
Hamiltonian in Eq. (2), it is possible to directly write
down the solution

â(z) =
â0

z + iEC
− i

gB̂0
j

(z + iEC(z)) (z + iEj)
,

B̂j(z) =
B̂0
j

z + iEj
− i gâ0

(z + iEj) (z + iEC(z))

−
∑
j

g2B̂0
j1

(z + iEj) (z + iEC(z)) (z + iEj1)
, (A3)

where

EC(z) = EC +

N∑
j=1

g2

z + iEj
(A4)

is an auxiliary function. After an appropriate muliplica-
tion of factors (z + iEj), the denominators in Eq. (A3)
define the polynomial

P(z) = (z + iEC(z))

N+1∏
j

(z + iEj), (A5)

which is equivalent to the characteristic polynomial of
the Hamiltonian in Eq. (1) (up to a replacement of
z → −iE). Using the solution in Eq. (A3), it is straight-
forward to construct the Green’s function in Laplace
space given in Eq. (6) in the main text. The inverse
Laplace transformation is formally defined by

B̂(t) = lim
δ→0+

∫ δ+i∞

δ−i∞
B̂(z)eztdz, (A6)

which thus denotes a contour integral along the imag-
inary axis. Clearly, this definition is also valid for the
inverse Laplace transformation of the Green’s functions.
If B(z) does not contain any branch cuts, this integral
can be evaluated in terms of the residues of B(z). The
generalization of this derivation to the Green’s functions
of the transport Hamiltonian in Eq. (34) is straightfor-
ward.

Appendix B: Detailed derivation of the spectrocopic properties and the local density of states

In this Appendix, we provide the step-by-step calculations of the spectroscopic properties considered in Sec. III.

1. Cavity absorption spectrum

Up to physical constants, the cavity absorption spectrum is equivalent to the cavity LDOS, which reads according
to the definition in Eq. (19)

νC(ω) = − 1

π
Im

[
i

(z + iEC(z))

]
z→−iω

. (B1)

For the Lorentzian disorder, this can be expressed in terms of the eigenvalues of the effective Hamiltonian in Eq. (14),
thus

νC(ω) = − 1

π
Im

[
i

z + iEM + σ

(z + iε1)(z + iε2)

]
z→−iω

= − 1

π
Im

[
i
−iε1 + iEM + σ

(iε2 − iε1)(z + iε1)
+ i

−iε2 + iEM + σ

(iε1 − iε2)(z + iε2)

]
z→−iω

≡ − 1

π
Im

[
A

(C)
1

i

(z + iε1)
+A

(C)
2

i

(z + iε2)

]
z→−iω

, (B2)

where

A
(C)
1 =

−iε1 + iEM + σ

(iε2 − iε1)
, (B3)

A
(C)
2 =

−iε2 + iEM + σ

(iε1 − iε2)
. (B4)
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This is the form of the cavity LDOS in Eq. (21).

2. Matter absorption spectrum

Here, we explicitly evaluate the matter absorption in Eq. (23) for the Lorentzian disorder distribution. The step-
by-step calculation is

χM (ω) =
∑
i,j

Im [Gi,j(z)]z→−iω+0+

= Im

∑
j

i

z + iEj
−
∑
i,j

ig2

(z + iEi) (z + iEj) (z + iEC(z))


z→−iω+0+

= N Im

[∫
dE

i

z + iE
P (E)

]
− N2Im

[∫
dE1dE2

ig2

(z + iE1) (z + iE2) (z + iEC(z))
P (E1)P (E2)

]
z→−iω+0+

= N Im

[
i

z + i(EM − iσ)

σ

π

−2πi

−2σi

]
z→−iω+0+

− N2Im

[
ig2

(z + i(EM − iσ)) (z + i(EM − iσ)) (z + iEC(z))

(
σ

π

−2πi

−2σi

)2
]
z→−iω+0+

= N Im

[
i

z + iEM + σ

]
z→−iω+0+

−N2

[
Im

ig2

(z + iEM + σ)
2

(z + iEC(z))

]
z→−iω+0+

. (B5)

Next, we show how to express the matter absorption in terms of the Green’s function of the cavity mode given in
Eq. (24). To this end, we express the matter absorption in terms of the eigenvalues of the effective Hamiltonian in
Eq. (15) as

χM (ω) = −N
π

Im

[
i

z + iEM + σ
− ig2N

(z + iEM + σ)
2

(z + iEC(z))

]
z→−iω

= −N
π

Im

[
i

z + iEM + σ
− ig2N

(z + iEM + σ) (z + iε1)(z + iε2)

]
z→−iω

= − 1

π
N Im

[
i

g2N

(−iε1 + iEM + σ) (iε2 − iε1)(z + iε1)
+ i

g2N

(−iε2 + iEM + σ) (iε1 − iε2)(z + iε2)

]
z→−iω

≡ N

π
Im

[
A

(M)
1

i

(z + iε1)
+A

(M)
2

i

(z + iε2)

]
z→−iω

, (B6)

where

A
(M)
1 = − g2N

(−iε1 + iEM + σ) (iε2 − iε1)
, (B7)

A
(M)
2 = − g2N

(−iε2 + iEM + σ) (iε1 − iε2)
. (B8)

The eigenenergies of the effective Hamiltonian (15) fulfill

(ε1 − EM + iσ) (ε2 − EM + iσ) = −g2N, (B9)

(ε2 − EM + iσ) (ε1 − EM + iσ) = −g2N, (B10)

from which follows that A
(M)
1 = −A(C)

2 and A
(M)
2 = −A(C)

1 . Moreover, we can use the relation

ε1 + ε2 = EC + EM − iσ (B11)
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to interchange the eigenenergies in the last line of (B6), i.e.,

χ(ω) ≡ −N
π

Im

[
A

(C)
2

i

(z − iε2 + iEC + iEM + σ)
+A

(C)
1

i

(z − iε1 + iEC + iEM + σ)

]
z→−iω

=
N

π
Im [GCC(−z − iEC − iEM − σ)]z→−iω (B12)

where we have used Eq. (21) for the last step.

Appendix C: Analytical techniques

Here, we introduce two analytical techniques, namely
the PPT and the ESM, which are applied in the calcula-
tions in Secs. IV and V.

1. Polynomial perturbation theory

Ordinary time-independent perturbation theory dis-
tinguishes between degenerate and non-degenerate per-
turbations. PPT unifies both cases by deriving an pertu-
bative expression for the energies based on the character-
istic polynomial. Let us assume that the characteristic
polynomial of a Hamiltonian can be written as a sum of
two terms as

P(z) = P0(z) + P1(z), (C1)

where P0(z) and P1(z) denote the unperturbed and per-
turbation polynomials, respectively. We intend to find
an approximate expression for the roots of P(z), which
we write formally as

zµ′ = z
(0)
µ′ + δµ′ , (C2)

where z
(0)
µ′ denotes the roots of the unperturbed polyno-

mial P0(z
(0)
µ′ ) = 0 and δµ′ is the correction appearing due

to P1(z). Expanding Eq. (C1) at z = z
(0)
µ′ for small δµ′

up to first order we obtain

0 = P1(z
(0)
µ′ ) + ∂zP(z

(0)
µ′ )δµ′ . (C3)

Resolving Eq. (C3) for δµ′ , we readily find the perturba-
tive correction of the roots

δµ′ =
−P(z

(0)
µ′ )

∂zP(z
(0)
µ′ )

=
−P1(z

(0)
µ′ )∏

µ6=µ′

(
z

(0)
µ′ − z(0)

µ

)
+ ∂zP1(z

(0)
µ′ )

. (C4)

This expression interpolates between the degenerate and
the non-degenerate perturbation theories. The product
in the denominator corresponds to the non-degenerate
perturbation theory, while the derivative terms is related
to the degenerate perturbation theory. As the PPT uni-
fies both standard perturbation theories, it is perfectly

suitable for the treatment of systems with a continuous
spectrum such as reservoirs.

2. Exact stochastic mapping

The ESM unravels an analytic function F (z) which
has no poles in either the lower or upper complex plain
in terms of an infinite series of poles, i.e.,

F (z) = lim
N→∞

N∑
j=1

i
rj

z − iEi
≡ lim
N→∞

FN (z). (C5)

As F (z) is analytic, the expansion coefficients rj and the
poles Ej ∈ R can be determined by considering z = iω+
0+ with ω ∈ R such that

lim
N→∞

lim
δ→0+

|F (iω + δ)−FN (iω + δ)| = 0. (C6)

Using the imaginary part of the Dirac identity, we find

rj =
1

π

1

ν(Ej)
ImF (iEj), (C7)

where ν(Ej) is the density of poles defined by

ν(ω) = lim
N→∞

lim
δ→0+

1

π
Im

N∑
j=1

i
1

iω + δ − iEi
. (C8)

Even though using only the imaginary part of F (z) to
define rj , the real part is fixed because of the Kramers-
Kronig relations. Since F (z) has no poles in either the
upper or lower complex plain, the real and imaginary
parts of analytic functions are related as

ReF (iω) = − 1

π

∫
dω′

ImF (iω′)

ω − ω′
,

ImF (iω) =
1

π

∫
dω′

ReF (iω′)

ω − ω′
. (C9)

Using Eq. (C5) we can show that the Kramers-Kronig
relations are fulfilled by the ESM:

ImF (iω) = lim
N→∞

ReFN (iω + δ)

= lim
N→∞

lim
δ↓0

Re

N∑
j=1

i
rj

iω + δ − iEj
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= − lim
N→∞

1

π

N∑
j=1

ri
(ω − Ej)

= − lim
N→∞

1

π

N∑
j=1

Im
F (iεj)

ν(εj)

1

(ω − Ej)

= − 1

π

∫
dω′

ImF (iω′)

(ω − ω′)
, (C10)

demonstrating that the ESM does not lead to any am-
biguities related to the definition of the real part of the
expansion coefficients rj . As both F (z) and F∞(z) are
identical on an infinite set of C, i.e., the imaginary axis,
the functions are equal everywhere where defined accord-
ing to the basic properties of analytical functions.

Appendix D: Details about the finite-size simulation
and the fitting of the relaxation rates

We determine the relaxation rate γ(E1) by fitting the
Green’s function of the donor with an exponential decay-
ing function, i.e.,

G1,1(t) = e

(
−iE1− γ(E1)

2

)
t
. (D1)

We take advantage of the exact solution of the Green’s
function in Eq. (6) and evaluate Eq. (D1) in Laplace
space, i.e.,

G1,1(z) =
1

z + iE1 + γ(E1)
2

. (D2)

Resolving this for the relaxation rate, we find

γ(E1) = −2
1− (z + iE1)G1,1(z)

G1,1(z)
. (D3)

In principle, the r.h.s. can be evaluated for arbitrary z.
For the disorder average, we find that z = −iE1 + δ for
a small δ with 1/ν(E1)� δ � Ω converges very fast.


