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We investigate the ground state properties of the spin-1/2 pyrochlore Heisenberg antiferromagnet
using pseudofermion functional renormalization group techniques. The first part of our analysis is
based on an enhanced parton mean-field approach which takes into account fluctuation effects from
renormalized vertex functions. Our implementation of this technique extends earlier approaches and
resolves technical difficulties associated with a diagrammatic overcounting. Using various parton
ansätze for quantum spin liquids, dimerized and nematic states our results indicate a tendency for
lattice symmetry breaking in the ground state. While overall quantum spin liquids seem unfavorable
in this system, the recently proposed monopole state still shows the strongest support among all spin
liquid ansätze that we have tested, which is further confirmed by our complementary variational
Monte Carlo calculations. In the second part of our investigation, we probe lattice symmetry
breaking more directly by applying the pseudofermion functional renormalization group to perturbed
systems. Our results from this technique confirm that the system’s ground state either exhibits
broken C3 rotation symmetry, or a combination of inversion and C3 symmetry breaking.

I. INTRODUCTION

The pyrochlore network is a paradigmatic lattice to
study the effects of magnetic frustration and it arouses
ongoing interest which has spanned several decades. As
a consequence of the unique geometry featuring corner-
sharing tetrahedra, even the classical nearest-neighbor
Ising model on the pyrochlore lattice is highly non-trivial
due to its extensively degenerate ground state mani-
fold [1, 2]. This gives rise to a classical spin liquid
that has been observed in a number of materials referred
to as spin ice compounds, most notably the titanates
Ho2Ti2O7 and Dy2Ti2O7 [3, 4]. The associated physical
phenomena ranging from residual entropies [5] and pinch
point singularities [6, 7] to monopole excitations [8, 9]
are characteristic to this fascinating and multifaceted re-
search field.

What is even more remarkable, when including quan-
tum fluctuations in the classical nearest-neighbor Ising
model on the pyrochlore lattice, e.g., via transverse spin
interactions Sxi S

x
j + Syi S

y
j , it can be shown perturba-

tively [10] that the system realizes the iconic U(1) quan-
tum spin liquid with emergent gauge photons and frac-
tionalized magnetic charges [11–13]. The possible iden-
tification of these phenomena in magnetic materials, so-
called quantum spin ice compounds [14], has become a
particularly challenging but also rewarding research di-
rection.

Given the rich physical phenomenology of (quantum)
spin ice systems it is natural to ask about the ground
state properties of spin models where the transverse
terms are beyond the perturbative regime, such as the

spin-1/2 nearest-neighbor pyrochlore Heisenberg antifer-
romagnet. Due to the strong magnetic frustration and
the nearby U(1) quantum spin liquid, it seems plausi-
ble that spin liquid behavior survives in the Heisenberg
limit and, indeed, this model is considered as a prime
candidate for realizing a quantum spin liquid. On the
other hand, early works also point out the possibility
of a dimerized ground state [15–22]. Due to the in-
herent difficulties in treating frustrated quantum spin
models (particularly in three dimensions) and the no-
torious lack of controlled and unbiased numerical ap-
proaches, these questions remain highly non-trivial and
an ultimate answer currently cannot be given by a single
method alone. Further incentive for studying the py-
rochlore Heisenberg antiferromagnet comes from experi-
mental progress in realizing such systems. Most notably,
the recently synthesized spin-1/2 oxynitride pyrochlore
compound Lu2Mo2O5N2 does not show any experimen-
tal indications of magnetic long-range order [23, 24].

On the theoretical front, two large-scale numerical
studies have recently investigated the nearest-neighbor
pyrochlore Heisenberg antiferromagnet and have both
found indications for a dimerized ground state that spon-
taneously breaks lattice symmetries [25, 26]. Using
complementary state-of-the-art methods, such as many-
variable variational Monte Carlo, exact diagonalization,
and density-matrix renormalization group these results
provide a rather compelling argument against quantum
spin liquid behavior.

Inspired by these findings, the present work adds
another and again complementary perspective to the
ground state properties of the pyrochlore Heisenberg an-
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tiferromagnet using the pseudofermion functional renor-
malization group (PFFRG) method. Our analysis goes
significantly beyond a previous PFFRG study [27] as it
investigates additional scenarios for spontaneous break-
ing of lattice symmetries and includes a recently devel-
oped self-consistent PFFRG-enhanced parton mean-field
treatment [28]. Since the latter approach has been rarely
applied so far, in the beginning the focus lies on introduc-
ing, discussing, and extending it. This technique first as-
sumes that the system’s low energy behavior is described
by a quadratic fermionic parton theory as is expected
for a quantum spin liquid [29]. The parameters of this
theory, such as spinon hopping and pairing amplitudes
are self-consistently determined within a Fock-type ap-
proach. As a crucial difference compared to a pure mean-
field treatment, however, the bare exchange couplings en-
tering the self-consistent equations are replaced by the
renormalized ones from PFFRG, hence, adding fluctua-
tions well beyond mean-field. This approach allows us to
compare the RG behaviors of different mean-field ansätze
for quantum spin liquids and identify the preferred one.
As an improvement of this technique with respect to
an earlier implementation [28], we resolve a method-
ological subtlety that may lead to an overestimation of
mean-field amplitudes. First, restricting to ansätze of
previously proposed quantum spin liquid candidates for
the pyrochlore Heisenberg antiferromagnet we identify
the monopole-antimonopole chiral spin liquid state from
Ref. [30] as the preferred one, even under the effect of
fluctuations beyond mean-field. This finding is confirmed
by our additional large-scale (N = 6912-site) variational
Monte Carlo calculations yielding a projected energy per
site E/J = −0.459402(6) which is lower compared to the
energy E/J = −0.457354(5) of the monopole flux state of
Ref. [31]. Furthermore, the PFFRG approach is not re-
stricted to spin liquid states only, but the real-space con-
figuration of fermionic hopping/pairing terms may also
mimic possible types of dimerization patterns. Includ-
ing such symmetry breaking configurations in our anal-
ysis, we observe a clear dominance of dimer orders over
spin liquids, associated with a breaking of inversion and
C3 rotation symmetry, in agreement with Refs. [25, 26].
To further confirm this result we pursue a more direct
approach where we impose the dimerization patterns as
small perturbations in the spin Hamiltonian and apply
PFFRG for this modified system. We find large responses
to perturbations that break both inversion and C3 rota-
tion symmetry together, while patterns which only break
inversion but not the C3 rotation symmetry are not sup-
ported. These results are in agreement with our PFFRG-
enhanced mean-field treatment and further corroborate
the findings in Refs. [25, 26] such that, in total, we con-
clude that a dimer valence bond state or a nematic state
constitute the most likely ground state scenario of the
pyrochlore Heisenberg antiferromagnet.

The rest of the paper is structured as follows: In Sec-
tion II, we introduce the PFFRG approach and its vari-
ants which will be applied to the pyrochlore Heisenberg

antiferromagnet. The results of our analysis are pre-
sented in Section III, where Section III A first discusses
our findings of the PFFRG-enhanced mean-field treat-
ment and compares them with results from a comple-
mentary variational Monte Carlo study. This is followed
by a direct investigation of symmetry breaking patterns
via PFFRG in Section III B. The paper ends with a dis-
cussion of the presented methods in Section IV and a
conclusion in Section V.

II. METHODS

Most of the methods applied in this paper are based
on the PFFRG technique. In this section, we give an
introduction into its standard formulation (Sec. II A) and
then discuss the two types of extensions which are used
for our numerical investigations in Sec. III. Particularly,
we put an emphasis on introducing our PFFRG-enhanced
parton mean-field treatment in Sec. II B, followed by a
brief description of our approach to directly investigate
lattice symmetry breaking dimer patterns, see Sec. II C.

A. Standard PFFRG formulation

We first introduce the standard one-loop PFFRG
method for quantum spin-1/2 systems [32] which has
proven to be a powerful tool for the investigation of mag-
netic properties of two and three dimensional spin sys-
tems with different types of interactions [24, 27, 32–64].
Here, we apply it to a Heisenberg model on a pyrochlore
lattice,

H =
∑
(i,j)

Jij Si · Sj , (1)

where (i, j) are pairs of sites and Jij is finite only on
nearest-neighbor bonds; in this case Jij ≡ J > 0. The
PFFRG treats this model by utilizing a pseudofermionic
description of S = 1/2 spin operators [65, 66] also called
parton representation,

Sµi =
∑
α,β

1

2
f†i,ασ

µ
αβfi,β , (2)

where f†i,α (fi,α) creates (annihilates) a fermion with spin

α ∈ {↑, ↓} at lattice site i and σµ with µ ∈ {x, y, z} are
the standard 2×2 Pauli matrices. This rewriting enables
one to employ common quantum-many-body techniques
based on Feynman diagrams, including functional renor-
malization group methods [67]. Note, however, that the
pseudofermion representation in Eq. (2) artificially en-
larges the Hilbert space by introducing two S = 0 states
per lattice site which may lead to artifacts in the numer-
ical outcomes when pursuing the PFFRG procedure as
explained below. Various previous works have discussed
this effect [46, 60, 64] and find that such artifacts are
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FIG. 1. (a), (b) PFFRG flow equations for n-particle vertex functions up to n = 2: Regular (slashed) arrows represent the full
Green’s function GΛ (single-scale propagator SΛ). The first equation in (a) couples the self energy ΣΛ (circle) to the 2-particle
vertex ΓΛ (square) and to itself via SΛ. In the second equation (b), the 2-particle vertex couples to the 3-particle vertex
(hexagon), itself, and the self energy. This procedure leads to an infinite hierarchy of coupled differential equations which we
truncate by neglecting the 3-particle vertex. In (c) the diagrammatic relation between the self energy, the 2-particle vertex,
and the spin-spin correlation 〈SiSj〉 is depicted.

minor or not observable, at least as long as ground state
properties are considered (as is also done in this work).

Since a quadratic spin Hamiltonian, rewritten in terms
of pseudofermions is purely quartic in these auxiliary par-
ticles, the bare fermionic propagator in Matsubara space
has the simple form G0(ω) = 1

iω and is strictly local in
real space. The key manipulation within PFFRG is to
regularize G0(ω) via an infrared cutoff Λ:

G0(ω) =
1

iω
−→ GΛ

0 (ω) =
θ(|ω| − Λ)

iω
. (3)

This insertion leads to a cutoff-dependent generating
functional for the one-particle-irreducible vertex func-
tions. By taking the full cutoff derivative of these vertex
functions, one arrives at an infinite hierarchy of coupled
differential equations, the so-called flow equations. Since
the full set of equations is beyond numerical solvability,
the hierarchy of equations needs to be truncated, which in
our one-loop approach is done by neglecting the 3-particle
vertex. One then arrives at the flow equations for the
fermionic self-energy written as ΣΛ(ω) = −iγΛ(ω) [where
γ(ω) is real valued] and the 2-particle vertex ΓΛ

ij(s, t, u)
depicted diagrammatically in Figs. 1(a) and 1(b). Note
that the three Matsubara frequency arguments of ΓΛ take
into account energy conservation and are defined in a
way that the vertex on the left hand side of Fig. 1(b)
corresponds to ΓΛ

ij(ω1′ + ω2′ , ω1′ − ω1, ω1′ − ω2). Here,
the frequencies ω1, ω′1, . . . are the ones on the external
fermion lines labelled accordingly. A crucial technical
necessity is the implementation of the so-called Katanin
scheme [68, 69] where the single-scale propagator [slashed
line in Fig. 1(b)] in the flow equation for ΓΛ is given
by the full derivative of the renormalized propagator,
SΛ(ω) = − d

dΛG
Λ(ω). This insertion re-includes certain

contributions of the 3-particle vertex and ensures that
quantum fluctuations are included on a level that cap-
tures the subtle interplay of ordering and disordering ten-
dencies in quantum spin systems.

Apart from the aforementioned truncation, two more

approximations are required to yield a finite set of differ-
ential equations in the zero-temperature limit. First, the
Matsubara-frequencies, which at T = 0 are continuous
variables, need to be replaced by a discrete mesh, in our
case consisting of 64 frequencies. Second, all 2-particle
vertices which exceed a given real-space distance must be
neglected. In Sec. III A (Sec. III B), we truncate correla-
tions after 10 nearest-neighbor bonds (outside a sphere
with a radius of 5 nearest-neighbor distances). This cor-
responds to a finite size approximation that accounts for
correlations in a cluster of 741 (381) sites.

In its standard formulation, the resulting flow equa-
tions are numerically solved, starting in the limit Λ→∞
where the 2-particle vertex is given by the bare interac-
tions, ΓΛ→∞

ij ≡ Jij . While lowering Λ, magnetic insta-
bilities may be detected by a breakdown of the RG flow
of the 2-particle vertex, or otherwise, the flow continues
down to Λ = 0 indicating non-magnetic ground state be-
havior. Having reached this physical cutoff-free limit, the
real-space spin-spin correlations 〈SiSj〉 (or their Fourier-
transform into momentum space), which depend on the
2-particle vertex as shown in Fig. 1(c) may be further
investigated. This type of analysis has already been per-
formed for the nearest-neighbor pyrochlore Heisenberg
antiferromagnet in Ref. [27] demonstrating the absence
of magnetic long-range order. The approach outlined in
the next section, which will be applied in Sec. III, pur-
sues a different strategy. There, the 2-particle vertex is
not used as a direct diagnostic tool but rather forms the
basis for a more involved post-processing analysis.

B. PFFRG-enhanced parton mean-field approach

The approach presented in this section is directly
adapted to the states it aims to describe, namely non-
magnetic spin states and primarily quantum spin liquids.
Therefore, we first give a brief introduction into the gen-
eral phenomenology and low-energy behavior of quantum
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FIG. 2. Diagrammatic representations of different self-
consistent schemes. (a) Bare self-consistent Fock mean-field
approach. The dashed line is a bare interaction ∼ Jij . The
thick line is a dressed propagator resulting from Dyson’s equa-
tion in (b). The thin line in (b) is the free fermionic propa-
gator G0(ω) = 1

iω
. In an enhanced parton mean-field scheme,

Dyson’s equation is evaluated together with the self-energy
ΣMF+ shown in (c) making use of the renormalized vertex
from PFFRG (gray box). Note that in this approximation,
the thin line in (b) also contains the self-energy γ(ω) from
PFFRG. (d) Illustration of a contribution from the bare self-
consistent Fock mean-field scheme, obtained via iteration, see
main text for details. Blue lines in (c) and (d) illustrate a
cut for a two-particle decoupling in the crossed particle-hole
channel. To avoid overcounting in ΣMF+, the enhanced mean-
field equation in (c) needs to be evaluated with a two-particle

irreducible vertex Γ̃Λ (white square) which follows from the
Bethe-Salpeter equation in (e). Note that in this equation the
propagator line is dressed with γΛ but not with ΣMF+.

spin liquids.
A characteristic property of a quantum spin liquid is

that it features fractional and spinful quasiparticles called
spinons which we here assume to be fermions. The frac-
tional property stems from the fact that it requires two
spinons to create a conventional ∆S = ±1 excitation.
Since this property is inherently given by the fermionic
parton representation of spin operators in Eq. (2) it is
natural to construct a low-energy effective theory for
quantum spin liquids based on this rewriting. Further-
more, in quantum spin liquids the spinons described by
the fermionic partons fi,α are free in the sense that they
do not experience long-range confining forces between
them. Hence, at low energies the situation can be de-
scribed by a general quadratic model in fi,α, including
spinon hopping χij and pairing ηij ,

HMF = −3

8

∑
i,j

(
χijf

†
j,αfi,βδαβ + ηijf

†
i,αf

†
j,βεαβ + H.c.

)
.

(4)
Here, the sums over spin indices are implicit and the
anti-symmetric tensor ε has vanishing diagonal entries
and the off-diagonals ε↑↓ = −ε↓↑ = 1. Furthermore, the

identities χ†ij = χji and ηij = ηji must hold. Due to

the spin-isotropy of Heisenberg interactions, Eq. (4) only
contains spin-rotation symmetric terms.

It is clear that Eq. (4) alone cannot describe quantum

spin liquids since its eigenstates generally contain contri-
butions from the unphysical Hilbert space sectors and are
thus not even proper spin states. To resolve this problem
one introduces gauge fluctuations in the amplitudes χij
and ηij which in the simplest case of a Z2 gauge theory
correspond to sign fluctuations χij → ±χij , ηij → ±ηij .
The crucial property of a Z2 gauge theory is that exci-
tations in the gauge field (so called visons) are gapped
such that in the low-energy limit even the bare quadratic
theory in Eq. (4) without gauge fluctuations provides a
faithful description of quantum spin liquids.

The fact that the original strongly interacting spin
model that is quartic in the fermions fi,α becomes ef-
fectively quadratic at low energies implies that a mean-
field decoupling in the hopping and pairing channels de-
scribes the system reasonably well [hence, the index ‘MF’
in Eq. (4)]. This means that on this simple level of ap-
proximation the amplitudes χij and ηij can be thought
of as resulting from the self-consistency conditions

χij = Jij〈f†i,αfj,α〉 , ηij = Jij〈fj,αfi,βεβα〉 . (5)

Translating these conditions into Feynman diagrams, χij
and ηij have the form of a self-energy ΣMF which consists
of a convolution of an equal-time fermionic propagator
and a bare interaction line, as shown in Fig. 2(a). More
precisely, to incorporate fermionic pairing, self-energies
and propagators need to be extended to a 2×2 structure
in Nambu space where

ΣMF = uij =

(
χ†ij ηij
η†ij −χij

)
. (6)

To close self-consistency within the diagrammatic frame-
work, the self-energy is fed back into Dyson’s equation
shown in Fig. 2(b), which in total corresponds to a Fock
mean-field decoupling. In terms of explicit expressions
in momentum space the self-consistent equation for uk
reads

uk = −
∞∫
−∞

dω

2π

∫
BZ

dq

VBZ
Jk−q

[
G−1

0 (ω)− uq
]−1

. (7)

For non-Bravais lattices like the pyrochlore lattice, this
equation must be interpreted as a matrix equation in
sublattice space. The momentum integral is carried out
over a single Brillouin zone with volume VBZ.

On this level, Eq. (7) and Figs. 2(a) and 2(b) corre-
spond to a standard parton mean-field theory for quan-
tum spin liquids, expressed in terms of Feynman dia-
grams. In this technique different ansätze for uij may be
tested with respect to non-vanishing solutions and the
one with the smallest mean-field free energy gives an in-
dication of the system’s spin liquid ground state.

We now explain our extension of this approach which
we call ‘PFFRG-enhanced parton mean-field approach’.
The key step is to replace the bare Heisenberg couplings
Jij and the free fermionic propagator G0(ω) = 1

iω in
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Eq. (7) by the corresponding renormalized quantities
from PFFRG,

Jij → ΓΛ
ij(s, t, u) , G0(ω)→ 1

iω + iγΛ(ω)
, (8)

including their full real-space and frequency dependence.
The corresponding improved self-energy, called ΣΛ

MF+, is
depicted diagrammatically in Fig. 2(c) and the explicit
self-consistent equation reads

uΛ̄
k = −

∞∫
−∞

dω

2π

∫
BZ

dq

VBZ
ΓΛ̄
k−q(ω,−ω, 0)

×
[
iω + iγΛ̄(ω)− uΛ̄

q

]−1

. (9)

Since the renormalized vertices γΛ and ΓΛ depend on Λ
there is the freedom to choose Λ for which Eq. (9) is evalu-
ated. We call this cutoff parameter the ‘decoupling scale’
Λ̄ to distinguish it from the renormalization group scale
Λ used in the PFFRG flow equations of Fig. 1. By vary-
ing Λ̄ from Λ̄ = ∞ to Λ̄ = 0 one can smoothly interpo-
late between a bare mean-field scheme and an approach
that uses the fully one-loop renormalized vertices. Hence,
Eq. (9) extends the method well beyond mean-field since
the vertices from PFFRG include additional dynamics
and real-space dependencies (ΓΛ

ij become spatially more
spread-out than Jij) not contained in Jij . Effectively,
this can be thought of as taking into account gauge fluc-
tuations and interactions between partons which are not
contained in Eq. (4). We therefore expect that the ob-
tained spinon parameters χij and ηij provide a better
approximation of the system’s low energy behavior.

This general type of combined FRG plus mean-field
treatment has first been applied in Ref. [70] to investi-
gate competing instabilities in a two-dimensional Hub-
bard model. Since the mean-field Hamiltonian may ex-
plicitly break the symmetries of our system, an important
benefit is that ordered phases can be directly accessed
which is not easily possible within FRG alone. The exten-
sion to quantum spin systems in the pseudofermion rep-
resentation has later been formulated in Ref. [28]. This
latter work discusses solutions of Eq. (9) to character-
ize spin liquid phases in square and kagome Heisenberg
antiferromagnets. It is worth emphasizing that for the
investigation of quantum spin liquids, the objective of
the approach differs from Ref. [70] in the sense that the
possibility of accessing symmetry broken phases is not
exploited. Rather, Eq. (9) is solved for different ansätze
uij to identify the one that is realized at low energies.

Here, we develop the method of Eq. (9) and Ref. [28]
further, by resolving a technical difficulty associated with
an overcounting of diagrams that has first been noticed in
Ref. [71] (there again in the context of a two-dimensional
Hubbard model). To illustrate the overcounting, let
us examine an iterative solution of the bare mean-field
scheme in Fig. 2(a). A particular class of diagrams con-
tributing to the solution has the form of the nested graphs

in Fig. 2(d). These diagrams have the property that
they decompose into disconnected graphs when cutting
the two propagators along the blue line. Now we up-
grade the bare interaction lines ∼ J to renormalized two-
particle vertices ΓΛ from PFFRG. It is clear that if the
vertex ΓΛ has the same property of decomposing into
disconnected diagrams upon cutting two propagators in
the crossed particle-hole channel, this creates an over-
counting of terms (which already occurs in second order
in J). The contributions of ΓΛ with this property have
the structure of particle-hole ladder diagrams. To avoid
this problem only those contributions Γ̃Λ of ΓΛ should
be considered which are two-particle irreducible in the
crossed particle-hole channel. Isolating the contributions
Γ̃Λ corresponds to solving the Bethe-Salpeter equation
(see Appendix A) in the crossed particle-hole channel as
depicted in Fig. 2(e) and explicitly given by

ΓΛ
k−q(ω,−ω, 0) = Γ̃Λ

k−q(ω,−ω, 0)

−
∞∫
−∞

dω′

2π

∫
BZ

dp

VBZ
Γ̃Λ
k−p(ω′,−ω′, 0)

× ΓΛ
p−q(ω′ + ω, ω′ − ω, 0)

(
GΛ(ω′)

)2
. (10)

Additionally, it needs to be ensured that ΣΛ
MF+ only con-

tains diagrammatic contributions that actually depend
on the spinon amplitudes χij and ηij . Other terms in-
dependent of these parameters are local in real space
and imaginary and, therefore, contribute to γ(ω). These
latter self-energy terms are, however, already generated
within PFFRG such that including them would lead to
another source of overcounting. To overcome this prob-
lem, we additionally subtract the zeroth order term in uij
on the right hand side of Eq. (9). Based on these con-
siderations we can now formulate the corrected and final
self-consistent equation containing Γ̃Λ instead of ΓΛ:

uΛ̄
k = −

∞∫
−∞

dω

2π

∫
BZ

dq

VBZ
Γ̃Λ̄
k−q(ω,−ω, 0)

×
{[
iω + iγΛ̄(ω)− uΛ̄

q

]−1

−
[
iω + iγΛ̄(ω)

]−1
}
.

(11)

See Appendix B for numerical details about how we solve
this equation. The error in Eq. (9) resulting from over-
counting may in general be drastic: If the vertex ΓΛ

diverges during the RG flow due to an instability this
will feed back into the self-consistent equation, leading
to unphysical divergent amplitudes uij . In our specific
situation where the 2-particle vertex does not display
any instabilities during the RG flow, the consequences of
overcounting are less disastrous and solely have a quanti-
tative effect. We base the following analysis on the more
accurate self-consistent scheme in Eq. (11).

An unconstrained investigation of Eq. (11) where χij
and ηij are taken as free parameters on all bonds (i, j),



6

is generally too complicated to be performed numeri-
cally. Hence, an ansatz for uij is made which consists
of a small number of free variables (typically amplitudes
|χij | and |ηij | while their phase relations on symmetry-
related bonds are fixed) which are then self-consistently
determined. Despite this reduction of complexity, there
still exist large ansatz classes. For example, uij can also
become finite on bonds (i, j) where Jij = 0, if ΓΛ

ij 6= 0.
However, such a spread of amplitudes uij in real space be-
yond the range of exchange couplings is typically a small
effect, such that in our investigation below we neglect all
spinon amplitudes beyond nearest neighbors. Moreover,
the ansätze uij do not need to obey the symmetries of
the underlying lattice, even for symmetric quantum spin
liquids. More precisely, possible ansätze are taken from
a projective symmetry group analysis which imposes a
weaker condition on the symmetries of uij , according to
which a gauge transformation must exist such that the
combined application of the symmetry transformation
and the gauge operation leaves the ansatz invariant (so-
called projective implementation of symmetries) [29, 72].
One may also investigate states where lattice symmetries
are explicitly (i.e., even projectively) broken such as for
dimer valence bond solids. In the corresponding ansätze,
χij is taken to be finite only on bonds which are occupied
by a dimer and zero otherwise (furthermore, ηij = 0 on
all bonds) [73, 74]. This type of ansatz reflects the phys-
ical properties of a dimer state where on length scales
beyond the extent of singlet dimers spinons are no longer
free quasiparticles, e.g., they can only hop within a dimer
but not between dimers.

Having calculated the amplitudes uij self-consistently
for different ansätze, one needs a criterion that indicates
which one describes the system’s low energy physics best.
In an ideal situation where the free energy functional
for these amplitudes would be known, one could identify
the ansatz which minimizes the free energy. However,
within FRG the free energy functional including effects of
renormalization beyond mean-field is not easily accessible
(even though first approaches have accomplished parts of
this task [64]). Therefore, we use a more basic approach
and simply compare the sizes of the self-consistently cal-
culated amplitudes |χij | and |ηij | for different ansätze
aiming to find the largest ones (note that for simplicity
each ansatz investigated below is only characterized by
one free parameter). This procedure is well justified from
a pure mean-field perspective, where the energy expecta-
tion value EMF of Eq. (4) is given by

EMF = 〈HMF〉 ∼ −
∑
ij

J−1
ij

(
|χij |2 + |ηij |2

)
, (12)

which is minimized by the ansatz with the largest ampli-
tudes.

C. Investigation of symmetry breaking
perturbations

To complement the analysis of the PFFRG-enhanced
parton approach we use another and more straightfor-
ward method to directly probe the system’s ground state
with respect to symmetry breaking orders such as dimer-
ization. This amounts to applying the standard PFFRG
technique from Sec. II A, but with slightly modified cou-
pling constants J mimicking the dimer pattern. Particu-
larly, we start with a set of bonds (i, j) which initially all
carry the same interactions J (such as nearest-neighbor
bonds). We then partition these bonds into two groups
B+ and B− in a way that the bonds B+ are those car-
rying a dimer and perturb the couplings J by a small
parameter δ > 0 as follows:

(i, j) ∈ B+ : Jij −→ Jij + δ ,

(i, j) ∈ B− : Jij −→ Jij − δ . (13)

Running PFFRG for this system we keep track of the
static spin-spin correlations

χΛ
ij =

∫ ∞
0

dτ 〈Si(0)Sj(τ)〉 (14)

[see Fig. 1(c)] for all weakened and strengthened bonds.
Of particular interest is the dimer response function
χΛ
D,ijkl which measures how strongly this perturbation

affects the correlations:

χΛ
D,ijkl =

∣∣∣J
δ

χΛ
ij − χΛ

kl

χΛ
ij + χΛ

kl

∣∣∣ ,where (i, j) ∈ B+, (k, l) ∈ B− .

(15)
This quantity is defined such that at the beginning of
the RG flow χΛ=∞

D,ijkl = 1. If the dimer response func-
tion grows towards values much larger than one as Λ
approaches the cutoff-free limit (χΛ→0

D,ijkl � 1) this indi-
cates the tendency for dimerization. Furthermore, the
size of the response function can be compared for dif-
ferent patterns to identify the preferred one. Note that
for a given symmetry breaking pattern, i.e., for a cer-
tain partitioning of bonds into B+ and B−, the quan-
tity χΛ

D,ijkl may not be uniquely given, but depends on

the precise choice of strengthened/weakened bonds (i, j)
and (k, l) for which the spin-correlations are compared
to each other. This method cannot only be applied to
dimer patterns but to all other types of lattice symmetry
breaking states such as nematic order while, on the other
hand, probing quantum spin liquid behavior directly is
not possible (at least not beyond the observation that
lattice symmetry breaking is absent).

III. RESULTS

A. PFFRG-enhanced parton mean-field theory

In this section, we present our results for the PFFRG-
enhanced mean-field analysis for various ansätze of the
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FIG. 3. Investigated hopping models on the pyrochlore lattice: The blue (red) bonds denote positive (negative) real-valued
hoppings χ (−χ). Black arrows depict imaginary hoppings iχ (−iχ) in (against) the direction of the arrow. Gray bonds carry
zero hopping amplitudes. Within each ansatz, all finite hoppings have the same absolute value. a) The uniform state. b)
The staggered state. c) The (π/2, π/2, 0) monopole state. d) The localized tetramer state breaking inversion symmetry. e)
Two infinitely extended lines breaking the C3 rotation symmetry. f) Two localized dimers breaking inversion and rotation
symmetry. g) One localized trimer breaking inversion and rotation symmetry. h) One localized fourfold loop breaking inversion
and rotation symmetry. i) The (π/2,−π/2, 0) monopole-antimonopole state.

matrix uij . To simplify the analysis, we will restrict our-
selves to finite nearest-neighbor hopping terms only, and
thus all ansätze analyzed subsequently have a U(1) in-
variant gauge group (IGG) [29]. (Note that an ansatz
with only hopping amplitudes is gauge equivalent to an
ansatz with only real-valued pairing terms such that no
bias is induced by concentrating on hopping ansätze.) We
start by considering four simple or previously proposed
candidate ansätze for symmetric and chiral quantum spin
liquids which all satisfy the system’s lattice symmetries
projectively:

• The uniform ansatz with identical real-valued hop-
pings on all nearest-neighbor bonds, see Fig. 3(a).
Consequently, this state has a 0-flux through the
triangular faces of both up and down tetrahedra,
and a 0-flux through the elementary hexagon pla-
quettes of the pyrochlore lattice. This ansatz can
be implemented within a four-site unit cell.

• The staggered ansatz with real-valued and positive
(negative) hoppings on all up (down) tetrahedra,
see Fig. 3(b). Such a pattern results in a 0 (π)-flux
through the triangular faces of up (down) tetrahe-
dra, and a π-flux through the hexagons. This flux
structure can be realized by a four-site unit cell.

• The (π/2, π/2, 0) flux monopole state proposed in
Ref. [31] and depicted in Fig. 3(c). This ansatz
features a π/2-flux threading each of the triangular
faces of both up and down tetrahedra, and a 0-flux
through the hexagons. Such a flux structure breaks
inversion (I) and time-reversal (T ) symmetries,
but respects their product IT , and thus describes
a chiral spin liquid of the Kalmeyer-Laughlin type.
It can be implemented within a four-site unit cell.

• The (π/2,−π/2, 0) flux monopole-antimonopole
state investigated in Ref. [30]. The ansatz features
a π/2 (−π/2)-flux threading each of the triangular
faces of up (down) tetrahedra, and a 0-flux through
the hexagons. This flux pattern involves a breaking
of the screw (S) [75] and time-reversal (T ) symme-
tries, while conserving their product ST , and thus
realizes a chiral spin liquid of a different symmetry
class compared to the (π/2, π/2, 0) monopole flux
state. This ansatz also involves a doubling of the
unit cell along any two of the three Bravais lattice
vectors, and thus requires a 16-site unit cell, see
Fig. 3(i).

Restricting to these quantum spin liquid ansätze first,
the results for the self-consistently obtained nearest-
neighbor hopping amplitudes χ as a function of Λ̄ are
shown in Fig. 4. At a pure mean-field level (Λ̄ =∞), the
two monopole states have the largest amplitudes, with
a slight advantage for the (π/2,−π/2, 0) state, in confir-
mity with the Rokhsar rules [30, 76]. Interestingly, this
preference for the monopole states remains qualitatively
unchanged as Λ̄ is lowered (i.e., as more effects of renor-
malization are taken into account), a fact which is also
corroborated by Gutzwiller projection of the correspond-
ing mean-field states, cf. Appendix C, whereby the two
monopole type states give the lowest variational ener-
gies, with a slightly lower energy for the (π/2,−π/2, 0)
monopole-antimonopole state of Ref. [30], in agreement
with the findings from PFFRG [77], see Table I. The
overall size of amplitudes, however, is renormalized to
smaller values below Λ̄ ≈ 0.4 which is generally expected
when incorporating fluctuations beyond mean field. On a
technical level, this is a consequence of the imaginary on-
site self-energy γΛ(ω) in PFFRG which acts as a finite
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Symmetry η (Φ4,Φ5,Φ7) Energy (VMC) χΛ̄→450 J χΛ̄→0.01 J

Fully symmetric +1 (0, 0, 0)a [30, 31] −0.37502(6) 0.1329 0.0450
Fully symmetric +1 (0, π, π) −0.37457(5) 0.1063 0.0356
Chiral (IT ) +1 (π

2
, π

2
, 0)b [30, 31] −0.457354(5) 0.1397 0.0472

Chiral (ST ) −1 (π
2
,−π

2
, 0)c [30] −0.459402(6) 0.1404 0.0475

TABLE I. The Gutzwiller projected ground state energies per site E/J of the four U(1) ansätze obtained by variational Monte
Carlo (VMC) calculations on a 6912-site (= 4×12×12×12) cluster which respects the full symmetry of the pyrochlore lattice.
The ansätze with η = 1 do not enlarge the four-site geometrical unit cell while the one with η = −1 involves a doubling of
the unit cell along two tetrahedral axis, i.e., it has a 16-site unit cell. The ansätze are completely characterized by specifying
the gauge fluxes through three plaquettes, namely, the triangular faces of up tetrahedra (Φ4), the triangular faces of down
tetrahedra (Φ5), and the hexagons (Φ7). The last two columns show the PFFRG-enhanced mean-field amplitudes at a large
and a small decoupling scale Λ̄ ≈ 450 J and Λ̄ ≈ 0.01 J .
a This Ansatz is labelled as [0, 0, 0] in Ref. [30], and referred to as the uniform state in Ref. [31].
b This Ansatz is referred to as the monopole flux state in Ref. [31]. However, despite careful checking and benchmarking of our
code, we find a different VMC energy [E/J = −0.458525(4)] of this state than given in Table I of Ref. [31] [E/J = −0.4473(9)]
on the 500-site cluster employed therein. In Ref. [30], this state is labelled as

[
π
2
, π

2
, 0
]

and is referred to as the uniform flux
state.
c In Ref. [30], this Ansatz is referred to as the staggered flux state and labelled as

[
π
2
,−π

2
, 0
]
.

lifetime for the pseudofermions. Surprisingly, the hier-
archy of the amplitudes and their ratios remain largely
unchanged upon varying Λ̄. In total, these results in-
dicate that on the level of spin liquid states, previous
results finding a preference for the chiral flux states is
confirmed, with our study indicating a slight preference
for the monopole-antimonopole state (in contrast to pre-
vious studies), and this property seems relatively robust
with respect to renormalization effects.

Next, we extend our analysis by including vari-
ous ansätze which explicitly break the system’s lattice
symmetries, see Figs. 3(d)-(h). These states restrict
the pseudofermions to be localized on dimers, trimers,
tetramers, fourfold loops, and extended 1D lines. The
ansätze can be characterized by the lattice symmetries
they break, particularly inversion i which transforms
r → −r (where the origin coincides with a pyrochlore
lattice point) and C3 rotation which performs a 2π/3 ro-
tation around an axis connecting the midpoints of two ad-
jacent tetrahedra (this axis passes through the pyrochlore
lattice point common to both tetrahedra). The pattern
in Fig. 3(d) [Fig. 3(e)] then breaks only inversion i [only
C3 rotation] while the ansätze in Fig. 3(f)-(h) break both
i and C3. Note that the dimer and tetramer states have
been recently discussed in Refs. [25, 26] and both works
find a tendency for their realization in the ground state of
the pyrochlore Heisenberg antiferromagnet. Our results
in Fig. 4 likewise show that the dimer state yields by far
the largest amplitudes throughout the entire range of Λ̄
and also outperforms the spin liquid ansätze. One can
interpret this as an indication for dimerization, however,
we explicitly stress that at this stage of the analysis one
needs to be careful with this conclusion. Particularly, our
approach, while unbiased when comparing amplitudes of
different quantum spin liquids among each other may be
biased with respect to finding explicit symmetry break-
ing. Our large intra-dimer hopping amplitudes χdimer

certainly imply that dimer formation leads to a signifi-
cant reduction of energy on the dimer bonds. However,

all other ‘non-dimer’ bonds may be energetically unfa-
vorable, which is not captured in our approach such that
dimerization may appear more favorable than it actually
is (as mentioned before, the total energy would serve as
an ultimate diagnostic measure). Please confer Sec. IV
for a more detailed discussion. A definite conclusion on
possible dimerization cannot be drawn solely based on
these results. We therefore, consult a different approach
in the next section.

B. Investigation of symmetry breaking patterns

We continue probing the Hamiltonian in Eq. (1) with
respect to various symmetry breaking perturbations us-
ing the approach explained in Sec. II C. Particularly,
we impose the patterns of Figs. 3(d), (e), and (f) by
strengthening the blue bonds and weakening the other
ones. This probes the system with respect to inversion
symmetry breaking only [see Fig. 3(d)], C3 rotation sym-
mmetry breaking only [see nematic pattern in Fig. 3(e)]
and a combination of both [see dimer pattern in Fig. 3(f)].

Note that for the patterns in Figs. 3(d) and (e) all
weak bonds are symmetry equivalent (i.e., they can all
be mapped onto each other by applying symmetry trans-
formations of the remaining unbroken symmetries) and
the same is true for the strong bonds. Hence, there is a
unique way of defining the corresponding response func-
tions χD,i and χD,C3

[see Eq. (15)] by comparing the
spin correlations on weakened and strengthened bonds.
On the other hand, for the dimer pattern in Fig. 3(f),
the weakened bonds cannot all be mapped onto each
other due to the reduced number of point symmetries.
Therefore, there are two distinct possibilities to com-
pare the spin correlations on weakened and strength-

ened bonds, the inter-tetrahedron response χ
(1)
D,C3,i

and

the intra-tetrahedron response χ
(2)
D,C3,i

, which are defined
as illustrated in Fig. 5.
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FIG. 4. Self-consistently determined nearest-neighbor hop-
ping amplitudes as a function of the decoupling scale Λ̄ for
the ansätze given in Fig. 3. While the amplitudes for sym-
metric quantum spin liquids are comparatively small, by far
the largest amplitude results for the dimerized pattern in
Fig. 3(f). The decay of all amplitudes when Λ̄ . 0.4 is
caused by the finite pseudofermion lifetime due to the imagi-
nary self energy from PFFRG. Note that the data points for
the (π/2, π/2, 0) flux monopole state and (π/2,−π/2, 0) flux
monopole-antimonopole state lie almost on top of each other,
with slightly larger amplitudes for the (π/2,−π/2, 0) state.

A first important observation is that the response func-
tion χD,i which probes pure inversion symmetry breaking
decreases as Λ flows towards zero. This clearly indicates
that the system rejects this pattern, which is in agree-
ment with the relatively small hopping amplitudes found
in our PFFRG-enhanced parton approach. In stark con-
trast, but again in agreement with our previous analysis,

the nematic and dimer response functions χD,C3
, χ

(1)
D,C3,i

and χ
(2)
D,C3,i

exhibit a pronounced increase at small Λ,
where the initial perturbation gets amplified by roughly

one order of magnitude. As expected, χ
(1)
D,C3,i

6= χ
(2)
D,C3,i

since there is no symmetry relation connecting them.

We find that the intra-tetrahedron response χ
(2)
D,C3,i

is
larger, indicating the system’s strong propensity for sym-
metry breaking already within one tetrahedron. Interest-

ingly, χ
(2)
D,C3,i

and χD,C3
are numerically indistinguishable

FIG. 5. Renormalization group flows of response functions
χD [see Eq. (15)] for the three symmetry breaking pertur-
bations illustrated in Fig. 3(d), (e), and (f). In the bottom
part of the figure, the colored bonds illustrate which weakened
(gray) and strengthened (black) bonds are compared to each
other (the colors in these illustrations match the ones of the
curves). Note that for the dimer pattern in Fig. 3(f) two dif-

ferent response functions χ
(1)
D,C3,i

and χ
(2)
D,C3,i

can be defined,
depending on the precise choice of weakened and strengthened
bonds that are compared (bottom part of the figure).

such that our results are compatible with both patterns.
Based on this analysis we conclude that the system shows
tendencies for the realization of either a dimer or a ne-
matic ground state.

IV. DISCUSSION

Several comments on the applied methods and our re-
sults are in order. As explained before, the PFFRG-
enhanced mean-field approach may have a bias towards
detecting symmetry breaking dimerization patterns. De-
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spite this possible bias, we believe that the large dimer
amplitude in Fig. 4 still points towards a valence bond
solid formation. Our investigation of symmetry break-
ing perturbations in Sec. III B substantiates this con-
clusion. Another indication comes from calculating and
comparing dimer amplitudes for other well-studied frus-
trated models such as Heisenberg models on the square
lattice (with first and second-neighbor couplings) and
on the kagome lattice. For these two systems we ob-
serve similar trends of overpredicting dimer states. How-
ever, dimerization tendencies are found to be signifi-
cantly stronger on the pyrochlore lattice than for the
square and kagome lattice systems. Particularly, tak-
ing the amplitude χuniform of a uniform hopping model
(equal real-valued hopping amplitudes on all nearest-
neighbor bonds) as a reference, we find that the ratio

r = χΛ̄→0
dimer/χ

Λ̄→0
uniform is largest for the pyrochlore lattice:

rpyrochlore ∼ 2.8, rsquare ∼ 2.4, rkagome ∼ 2.2 (where
for the square lattice a ratio between second and first
neighbor antiferromagnetic interactions of J2

J1
= 1

2 is as-
sumed and for the kagome lattice only nearest-neighbor
couplings are considered).

Before we move on to our conclusions, it is worth dis-
cussing the PFFRG-enhanced parton approach from a
more general perspective. Instead of interpreting it as an
improvement of a bare mean-field theory, one can take
the opposite viewpoint and consider it as a simplification
of a rather sophisticated ‘itinerant spinon FRG’. In this
latter scheme the spinon degrees of freedom would be
treated more explicitly by allowing the fermions to hop
already on the level of the FRG (which implies making a
gauge fixing). This, however, makes the numerical efforts
vastly more complicated, since one can no longer benefit
from the simplifying locality of free fermionic propaga-
tors (one possibility to proceed is to sacrifice frequency
resolution for including itinerant spinons [78]). Starting
from an ‘itinerant spinon FRG’ our PFFRG-enhanced
parton approach would be obtained by restricting spinon
hopping only to the fermionic particle-hole ladder chan-
nel while neglecting it in all other channels (diagram-
matic contributions without any spinon hopping pro-
cesses would still be treated in all FRG channels). This
is because singling out one decoupling channel is equiva-
lent to a mean-field treatment in this channel, therefore
restoring our PFFRG-enhanced parton approach. With
these properties, our technique is well adapted to de-
scribe non-magnetic ground states of quantum spin mod-
els, including quantum spin liquids, but at the same time
avoids the difficulties associated with the explicit descrip-
tion of itinerant fractional excitations. In the present
implementation, however, the ground state is identified
as the state with the largest mean-field amplitudes uij .
This criterion is borrowed from a bare mean-field ap-
proach [see Eq. (12)] and could be improved in more ad-
vanced schemes where the minimization of the free energy
is taken as a diagnostic tool. We defer this to future work
as it requires more in-depth method development.

V. CONCLUSION

In this work, we have investigated the ground state
properties of the nearest-neighbor S = 1/2 pyrochlore
Heisenberg antiferromagnet using principally the PF-
FRG method and variants thereof. We have first in-
troduced and discussed in detail the PFFRG-enhanced
parton mean-field technique on which parts of our anal-
ysis are based. This method uses a parton ansatz for the
system’s spinon degrees of freedom and determines the
parameters of the corresponding bilinear parton Hamil-
tonian (spinon hopping and pairing amplitudes) self-
consistently. Compared to a standard parton mean-field
treatment, our approach makes explicit use of renormal-
ized vertices from PFFRG and, hence, includes impor-
tant effects of quantum fluctuations not contained at the
bare mean-field level. As an improvement of an ear-
lier implementation in Ref. [28], we have further resolved
a technical difficulty associated with an overcounting of
fermionic diagrams.

The PFFRG-enhanced parton mean-field technique is
primarily designed to probe the spin liquid nature of frus-
trated quantum spin systems. Applying it in this context
first, we have found that, among the previously proposed
spin liquid ansätze, the monopole-antimonopole state of
Ref. [30] is the preferred one, with the monopole flux
state of Ref. [31] being a close competitor, and finally the
symmetric spin liquids are found to be noncompetitive.
Interestingly, apart from an overall reduction of spinon
amplitudes, fluctuations beyond mean-field turn out to
have a rather small effect. The hierarchy of spin liquids
has been validated by our large-scale variational Monte
Carlo calculations which find the Gutzwiller projected
wave function energies of the two chiral spin liquids as
the lowest, with the monopole-antimonopole state having
a slightly lower energy [E/J = −0.459402(6)] compared
to the monopole state [E/J = −0.457354(5)], while the
two symmetric spin liquids are found to have compara-
tively higher energies, E/J = −0.37502(6) and E/J =
−0.37457(5) for the (0, 0, 0) and (0, π, π) flux states, re-
spectively. It is also worth mentioning that these energies
are considerably larger than the ground state energies
found in Refs. [25, 26] and references therein, providing
an independent argument against a spin liquid ground
state.

In the next step, we have applied our PFFRG-
enhanced parton mean-field theory to ansätze which ex-
plicitly break the system’s lattice symmetries mimicking
valence bond solid formations. The spinon amplitudes
for dimer patters are found to be dominant and even
outperform the ones of our spin liquid ansätze. While we
have argued that due to a possible methodological bias
this result should not be overinterpreted as an indica-
tion for dimerization, a comparison to square and kagome
models still suggests that dimer tendencies are particu-
larly strong on the pyrochlore lattice. This observation
is underpinned more rigorously within a direct investiga-
tion of symmetry breaking patterns where PFFRG has
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been applied to model Hamiltonians with slightly weak-
ened or strengthened bonds according to the dimeriza-
tion pattern to be probed. With this technique we have
identified a clear tendency for either C3 rotation symme-
try breaking or a combination of both C3 and inversion
symmetry breaking. On the other hand, inversion sym-
metry breaking alone is clearly not supported. In total,
all these results indicate that the ground state of the
nearest-neighbor antiferromagnetic Heisenberg model on
the pyrochlore lattice is either given by a dimer or a lat-
tice nematic state.

It is interesting to put this result into its context in the
field of quantum magnetism. The classical nearest neigh-
bor pyrochlore Heisenberg model remains disordered at
all temperatures. Therefore, a symmetry broken state in
the quantum limit is an example where quantum fluc-
tuations reduce the system’s symmetries, similar to the
well-known order-by-disorder effect [79]. This is surpris-
ing since for the kagome lattice, which likewise consists of
corner sharing building blocks, the opposite behavior is
observed: the classical nearest neighbor model shows ne-
matic symmetry breaking (which corresponds to the se-
lection of coplanar states) [80] while the quantum model
is widely believed to realize a symmetric quantum spin
liquid (see Refs. 81–88 for a selection of recent works).
Some models add even more complexity to this puzzling
situation. A seemingly innocent rearrangement of the
corner sharing kagome triangles into a lattice called the
shuriken network is again believed to realize a symmetry
broken valence bond crystal ground state in the quan-
tum case [89–91]. It will be an interesting future task
to explain these behaviors and identify an overarching
systematics.

Experimentally, a dimer state has a spin gap which
can be observed in the spin structure factor via neutron
scattering. If the gapped excitations are not measurable
by neutrons because the gap is too small it should still be
observable in the heat capacity and the DC magnetic sus-
ceptibility as a distinctive exponential increase from low-
est temperatures. Alternatively, the dimerization may
be accompanied by a lattice distortion for which sensi-
tive experimental probes exist.

Here, we have exclusively concentrated on a single
model without varying any coupling parameters. How-
ever, exploring how the ground state of this model is
embedded in a wider phase diagram remains an inter-
esting problem. For example, by interpolating between
the Heisenberg and the Ising model the system will un-
dergo a phase transition to a U(1) spin liquid at an
unknown Ising interaction strength. Studying the fate
of the putative symmetry broken dimer/nematic state
upon adding longer-range Heisenberg couplings consti-
tutes another possible future research direction. Since
dimer states show the largest energy reduction on bonds
occupied by a dimer, longer-range couplings on bonds
without dimers may be energetically unfavorable in a va-
lence bond solid. The associated destabilization of sym-
metry breaking states may induce quantum spin liquid

behavior and possibly realize the monopole-type states
which we found to be the preferred quantum spin liquid
ansätze in the nearest-neighbor model.

From a methodological perspective, we have demon-
strated the applicability of the PFFRG-enhanced parton
mean-field theory to complex quantum spin models and
showed its capability to smoothly interpolate between a
bare mean-field scheme and a fully one-loop renormal-
ized approach. The surprisingly small effect of the renor-
malized vertices which only amounts to an overall re-
duction of mean-field amplitudes raises questions about
whether the system has an intrinsic mean-field character
or whether the current level of renormalization is insuf-
ficient to have a more significant impact on the spinon
amplitudes. Since our PFFRG-enhanced parton mean-
field approach is formulated in a very general way and
can be based on arbitrary types of renormalized ver-
tex functions (as long as a diagrammatic overcounting is
prevented), plenty of possibilities for improvements are
opened up. Particularly interesting would be the use of
vertex functions from the recently developed multiloop
schemes [60, 61] which could yield further insight into
the ground state properties of frustrated quantum spin
systems.
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Appendix A: Numerical solution of the
Bethe-Salpeter equation

In this appendix, we explain how we solve the Bethe-
Salpeter equation [Eq. (10) from the main text]. In real
space, the convolution integral over internal momenta
turns into a direct product

Γ̃Λ
k−q −

∫
BZ

dp

VBZ
Γ̃Λ
k−pΓΛ

p−q → Γ̃Λ
ij − Γ̃Λ

ijΓ
Λ
ij . (A1)

This decouples the different real-space components of ΓΛ

yielding one Fredholm integral equation of the second
kind in Matsubara space for each component. Numer-
ically, we deal with discretized Matsubara frequencies
ωκ and the required vertex functions depend on a single
frequency argument. We abbreviate ΓΛ(ωκ,−ωκ, 0) →
ΓΛ(ωκ) from now on and rewrite the integral equations
as

ΓΛ
ij(ωκ) = Γ̃Λ

ij(ωκ) +
∑
κ′

WΛ
ij (ωκ, ωκ′)Γ̃Λ

ij(ωκ′), (A2)

where WΛ
ij (ωκ, ωκ′) are weights to approximate the con-

tinuous integral in Eq. (10). We assume a locally
parabolic behavior of the integrand which, for equidis-
tant frequencies, would be identical to using Simpson’s
numerical integration rule [92]. In the discretized Mat-
subara space, Eq. (A2) is a matrix equation and can be
solved for the desired two-particle irreducible vertex

Γ̃Λ
ij(ωκ) =

∑
κ′

[
1+WΛ

ij

]−1
(ωκ, ωκ′)ΓΛ

ij(ωκ′). (A3)

The inverse of 1+WΛ
ij can be computed efficiently from

a lower-upper decomposition. The resulting vertex func-
tion Γ̃Λ

ij(ωκ) is then plugged into the self-consistent Fock
equation [Eq. (11) from the main text].

Appendix B: Computation of self-consistent
mean-field amplitudes

Here we discuss how we numerically solve the self-
consistency equation of our PFFRG-enhanced parton
mean-field approach for a given ansatz uij . The left-hand
side (LHS) and the right-hand side (RHS) of Eq. (11)
have identical structures in sublattice and momentum
space if uij is inserted from a PSG classification. This
is also true for the local and quasi one-dimensional hop-
ping patterns presented in Figs. 3(d)-(h). For example,
the uniform hopping ansatz from Fig. 3(a) is diagonal in

Nambu space uΛ̄
k = diag(χ† Λ̄

k ,−χΛ̄
k ) due to the absence of

pairing terms. The hopping terms χ† Λ̄
k have the following

structure in sublattice and momentum space.

χ† Λ̄
k = χΛ̄


 0 1 1 1

1 0 1 1
1 1 0 1
1 1 1 0



+


0 e−ik·r1 e−ik·r2 e−ik·r3

eik·r1 0 e−ik·(r2−r1) e−ik·(r3−r1)

eik·r2 eik·(r2−r1) 0 e−ik·(r3−r2)

eik·r3 eik·(r3−r1) eik·(r3−r2) 0




(B1)

Here, r1, r2, r3 are the Bravais lattice vectors and the
first (second) term in square brackets corresponds to
nearest-neighbor hoppings within (in between) unit cells.

The real-valued prefactor χΛ̄ denotes the magnitude of
the hoppings which is identical on all bonds by virtue of
the PSG classification. This is the only free mean-field
parameter for the uniform hopping ansatz which needs to
be determined self-consistently. In order to compute an
arbitrary free mean-field hopping or pairing amplitude
of a given ansatz, it is therefore sufficient to evaluate
Eq. (11) for a specific component of uΛ̄

k in momentum
and sublattice space which is proportional to this am-
plitude which we call ξ from now on for brevity. By
singling out one amplitude, the integrand on the RHS of
Eq. (11) should only contain the Fourier transform of the
according vertex function due to the real-space structure
of contributing Feynman diagrams [see Fig. 2(c)], i.e., the

vertex function Γ̃Λ̄
k−q only contains the Fourier transform

of the nth-neighbor vertex function if an nth-neighbor
hopping or pairing term is considered.

For an efficient momentum integration, the Brillouin
zone is chosen to be cuboidal and we compute the RHS
integrand on an equidistant and symmetric mesh con-
taining (nk)3 points in momentum space. In Matsub-
ara space, the integrand is computed for nω symmet-
ric points between −Λmax and Λmax where we call the
largest (infrared) cutoff scale used within the PFFRG
framework Λmax. The frequency points include the dis-
crete mesh points ωl from PFFRG, which are more
densely distributed in the ultraviolet ω → 0 limit, if
|ωl − ωl+1| < 2Λmax/nω and for equidistant frequencies
otherwise. We also insert ω = 0 as well as kµ = 0 with
µ ∈ {x, y, z} to our grids such that we have an odd
number of points on all integration axes. On these fre-
quency and momentum grids, the inverse of the matrix
iω + iγΛ̄(ω) − uΛ̄

q is evaluated with the builtin matrix
inversion of numpy. The integration is then carried out
via Simpson’s integration in scipy.

Typically, we compute the RHS at two different points
in parameter space ξ = ξ− and ξ = ξ+ = ξ− + ∆ξ > ξ−
yielding the two values f(ξ−) and f(ξ+). We use an
iterative scheme in which we start with ξ− = 0 and ξ+ =
∆ξ as well as some fixed nω and nk. If the conditions

f(ξ−) > ξ− and f(ξ+) < ξ+ (B2)
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are fulfilled, we find a solution of the self-consistency
equation at

ξsol =
f(ξ−)∆ξ − ξ− (f(ξ+)− f(ξ−))

∆ξ − (f(ξ+)− f(ξ−))
, (B3)

where the two lines connecting either ξ− and ξ+ or f(ξ−)
and f(ξ+), respectively, intersect. If the conditions in
Eq. (B2) are not met, we repeat the previous procedure
after increasing ξ± by ∆ξ [93].

In all simulations, we keep the number of frequencies
nω sufficiently large and, in particular, larger than the
number of frequencies at which the vertex functions are
computed within PFFRG. If we find a solution it will thus
still depend on the discretization parameters ∆ξ and nk.
In order to eliminate these dependencies, we repeat the
above procedure for a given nk after sending ∆ξ → ∆′ξ =

∆ξ/2. The solution is considered to be converged if

|ξsol(∆
′
ξ, n
′
k)− ξsol(∆ξ, nk)| < δξ , (B4)

where δξ is absolute error that we allow for. Once con-
vergence is reached in ∆ξ, we repeat this procedure after
increasing nk → n′k = nk + 2 until Eq. (B4) is also ful-
filled for nk. For all results presented in this work, we
set δξ = 10−4.

Appendix C: Variational Monte Carlo

As discussed in Sec. II, the parton representation of
spin operators introduced by Eq. (2) is accompanied by

an artificial enlargement of the Hilbert space, with the in-
clusion of unphysical S = 0 fermionic states with doubly-
occupied and/or empty sites. As a consequence, mean-
field wave functions defined within the pseudofermionic
framework do not represent well-defined quantum states
for the original spin Hamiltonian. A way to overcome
this drawback and define appropriate variational states
for the spin problem is constraining the pseudofermionic
wave functions to the spin Hilbert space. This can be
achieved by the application of the Gutzwiller projector,

PG =
∏
i

(f†i↑fi↑ − f
†
i↓fi↓)

2, (C1)

to the mean-field state |ΦMF〉. The resulting wave func-
tion,

|Ψvar〉 = PG|ΦMF〉, (C2)

can be employed as a faithful variational state for
the Heisenberg Hamiltonian [Eq. (1)]. The Gutzwiller
projection can be easily implemented within a Monte
Carlo scheme where the sampling of the mean-field state
is limited to the configurations with one fermion per site.
In Tab. I, we report the variational energies obtained by
Gutzwiller-projecting the mean-field spin-liquid ansätze
defined in Sec. III A.
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