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Quasiparticles are physically motivated mathematical constructs for simplifying the seemingly complicated
many-body description of solids. A complete understanding of their dynamics and the nature of the effective
interactions between them provides rich information on real material properties at the microscopic level. In this
work, we explore the dynamics and interactions of magnon quasiparticles in a ferromagnetic spin-1 Heisenberg
chain with easy-axis onsite anisotropy, a model relevant for the explanation of recent terahertz optics experi-
ments on NiNb2O6 [P. Chauhan et al., Phys. Rev. Lett. 124, 037203 (2020)], and nonequilibrium dynamics in
ultra cold atomic settings [W.C. Chung et al., Phys. Rev. Lett. 126, 163203 (2021)]. We build a picture for the
properties of clouds of few magnons with the help of exact diagonalization and density matrix renormalization
group calculations supported by physically motivated Jastrow wavefunctions. We show how the binding energy
of magnons effectively reduces with their number and explain how this energy scale is of direct relevance for
dynamical magnetic susceptibility measurements. This understanding is used to make predictions for ultra cold-
atomic platforms which are ideally suited to study the thermalization of multimagnon states. We simulate the
nonequilibrium dynamics of these chains using the matrix product state based time-evolution block decimation
algorithm and explore the dependence of revivals and thermalization on magnon density and easy-axis onsite
anisotropy (which controls the strength of effective magnon interactions). We observe behaviors akin to those
reported for many-body quantum scars which we explain with an analytic approximation that is accurate in the
limit of small anisotropy.

I. INTRODUCTION

How does one characterize the low energy spectrum of a
system of large number of electrons in systems? In many
cases, we are fortunate to afford a description of these seem-
ingly complicated many-body systems in terms of quasiparti-
cles. A comprehensive understanding of their dynamics and
the nature of the effective interactions between them provides
us with rich information on real material properties at the mi-
croscopic level. Quasiparticles can exist in various forms:
For example, effective electrons in a Landau-Fermi liquid [1],
spinons in a quantum spin liquid [2], or magnons in a system
with conventional magnetic order [3, 4].

Magnetic spin chains provide particularly illuminating ex-
amples of quasiparticle physics associated with many deep in-
sights for how strongly correlated electrons collectively act.
In the antiferromagnetic S = 1/2 chain, for example, neutron
scattering sees a continuum of excitations, providing a strik-
ing confirmation of spin fractionalization and the emergence
of spinon quasiparticles [5, 6], a consequence of correlated
many-body effects. The S = 1 case is equally spectacular,
giving rise to the Haldane spin gap associated with effective
S = 1/2 fractionalized degrees of freedom which are decon-
fined [7–12]. The low dimensionality of spin chains makes
magnetic order highly unstable to quantum fluctuations, and
it is now known that even in higher dimensional systems, geo-
metrical effects such as frustration can achieve similar qualita-
tive outcomes [2, 13]. In the case of ferromagnets, more con-
ventional magnon quasiparticles are expected and observed,
which are well described within the framework of spin wave
theory. Interactions between magnons can lead to distinct sig-
natures in the excited state spectrum [4], and corresponding
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finite frequency observables such as the dynamical magnetic
susceptibility. Adding to the richness of possible emergent be-
haviors from quasiparticle interactions is the effect of temper-
ature [14, 15], which must be accounted for to connect to real
experiments. Thus, spin chains provide an ideal setting for
exploring the dynamics and effective interactions of magnons,
and their impact on measurements.

S = 1 systems with predominantly Heisenberg interactions
offer an interesting ground for exploring the physics of inter-
acting magnons. For S = 1 and higher, terms such as the bi-
quadratic interaction and on-site anisotropy are allowed [16],
both of which are forbidden for the S = 1/2 case. There is
a large class of materials and associated realistic models with
high spin (see for example [13, 15, 17–26]); with the ability
to perform accurate measurements and theoretical simulations
of these systems, there is renewed interest in their physics. In
addition to the plethora of high spin compounds on the mate-
rials front, the ability of cold atom systems to realize effective
high spin models is an exciting opportunity to explore high
spin physics in new regimes [27, 28].

Our work here is inspired by, but not limited to, recent tera-
hertz (THz) optics experiments on NiNb2O6 [15], and recent
realizations of S = 1 magnets with tunable anisotropy in ultra
cold atomic settings [27]. In the former experiment, the inter-
action between magnons was effectively tuned between attrac-
tive and repulsive by changing the direction and the strength
of external magnetic field (longitudinal vs transverse). This
manifests itself as a significant shift in the location of the ex-
citation in the dynamical susceptibility which moved lower or
higher in energy depending on the field direction and the tem-
perature. Evidence of a critical point, analogous to the one
present in the S = 1/2 transverse field Ising model, was in-
directly inferred by comparisons of the experimental data to
exact diagonalization calculations. More recently, higher or-
der magnon bound states arising out of magnon interactions
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FIG. 1. (a) Schematic of a S = 1 chain showing the terms in the
Hamiltonian. A representative configuration in the Hilbert space is
shown. The ground state corresponds to all sites in the |1〉 state (or
all |−1〉). For this ground state, a |0〉 corresponds to a single magnon
and |−1〉 a bimagnon. The magnons attract each other via effective
interactions mediated by the onsite anisotropy. (b) Single magnon
dispersion curve for the S = 1 FM spin chain obtained from linear
spin wave theory. Anisotropy gaps out the lowest energy excitation.
(c) Mapping between hyperfine states and S = 1 degrees of freedom
as used in recent ultra cold atomic setups. The pink and blue states
correspond to hyperfine states of 87Rb, and the chemical potential is
adjusted to two bosons per site. A microwave pulse can be used to
prepare a superposition of hyperfine states, which in turn translates to
a superposition of |1〉,|0〉, |−1〉 (depicted with red, yellow and green
colors). More details are in the text.

have been seen in FeI2 both in neutron [29] and THz optics
experiments [30]. These findings suggest the importance of
magnon-magnon interactions that arise from anisotropic terms
in the Hamiltonian, which are consequences of spin-orbit cou-
pling.

In this paper we focus on a simple S = 1 Hamiltonian of
direct experimental relevance, both from the point of view of
real materials and cold atoms,

H = −J
∑
〈i,j〉

Si · Sj −D
∑
i

(Szi )2, (1)

where J > 0 is the ferromagnetic exchange interaction, D (>
0 in this paper) is the local onsite uniaxial anisotropy, Sµi for
µ = x, y, z are spin-1 operators at site i. We generally focus
on the case of D ≤ J , for NiNb2O6, J ≈ 14.8 K (0.308 THz)
andD ≈ 5.2 K (0.108 THz) [15], i.e.,D/J ≈ 0.35. These pa-
rameters correspond to a two-fold ferromagnetic ground state,
with the symmetry broken states being either |1, 1, . . . , 1〉 or
|−1,−1, . . . ,−1〉. Working with one of these ground states
as our vacuum, the elementary excitation is a magnon which
has well defined energy and momentum.

The questions we pose here are the following: What hap-
pens when there are multiple magnons in the system, as is
expected at finite temperature or with the introduction of a
transverse magnetic field? How do magnons interact with one
another, and what imprint does anisotropy and magnon den-
sity leave on the physics of thermalization of multimagnon
states? What is the nature of the composite bound states of

magnons, and how do their energetics affect what is observed
in the time domain?

With these objectives in mind, the paper is organized as
follows. In Sec. II, we visit the case of two magnons, and
use a combination of the t-matrix method, the density ma-
trix renormalization group (DMRG) algorithm [31], and pre-
viously known exact results for two magnon bound states. In
Sec. III, we transfer our lessons to the case of higher magnon
bound states, and study the nature of magnon clouds using
appropriately defined correlators. A simple Jastrow func-
tion captures all our numerical results surprisingly well, using
which we provide both quantitative and qualitative character-
ization for magnon interactions. We then focus on the forma-
tion of bimagnons in the magnon clouds, and how they grow
once they are completely saturated. In Sec. IV, we carry forth
the acquired insights to address the findings of finite temper-
ature dynamical measurements in NiNb2O6. In Sec. V we
study the effect of magnon-magnon interactions in the time
domain, focusing on the protocol used in S = 1 cold atom se-
tups [27]. We simulate the nonequilibrium dynamics of these
chains using the time-evolution block decimation (TEBD) al-
gorithm [32]. We study revival and thermalization behaviors
many of which resemble those seen for quantum many-body
scars. We conclude by summarizing our findings and dis-
cussing avenues for possible future experiments.

II. TWO MAGNON PROBLEM

In this section we review the elementary magnon quasipar-
ticle excitations of the ferromagnetic (FM) spin chain, and use
them to build a picture of two magnon bound states. We char-
acterize properties such as their binding energy and their spa-
tial extent. Building on previous works, we establish that the
uniaxial anisotropy D > 0 acts as an attractive interaction be-
tween magnons, and show that this leads to magnon bound
states.

For the S = 1 case a magnon is the lowest energy excita-
tion, which has Sz = ±1, arising from a spin flip |1〉 → |0〉
or |−1〉 → |0〉. Since our Hamiltonian in Eq. (1) has to-
tal Sz as a good quantum number, magnons can be used as
building blocks to describe low energy excitations of various
Sz sectors. Working with the ground state where all sites are
in the |1〉 state, and using the Holstein-Primakoff transforma-
tion [33], we rewrite Eq. (1) in terms of bosonic magnon cre-
ation and annihilation operators a†i and ai:

S+
i =

√
2S − a†iaiai, Szi = S − a†iai. (2)

Substituting the above transformations and expanding the
Hamiltonian up to quartic order in ai and a†i , we get

H = H0 +H2 +H4 + . . . . (3)

where H0 = −LJS2 − LDS2 is the classical ground state
energy and L is the total number of sites in spin chain.
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FIG. 2. (a) Exact two-magnon dispersion for D/J = 0.35, which is experimentally relevant. The shaded region indicates the two magnon
energy continuum, and the two branches (red and blue) below the continuum represent the two stable bound states. The lower (blue) branch
represents the ‘Bethe type’ bound state while upper red branch represents ‘Ising type’ bound state. At K = 0, the two-magnon bound state
energy lies below the continuum with energy difference 0.019, which is visible in the inset zoomed over a small region around K = 0 point.
(b) Binding energy EB/J as a function of anisotropy D/J calculated at for the lowest-energy two-magnon states. The inset shows EBJ/D2

vs D/J . The black dashed line in the inset is a linear fit to the data points excluding the upturn. The y intercept ∼ 0.122 agrees with the
t-matrix result that the leading order term in EB is quadratic in D with coefficient 1/8. The size of the bound state increases with decreasing
D, and the upturns of the curves in the inset show finite size effect. (c) Probability amplitude of two magnons in the lowest two magnon energy
state with one magnon fixed at a reference site ‘0’. The circular dots at central site ‘0’ represent the probability of finding two magnons on the
same site (i.e., a bimagnon |−1〉).

The single particle hopping termH2 is given by

H2 = −JS
∑
〈i,j〉

(a†iaj + H.c.) +
∑
i

((2S − 1)D + 2JS)a†iai,

(4)

diagonalizing which gives the bare single magnon (spin wave)
dispersion

~ωq = 2JS
(
1− cos(qa)

)
+ (2S − 1)D (5)

where a is the lattice constant of the spin chain. The
anisotropy term vanishes for S = 1/2, since the (Szi )2 op-
erator cannot distinguish between up and down spins. The

term, however, is allowed for S = 1, and leads to a gap in the
spin wave dispersion (gives mass to the magnons), stabiliz-
ing ferromagnetic order. This result for one magnon excited
states is exact for the ferromagnetic chain with Sz conserva-
tion, since the higher order terms in Holstein-Primakoff make
no contributions to the case of one magnon.

We now turn to the case of two magnons. This problem has
been solved exactly for arbitrary spin S ≥ 1 (in arbitrary di-
mensions) at zero temperature by Tonegawa [34]. (Note that
the choice of J in Ref. [34] is different from ours by a fac-
tor of 2. The exact results have been adapted to match our
convention.) The key results are as follows. The energy of
a two-magnon bound state in an S = 1 Heisenberg chain is
given as a solution of a cubic equation

(1 + δ − ε)3 + p2 (1 + δ − ε)2 + p1 (1 + δ − ε) + p0 = 0, (6)

where the two magnon energy is E2 = 4Jε, and

p0 = −[{(1− 2α)ξ2 cos2(Ka/2)− 2αδ
′
}2 + δ

′2ξ2 cos2(Ka/2)]/4α, (7a)

p1 = −(1− 2α− δ
′
)ξ2 cos2(Ka/2) + δ

′
(2α+ δ

′
), (7b)

p2 = {(1− 4α)ξ2 cos2(Ka/2)− 4α(2δ
′
+ α)}/4α. (7c)

K = q1 + q2 is the total momentum of the two magnons, a is
the lattice constant which we set to 1 for all our calculations,
and the parameters are given by ξ = 1, δ = δ

′
= D/2J , and

α = 1/4.

Even though Eq. (6) has three solutions, Tonegawa has ar-
gued that only two of them are physically meaningful. Close
to the Brillouin zone boundary Ka = π, both solutions are
real-valued, which appear as two branches when plotted as a
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function of Ka. For one of the solutions, the two magnon-
wavefunction has a large amplitude for magnons on nearest
neighbor sites, and smaller amplitude for two magnons on the
same site (i.e., a bimagnon corresponding to |−1〉). This solu-
tion is referred to as the “Bethe type” bound state in analogy
with the bound state solution first found by Bethe on ferro-
magnetic S = 1/2 chains [35]. The other type of bound
states are of the “Ising type,” where the amplitude for two
magnons on the same site is larger than the amplitude for
nearest neighbor magnons. (This type of bound state is for-
bidden for S = 1/2 chains, and hence there is only one bound
state branch for the two magnon dispersion in this case). We
note that for D/J & 3.2 [34], the Ising type two-magnon
magnon bound state is lower in energy than the lowest energy
single magnon state. However, this range of D/J is outside
the range explored in this paper, which primarily focuses on
smaller D/J .

Below a certain threshold momentum Kth, the cubic
equation yields a pair of complex-valued solutions (with
nonzero imaginary part), and only one real-valued solution.
The complex-valued solution occurs when the corresponding
branch of bound state is no longer stable. Thus,Kth is the mo-
mentum at which the bound state dispersion joins the two par-
ticle continuum. To demonstrate this, we numerically solve
Eq. (6) for D/J = 0.35 and plot the two-magnon dispersion
in Fig. 2(a). Indeed, we find two branches of two-magnon
bound states, with one branch merging with the two-particle
continuum. At K = 0 we see that the two-magnon bound
state is separated from the continuum (see inset).

The order of appearance of the two magnon branches de-
pends on the strength of D/J : The origin of this effect is the
touching of the Bethe and Ising branches at Ka = π. For
D/J . 0.5, the Bethe (Ising) type constitutes the lower (up-
per) branch, and vice versa for D/J & 1.1. (This is to be
expected: For small D/J , it is energetically unfavorable for
two magnons to give up a significant part of their kinetic en-
ergy in order to be on the same site, while at large D/J this
bimagnon/doublon formation does become favorable.) For in-
termediate D/J the behavior is more subtle, for the lowest
branch the small |K| wavefunctions are of the Bethe type. For
larger |K|, the lower energy branch is of the Ising type, and
the higher energy branch is of the Bethe type. (This subtlety
has been discussed in a note in proof by Ref. [34] in response
to the study of Ref. [36].) The two branches cross at the zone
boundary Ka = π: The energy of the Bethe type bound state
is given by 3J + 2D while the energy of the Ising type bound
state is fixed at 4J and does not depend on D.

The formation of bound states for D > 0 can also be cap-
tured by treating the quartic order term H4 in the expansion
in Eq. (3) that describes the interaction between the magnons,
given by

H4 = −D
∑
i

a†ia
†
iaiai −

J

2

∑
〈ij〉

a†ia
†
jajai

+
J

8

∑
〈ij〉

(
a†ia
†
iaiaj + a†ja

†
jajai + H.c.

)
, (8)

using the t-matrix approach. The details of our computations

are discussed at length in Appendix A. Here we highlight the
key ingredients of our calculation.

The Heisenberg term J contributes to interaction between
magnons on neighboring sites, while the anisotropy term D
serves as attractive interaction between the magnons on the
same site. Keeping only the on-site interaction D, since the
J term vanishes for q → 0, the two-magnon susceptibility
within the t-matrix approximation is

χt2(q, ω) =
χ(0)(q, ω)

1−Dχ(0)(q, ω)
, (9)

where χ(0) is the Lindhard susceptibility

χ(0)(q, ω) =

∫
ddk

(2π)d
−1

ω + i0+ − (ε−k + εk+q)
. (10)

We define the binding energy of two magnons as

EB ≡ (E2 − E0)− 2(E1 − E0) = E2 − 2E1 + E0 (11)

where E0, E1, and E2 are respectively the energies of the
lowest lying states in the 0-magnon, 1-magnon, and 2-magnon
sectors. At q = 0, where the two-magnon bound state energy
is minimized, we find that EB , identified by the location of
poles in χt2, is

EB =
D2

8J
. (12)

The result for the ferromagnet is in sharp contrast to bound
states in high spin antiferromagnets, where the binding energy
was found to be EB =

√
JD/2S2 [37]. We also note that

when the magnon interaction is repulsive, χt2 does not allow a
pole, and thus no bound state exists.

We assess the validity of the above approaches with the help
of (almost) exact DMRG calculations for two magnons (in the
Sz = L− 2 sector) for various system sizes. Fig. 2(b) shows
our results from DMRG as functions of the anisotropy D/J .
Since the two magnons are only weakly bound for smallD/J ,
we observe significant finite size effects in the binding energy
in this regime (the upturn). However, by carefully extrapolat-
ing EB/D2 to the D → 0 limit, we do find that it approaches
a value close to 1/8, which is consistent with the t-matrix
results. Furthermore, Taylor expansion of the exact solution
from Ref. [34] is given by

EB
J

=
(D/J)2

8
+

5(D/J)3

64
+

57(D/J)4

2048
+ · · · . (13)

This confirms the importance of the on-site interaction pro-
vided by D for magnons with near the Brillouin zone center,
an assumption made in the t-matrix approach.

Our results are further strengthened by evaluating the scalar
components ψ(l, l′) (in the notation of Ref. [34]) of the two
magnon wavefunction |ψ2〉,

|ψ2〉 =
1

2

∑
l′≤l

ψ(l, l′)S−l S
−
l′ |ψ0〉 (14)
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where l, l′ are site indices and |ψ0〉 =
⊗L

i=1 |1〉 is the ferro-
magnetic ground state (with zero magnons), and S−l(l′) are the
spin lowering operators. We focus on the ground state which
we find to be in the K = 0 sector. Fixing a reference site 0,
our plot in Fig. 2(c) confirms that for small D/J , the bound
state is indeed of the Bethe type (|ψ(0, 0)| < |ψ(1, 0)|), and
for large D/J it is of the Ising type (|ψ(0, 0)| > |ψ(1, 0)|),
with a crossover (|ψ(0, 0)| ≈ |ψ(1, 0)|) at D/J ≈ 1.15. We
will see later that when the magnon number increases, this
bimagnon/doublon formation becomes increasingly important
even for small D/J .

III. MULTIMAGNON PROBLEM

We now consider the case of more than two magnons.
While the main objective of this section is to build an under-
standing of their energetics (which ultimately impacts what
is seen in dynamical experiments), we also explore the qual-
itative nature of the n-magnon ground state wavefunctions.
Specifically, do more than two magnons form bound states?
If such bound states do form, what is their spatial extent
and binding energy? Does an additional magnon get assimi-
lated into an existing “magnon cloud” or does it break up into
magnon molecules? Does the formation of single ion bound
states become important during this process?

Before proceeding, we briefly review previous works in this
direction. Both Majumdar et al. [38–40] and Van Himbergen
[41] have independently studied three-magnon excitations in
Heisenberg ferromagnetic chains using Faddeev’s three body
formalism [42]. Although the approach used is completely
general, the discussions primarily focused on the S = 1/2
case. The study of Southern et al. [43] for S ≥ 1 used the
recursion method [44] to rigorously argue for the existence
of three-magnon bound states based upon the asymptotic be-
havior of recurrence coefficients and the general features of
density of states.

We investigate the nature of the lowest energy n-magnon
state numerically, and find that bound state forms for n ≥ 3,
and study how its properties change with n. For small n, an
analytically inspired simple Jastrow function captures many
of our findings accurately. This allows us to develop a simple
picture for how magnon clouds grow and eventually saturate,
which is when bimagnon formation becomes exceedingly im-
portant.

A. Ground state wavefunction of n magnons

The wavefunction of n magnons is a superposition of exci-
tations created on top of the ferromagnet,

|ψn〉 =
∑

x1≤x2≤...≤xn

C(x1, x2, . . .)S
−
x1
S−x2
· · ·S−xn

|ψ0〉 (15)

where we have generalized the notation ψ(l, l′) from Eq. (14)
to the case of n ≥ 2, with site indices x1, x2, . . . , xn and
absorbed the factor of 2 from Eq. (14). For the case of S = 1,

no three indices can be the same since there are maximum
of two magnons on a given site. C(x1, . . .) represents the
amplitude of a particular configuration of magnons, and are
complex-valued in general. Here we focus on the ground state
of each multimagnon sector on a periodic chain, which we
find to have a net momentum of zero, and C(x1, . . .) to be
positive. Instead of evaluating the coefficients, we measure
the correlators

C
(n)
i1i2...in−1o

= 〈ψ0|S+
i1
S+
i2
...S+

in−1S
+
o |ψn〉, (16)

where i1, i2, ..in−1 and o are site indices, with o a fixed ref-
erence site. To do so, we numerically determine the lowest
energy n-magnon state (|ψn〉) using the matrix product state-
based DMRG algorithm.

As in the case of two magnons, we find that uniaxial
anisotropy D plays an essential role in stabilizing multi-
magnon bound states in the spin chain. Fig. 3(a) shows
three-magnon correlator calculated in the lowest-energy three-
magnon state for three representative values ofD. ForD = 0,
we find that the value of the correlator C(3)

ijo is (almost) inde-
pendent of the i and j, suggesting no tendency for the two
magnons at these locations to be close to each other or the ref-
erence site. Thus, the ground state shows no hints of bound
state formation for D = 0. For D > 0, this picture is dramati-
cally altered, C(3)

ijo is now localized around i = j = o, and de-
cays with distance. The magnons clearly cluster together more
strongly along the i ≈ j line and particularly near i ≈ j ≈ o,
the larger D is, indicating bound state formations.

These qualitative assertions are made more precise by sys-
tematically studying one dimensional cross sections along
j = i + 1 and j = −i, as shown in Fig. 3(b). The corre-
lator is found to be exponentially decaying with |i| (as may be
anticipated); the precise exponent depends on the cross sec-
tion under consideration, as we will explain shortly. For the
regime of interest (D < J), we find that the amplitude for
two magnons on being at the same site (i.e., when two of the
indices i, j, or o are equal) is smaller than the two magnons
being at adjacent sites (i = j ± 1), suggesting the magnons
form a three-magnon analogue of Bethe type bound state in-
stead of a single-ion type bound state.

Based on the above observations, the formation of higher-
order bound states (as ground states of the n-magnon prob-
lem) may be anticipated, but is not a priori obvious. This is
because there is an inherent competition between the possi-
bility that the system forms a heavy “droplet” or “cloud” of
multiple magnons which stick together, giving up their indi-
vidual kinetic energy for their collective good, and the possi-
bility that the magnons split apart into smaller clouds, each of
which has its own kinetic energy. To investigate these scenar-
ios, we carried out calculations for n = 4, which we report
in Appendix B. We find many qualitative similarities with the
cases of n = 2 and n = 3, supporting bound-state formation.

We now unify our findings to qualitatively and quantita-
tively understand what happens for n > 4. Motivated by the
observation of the correlator’s exponential decay with separa-
tion between two magnons, we conjecture that for sufficiently
small number of magnons (which depends on the system size
as well as D/J) we can think of the problem in the dilute
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FIG. 3. (a) The three-magnon correlator C(3)
ijo obtained by fixing one magnon at a reference site o, computed for the ground state of three

magnons for representative values of anisotropy parameter D, in a periodic chain of length L = 40 using ED. The colors indicate the
magnitude of the correlator. (b) The spatial dependence of the correlator for two one-dimensional cross sections, respectively corresponding to
the two magnons at sites i and j with j = i−1 (left panel) and j = −i (right panel), while the third magnon is located at o. Both cross sections
show exponential decay with increasing spatial dependence between the magnons. Black solid lines are the fits to the Jastrow wavefunction∏
a<b e

|xa−xb|/ξ, with ξ for each cross section being determined independently. The (almost) exact correlators are calculated for a periodic
chain of length L = 100 with the DMRG algorithm. (c) The two estimates of the correlation length ξ vs inverse anisotropy J/D. The linear
fit, shown by the green dashed line, shows excellent agreement with the data.

limit. (We ignore the formation of the single-ion bound state.)
In this limit, the n-magnon wavefunction can be written as a
product of pairwise Jastrow factors

C(x1, x2, . . . , xn) ∝
∏
a<b

e−|xa−xb|/ξ. (17)

In the case of two magnons, ξ is simply the size of the magnon
droplet and can be thought of as the correlation length. For
higher number of magnons, it still retains this qualitative in-
terpretation, but the size of the magnon droplet must now be
quantified differently to account for the existence of multiple
magnons. We find that ξ ∝ J/D to a very good approxima-
tion for the case of two, three and four magnons [see Fig. 3(c)
and Fig. 9(b) of Appendix B].

The power of the Jastrow form becomes most apparent
when it is not only used to extract ξ, but also to understand

how a collection of magnons organize themselves. Consider,
for example, the case of three magnons with one magnon
fixed to the reference site o. According to the Jastrow func-
tion, the probability of having two magnons diametrically
apart at j = −i is given by the product of three factors
exp(−|i|/ξ) exp(−|i|/ξ) exp(−2|i|/ξ) = exp(−4|i|/ξ). In
contrast, the probability of having the two magnons at j = i
is exp(−2|i|/ξ). Thus, the decay length in our fits along the
two directions differ by a factor of two. This is verified by in-
dependently fitting the Jastrow function for each cross section
at a givenD/J and observing perfect consistency between the
two estimates of ξ, as shown in Fig. 3(c).

For higher n, the computation of magnon correlators be-
comes prohibitive. For these cases, we estimate the bound
state extent by monitoring 〈Szi 〉. The spatial profiles of 〈Szi 〉
for open boundary conditions for various n are shown in
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FIG. 4. (a) 〈Szi 〉 and 1−〈(Szi )2〉 calculated with DMRG for D/J = 0.35 in the lowest-energy states of various magnon number sectors, on a
chain of length L = 100 with the open boundary conditions. The initial states are chosen such that the magnons are on the left end of the chain.
(b) Normalized pair correlation function ρij ≡ 〈ninj〉 for D/J = 0.35 in a periodic chain of length L = 80 for 2 and 3 magnons, L = 68

for 4 magnons, and L = 62 for 5 magnons. Solid lines are fits to the exponential form e|i−j|/ζ and dotted lines are the extrapolations from the
long distance fits. Inset is the pair correlation length ζ vs 1/n obtained from the fits. (c) Successive energy gap between consecutive magnon
sectors as a function of magnon number for various anisotropy parameters D with J = 1 fixed in a periodic chain of length L = 180. For
small n, ∆En decreases with increasing n. With increasing n, oscillatory behavior is observed for D/J & (D/J)c ≈ 0.5. (d) A schematic
showing the reduction in transition frequency due to multimagnon bound state formation in different magnon sectors.

Fig. 4(a). With open boundary conditions, the kinetic energy
of the magnon cloud is suppressed and it tends to localize
spontaneously at either end of the chain: Here, the cloud is
localized at the left end which is seen by the lower value of
〈Szi 〉. On increasing the number of magnons, the value of
〈Szi 〉 at the left end approaches −1, consistent with the for-
mation of bimagnons. We complement this information by
also plotting the spatial profile of 1 − 〈(Szi )2〉 which is pre-
sented in the inset of Fig. 4(a). This metric tells us about the
distribution of ‘0’s (i.e., single magnon per site). The two dif-
ferent spatial profiles show that the formation of single and
bimagnons compete with one another. The formation of bi-
magnon (−1) suppresses the exchange terms (kinetic energy),
while 0’s can hop and lower the energy. However, there is
no single-ion anisotropy cost associated with −1 while 0’s do
cost energy. This competition is most prominent at the bound-
aries of the cloud; it does not, however, significantly affect the
spatial extent of the cloud itself. This can be seen in the spatial
profile of 〈Szi 〉; it saturates to unity roughly at the same length
scale (∼ 10 lattice constants for the representative value of
D/J = 0.35) for 2 to 10 magnons.

Magnon pair correlation which we define as

ρij = 〈ninj〉, (18)

where ni is the local number operator for magnon at site i,
sheds further light on the properties of the magnon cloud.
Substituting ni = 1 − Szi , the pair correlation takes the form
(in terms of local spin operators) ρij = 1 − 〈Szi 〉 − 〈Szj 〉 +
〈Szi Szj 〉. In Fig. 4(b), we plot the pair correlation function for
up to five magnons. We find that the average separation be-
tween magnons scales as 1/n. This suggests that magnons get
closer to each other on average with more magnons in the sys-
tem. This is broadly consistent with the cloud being constant
in size (for a small number of magnons) with its size being D
dependent. Said differently, as the magnon cloud absorbs ad-
ditional magnons, it gets heavier and its size does not expand
significantly. However, this cannot continue indefinitely for

arbitrarily large number of magnons, since bimagnon forma-
tion eventually saturates the cloud.

B. Energetics of magnon clouds

We now discuss the energetics of multimagnon states. The
energy to introduce an additional magnon into the cloud of
n− 1 magnons is

∆En = En − En−1, (19)

where En and En−1 are the lowest energies of the n- and n−
1-magnon sectors, respectively. Our calculations for various
representative D/J , plotted in Fig. 4(c), show that ∆En for
small n decreases with n, as is expected from the picture that
magnons effectively attract one another. Starting at ∆E1 =
D, ∆En decreases with increasing n up to a D-dependent n.
Said differently, the energy cost to put an additional magnon
into the cloud decreases with increasing n.

Since the extent of the magnon cloud does not increase
appreciably with increasing n, it is expected that the Ising
type bound states become energetically more favorable than
the Bethe type. When a large number of magnons form a
bound state, kinetic energy (XY terms) is highly suppressed,
and thus its energetics can be understood from considering
the interactions between the magnons (Ising terms). The z
component of Heisenberg exchange and uniaxial anisotropy
(i.e., −J

∑
〈i,j〉 S

z
i S

z
j and −D

∑
i(S

z
i )2), both lower the en-

ergy for single-ion Ising like (| · · · ,−1,−1,−1, · · · 〉) bound
state. However, both terms contribute nothing to the sites
where the Bethe-like (| · · · , 0, 0, 0, · · · 〉) bound state is lo-
cated. The even-odd oscillations observed in Fig. 4(c) beyond
certain numbers of magnons for large values of D/J are due
to the fact that an unpaired magnon (|0〉) in the odd magnon
sectors raises energy because the single-ion anisotropy term
favors bimagnon state (|−1〉). Furthermore, the oscillatory
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FIG. 5. (a), (b) Spatial profiles of the domain walls at various values
ofD/J for L = 180 chain. The labels ‘even’ and ‘odd’ refer respec-
tively to the total Sz = 0 and −1 sectors. (c) Thickness ξDW of the
domain wall vsD, from fits to 1−〈(Szi )2〉 ∼ e−|x−xDW|/ξDW . The
inset plots the same data as functions of J/D, which shows the scal-
ing ξDW ∼ J/D for D � J . (d) Energy of a domain wall EDW vs
D. The inset shows the energy difference between the ‘odd’ domain
wall and ‘even’ domain wall.

behavior is observed for D & 0.5J , which coincides with the
range ofD where the lower energy branch of the two-magnon
bound states is of Ising type with significant bimagnon contri-
bution.

C. Dense magnon limit: Domain walls

A complementary picture to the magnons is provided by
domain walls (DWs), which captures the behavior of sys-
tems with large number of magnons since the two ends
of a multimagnon droplet can each be viewed as DWs.
In the Ising limit for S = 1, there are two types of
DWs: |· · · , 1, 1,−1,−1, · · · 〉 with its center on a bond, and
|· · · , 1, 1, 0,−1,−1, · · · 〉 with its center on a site. Easy-axis
anisotropy term prefers the former. With the inclusion of XY
interaction, they acquire thicknesses larger than one lattice
constant. The two types, however, reside in different Sz sec-
tors, and tunneling between one type and the other is allowed
only when there are multiple DWs in the system. The oscil-
latory behavior in ∆En, shown in Fig. 4(c), can then be as-
cribed to the fact that the even magnon sector allows for two
bond-centered DWs, which have lower energy, while the odd
magnon sector forces one of the DWs to be site-centered.

Figures 5(a) and 5(b) show spatial profiles of the two types
of DWs at various values of D/J on a L = 180 lattice
with open boundary condition, calculated using DMRG. A
DW here is defined as the lowest energy state in the total
Sz = 0 (for ‘even’) or −1 (for ‘odd’) sector, starting from
the corresponding configuration in the Ising limit as the initial
state. The DWs have exponential profiles, and their thick-
nesses decrease with increasing D/J [see Fig. 5(c)]. At small
D/J with thick DWs, the two types of DWs track each other
closely; the two start diverging significantly at D/J ∼ 0.3,
where ξDW ∼ 1 and on-site correlations between magnons
become important. Furthermore, the amplitude of the oscil-
lation in ∆En for large n matches the energy difference be-
tween the two types of DWs. [Compare Fig. 5(d) and its inset
with Fig. 4(c).]

IV. RECAP OF FINITE TEMPERATURE DYNAMICAL
EXPERIMENTS AND CONNECTION TO OUR RESULTS

Till this point, our focus has been on multimagnon states
which are ground states of their respective magnon number
sectors. However, an explanation of the finite temperature dy-
namical susceptibility requires us to develop the connection
to excited states (and corresponding matrix elements) which
enter the response functions. In this section, we briefly re-
cap crucial aspects of the THz optics experiment [15] on the
S = 1 chain compound NiNb2O6 (which we refer to as the
“JHU experiment”) and summarize the key findings. We build
on results presented in earlier sections with the objective of
explaining the findings of the JHU experiment.

In the JHU experiment, the direction of the chain of the
magnetic atoms was referred to as the z axis, the direction of
the incidence of light as the x axis, and the light is linearly
polarized with its oscillating magnetic field along the y axis.
(As a first approximation, we will ignore any possible cant-
ing of the easy-axis of the spins with respect to the z axis,
i.e., the easy-axis anisotropy is perfectly along the one dimen-
sional chain of spins.) The absorption cross section of linearly
polarized light is inferred from the transmission coefficient,
from which the dynamical susceptibility is determined. The
locations of peaks in the dynamical susceptibility reveal in-
formation about the energy levels of the system, allowing in-
direct inference of which transitions are most active at a given
temperature. In a longitudinal applied field, the most promi-
nent peak in the low frequency susceptibility moves to lower
frequency with increasing temperature. This observation was
not reported in CoNb2O6 with effective S = 1/2 magnetic
ions [45] (albeit with different exchange interactions [46, 47]),
strongly hinting that the S = 1 nature of the magnetic ions
is at the heart of the effect. Additionally, the direction of the
temperature-dependent shift was reported to depend on the di-
rection of the applied static magnetic field.

For the case of longitudinal field with strength B, magnon
number is a good quantum number and all our analyses in
the previous sections apply straightforwardly. The additional
Zeeman term −gµBBSz does not alter the wavefunctions in
a given magnon sector, all it contributes is an overall en-
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FIG. 6. Matrix elements |〈j(n+1)|Sy|i(n)〉|2 for transitions between
(a) (left panel) for n = 1 and (b) (left panel) n = 2 magnon
levels calculated in a periodic chain of length L = 24 using ED
and for parameters relevant to NiNb2O6, i.e., J = 0.308 THz and
D = 0.108 THz. The size of the black dots represent the square
of the absolute value of the matrix elements. Right panels of both
(a) and (b) represent the frequency ωi,max at which the transitions in
the left panels are most active for a given |i(n)〉, i.e., corresponding
to the |j(n+1)〉 with the largest absolute value of the matrix element
|〈j(n+1)|Sy|i(n)〉|2.

ergy shift. For example, the energy of the one magnon state
(with respect to the ferromagnetic ground state) is given by
δ1 = D+gµBB. More generally, the energy for an additional
magnon is δn = (En − En−1)B=0 + gµBB where the sub-
script refers to the corresponding values for the B = 0 case.
The shift in the peak absorption frequency seen in the JHU
experiment, on going from low to high temperature, depends
only on the change δn=high − δ1. This shift is independent
of B, which is why it is sufficient to analyze only the B = 0
case to explain its value seen in the experiment.

For the case of transverse applied magnetic fields, applied
along the x axis, (which we have not considered in this paper),
magnon number is not well defined at small field strengths.
For large field strengths B � J,D, however, magnon num-
ber is approximately conserved on choosing the quantization
axis to be along the direction of the applied field. In this de-
scription, magnons mutually repel each other [15]. Due to this
repulsion, the peak frequency in the dynamical susceptibility
increases with increasing temperature.

The JHU experimental findings call for a closer look at the
mechanism by which this temperature dependent energy shift
occurs for the S = 1 chain. Within linear response theory
(Kubo formalism), the dynamical susceptibility at finite tem-
perature is given by

χyy(ω, T ) =
π(1− e−βω)

Z

∑
p,q

e−βEp
∣∣〈q|Sy|p〉∣∣2 δ(Ep − Eq + ω) (20)

where ω is the frequency being probed, T and β = 1/kBT
are the temperature and inverse temperature, respectively,
Z =

∑
p e
−βEp is the partition function, |p〉 are the eigen-

states of the Hamiltonian with the energy eigenvalues Ep,
and Sy =

∑
i S

y
i . Therefore, the transition matrix element

〈q|Sy|p〉 is nonzero only for |p〉 and |q〉 that differ in total Sz
quantum number by one unit of angular momentum. Thus,
the transition frequency ω = Eq−Ep is the energy difference
that involves states in two consecutive magnon sectors. (We
will attach an additional label to the state label to indicate the
magnon number sector it belongs to.)

In the previous section, we showed that this energy differ-
ence decreases from D to zero with increasing magnon num-
ber, followed by even-odd oscillations. (For D/J = 0.35
we find these oscillations to be fairly weak. However, they
are significantly strengthened at larger D/J , for D/J & 0.5
which is when the Ising type/bimagnon bound states become

important. This effect is potentially observable in systems
where a large anisotropy can be realized.) Since higher
magnon sectors are entropically favored at high temperature,
our calculations suggest that the peak frequency should be re-
duced by an amount of D when the temperature is increased
from low temperature T � J,D to the high temperature limit
T � J,D. This observation is consistent with the findings of
the JHU experiment for the case of longitudinal fields (their
Fig. 3 for B = 65 kG in Ref. [15])–the peak in the dynamical
susceptibility moves from 0.28 THz to 0.20 THz on increas-
ing the temperature from 5 K to 50 K. Given the simplistic
modeling of the spin chain, this observed shift of 0.08 THz
is in reasonable agreement with the theoretical estimate of
D = 0.108 THz.

The above argument relies on simplifying assumptions
about the transitions which contribute to the dynamical sus-
ceptibility, that the transition between lowest sectors of n-
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and n + 1-magnon sectors are the most important. How-
ever, according to the Kubo formula in Eq. (20), all possi-
ble contributions arising from transitions must be accounted
for. χyy(ω, T ) measures the appropriately weighted sum
of all possible transitions consistent with the selection rules
(no change in linear momentum, and change of spin angu-
lar momentum by one quantum), but does not provide suffi-
cient information for inferring individual contributions from
each eigenstate. Numerical exact diagonalization calcula-
tions provide this additional knowledge (for small number of
magnons), which we use in Fig. 6 to plot the transition matrix
elements between 1 → 2 magnon and 2 → 3 magnon en-
ergy levels for material specific parameters. The many-body
eigenstates in the n- (n + 1-) magnon sector, organized by
increasing energy, are on the horizontal (vertical) axis. The
size of each black dot is proportionate to the matrix element∣∣∣〈j(n+1)|Sy|i(n)〉

∣∣∣2 representing the transition between a pair

of energy levels |i(n)〉 (with energyE(n)
i in the n-magnon sec-

tor) and |j(n+1)〉 (with energy E(n+1)
j in the n + 1-magnon

sector).
The results suggest that not all (symmetry allowed) tran-

sitions are equally important: For each E
(n)
i , most of the

weight is concentrated on a single E(n+1)
j , and other contri-

butions are small. For each |i(n)〉 we identify the frequency
ω = E

(n+1)
j − E(n)

i for which the matrix element is largest
and refer to it as ωi,max. For the cases considered (n = 1 and
n = 2) we find that ωi,max is largely independent of |i(n)〉 in
a given n−magnon sector. Importantly, this average/typical
value of ωi,max (indicated by the red line in each panel) de-
creases with increasing magnon number. Although this shift
across 1 → 2 and 2 → 3 magnon sectors is small, the gen-
eral trend is consistent with our earlier findings. Said differ-
ently, the effective energy cost to add an additional magnon
(with zero additional momentum, as dictated by the matrix
element selection rules) decreases with increasing magnon
number. This holds not only for the lowest energy state of
each n-magnon sector, but also for the excited states.

V. NONEQUILIBRIUM DYNAMICS OF MAGNONS IN
ULTRA-COLD ATOMIC SETTINGS

We now consider the implications of our findings on re-
cent ultra-cold atomic experiments performed with the same
spin Hamiltonian as in Eq. (1) (the sign convention of D in
Ref. 27 is the opposite of what we have considered here and
elsewhere [15]). The authors of Ref. 27 implemented this
Hamiltonian using a Mott insulator of doubly occupied sites
and demonstrated the dynamical properties associated with
the presence of single-ion anisotropy. In this setup, two hy-
perfine states of 87Rb, denoted by |a〉 and |b〉, are mapped
to S = 1 degrees of freedom via Szi = 1

2 (a†iai − b†i bi),
S+
i = a†i bi, S

−
i = b†iai, where ai and bi are boson annihi-

lation operators at site i for |a〉 and |b〉, respectively, with the
constraint that a†iai + b†i bi = 2. We henceforth refer to this

setup and the associated experiment as the “MIT experiment.”
The MIT experiment studied spin dynamics by first prepar-

ing the state of all atoms as an equal superposition of |a〉 and
|b〉, using a combination of microwave pulses,

|ψ〉 =

L⊗
i=1

( |a〉 − i|b〉√
2

)
i,atom1

⊗
( |a〉 − i|b〉√

2

)
i,atom2

(21a)

=

L⊗
i=1

(1

2
|1〉 − i

√
2|0〉 − | − 1〉

)
. (21b)

This initial state was allowed to time-evolve and the operator
A = 2−3 1

L

∑L
i=1〈(Szi )2〉was measured as a function of time.

When written out in terms of spin degrees of freedom, this
wavefunction is a superposition of multiple magnon sectors
with the most dominant contribution coming from the Hilbert
space that corresponds to Sz = 0. (The material equivalent of
the above experiment will require measurements of oscillation
and thermalization time scales ≈ 2π~/D of the order of 10
picoseconds.)

Motivated by the MIT experiment, we propose a modi-
fication with the objective of demonstrating the importance
of magnon-magnon interactions and magnon density on spin
dynamics and thermalization. We prepare an initial state
which corresponds to spins rotated about the x-axis by an-
gle θ with respect to the z-axis, i.e., with direction vector
(0, sin θ, cos θ). (In our notation, the angle realized in the MIT
experiment is θ = −90◦.) The starting ket is given by

|ψ(θ, t = 0)〉 =

L⊗
i=1

(cos θ + 1

2
|1〉+

i sin θ√
2
|0〉+

cos θ − 1

2
| − 1〉

)
.

(22)

Rotation by an arbitrary angle θ (which can be controlled by
applying the microwave pulse for a shorter duration) has the
effect of introducing a tunable finite density of magnons. (We
will drop the θ label in |ψ(θ, t)〉 from here on for brevity.)
This initial product state is a linear combination of states with
definite magnon number n,

|ψ(t = 0)〉 =
∑
n

Pn|ψ〉 =
∑
n

cn|n〉 (23)

where Pn is the operator which projects the wavefunction to
the n-magnon sector, and |n〉 is the n-magnon wavefunction
whose amplitude is given by cn = 〈n|ψ〉.

What should one expect to observe in the above setup given
the framework developed in the previous sections? If the
magnons were truly noninteracting, the energy spacings be-
tween the n- and n + 1-magnon sectors would be exactly
D. This has a direct measurable consequence in the time do-
main. The measurement of the Sy operator as a function of
time 〈Sy(t)〉 ≡ 〈ψ(t)|Sy|ψ(t)〉 would yield the characteristic
frequency En+1 − En = D, i.e., the oscillation time scale
T = 2π/D. However, magnon-magnon interactions renor-
malize this energy difference and hence corresponding time
period. At low magnon density (small θ) the magnons are
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FIG. 7. Time profiles of 〈Sy(t)〉/〈Sy(0)〉 and the Loschmidt echo (revival fidelity) for various representative θ, corresponding to different
starting states |ψ(θ, t = 0)〉, calculated using TEBD on spin chains with open boundary conditions. A maximum bond dimension ofm = 100
was used for θ ≤ 20◦ (L = 200), and m = 50 (L = 100) was used for the rest of the calculations. (Times beyond which the bond
dimension reaches the maximum value m with truncation cutoff of ε = 10−8 are not shown to rule out any truncation errors from growth of
entanglement). In each panel representative small D/J and large D/J values at fixed θ are shown. Thermalization is slow (or virtually absent
on the time scale of the plot) for small θ and small D/J , but becomes rapid when either parameter is made large.

essentially noninteracting. At higher magnon density, this en-
ergy difference decreases due to magnon attraction, and thus
a larger time scale of oscillation is expected.

While oscillations do dominate the short time behavior, sig-
natures of thermalization are to be expected at long times.
This manifests itself in multiple metrics, for example, at large
t, 〈Sy(t)〉 → 0 and the Loschmidt echo (revival fidelity)∣∣〈ψ(0)|ψ(t)〉

∣∣2 → 0. (We note that the results for θ < 0
are directly related to the case of θ > 0. For example, 〈Sy(t)〉
differs by an overall minus sign for θ → −θ, and thus we
discuss only the case of θ > 0.)

To go beyond the qualitative arguments presented above,
we perform matrix product state-based second order TEBD
calculations, preparing |ψ(0)〉 as in Eq. (22). A maximum
bond dimension of m = 100 and a time step of t = 0.02
(in units of J = 1) were employed. We rescale the time axis
to be in units of tD/2π. In these units, the maxima of the
Loschmidt echo and 〈Sy(t)〉 must occur at every integer for
perfectly non interacting magnons.

Figure 7 shows our results for various representative values
of θ and confirms many of our qualitative expectations. At
large θ, i.e., high average density of magnons, (see θ = 30◦

and θ = 90◦), only a few (or no) coherent oscillations are
observed, and thermalization is rapid. At small θ (i.e., low av-
erage magnon density), on the other hand, the oscillation time
is nearly 2π/D–a more refined renormalized estimate can be
obtained with an approximation we will discuss shortly. Our

investigations suggest that there is a possibility of a prether-
mal phase [48–50] for small θ-dependent D/J (for example,
D/J . 0.33 for θ = 10◦, D/J . 0.17 for θ = 15◦, and
D/J . 0.11 for θ = 20◦.). Such long thermalization time
scales occur in systems that are close to integrability or have
scar-like states in the spectrum. (See, for example, Refs. 51–
60.)

A qualitative explanation of this effect is as follows. If
the prepared initial state has finite overlaps with eigenstates
which form a tower of states (states uniformly spaced in en-
ergy), it will result in perfectly coherent oscillations in several
time-dependent observables. This arises due to the preces-
sion of a superspin of length L (for S = 1), whose 2L + 1
Sz projected states (appropriately normalized) are Pn|ψ〉 for
n = 0, 1, . . . , 2L. For D = 0, all Pn|ψ〉 are exactly degen-
erate as a consequence of SU(2) symmetry. For D/J small
but nonzero, these states (which, strictly speaking, do not re-
main exact eigenstates) have a spacing which is approximately
(but not exactly) D. Most importantly, these energy spacings
are nonuniform, which, in turn, leads to thermalization in the
large time limit, the smaller the nonuniformity the longer the
thermalization scale.

We demonstrate these arguments with an approximation
which is quantitatively accurate for short time, especially for
small D/J and small θ. In this limit, the eigenstates can be
considered essentially unchanged from those for the D = 0
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FIG. 8. Representative results from the approximation in Eq. (24). (a) The amplitude |cn|2
√
L associated with every magnon sector for

θ = 30◦ for representative L. (b) 〈Sy(t)〉/〈Sy(0)〉 for θ = 30◦. (c) Deff/D as a function of magnon density; determination of D̄eff/D using
the average magnon density n̄/L for the case of θ = 10◦, 20◦, 30◦ is represented by the dashed lines. Comparison with the D̄eff/D from the
periods of the first oscillations in TEBD results for D/J = 0.1 is also shown.

model. Thus, we have

exp(−iHt)Pn|ψ〉 ≈ exp(−iẼnt)Pn|ψ〉 (24)

where Ẽn ≡ 〈ψ|PnHPn|ψ〉/〈ψ|PnPn|ψ〉 is the energy of the
state Pn|ψ〉. The computation of arbitrary operator expecta-
tion values within this approximation is straightforward: For
example, 〈Sy(t)〉 is

〈Sy(t)〉 =
∑
n,m

〈ψ|PneiHtSye−iHtPm|ψ〉 (25a)

≈
∑
n,m

c∗ncme
i(Ẽn−Ẽm)t〈n|Sy|m〉 (25b)

(Similar computations can be carried out for other operators
using the algebra of coherent states, see for example [55, 61,
62].)

The only nonzero contributions to 〈Sy(t)〉 are from m =
n ± 1. Note that 〈n|

∑
〈i,j〉 Si · Sj |n〉 for an L-site periodic

chain equals L, i.e., it is independent of n, which follows from
the fact that the normalized |n〉 ∝ Pn|ψ〉 are the different Sz
projections of a superspin of length L. Hence the energy dif-
ference Ẽn − Ẽn±1 arises purely from the on-site anisotropy
term and does not depend on J . Hence it is convenient to
define

D
(n)
eff ≡ Ẽn − Ẽn−1 (26a)

= −D
∑
i

(
〈n|(Szi )2|n〉 − 〈n−1|(Szi )2|n−1〉

)
.

(26b)

An exact computation yields,〈
n
∣∣∣∑

i

(Szi )2
∣∣∣n〉 = L− n+ 2

∑[n/2]
m=0

m
22m

(
L

L−n+m,n−2m,m
)∑[n/2]

m=0
1

22m

(
L

L−n+m,n−2m,m
)

(27)

where
(
L
i,j,k

)
= L!

i!j!k! for i + j + k = L is the trinomial
function. Note that

〈
n
∣∣∑

i(S
z
i )2
∣∣n〉 and hence the plot for

D
(n)
eff /D versus magnon density n/L is independent of θ. θ

has the effect of selecting the average magnon density and
hence the value of D(n)

eff which controls the time period of the
oscillations.

Figure 8 shows representative results for periodic chains
within the framework of the approximation. For θ = 30◦,
the amplitude |cn|2

√
L associated with every magnon sector

for representative L is shown as a function of magnon den-
sity. (The profile is expected to approach Gaussian, and hence
the factor

√
L is introduced when comparing different system

sizes.) Since the system sizes are finite, nonzero contribu-
tions arise from a range of magnon densities. In the thermo-
dynamic limit, however, the only nonzero contribution will be
from n̄/L, the average magnon density. θ thus controls the
average magnon density in the wavefunction |ψ〉.
n̄/L in turn determines D̄eff, the D(n)

eff with the largest con-
tribution. The right panel of Fig. 8 shows this connection with
the help of dashed lines for the case of θ = 10◦, 20◦, 30◦. The
value of D̄eff/D decreases on increasing θ (and hence magnon
density). Since this D̄eff sets the time period of oscillations
T ≈ 2π/D̄eff, we are able to infer its value from the TEBD
calculations. We compare the TEBD result for the time of the
first oscillation for D/J = 0.1 with the approximate result,
and confirm that the discrepancy is less than a percent. How-
ever, the approximation does not capture higher order effects
in D and θ and long time behavior, for example, in the (exact)
TEBD calculations oscillations are not seen for large θ & 30◦.
(See Fig. 7.)

The central panel shows 〈Sy(t)〉/〈Sy(0)〉 calculated within
our approximation. For short time, the finite size effects are
essentially negligible. At longer times, 〈Sy(t)〉/〈Sy(0)〉 ap-
pears to decay, but this is a finite size effect. All nonzero con-
tributions to 〈Sy(t)〉 originate from a single Deff in the ther-
modynamic limit; for any finite size system there is always a
spread of contributing energy scales as discussed previously
in reference to |cn|2

√
L. Hence there is no thermalization in

this approximation for the infinite chain limit.
Since the short and long time behavior depend on both θ
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and D/J , we also plot our TEBD data for various represen-
tative values of D/J and analyze their dependence on θ in
Appendix C. We find that the time period increases with θ
(magnon density) consistent with the reduction of D̄eff the en-
ergy spacing between magnon sectors.

VI. CONCLUSION

In summary, we have studied the energetics, dynamics and
thermalization of multiple interacting magnons in a S = 1
chain with ferromagnetic Heisenberg interactions and easy-
axis anisotropy using both analytic and numerical methods.
The model and its analyses presented here are of direct rele-
vance to both real materials [15] and cold-atom setups [27],
where different aspects of the dynamics have been recently
investigated.

Building on previous literature [34, 38], we established that
the easy-axis anisotropy (D > 0 in this paper) serves as a
source of attractive magnon-magnon interactions which leads
to the formation of magnon clouds, whose characteristics we
explored. Many of the properties of these clouds are cap-
tured by a simple pair Jastrow function that shows good agree-
ment with numerical (almost exact) DMRG results. For a
small number of magnons, the cloud does not significantly
alter its size (spatial extent) on the introduction of additional
magnons. The energy cost for having additional magnons de-
creases from D towards zero, and once the magnon cloud is
saturated entirely, the formation of Ising-type bound states
becomes important, which manifests itself as an even-odd
magnon number effect in the energy cost for adding a magnon.

Importantly, the lessons learnt from the energetics of the
few magnon problem were used to clarify the origin of the
temperature-dependent frequency shift observed in THz dy-
namical susceptibility measurements [15]. The dynamical
Kubo formula involving matrix elements and energy scales
was analyzed, and the energy scales effective at high tem-
perature were identified. The reduction of the effective value
of D with magnon density demonstrated the importance of
magnon-magnon interactions on nonequilibrium dynamics in
the time domain in quench experiments that initialized the sys-
tem in a superposition of multimagnon states. An attractive
feature of the cold-atom setup that realizes this protocol is that
both the magnitude and sign of the single ion anisotropy can
be tuned [27], and the average density of magnons can also be
potentially controlled. With the help of matrix product state-
based TEBD calculations, we studied the time evolution of the
Sy expectation value (which is sensitive to gaps between con-
secutive magnon sectors, and hence magnon-magnon interac-
tions) and the Loschmidt echo in order to develop an under-
standing of revivals and thermalization in this model. Many
of the observed behaviors are akin to those noted in the con-
text of quantum scars; we showed how a simplified superspin
picture explains our results for small D/J .

It would be interesting to realize the possibility of exper-
imental measurements that verify the picture we have devel-
oped here. On this front, time dependent THz measurements
offer a potentially exciting route for studying thermalization

of spin chains. It would also be valuable to model the evolu-
tion of magnon clouds created in a small portion of the lattice,
for example, by applying a microwave pulse only on a section
of the optical lattice. Further development of a quantitative
analytic framework for understanding theD/J dependence of
the prethermalization and thermalization time scales observed
in our TEBD calculations should be relevant for a wide vari-
ety of other realistic systems where athermal (or nearly ather-
mal) states exist, and which show unusually slow or glassy
dynamics. Finally, the study of bound states in higher spin
chains may also be of interest, as has been recently studied in
Ref. [63].
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Appendix A: t-matrix approximation for two-magnon bound
state

1. Basic definitions

Consider a bosonic Hamiltonian

H = H[a†, a]. (A1)

The quadratic part of the Hamiltonian, with translation sym-
metry, can be written as

H0 =
∑
q

εqa
†
qaq (A2)

where a†q = 1√
L

∑
x a
†
xe
iqx. Using the imaginary time

evolved, aq and a†q

aq(τ) = eτHaqe
−τH , a†q(τ) = eτHa†qe

−τH , (A3)

bosonic Matsubara Green function can be defined as

D(q, τ) ≡ −〈Tτaq(τ)a†q(0)〉 (A4)

where the bracket indicates thermal expectation value

〈O〉 =
Tr
(
e−βHO

)
Tr e−βH

. (A5)
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The imaginary time Green’s function can be written in terms
of Matsubara frequency iωn

D(q, iωn) =
1

2

∫ β

−β
dτ eiωnτD(q, τ) (A6)

Noninteracting Green function in terms of Matsubara fre-
quency writes

D(0)(q, iωn) =
1

iωn − εq
. (A7)

The interaction term in general can be written as

V̂ =
∑
{xi}

V x1x2
x3x4

a†x1
a†x2

ax4
ax3

(A8a)

=
1

L

∑
{qi}

V q1q2q3q4a
†
q1a
†
q2aq4aq3 , (A8b)

where L is the number of sites of the system, and

V q1q2q3q4 =
1

L

∑
{xi}

V x1x2
x3x4

e−i(q1x1+q2x2−q3x3−q4x4) (A9)

Note that the matrix element of the interaction in terms of the
positions V x1x2

x3x4
, and in terms of momenta V q1q2q3q4 both are of

order O(1) with respect to the number of sites. With trans-
lation symmetry, the interaction term conserves total momen-
tum:

V q1q2q3q4 = δq1+q2=q3+q4V
q1q2
q3q4 (A10)

2. Feynman rules and t-matrix approximation

The Feynman rules for interacting bosons a and a† are

q ≡ −D(0)(q, iωn) = − 1

iωn − εq
(A11)

q3 q2

q4 q1

≡ −V q1q2q3q4 (A12)

with energy momentum conservation∫
q

≡ 1

L

∑
q

1

β

∑
iωn

T→0,L→∞−−−−−−−→
∫

ddq

(2π)d
dω

(2π)
(A13)

The Feynman diagrams of two magnon susceptibility can
be expanded in V as

χ2 =
X

+
X

+
X

+ + . . . (A14)

The summation of the checked diagrams and their higher-
order versions is known as the t-matrix approximation, which
can be expressed concisely as

χt2 = χ(0) · (1 + V · χ(0))−1, (A15)

where the objects are understood as matrices in terms of mo-
menta.

χt2(q) =
k+q

−k
+

k1+q k2+q

−k1 −k2

+
k1+q k2+q k3+q

−k1 −k2 −k3

+ . . . (A16)

=

∫
k1

D(0)(k1 + q)D(0)(−k1)−
∫
D(0)(k1 + q)D(0)(−k1)V k2+q,−k2k1+q,−k1D

(0)(k2 + q)D(0)(−k2)

+

∫
D(0)D(0)VD(0)D(0)VD(0)D(0) + · · ·

The interaction matrix element can be expanded in terms of
momenta

V k1k2k3,k4
= (V0 +O(k1, k2, k3, k4))δk1+k2=k3+k4

≈ V0δk1+k2=k3+k4 . (A17)

If the interaction is on-site, then the t-matrix two-magnon sus-
ceptibility writes

χt2(q, iω) =
χ(0)(q, iω)

1 + V0χ(0)(q, iω)
, (A18)

where

χ(0)(q, iω) ≡
∫
k

D(0)(k + q)D(0)(−k) (A19a)

=

∫
ddk

(2π)d
−1

iω − (ε−k + εk+q)
(A19b)

is the Lindhard susceptibility.
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3. Application to the 1D chain

On a one dimensional chain, if we approximate εk ≈ αk2+
m,

εk+q + ε−k ≈ α(k + q)2 +m+ αk2 +m

= 2α

(
k +

q

2

)2

+
1

2
αq2 + 2m (A20)

and thus the noninteracting susceptibility becomes

χ(0)(q, iω) =
1

2α

1

2
√

q2

4 + m
α −

iω
2α

. (A21)

This shows that the condition to have a pole in χt, which is
V0χ

(0)(q, iω) = −1, can be expressed as

−V0
4α

=

√
q2

4
+
m

α
− iω

2α
, (A22)

which, after analytic continuation to real frequency iω → ω,
has a solution

ωpole =
1

2
αq2 + 2m− V0

2

8α
= A2q

2 +M2 (A23)

The mass of the two-magnon bound state M2 is smaller than
the mass of two independent magnons by V02/8α, which is
the binding energy ∆ of a two-magnon bound state when the
interaction is attractive. When the interaction is repulsive, on
the other hand, t-matrix does not allow a pole. In terms of the
parameters of the original Heisenberg spin-chain Hamiltonian

α ≡ JS, m ≡ (2S − 1)D, V0 = −D, (A24)

the binding energy of the magnon is then

∆ = 2D −M2 =
D2

8J
. (A25)

Appendix B: Four-magnon correlator and Jastrow fits

In Sec. III we discussed the case of three-magnon wave-
functions and compared the corresponding correlator with the
Jastrow theory. In this Appendix we show the corresponding
calculation for the case of four magnons and find good agree-
ment as well. To visualize the correlator, we fix one magnon
at reference site o (the middle of the chain) and consider two
representative cross sections, as has been shown in Fig. 9.

Appendix C: Nonequilibrium dynamics with fixed D/J for
different rotation angles

In Sec. V, we showed the time profiles of 〈Sy(t)〉 and the
Loschmidt echo (computed with the TEBD method) for the
case of representative θ and studied their D/J dependence.
In Fig. 10 we plot this (and additional data) for various rep-
resentative values of D and compare their θ dependence. In
all cases where an oscillation can be clearly identified, we ob-
serve that the time period is larger for larger θ (i.e., larger
magnon density). This is consistent with the increased role
of magnon-magnon attraction, which effectively reduces D̄eff
the spacing between energy levels.
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FIG. 9. The four-magnon correlator C(4)
ijko, obtained by fixing one magnon at a reference site o, computed for the ground state of four magnons

for representative values of anisotropy parameter D, in a periodic chain of length L = 76. (a) The spatial dependence of the correlator for
two one-dimensional cross sections, respectively corresponding to the two magnons at sites i and j with j = i− 1 and k = 1 (left panel), and
j = −i and k = −i+ 1 (right panel). Both cross sections show exponential decay with increasing spatial dependence between the magnons.
Black solid lines are the fits with Jastrow factor

∏
a<b e

|xa−xb|/ξ. (b) Correlation length ξ vs inverse anisotropy 1/D (with J = 1), obtained
from fitting to the Jastrow form. Just as in the case of three magnons, here too the green dashed line shows that the linear fit is an excellent
approximation to the four magnon correlator data.
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FIG. 10. Time profiles of 〈Sy(t)〉/〈Sy(0)〉 and the Loschmidt echo for various D/J . For each value of D/J representative θ (which controls
the average magnon density) are shown. A maximum bond dimension of m = 100 was used for θ ≤ 20◦ (L = 200), and m = 50 (L = 100)
was used for the rest of the calculations. At short times, there is an increase in the effective oscillation time scale on increasing θ due to a
reduction in Deff as discussed in the text.
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