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Unconventional computing schemes based on bistable systems (“Ising spins”) may supersede con-
ventional computing paradigms. The ‘magnon parametron’ on a ferromagnetic particle is an Ising
spin that forms as a result of parametric excitation by microwaves beyond a certain threshold.
This Ising spin becomes unstable at a second threshold power, giving rise to a dynamical phase
where a high frequency telegraph noise emerges. We explain the experimentally observed stochas-
tic switching (“p-bit” characteristics) at room temperature by the Suhl instability of the uniform

magnetization precession.
I. INTRODUCTION

An Ising spin is a magnetic moment with a large uni-
axial anisotropy that reduces the quantum degree of free-
dom of the Heisenberg spin on the Bloch sphere to just
two, i.e. up and down. Naturally, any bistable system
with a phase space of two distinct and stable configu-
rations may be called a pseudo Ising spin, such as a
fixed ferromagnetic needle in which the magnetization
can point only into the two directions that minimize the
free energy. An Ising spin with noise-activated transi-
tions can operate as a probabilistic bit (p-bit), which
in its steady state is a statistical mixture of the two
levels. Ising spins are not useful as qubits because the
large energy barrier prevents spin rotations on the Bloch
sphere, but an ensemble of them can form a platform for
unconventional computing algorithms. Switchable, but
thermally stable, Ising spins are elements of “Ising ma-
chines” that can solve hard optimization problems [1-5],
while networks of p-bits can factorize large integers [6]. A
large number (~2000) of highly connected pseudo Ising
spins formed by optical parametric oscillators operate by
phase measurements with feedback [2-4]. However, op-
tical implementations have a large footprint and are not
scalable. Quantum coherent networks can perform addi-
tional tasks such as quantum annealing, adiabatic evolu-
tion, or gated quantum operations [7-12], but are even
more difficult to realize. Here we explain the underly-
ing physics of a recent implementation of an Ising spin
system, viz. the ‘magnon parametron’ [14], a promising
device for alternative computing schemes.

Parametric pumping is a standard method to excite
large oscillations in a harmonic oscillator by a phase-
matched drive at twice its resonance frequency wy. The
minimum model is a Hamiltonian H = hwoala, where
a' (a) creates (annihilates) a boson, augmented by a
non-linear interaction with a classical photon field H =
Pe?wotqtql + H.c. When the amplitude P exceeds a cer-
tain threshold the systems becomes unstable. The steady
state (a) has an amplitude limited by dissipation and

spontaneously acquires one of the energetically equiva-
lent phases of ¢p/2+ 0 or ¢p /2 + 7, where ¢pp = argP
and 2mod [arg (a) ,27] = mod [¢,, 27]. Makiuchi et al.
[14] demonstrated Ising spin characteristics in a para-
metrically pumped magnetic disk that above a second
threshold showed the controlled stochastic switching that
qualifies it as a p-bit. The underlying mechanism of
this stochasticity has not yet been explained, however.
Magnons are set apart from e.g. phonons [15] by their
highly tunable, anisotropic and non-monotonic disper-
sions, leading to phenomena such as Bose-Einstein con-
densation and deterministic quantum entanglement [16—
20]. In this Letter, by analytic and numerical calcula-
tions, we provide a microscopic picture of the observed
stochasticity in terms of the Suhl instability [16, 21-23],
i.e. the decay of the uniform (Kittel) magnon into a pair
of degenerate “wing” magnons with opposite momenta
+ k #0.

II. MODEL

Figure 1(a) sketches a thin ferromagnetic disk of thick-
ness d and radius r, uniformly magnetized along the in-
plane magnetic field ﬁextH 2. For parametric pumping,
the microwave magnetic field Fma Of & cavity or a copla-
nar waveguide mode with frequency w, is also parallel
to the magnetization. Figure 1(b) shows the magnon
frequency dispersions wj; of the lowest magnon subband
of a d = 50 nm thick film for in-plane wave vectors
0 =0 (k||2) and Op = m/2 (kL%) and constant as
a function of position along & [24-26], using well-
established parameters for yttrium iron garnet (YIG)
with gyromagnetic ratio v = 28 GHz/T and spin stiff-
ness D = 5.5 x 10717 Tm? [27]. wp is the frequency
of the Kittel mode and higher subband are not shown
since Wi +4yD/d? > wy, where the frequency mini-
mum wg is caused by the magnetodipolar interaction.
The two valleys in the magnon dispersion are instrumen-
tal for the Suhl instability and (for d = 50 nm) exist
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FIG. 1. Model. (a) A magnetic disk of thickness d and ra-
dius 7 under static and microwave magnetic fields. (b) The
dispersion envelope of magnons in a film with constant mag-
netization along & for d = 50 nm and Hext =35 mT. The
green arrows indicate 4-magnon scattering processes involv-
ing the Kittel mode. The purple line indicates parametric
pumping of the Kittel mode. (c¢) The parametric excitation
coefficient Cj; of the magnon pairs overlaid on the dispersion
for several values of 6z from 0 to 7/2, only for the modes
nodeless along the thickness. (d) Similar to (c) but for the 4-
magnon scattering coefficient D z ; . The insets of (c) and
(d) plot the data of the main panels on a linear momentum
scale.

when r 2 0.5 ym. Here we adopt r = 50 pm, large
enough to adopt a continuous dispersion for the 0z = 0
modes degenerate with the Kittel mode (see below).
Hmw(t) of the photon with frequency w, = 2wy para-
metrically interacts with the Kittel mode and the de-

generate magnon pairs, |hmw|Ci; (c ﬂca +H.c. ) where

¢y annihilates the k magnon mode, and Cj is the coef-
ficient plotted in Fig. 1(c). With increasing |h.,| the
mode with the largest C; becomes unstable at a critical
value vy |Cy; = €;/2, where & = agwy; is the magnon
dissipation rate in terms of ag, the Gilbert damping
constant. |C| is maximal for small wave vectors [see
Fig. 1(c)], which implies that the Kittel mode becomes
unstable first. The parametrically driven Kittel mode
excites other magnons via the four-magnon scattering
term cgcgckc i tH.c., with the corresponding coefficients
Dy 70,7 Isee Fig. 1(d)]. This is the threshold process
introduced first by Suhl [21].

first for the degenerate modes with largest ’Do to—il

The instability happens

i.e. for 6; = 0 and large ‘E‘ and thereby limits the effec-
tive system to three modes, the parametrically pumped
Kittel mode and a pair of magnons with large wave vec-
tor £K. In the rotating frame of w,/2, our Hamiltonian

[16, 28, 29]

H= Y Awgeleg + Hune+ P (chef + He.),
ke{0,£K}

. T T
Hpnp= Y. [DE,E,E,ECE%CECﬁ

[Do,—;ao,;e%c(?c_,zc,e + H.c.] , 1)

where Awp = wp — wp/2 and Py = 7|hmw|Co. The
dipolar and exchange interactions and (if present)
the magnetic anisotropy all contribute to the
four magnon scattering coefficients D and the two
magnon-one photon coupling with coefficient C;.
We compute the numbers in Figs. 2(c)-(d) and
8(a) from complex but well known expressions of
these coefficients for thin films [28, 29].

Theoretical approaches to the magnetization dynamics
usually start from the stochastic Landau-Lifshitz-Gilbert
equation that even with a quantum mechanical thermo-
stat [30] is not suited to address the physics of the emerg-
ing quantum magnonics. Typical quantum effects
emerge in the correlations between two distinct
orthonormal magnon modes. These can be cap-
tured only by a model that tracks the dynamics
of individual and interacting modes. While we
address here the classical dynamics at room tem-
perature, our method is well suited to calculate
quantum correlations [16] that appear when the
temperature is lowered [40]. We therefore start from
the (Lindblad) equation of motion of the density matrix
p with elements p; ; = |i) (j|, where [i(j)) is a many-body
number (Fock) state of the magnon system, reads

p=—ilH,pl + La, (2)

where L4 is the dissipation operator of the magnons in
contact with a thermal bath at temperature T' [see Ap-
pendix A]. We can solve this equation exactly only for
small magnets [16, 31], but solve here a time-dependent
Langevin equation with approximations that are valid
under the conditions of Makiuchi et al.’s and Hioki et
al.’s experiments [14, 32]. Without drive, p describes a
magnon gas at thermal equilibrium with the bath. Here
we use rather large damping parameter & = 5 MHz cor-
responding to ag ~ 2 x 1073 for computational conve-
nience. A larger damping parameter £, accelerates
numerical convergence to the steady state. The
relevant parameter that governs the dynamics is
Py/&y, which does not change for a large range of
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FIG. 2. Calculated steady-state dynamics of a magnet in a
microwave cavity. (a) The dependence of steady-state class on
the Kittel mode amplitude Py driven by the mircrowaves and
the dc magnetic field Hext. (b)-(d) Examples for the three
distinct classes, corresponding to the stars of the same color
in (a), Po/& = 0.7,1.7,3.8, respectively, while Hexy = 40 mT.
(b) FP1: Fixed point, the Kittel mode parametrically driven
beyond threshold, while the K, standing wave at vacuum. (c)
FP2: Fixed point, the Kittel mode and Ks standing wave
parametrically and Suhl instability driven, respectively. In
(b) and (c), T = 3 x 10°K for clarity. (d) LC: Limit cycle to
chaos. A case with large transition rate from one attractor
region of the Kittel mode to the other, at 7' = 300 K, and no
transition for 7= 1K also shown. The two attractor regions
A and B indicated.

III. STEADY STATE CLASSES

We first classify the steady-state dynamics in terms of a
“phase diagram” of our three-mode system by inspection
of the long-time solutions of the stochastic differential
(Langevin) equation of motion, derived from Lindblad
Eq. (2) by disregarding the third order derivatives of the
Wigner distribution function, as described in Appendix
A [33, 34]. This approach captures Gaussian fluctuations,
i.e. up to second moment, and is valid when sufficiently
damped (D < &) and the steady state is not chaotic. It
is basically equivalent to the stochastic Landau-Lifshitz-
Gilbert equation to leading order in the non-linearities
but uniquely allows the tracking of individual magnon
modes in the presence of interactions.

We assume microwaves tuned to Awg = 0 that drive
the Kittel mode to an amplitude Fy. The other control
parameter is the applied static magnetic field Heyt. The
smallest positive solution for z = |ag|?, ap = (co) is the
mean-field of the Kittel mode, governs 6¢ and K of

the magnon pair that reaches the Suhl instability first

2 2 2
(Do,ﬁ,o,—ﬁ - Do,o,ié,lé) 1% = 20pDy g T~
2 2 _
€2/4— A% =0, 3)

Below the Suhl but above the parametric instability
threshold |ao|* = /P2 — €2/4/2|Do 0.0,0|- By minimiz-
ing Eq. (3) with respect to ¢; and k| we find
that the +K magnon pair lies in the ; = 0 band.

We may combine the +K pair of propagating waves as
Cig = CR, eT1/2 [35-37], where the phase ¢ is a free phase
that governs the position of the standing wave nodes and
lés is its mode index.

Figure 2(a) shows the steady state classes as a function
of Heyxy and Py at T = 0 K. The green line in Fig. 2(a)
is an analytic solution of Eq. (3) using the four-magnon
scattering parameters of the unstable mode at each Heyy
[see Fig. 8(a), Appendix D]. Figures 2(b)-(d) illustrate
the phase-space dynamics of each class for a fixed mag-
netic field. Figures 2(b) and (c) show the trajectories in
the time interval ¢ = 50 — 80 us, starting from 100 ran-
dom initial values of @z | in ¢y | = ek at t = 0.

Here we chose a high temperature 7 = 3 x 10° K to

emphasize the dynamic stability. The trajectories are
; — T

the time dependent ;g = (cog,) + 00(165))/2 and

Po(i.) = —i(co(&) - cg(&))/2 in phase space. The po-
sition o and momentum py of the harmonic oscil-
lator that represents the Kittel mode correspond
to the amplitudes of the dynamic magnetization
m, and m,. We picture the steady states of the
excited system in the rotating frame of the Kittel
mode frequency. The two uniform precessional
modes of the magnetization are then mapped on
two fixed points in (z0,pg) phase space with equal
modulus and phase difference of w. The distinct
classes of the Kittel mode are the fixed-points FP1 and
FP2. For a given Heyy and small Py > &y/2 (FP1), it has
two equivalent stable fixed points, viz. the Ising spin up
and down states, while the standing wave mode fluctu-
ates around the origin [see Fig. 2(b)]. When Py satisfies
Eq. (3), the Suhl instability drives the +K pair, lead-
ing to the FP2 steady state in which the Kittel fixed
points persist, and K, settles into a fixed point at a dis-
tance from the origin with a phase spontaneously chosen
out of two mirror symmetric values [see Fig. 2(c)]. A
third distinct class is the limit cycle (LC) illustrated in
Figure 2(d), now at realistic temperatures. Here the Kit-
tel mode follows large amplitude trajectories in mirror
symmetric regions of phase space (see also Appendix D).
With increasing Py, the paths cross the boundaries be-
tween attractor regions A and B, i.e. the Ising spin flips.
The thermal activation is evident in Figure 2(d) in which
we compare switching at high 7' = 300 K (black curve),
and low T = 1 K (purple curve) by way of single repre-
sentative trajectories in the interval ¢ = 20 — 320 ps. In
Appendix D, we discuss the dependence of the limit cy-
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FIG. 3. Stochasticity. (a)-(c) From classical, (d)-(e) from quantum calculations. (a) The region of the Kittel mode state shown
in Fig. 2(d) for T =1 K and 7' = 300 K. (b) The dependence of transition frequency Fc on T (black dots) and Q (red dots),
for Hexy = 40 mT, Py /&0 = 3.85, as in (a) and Fig. 2(d). (¢) F¢ as a function of Hext and Py/&, at T = 3 x 105 K. The green
star is the same (Po, Hexs) point as in the phase diagram plotted in Figs. 2(a) and 2(d). (d) The dependence of tunneling
frequency Fg on Hex; for two values of Py /o = 2.5, 3. (e) The dependence of Fg on Py/& for Hexy = 40, 52 mT, respectively.

The scaling coefficient @ =5x10° in (d)-(e), and T = 0 K.

cle trajectories on Py (see Fig. 7 and Appendix D), and
analytically explain the origin of FP2 to LC transition,
and its dependence on Hcy; (see Fig. 8 and Appendix
D).

Four magnon scatterings are responsible for
auto-oscillation (limit cycle) steady states that
with increasing excitation power bifurcate and
lead to chaotic dynamics [22]. Here we demon-
strate that limit cycle dynamics of the magnon
parametrons lead to stochastic switching be-
tween two otherwise isolated regions in phase
space. The enhancement of stochastic switching
is unique; it has for instance not been reported
in photonic parametrons without analogous four
boson interactions.

For a fixed input amplitude Py, an array of these mag-
nets in the stable Ising spin operation can operate as a
coherent Ising machine. In the following, we assess the
potential of the device as p-bit by quantitative measure
of the stochasticity

IV. STOCHASTICITY

Below the Suhl instability threshold, the Ising spin is
remarkably stable. The lower bound for the transition
time 7 between the two stable fixed points (derived in
Appendix C2) is

Inr > In {w(l +2n4) V(1 +2R)/2R2/2§0] +

[(1+2R)In(142R) —2R]|Ko| (1 +2nu) /2, (4)

where R = /p?2—1/2 + 1 — |Ko| (1 +2n4,) — 1,
w = 2Py/&, Ko = 2Do0,0,0/80- Above the paramet-
ric instability threshold but below the Suhl instability
(n=1.1) for typical values of [Dygoo| = 1.5 x 1074
Hz [see Fig. 8(a)], wo/2m = 2.5 GHz [see Fig. 1(b)],
and T = 300 K, this number becomes astronomically

large, 7 > exp(1.4x10*) s. In the absence of
four-magnon scatterings, the Kittel mode hop-
ping time in Eq. (4) monotonically increases with
increasing excitation power Py or p. Therefore,
the observation made by Makiuchi et al. [14] that
beyond a second threshold above the parametric
instability, the hopping rate becomes large (hop-
ping time becomes small), can not be explained
by a macrospin. As shown in the following, driv-
ing the system into a limit cycle (LC) of the

Kittel plus +K modes by a sufficiently large pu,
enormously enhances the switching rate [see Fig.
2(d)]. We therefore conclude that the parametri-
cally driven Suhl instability and the LC dynam-
ical phase explain the observation of stochastic
switching at the experimental power levels and
room temperature.

The telegraph noise of the Kittel mode at T' = 300 K
in Fig. 3(a) reflects the thermally activated cross-over
trajectories in Fig. 2(d). The calculated number of
switches N; within ¢, = 100 us, averaged for several ran-
dom initial conditions leads to the transition frequencies
Fo = Ni/t. plotted in Fig. 3(b) as a function of T
(black dots). The form l1e=*/T + lye=?2/T with at-
tempt frequencies I = 32 x 10* Hz, I, = 8.1 x 10* Hz,
and energy well depths \; = 7.98 x 103 x kp/2rhGHz,
A2 = 1.5 x 10%> x kp/27h GHz fits the calculations well
(blue curve). We also compute the Q dependence of the
transition frequency at T' = 1 K, where Q is the scal-
ing factor of the four-magnon scattering coefficient QD
that is inversely proportional to the volume of the mag-
net V,,,. The increased interaction reduces the magnon
amplitudes while preserving the topology in phase space.
The red dots in Fig. 3(b) show enhanced switching rates
for either increasing temperature or decreasing volume.
Figure 3(c) shows the dependence of F¢ on Heyt and Py
at T = 3 x 10° K. Makiuchi et al. [14] observed switch-
ing frequencies ~ 0.01 — 0.1 Hz at room temperature,
depending on the power beyond a second threshold. As



explained above, this is not possible without the Suhl in-
stability. The experimental sample is too large for direct
modeling, the approximation of a constant mag-
netization over the film thickness breaks down
in thicker samples in which higher perpendicu-
lar standing spin waves play a role. Nevertheless,
we can still draw conclusions from the identical scaling
of T and Q in Fig. 3(b). The experimental sam-
ple volume is ~ 30 times larger than the sample
considered here. Since Q x 1/V,,, our model ap-
plies to the experiments for Q = 1/30. By repeating
the calculations for a scaling factor Q = 1/30, we effec-
tively address a magnet that is 30 times larger than for
Q = 1. The result of Fc ~ 0.01 Hz at T'= 300 K agrees
with the lower end of the experimental observations. The
predicted strong and non-monotonic dependence of F¢
on Hey in Fig. 3(c) also agrees with experimental find-
ings. The substantial enhancement of the stochasticity is
due to the large-amplitude LC dynamics near the saddle
node at the origin. Since a limit cycle broadens the dis-
tribution function when compared to a fixed point, the
thermally activated switching through the saddle node
becomes more efficient. At a fixed Heyy, increasing Py
leads to increasing LC oscillation amplitude and dou-
blings (see Fig. 7 and Appendix D), and therefore an
increase in F. At fixed Py the amplitude of the LC os-
cillations depends on Hey via D [see Fig. 8(a)], with
a maximum at Heyt ~ 40 mT [see Appendix D and Fig.
8(d)] of F¢ [see Fig. 3(c)]. From the dependence of F
on Q x 1/V,, [see Fig. 3(b)] follows that reducing
the sample to a dot with 1um radius, enhances
the hopping rate by 7-8 orders of magnitude to
~MHz.

The field of magnonics is moving to identify quantum
effects [38] by extending experiments to smaller systems
and low temperatures. Smaller samples correspond to
larger nonlinear coefficients [large O, see Fig. 3(b)] and
at low temperature quantum fluctuations are enhanced,
which means that the approximation used to derive the
Langevin evolution breaks down. In order to gauge the
limitations of our method, we return to the original Lind-
blad equation and solve it numerically exact in number
(Fock) space to reliably treat the quantum, classical, and
cross-over regimes. In order to quantify the stochastic-
ity from the exact solution, Fg, we calculate up to 20
smallest amplitude eigenvalues £ of the r.h.s. of Eq. (2).
& = 0 corresponds to the ground state density matrix [see
Fig. 4 and Appendix B]. The first two eigenvalues with
smallest but nonzero |Re€| while Im€ = 0, determine the
tunneling frequencies (see Appendix C1). One of these
eigenvalues corresponds to the tunneling frequency of the
Kittel mode, Fg [39] [see top left panel of Fig. 6(a)], as
explained in Appendix C1. The other corresponds to
the tunneling frequency of the K, mode. Below para-
metric instability, and below Suhl instability threshold,
such eigenvalue does not exist for either of the modes, and
the K, mode, respectively. The choice of Q@ = 5 x 10°
allows us to limit the Hilbert space to ~ 1000 that is

our computational limit. Figure 3(d) shows Fg as a
function of Heyt for two values of Py/& = 2.5, 3 that
crosses both the LC and FP2 regions [see Fig. 2(a)].
Fq is peaked at Hexy ~ 40 mT similar to that of F¢ in
Fig. 3(c), and decreases sharply for Hey in the FP2 re-
gion. Figure 3(d) shows that F¢g decreases monotonically
with increasing Py for Hext = 52 mT where the classical
steady state does not enter the LC region. However, for
Hoyi = 40 mT, where the steady state changes from FP1
to FP2, and then becomes LC, by increasing Py, Fq first
decreases and then increases substantially. Based on the
fit in Fig. 3(b), for @ = 10° , F¢ ~ 1 MHz, which is in
the same range as expected from Fg in Figs. 3(d) and
(e). Therefore, Langevin approach should be valid to de-
scribe parametrically and resonantly driven ferromagnets
including a quantitative description of magnon quantum
correlations such as entanglement [16, 40].

V. CONCLUSION

We study the bistable Ising spin system emulated by a
ferromagnetic disk parametrically excited in a microwave
cavity as a function of temperature, magnetic field, and
excitation power. The Suhl decay of the Kittel mode
into a degenerate pair of magnons with large wave vec-
tors drastically enhances the random switching between
pseudo spin states, explaining the recent experimental
observation [14]. The discovered stochasticity principle
requires degeneracy of the parametrically excited bo-
son, and nonlinear four boson interactions among the
degenerate modes. The in-plane magnetized thin films
is a unique natural system that satisfy the latter condi-
tions. While the predicted phenomena are unique
to magnetic materials, results may be extrapo-
lated to metamaterials and quantum optics, in
which parametrons are frequently modelled as
Ising spins. We conclude that parametrically excited
magnetic particles are attractive building blocks for co-
herent Ising machines, as well as stochastic information
applications. Our methods are also well suited to predict
and describe the quantum effects anticipated in the next
generation of experimental magnonics.
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Appendix A: Equations of motion

In this section, we derive the Langevin equation of mo-
tion. The starting point is the (Lindblad) equation of



motion (EOM) of the density matrix p

where H' is the Hamiltonian for the interacting magnons
in which the Kittel mode is driven by P,

H=Hyp+ Hyni + (pocgcg + H.c.) :

H, 1= Z AWECT,QCE
E€0,+K
Honp= ) [DE,E,E,@C,T;C;CT,;CEJF
keo,+k
1-6..) tp, Tezel
Z T OkE ) 5 PR E R R R | T
E'€0,+K
{Do’,moxcgcgc,;ccn + H.C.} , (AQ)
and
L= Z 13 {nth(wﬁ) (cEpc;%—l—c;%ch—chc%_
ke{0,£K}

1

T T T T
CECEP> + 3 (2013,00% — CpCpp — pc];c];)} , (A3)
is their dissipation into a thermal bath. Here n,(w;) =

ewi/keT _q _1, kp is the Boltzmann constant, T is
the bath temperature, and &;: are the dissipation rates.

We cover different regimes of the master equation (A1)

including the quantum-classical crossover in the form of
an equation of motion for the Wigner quasi-probability
distribution function

2 2
W(ao,ozo,oz,c,alc,oz R0lg) =3 /d z }C/d 2g

o
/d 2otr (Pezzocoezzocoelz’c 'Celzﬁ%e “xe eZZECE)

efizgozgefizoage lz}ca)ﬁe zzlaalze*izi,ea*_ﬁefiz_ia_,a
(A4)
where z; and aj are complex variables, and |ay) is the
coherent state of mode k. Following textbook procedures
[33, 34]
ow
5 = Wro+Wp +Wpp+Wsk + Wok +Ws, (A5)

where the contributions on the r.h.s. represent, respec-
tively, the non-interacting magnons

, 0
WHO = Z ) |:1A(J.)kaoacak; + HC:| W, (AG)
ke{0,£K}

the dissipation

the parametric excitation of the Kittel mode

0
Wpg = |:—Z'P0048 + H.C.:| w, (AS)
8040
the self-Kerr interaction
. 0 9
Wsk = Z ) ZDk,k,k,k |:2M|Ozk| o+
ke{0,£K}
1 o
————aj + H.c. A
280(80(220% + C} W, (A9)
the cross-Kerr interactions
Wek = Y > D nr (1= ki) {]
ke{0,£K} k’'€{0,+£K}
0 93
— —_—— He ; W,
day, oo I % 19a ROa;0og, k} * c} ’
(A10)

and the 4-magnon interactions that drive the Suhl insta-
bility

, 9 9
Wg =1iDo ic.0,—K {QMaOaKa_;c - fam . a02a;<+
0 o 20 1 o? 1 8 N
K — e — — s ——(/_
dar T T 400200 T 40020y "
1 3
- ap+ Hec | W. All
2 Oapdog0a’™ i ao + C] ( )

OW/Oay, is of the order of W when the latter is a
peaked function such as a Gaussian. In our system the
third order derivatives in Eqs. (A9)-(A1l) are neglibly
small since |Day| < & (nth,k + %) Introducing = =
(ag + af)/2 and py = —i(ag — a})/2, the Wigner EOM
of Eq. (A5) reduces to the Fokker-Planck equation (sum-
ming over repeated indices)

0 1 02
A (X)+ s 55D,

2 0X,0X; (A12)

in the variables X = [xq, po, Z1c, P, T—1c, P—x). A; (X) in
the first term (drift) follows by straightforward algebra
from the first derivatives in Eqs. (A5)-(A10), while the
second order derivatives in Eq. (A7) lead to the second
(diffusion) term with D; ; = 6; ;&; (nth’k + %) The first
and second moments obtained from the FPE can also
be obtained as the solution of a set of assoicated (Ito)
stochastic differential equations [33] in which diffusion is
obtained by Wiener increments dW; = Z;(t)dt, i.e. the
differentials of Markovian Wiener processes governed by
the FPE with zero drift and unit diffusion, so

dX; = A;dt + 1 /Ez <nth L+ ;) Hi(t)dt, (A13)

where (Z;(t)Z;(t')) = 6;;0(¢, ). Therefore the
Langevin equation of motion of the three-partite
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FIG. 4. Quantum steady states. The top (bottom) panels are
the Wigner function of the Kittel mode (K standing wave)
normalized by the maximum value. The left, middle, and
right panels correspond to the star of the same color as in
Fig. 2(a) as well as Figs. 2(b)-(d) of the main text, i.e., in
the FP1 (stable Ising), FP2, and ‘Stochastic’ (LC) regions, re-
spectively. The scaling of four-magnon scattering coefficients
Q =5x 108 2 x 10° 4 x 10°, from left to right panels, re-
spectively.

magnon system reads © = —i[H,v] + ', where v =
[z0,po, Tg, P, T _g, p_g|, and T collects fluctuating fields
with Gaussian quantum statistics as described in above.
We solve this 6-dimensional Langevin differential equa-
tion in real time using stochastic Runge-Kutta 4 algo-
rithm. Starting from appropriate initial conditions we
update v in time steps of 0.1 ns until a steady state is
reached. Figures 8(a) and (b) plot the four-magnon scat-
tering parameters D and Aw,, ¢, as a function of magnetic
field, respectively, which we use in our calculations.

Appendix B: Steady states from quantum master
equation

We calculate up to 20 smallest amplitude eigenval-
ues £ > 0 of the rhis. of Eq. (Al), in which the
€ = 0 corresponds to the ground state density ma-
trix pss. We visualize the steady states by the Wigner
distribution function W (2, ), pocc.)) = f@o(ﬁs) —
Y/210,4 08| Toe,) + y/2)eTEDdy of the Kistel (K,)
mode, where |z,

+ y/2) is the position eigenstate of
the Kittel (K,) mode, and Pss.0(K.,) is the density matrix
after tracing out the K, (Kittel) mode. The top (bottom)
panels of Fig. 4 show W(xo(ﬁs),po(&)) for Hoyy = 40mT
in each of the classical steady state phases, as indicated
by stars of the same color in Fig. 2(a) of the main text.

The left and middle panels can be compared with the
classical phase space of FP1 and FP2 in Figs. 2(b) and

(c), respectively. The right panel of Fig. 4 should be com-
pared with the limit cycle region in the classical phase
space, e.g., in Fig. 2(c). In the panels of Fig. 4, we used
different scale factors Q such that the distance between
the extrema of W is roughly the same.

Appendix C: Hopping frequency

As explained in the main text, the steady state of the
Kittel mode above the parametric instability threshold
can be mapped on a degenerate two-level Ising pseudo-
spin that is characterized by two opposite precesssion
phases. The transition between these two states is remi-
niscent of the thermally activated or quantum tunneling
of the magnetization in uniformly magnetized nanopar-
ticle or molecular magnets [41-43]. In the absence of the
+K modes, the physics of the pseudo-spin of the Kit-
tel mode is similar to a bistable magnetization, where
the phase space of the former is the infinite 2D plane of
the Kittel mode harmonic oscillator quasi-position and
quasi-momentum and the 2D Bloch sphere in the latter.
The details of the free energy landscape on the phase
spaces determine the competition between tunneling or
thermally activated hopping frequencies, but there are
some universal features as well. For example, with in-
creasing the parametric excitation power and in the ab-
sence of £ modes, the pseudo spin of the Kittel mode
increases while the hopping frequency decreases [see Ap-
pendix C 2], similar to the effect of increasing the size of
a nanomagnet that leads to decreasing hopping rates. In
this work, we control the Kittel mode pseudo-spin by the
mixing with +K modes.

1. Number states

We work with a finite basis set N = NoNg where
Ny, is the cutoff number of Fock states of the 0(Ks)
mode. The Lindblad master Eq. (A1) can then be writ-
ten as 0,2 = LZ, where the Liouvillian £ is a N? x N2
matrix and Z is the density matrix p rearranged into a
vector with N? elements. The steady state Z is the
eigenvector of £ with eigenvalue £ = 0. The time-
dependent density matrix can be expanded as

Zohys(t ZM 5tz (C1)

where the sum runs over the N2 eigenstates, and M; =
ZT Zonys(0). Vi # ss = Re&; < 0 and lim;— 00 Zphys =

SS*

We may model the magnon parametron by two co-
herent states of a harmonic oscillator separated by a
high barrier in position-momentum phase space. An
eigenvalue &, that satisfies Imé&;,,; = 0 is then asso-
ciated to hopping. Since this rate is small compared



to other fluctuations and so is |Eini| [39], we can cal-
culate it accurately with a small basis set. We analyze
the associated tunneling eigenvector Zi, starting from
an initial coherent state in one of the two Ising val-
leys Zpnys(t = 0). To leading order in the interaction
thys(O) R Zgs + Min1Zin and thys(oo) ~ Zg. It is
convenient here to work with the non-negative Husimi
function Q(a) = (&|pphys|e)/m > 0, where |a) is a co-
herent state and the N2 x N2 density matrix Pphys CON-
tains all elements of the vector Z,uys. Figure 3 shows
that above the threshold and at long times the two val-
leys become symmetrically occupied with two identical
maxima of Q(«) representing two mirror-symmetric co-
herent states. The latter corresponds to Q(«,oc0) for
Zphys(00) = Zs,, whereas the initial Q(«,0) correspond-
ing to Zpnys(0) that we assumed is a coherent state at
one of the valleys, has only one peak at that valley. The
decomposition Zpnys(0) = Z5s + Mn1 2 implies that
the overlap of Zi,, with two coherent states at the two
valleys should have opposite sign in order to cancel Z
at one of the valleys and add to it at the other valley, for
the Q(«,0) to have only one peak at one of the valleys
and the integration of Q(a,0) over the phase space to
remain equivalent to that of Q(«, ).

Let us first ignore K, and only consider the para-
metrically excited Kittel mode with self-Kerr nonlinear-
ity. Figure 5(a) shows the absolute value of the overlap
|Z§;Za| between the steady state with the elements of
the coherent state density matrix |a){«| arranged into
the vector Z,, where oo = xg + ipo. |ZtTana| = |ZSTSZQ|,
as expected. Figure 5(b) shows that Re ZL Z, is sym-
metric with respect to (zg = 0,po = 0), while Fig. 5(c)
indicates that Re 21, Z, is antisymmetric (and the same
holds for the imaginary parts).

When the Suhl instability of the Kittel mode
parametron drives the Iﬁs mode, there are two tunneling
eigenvalues &1 1(2)- The Kittel mode hopping frequency
is F = —&n1,;1 when ZtTnuZa = |ZSTSZQI Va, otherwise

F= *Etnl,2~

2. Kittel mode parametric oscillator

Here, we address parametrically driven Kittel mode
with finite self-Kerr non-linearity K, but without inter-
actions with other magnons, equivalent to a Duffing os-
cillator. The Fokker-Planck equation for the Wigner dis-
tribution function to leading order in the derivatives with
respect to coherent states o and a* then reduces to

W(a,a*) = 3% [ +ia* (p+ 2Koa®) ] +
32

1
im (1 —+ 2nth) + H.C.,

(C2)

where Ko = 2Q'D0’070,0/&) and n = 2P0/€0. With o =
To + ipOa

. ) 1 92

W (xo,po) = _82\2 A; + 2WD”} W (zo,p0),
(C3)
X = [zo,po), A1 = —[zo—4Ko (2 + p§) + 2ppo],
Ay = — [po + 4Ky (x% +p(2)) + Zuxo], and D;; =

d;,j (1 + 2n4p) /2. The maxima of W are the steady-state
mean-field amplitudes ag = |ap|e’®® that follow from the
first term and its conjugate (drift) of Eq. (C2),

ipody 4 ag + 2 Kolag |2 = 0,

—ipag + af — 2iKo|agl?af = 0. (C4)
Hence, |a)> = /u?2—1Ko|/2, and 2¢9 =
arg [—Ko\/u2 —1/p| Kol + i/u]-
In the steady state [33, 34]
10
AW = -—D, ;W.
20X, " (C5)

Assuming a solution of the form W(xg,py) =
Ne=®@o.po) wwhere A is the normalizing constant

09
0X;

1 aqu | (8)

oD 1A~ =

When ® is a proper potential with 92®/0x¢0py =
0?®/OpyOxo, which ensures that the solutions of Equa-
tions (C6) do not depend on the path of integration, i.e.

T 0P
¢ =— —dX;.
0 00X
Strictly speaking 0?® /0x¢0pg =

4 [—4Ko (3p3 + 23) + 2p] /(1+2n¢,) and 82® /Opodzg =
4 [4Ko (323 +pd) + 2] /(1 + 2nw) are not equal.
However, in the region between the two min-
ima  (Zo,m,P0,m); |4K0|(333%’m + p%’m) < 2u and
[4Ko| (25, + 3DF,m) < 2u. For very small > 1 above
the threshold ¢g », =~ /4, and (2 ,m, po,m) = (0, £|ao|).
Therefore, 12|Koap|? = 6/p2—-1 < 2u, ie.,
1 < p K \/%, approximately satisfies the poten-
tial conditions. The transition time in this potential
barrier approximation [39, 44],

— 2m CI)MGJO (O’ 0) :| v X
50 (I)ﬁoro (0’ |O‘0|)@P0Po (0, |O‘0|)<I);D0Po (O, O)
exp [2(0, [ao|) — ©(0,0)], (C7)

T

where @y, x, = 9>°®/0X?. Hence

(14 2n4) V2 =1
B 280 1+ 2nth)|K0] . (C8)
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FIG. 5. (a) The modulus of the overlap of the Liouvillian
eigenvectors Z,(1ny With the vector corresponding to the
density matrix of the coherent state Z., o = xo + ipo, i.e.
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Kinsler and Drummond [39] studied the transition fre-
quency of a parametron in the presence of nonlinear
damping rather than self-Kerr nonlinearity, at zero tem-
perature. Because of the similarity of the steady states
governed by either the self-Kerr interaction or the nonlin-
ear damping (see below), and the validity of the analytic
treatment for a large p interval in the latter case, we ex-
tend the analysis in [39] to nonzero temperatures through
the Lindblad operator,

2 2
o wd) s

(C9)

Ly =¢&nr (nen + 1) (203;)0

ENLTh (2082/)00 — el - PC?)C:SQ)

where £nr is the nonlinear dissipation parameter. Non-
linear dissipation should exist under parametric exci-
tation conditions due to photon dissipation and four-
magnon scattering to thermal magnons, but in contrast
to the self-Kerr term, its value for YIG is unkown. For
simplicity, we set Ky = 0 and assume an imaginary para-
metric excitation iPoc(chg; + H.c., where Py and thereby
uw = 2Py /&y are real, i.e. a phase shift of the drive by
/2 relative to the global phase reference. The Wigner
function then solves

dw 0 .
g = {% [a—a (u—gNLozz)] +
1+2n 0? .
( - th) i (1+ gnraa )+H.c.}VV,
(C10)
where gy = 4€n1/&. In terms of (zg,pp), where

a = xo + ipo, Eq. (C10) can be written in the form
of Eq. (C3), where 41 = —x¢ (1 +gnpzd — u), Ay =
—po (1 + gnepd + 1), D11 = (14 2ng,) (1+ 2g9nz23) /4,
and Doy = (14 2n¢p) (1 + 2gNLp%) /4. The resulting
2D FPE does not have a potential solution, because
0?®/0x00py # 0°®/0pedxo [see Eq. (C6)]. However,
the states always relax towards py = 0 because As has
the opposite sign to pg. The FPE for pg = 0 is only a
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FIG. 6. (a) The dependence of the tunneling frequency F
on p from quantum calculations for nonlinear damping and
self-Kerr nonlinearity. F from analytical equations Eq. (C8),
Eq. (C14), and Eq. (C15) also shown. n., = 0. (b) The
dependence of F on nyy, for = 1.4. In (a)-(b), @ = 5 x 10%.
(c) and (d) The Wigner function for self Kerr nonlinearity
and nonlinear damping, respectively, while 4 = 1.4. (e) and
(f) The quasi-potential, ® = —InW, corresponding to (c)
and (d). The stars are the minima of ® and the dashed lines
are along the minimal gradient path. In (c)-(f), @ = 5 x 10%.
In (a)-(f), Hext =40mT.

function of zg [39],

dWip 0
P {8_:v0 [330 (1 +gn1Tg
1 0%

1922

— )]+

[(1+2ne) (1+2gn073)] } . (C11)

All 1D FPE equations have potential solutions [34], and
Egs. (C6) and (C11) lead to

1 s 2R+1 5 ]
— |z§ — In (2 x5+ 1),
(1 +2n) [ 29N1L (2gxeag+1)
(C12)
where R = p — gnr (1 + 2n4,) — 1. The extrema of @,
are at 2o s = 0 (saddle point) and xo.,m = £/ R/gnL

(o) =



(the two minima). The transition time between the two
minima is

o 1 1/2
e §T) {q)xoxo(zO,m)q)xoxo(IO,S)} .
exp [®(zo,5) — ®(70,m )], (C13)

which with Eq. (C12) leads to

) 1/2
S (14 2n¢)° (1+2R)
2 2R?
e ——  [2R+1)In(2R+1) — 2R] ;.
xp{QgNL(Hth) (2R + 1)In (2R + 1) 1}

(C14)

In Fig. 6(a), we compare the hopping frequency F
from a numerical solution of the master equation cor-
responding to either gy or Ky being finite, with the
analytical Eqs. (C8) and (C14), respectively, for ng, =0
and a scaling coefficient @ = 5 x 108 of the four-magnon
scattering coefficients D — QD that reduces the Hilbert
space to a manageable size. We illustrate the results
by choosing gy = |Kop|. Figure 6(a) shows that Eq.
(C14) approximately agrees with numerical calculation
[39], whereas Eq. (C8) is too small for x> 1, i.e. above
the parametric pumping threshold. because the assump-
tion of small i is not valid anymore. We may improve Eq.
(C14) by adopting a distance between the two minima for
the nonlinear damping that equals that of the self-Kerr

nonlinearity, i.e., (1’ —1)/gnr = V1? — 1/2| K|,

1/2
(14 2n4)* (1 + 2R) y

_ T

7%, 2R

e - = 2R +1)ln(2R' +1 —2R/}.
xp[ngL(HQnth){( JIn (2R + 1) — 2R

(C15)

where R’ = \/p? —1/24+ 1 — gnp(1 + 2n4,) — 1. The
blue dashed line in Fig. 6(a) shows that the transition
frequency from Eq. (C15) now overestimates F for the
self-Kerr nonlinearity, and can be used as an analytical
upper bound when ny, = 0.

Figure 6(b) shows the dependence of F on ny, for
p=14and Q@ =5x 108 for both cases of self-Kerr and
nonlinear damping. Figure 6(b) shows that with increas-
ing temperature, F increases as expected. F according to
Eq. (C14) monotonically increases with temperature up
to ngn, &= 0.5 and is larger than the numerical calculations
[see the green dashed line in Fig. 6(b)]. Figure 6(b) is for
Q = 5 x 108, which means that the potential is 5 x 108
times shallower than the physical (Q = 1) case [see Eq.
(C12)]. Therefore, we can estimate that ny, = 0.5 when
Q = 5x 102 corresponds to 0.5 x 5 x 10% ~ 2.5 x 108, i.e.
T ~ 10" K when Q = 1. We confirm that for any y, when
Q =5 x 108, and ny, < 0.5, F from Eq. (C15) is larger
than the numerical calculation for the case of self-Kerr

10

(a) ) @ @ @O (9

mFP1
OFP2
mLe Po/%o
T e
5 ;
®) 1—020 ®S 7 © -
- — 0.4839 _
o 05 0.7643 0.7647 6274 0.6279
£-05 -
-1 Suhl instability
(d) 1 (e)
) /
) 0.5
F 0@
205
f -1
) 1
)
ma 0.5
% 0
2-0.5
-1

-2-15-1-05 0 05 1 1.5 2
Xo(X 10%)

Xo(X 10%)

FIG. 7. (a) The dynamical steady states of the magnetic dot
calculated as a function of Py/&o, for Heyt = 40mT. The blue
dashed lines indicate Py/&o that corresponding to the time
traces plotted in panels (b)-(g). (b) Po/& = 0.86, FP1. (c)
Py/& = 1.51, FP2. The red dashed arrow indicates the Suhl
instability due to parametric pumping. (d) Po/& = 2.06,
LC (e) P()/fo = 2.34, LC (f) Po/f() = 2.89, LC (g) Po/f() =
3.81, LC. In (b)-(g), the black trajectories are from t = 0 to
t = 40 us, and the purple trajectories are from ¢t = 30 us to
t = 40 ps. The insets in (b)-(d) are zooms of the main panels.

nonlinearity. Therefore, for the physical case, Eq. (C15)
provides a reliable upper bound of F for T < 107 K and
every value of p.

Figures 6(e) and (f) show the (quasi-)potential &' =
—InW, corresponding to Figs. 6(c) and (d), respectively.
The white stars indicate the minima of ®', and the white
dashed line connects the two minima through the mini-
mal gradient path that govern the transition. The latter
line is not straight for the self-Kerr nonlinearity in con-
trast to that for nonlinear damping, supporting the va-
lidity of the 1D assumption leading to Eq. (C11). Apart
from the twist in the quasi-potential of Fig. 6(e), it is ap-
proximately the same as that of Fig. 6(f), leading to the
similar scale of F for self-Kerr nonlinearity and nonlinear
damping. In conclusion, while a hypothetical substantial
non-linear damping should affect the numbers but not
the phenomenology and can be captured by re-scaling
the Kerr constant.

Appendix D: Suhl instability and bifurcation of the
limit cycles

In Appendix C2, we discussed the hopping frequency
F of the Kittel mode parametron in the absence of in-
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FIG. 8. (a) The dependence of four-magnon scattering coeffi-
cients relevant to the dynamics on Hegt. (b) The dependence
of Aw,g on Hezt. (c) An analytical phase diagram [see Fig.
2(a)]. (d) The Heqt dependence of the peak of Fourier trans-
form of zo(t), F., at any w # 0, for Py/& = 3.5 [see Figs.
2(a) and 3(c)].

teractions with +K pair. We showed in the main text
that for Py above the Suhl instability that leads to the
decay into finite momentum magnon pairs the transition
rate increases substantially when the steady state is a
limit cycle (LC). Here, we discuss the LC trajectories as
a function of Py up to just below the jump in F. Figure
7(a) presents our results for the steady states as a func-
tion of Py/&y (see also Fig. 2), for Heyy = 40mT, and
indicates the respective value of Py/&y corresponding to
Figs. 7(b)-(g) in increasing order. In Figs. 7(b)-(g), we
assumed 7' = 0 and an initial random (zg,pp) near the
origin. The black trajectories are from ¢ = 0 to ¢ = 40 us,
whereas the purple ones are the steady state trajectories
from t = 30 us to t = 40 us. Figure 7(b) is the fixed point
FP1 steady state below the Suhl instability. Figure 7(c)
is the FP2 fixed point steady state generated by the Suhl
instability. The Ising spin states of FP1 and FP2 are
extremely stable, with astronomically small hopping fre-
quencies.

Figure 7(d) correspond to a microwave power just
above the bifurcation to a LC steady state. Initially,
the LC has a small amplitude that increases with Py/&
to develop a pronounced butterfly shape [see Fig. 7(e)].
For even larger Py/p, the limit cycle bifurcates. In the
steady state in Fig. 7(f) we observe 2 LC butterflies and
4 in Fig. 7(g). The increase in the LC radius and its
multiplying indicates a shallower potential trench that
confines the dynamics and a much broader probability
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distribution that is definitely not Gaussian. A shallower
potential well or trench implies an increase in the hop-
ping over the saddle point between the two Ising spin
states.

Next, we discuss field dependence of the steady state
phase diagram of Fig. 2(a) and the associate Ising spin
flip rates. At a fixed Py, the steady states are governed
by the four magnon scattering coefficients D, and Aw_ g,
that in turn depend on Hey. Figure 8(a) shows the de-
pendence of D0107070, K1 = IDO,O,:I:IE,:I:IE’ Kg = DO,IE,O,flC"
and K5 = 2K3+ K4 on Heyt, where K3 = Diﬁ,iﬁ,i)&iﬁ
and K4 =D, g g g Figure 8(b) shows the depen-
dence of Aw, ¢ on Heyy. As we discussed in the main
text, the boundary of FP1 and FP2 [the green line in
Fig. 2(a)] is the Suhl instability threshold. According to
Eq. (4) of the main text

1

|0, sum|® = K-k~ (Awil@Kl—i_

\/Awiﬁsz -+ (K22 — K%) X (58/4+Awi,€2))
(D1)

For & = 5MHz, |agsun|? = &0/2v/ K3 — K7 decreases
by a factor of ~ 1/1.3 when increasing Hey from 10mT
to 80 mT while |ag|? o 1/|Dp,0,0,0| decreases by a factor
of ~ 1/1.7. The Py needed to drive the Suhl instability
therefore increases slightly by a factor of ~ 1.7/1.3 in the
field interval, as does the green line in Fig. 2(a).

We proceed by the rather rough approximation that
beyond the Suhl instability the Kittel mode mean-field
o = |ap|e’®0 is constant with

2
1 §>
2 2
ol =/ F5— | 2 )
[l 2|Do0,0,0| | ° (2

i

¢o = —arg {Po (g + 2iDo,o,o,o|0402>} /2, (D2)

which is the steady state of the self Hamiltonian (Poczr) c(];—i—

H..)+ D()?o,o’ocg)cocgco. The mean field ag is then the

steady state of the effective Hamiltonian A’ wﬁsct cg, +

Ks

R oo o /
(Kgaoclascﬁs +£{.c.) +K5CI€SCIQC)€SCI@’ where A'wg
Awg, + Kilao*. K1 = Dy g0 K2 = Dyo g
Ky = 2K3 + K4, K3 = Diﬁ,iﬁ,iﬁ,il@’ and K4y =
D

+K, K, 7L, 7L

ag, = lag,le'?%:,
1 £\?
2
—i £ : 2 S A/
pg. = arg %02 —5—21K5|a,€s| —iAwg |1 /2.
0

(D3)

We can estimate the boundary between FP2 and LC
phases by the approximations for «g and ag in Egs.



(D2) and (D3) above the threshold. The transition for a
limit cycle by the mean field term K3 04604}*5 50056,55 +H.c.

requires that

Koo, noag, 1o = o/2, (D4)

where ag ¢ and e o are the mean fields at the FP2
to LC transition. For the same magnetic field interval
and fixed Py, |a|?> o 1/|Dgo0,0| decreases by a fac-
tor of ~ 1/1.7. In |ag [* oc (K2 + Ki)lagl*/[Ks| o
(K2+K1)/|K5||D0)0,070|, (K2+K1)/D070)0’0| decreases by
a factor of ~ 0.3 while |K5| decreases to zero at around
40mT, and then increases to ~ 0.5 times of the initial
value, at 80 mT. K; monotonically decreases by a factor
of ~ 1/8 with increasing H,,; in the same range. There-
fore, Py corresponding to ‘Klo‘OvLCo‘;@S,Ld has a mini-
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mum at Heyy ~ 40mT, and is larger by a factor of ~ 8 for
Hext = 80mT than Hexy = 10mT. Fig. 8(c) shows the
boundaries between FP2, FP1 and LC as calculated from
Egs. (D4) and (D2)-(D3) and captures the main features
of the numerically exact phase diagram of Fig. 2(a). The
differences such as the strong drop of the FP2|LC bound-
ary at intermediate fields are a consequence of the rough
mean-field approximation.

We expect that for fixed Py beyond the LC transi-
tion the limit cycle oscillation amplitudes would be en-
hanced at Heyy ~ 40mT. This is indeed consistent with
the Ising spin hopping rate F in Figs. 3(c) and (d). F,,
the Fourier transform of xq(¢) may help to elucidate the
correlation between the LC oscillation amplitude and F
since a peaked F, indicates that the steady state is a
limit cycle. Figure 8(d) shows the dependence of this
peak amplitude, max(|F,.o|) on Hex that confirms the
expectations.
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