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We study the impact of the inter-level energy constraints imposed by Haldane Exclusion Statistics
on energy relaxation processes in 1-dimensional systems coupled to a bosonic bath. By formulating
a second-quantized description of the relevant Fock space, we identify certain universal features
of this relaxation dynamics, and show that it is generically slower than that of spinless fermions.
Our study focuses on the Calogero-Sutherland model, which realizes Haldane Exclusion statistics
exactly in one dimension; however our results apply to any system that has the associated pattern
of inter-level occupancy constraints in Fock space.

I. Introduction

The impact of constraints on the dynamics of quantum
mechanical systems has received a resurgence of interest
in recent years1–11. Much of this interest has focused
on whether, and when, constraints facilitate or even
necessitate violations of the entanglement thermaliza-
tion hypothesis (ETH)12,13. Notably, in low-dimensions
constraints can effectively isolate certain sectors of the
Hilbert space1,7–9 thereby preventing at least some eigen-
states from being thermal.

In the study of constrained dynamics, attention to
date has focused primarily on systems with spatially
local constraints, or constraints arising from symme-
try. (See, however, Refs.14,15.) Here, we focus on an-
other interesting possibility: constraints due to uncon-
ventional exclusion statistics. The possibiliy of exclu-
sion statistics that are neither fermionic nor bosonic was
first raised by Haldane16, following the discovery that
quasiparticles exhibiting fractional (or anyonic) exchange
statistics17,18 are likely realized in the fractional quantum
Hall effect19,20. Inspired by counting arguments relevant
to Laughlin states19, Haldane proposed a growth of the
many-body Hilbert space with particle number that is
intermediate between fermions and bosons. This count-
ing, and the corresponding exclusion statistics, subse-
quently became known as Haldane Exclusion Statistics
(HES). Though in the FQHE HES is related to anyonic
exchange statistics21, unlike the latter HES is not specific
to 2 spatial dimensions. In fact, it occurs generically in
one-dimensional integrable models that can be solved by
the thermodynamic Bethe ansatz22,23. Several higher-
dimensional realizations24–26 are also known.

A surprising feature of HES is that, unlike fermionic
and bosonic statistics, it appears to require the existence
of occupancy constraints involving particles in multiple
energy states. There are two key pieces of evidence sup-
porting this. First, although the partition function can
be well approximated using a distribution function that
treats different energy levels as independent27, this ap-
proximation generically assigns negative probabilities to
some configurations, indicating that the approximation
over-counts the available states28–30. Second, HES is

realized exactly in the Calogero-Sutherland model31–36,
as first observed by Ha37. Murthy and Shankar38 ob-
served that in this case, HES can be directly attributed
to occupancy constraints between particles in different
energy levels. The resulting occupancy constraints dic-
tating which patterns of single-particle orbitals can be
occupied represent a qualitatively different class of con-
straints in many-body quantum systems, whose impact
on dynamics has received little attention to date.

In this work, we undertake to study how this new class
of constraints affects the dynamics of open quantum sys-
tems. We focus on open quantum systems because there
the impact of occupancy constraints in energy space on
dynamics is most transparent. Further, coupling our sys-
tem to a bath that breaks all conservation laws allows us
to work with a specific model (the Calogero-Sutherland
model) exhibiting exact HES without having to contend
directly with the impact of integrability on the dynam-
ics of our system. Even in this simple setting, however,
we find that the constraints implied by HES can have a
significant impact on relaxation dynamics.

To elucidate the details of the constraint structure that
causes HES, we focus on the Calogero-Sutherland model
(CSM)31–36, where HES can be derived explicitly from
the exact solution.37–40 We develop an exact microscopic
description of the occupancy constraints that is condu-
sive to developing a second quantized formalism for HES
particles. This second-quantized description allows us
to study the Lindblad dynamics of the CSM both nu-
merically and analytically. Moreover, by mapping states
in the HES Fock space to states in the Fock space of
spinless fermions, we use our second-quantized formal-
ism to analytically derive several qualitative features of
the relaxation dynamics in these systems, and compare
the resulting dynamics to that of fermionic systems.

Using this approach we are able to prove analytically
the following key results. First, we show that under Lind-
blad dynamics, the energy relaxation of HES particles
coupled to a bosonic bath cannot be faster than that of
spinless fermions, and that in generic conditions, it is
strictly slower. Second, we find that the relaxation dy-
namics is universal for different species of HES particles.
Third, though typically our Lindblad dynamics eventu-
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ally thermalizes the energy of all HES systems, we show
that under certain (fine-tuned) conditions it is possible to
initialize the system in configurations whose energy will
never thermalize, essentially because all relaxation paths
are blockaded by the constraint.

The fact that constraints lead to slower energy relax-
ation dynamics may not surprise the reader; however,
the universality of dynamics for HES systems with very
different constraint structures is far from intuitive. This
result is also different from relaxation rates predicted us-
ing Boltzman transport41–44, obtained assuming that the
occupations of different energy levels are independent,
rather than fully accounting for the constraints. Inter-
estingly, even in the absence of an exact treatment of
the constraints, HES systems have been found to exhibit
a universal 1D ballistic thermal conductance45, though
both electrical conductance45 and shot noise46 depend
on the details of the exclusion statistics.

We emphasize that, unlike many previous in-
vestigations of both the thermodynamics47–53 and
transport41–46,54 of systems of free HES particles, our
framework allows us to treat the Fock space constraints
exactly. Though in the case of thermodynamics this ex-
act treatment leads to small corrections, its impact on
dynamics –especially in certain initial states– is much
more significant.

This article is organized as follows. In section II, we
review the original definition of Haldane exclusion statis-
tics, as well as Wu’s27 approximation to the partition
function. In section III we review how Haldane exclu-
sion statistics arises in an exactly solvable model, i.e.
the Calogero-Sutherland model, and develop a micro-
scopic description of the associated Fock space occupancy
constraints which elaborates on the exact solutions of
Refs.37,38. We also review the key features of the ther-
modynamics of free HES particles, and show that treat-
ing the constraints exactly has only a minor impact on
thermodynamics compared to Wu’s results27. In section
IV, we formulate a second quantized description of HES
based on our description of the microscopic occupancy
constraints. In section V, we use this second quantized
framework to study the energy relaxation dynamics of an
ideal gas of HES particles coupled to a bath, and find a
universal relaxation behavior for all species of HES par-
ticles. We summarize our results and discuss its wider
implications in section VI.

II. Review of Haldane exclusion
statistics

A. Exclusion statistics: definition and
basic considerations

We will begin with a review of Haldane’s original for-
mulation of HES16. For a finite many-body system with

fixed boundary conditions, the dimension dα(N) of the
single particle Hilbert space accessible to the N th particle
of species α depends linearly on the total number parti-
cles in the system. This dependence is parametrized by
a statistical interaction gαβ : ∆dα = −Σβgαβ∆Nβ , where
∆Nβ is allowed change of particle number of species β.
In this work, we will primarily be concerned with the case
where there is only one species of particle. In this case
we may drop the indices α and β. Then, the dimension
DN (g) of the N-particle many-body Hilbert space is55

DN (g) =
[d(N) +N − 1]!

N ![d(N)− 1]!
, (1)

where d(N) is the dimension of single-particle Hilbert
space with N particles in the system, which satisfies

d(N + ∆N) = d(N)− g∆N. (2)

Here g must be rational (i.e. g = q/p, with q and p co-
prime integers) to ensure that d(N) and DN (g) are inte-
gers for suitable N and ∆N . Taking g = 0 yields bosonic
statistics, since d(N) = d(N − 1) = d(1), implying that
each added boson can occupy the same number of or-
bitals as the first one. Fermions are described by taking
g = 1, which gives d(N) = d(N − 1)− 1, indicating Pauli
exclusion.

In this work, we focus on the case 0 < g < 1, for which
Eq. (1) describes exclusion statistics distinct from those
of fermions or bosons. For example, in the fractional
quantum hall effect with filling fraction 1/m, the correct
exclusion statistics are obtained by taking g = 1/m16;
Eq. (2) reflects the fact that the number of single-particle
orbitals available to a given quasi-particle is reduced by
one when m quasi-particles are added, i.e. d(N + m) =
d(N)− 1. In this case, Eq. (2) appears to be valid only
when ∆N is a multiple of m, as otherwise the number
of available states d is fractional. In the quantum Hall
context this is not unnatural, since this corresponds to
requiring that an integer number of electrons is added
to the system. However, this requirement is less natural
in other applications, such as in 1 dimensional systems.
In appendix A, we show how framing HES in terms of
constraints allows us to define an integral D(N) for any
N .

B. Approximate treatment of HES
systems in equilibrium: Wu’s

method

To understand the physical implications of the statis-
tics obtained by taking g 6= 0, 1, one must first know
how to compute the associated partition functions. The
first attempt to solve this problem was made by Wu27,
who considered a system where the dimension of the
Fock space at energy εi is given by Eq. (1). This lit-
erally describes a system with a discrete spectrum and
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exact degeneracies; however, it is useful to view it as
arising from grouping the single-particle energy levels
into“cells”, where the ith cell has di levels and an av-
erage energy of εi, and the difference in energies within a
given cell is small compared to kBT .28 In this case, using
d(Ni) = di(1) − g(Ni − 1), Wu found the dimension of
the total Fock space

D({Ni}) =
∏
{Ni}

[di + (1− g)(Ni − 1)]!

Ni![di − 1− g(Ni − 1)]!
. (3)

where di ≡ di(1) is the number of states at energy εi
accessible to the first particle in the system. Impor-
tantly, Eq. (3) assumes that the occupancy of different
energy levels is independent. The grand canonical par-
tition function associated with the many-body counting
(3) can be written down exactly; extremizing it with re-
spect to ni ≡ Ni/di gives the average number of particles
with energy εi:

ni(εi) =
1

w(e(εi−µ)/kBT ) + g
. (4)

Here w(ζ) satisfies

wg(ζ)[1 + w(ζ)]1−g = ζ ≡ eβ(ε−µ), (5)

where β and µ are the inverse temperature 1/(kBT ) and
the chemical potential of the system respectively.

Interestingly, Eq.(4) also follows from a factorized
grand canonical partition function:

ZG =
∏
i

(1 + w−1
i ), (6)

where wi ≡ w(eβ(εi−µ)). It is straightforward to
check that taking n(εk) = −∂ lnZG/β∂εk gives exactly
Eq.(4).47,56 This form is computationally very conve-
nient, since it gives a simple expression from which one
can compute quantities independently at each level i. Ev-
idently, a factorization of the form (6) is possible only
when we treat the occupations of different energy levels
as independent.

However, Wu’s approach is not exact: as first observed
by Nayak and Wilczek28, Wu’s distribution function can-
not be derived from the exact partition function of a
physical system, since for g 6= 0, 1, Eq. (4) implies the
existence of negative Boltzmann weights for certain oc-
cupancies ni

28–30. This indicates that for g 6= 0, 1, HES
describes physical systems where the occupation of en-
ergy level i is not independent of the occupations of other
energy levels, and the grand canonical partition function
cannot be factored. We will explore the relevant inter-
energy occupancy constraints in detail in the next sec-
tion.

Though Eq.(4) is not exact, it nonetheless constitutes
a very good approximation to the behavior of generic
many-body HES systems in the thermodynamic limit.

Specifically, Wu’s description becomes effectively exact
for large systems when the number di of states in each
cell is extensive in the volume.28 Fortunately in a generic
many-body system, where the level spacing at finite en-
ergy density is exponentially small in the volume, such a
grouping is natural, and we may expect Wu’s approxima-
tion to provide a good description of HES thermodynam-
ics in these typical cases. In Sec. III D, we will compare
Wu’s approximation to an exact result in the opposite
limit, where the level spacing is not small compared to
the temperature.

III. Haldane exclusion statistics
in the Calogero-Sutherland

model

In order to explore HES beyond Wu’s approximation,
it is useful to work with a specific model. Here we
will focus on the Calogero-Sutherland model (CSM)31–36,
which exactly realizes the simplest version of HES, with
gαβ = gδα,β

23,40,47. As discussed above, any physical
system that exactly realizes HES must exhibit occupancy
constraints between different energy levels. Murthy and
Shankar38 showed how constraints of this form arise in
the exact solutions of the CSM. Here we review in de-
tail the nature of these constraints, and provide a simple
explicit description of all states allowed in the resulting
Fock space.

A. The Calogero-Sutherland model

The CSM describes fermions in a one dimensional har-
monic trap, interacting via a 1/r2 potential.31–36 The
Hamiltonian for an N fermion system is

H =

N∑
i=1

[
−1

2

∂2

∂x2
i

+
1

2
ω2x2

i

]
+

1

2

∑
i<j

g(g − 1)

(xi − xj)2
, (7)

where, as we will see, g is the statistical interaction pa-
rameter defined by Haldane. The many-body eigenstates
of this Hamiltonian are labeled by a set of fermionic oc-
cupation numbers nk, k = 0, 1, ...,∞ with nk = 0, 1 and∑∞
i=0 ni = N .47 The corresponding energies are

E[{nk}] =

∞∑
k=0

εs(k, g)nk, (8)

where the shifted single particle energy is

εs(k, g) = εk − (1− g)N(εk)ω . (9)

Here εk = kω is the energy of the kth eigenstate of the
single-particle 1D harmonic oscillator, and N(ε) is the
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Figure 1. (a) The ground state and (b) an excited state with 4 particles in the spectrum of CSM with g = 1/2. Labels to the
right of each level indicate the corresponding energies in unit of ω. All levels are grouped up into cells of size one (i.e. ω). When
particles are enumerated in order of increasing energy, particles with odd ordinal number occupy levels with integer energies,
while particles with even ordinal numbers occupy levels with half integer energies. To map this onto an abstract configuration
of HES particles, we ignore the energy differences between states in the same cell, and take particles on the lower chain to have
pseudospin-down (α = 1), while particles on the upper chain have pseudospin-up, labeled by α = 2.

number of particles with energy less than ε, i.e. N(ε) =∑∞
j=1 θ(ε − εj)nj . (Here θ(x) is step function: θ(x) = 1

for x > 0 and 0 for x ≤ 0.)57

There are several properties of the shifted energies (9)
that are worth emphasizing. First, inspecting Eq. (9),
we see that the spacing between energy levels is gω. Cor-
respondingly there are no more than ceil(1/g) states in
an energy cell of size ω, and the occupation number nj of
the jth cell must satisfy nj ≤ ceil(1/g). Second, we may
describe the many-body eigenstates by a set of integers
{ki}, i = 1, 2, ..., N indicating which of the shifted single-
particle energy levels are occupied. If we choose the labels
i in order of increasing energy (i.e. k1 < k2 < ... < kN ),
we have N(εki) = i − 1 for ith particle. Note that if we
add particles into the system, we must re-define N(ε) so
as to include all of the particles ultimately added with en-
ergy less than ε, thereby shifting the corresponding ener-
gies. In constructing many-body states, we will therefore
always think of adding particles to the vacuum in order
of increasing k value.

B. Hilbert space dimension and HES in
the Calogero-Sutherland model

In order to see how HES emerges in the CSM, we must
divide the shifted energy levels into cells. Here we will
show that by choosing cells of size ω, we can exactly
reproduce the counting in Eqs. (1) and (2).

Consider first the simplest case, g = 1/2. Fig.(1) shows
how to group the spectrum into cells of size ω: the jth

cell contains 1/g = 2 distinct fermionic states, with en-
ergies jω and (j+ 1/2)ω. Each of these states can either
be occupied or vacant, such that the maximum number

of particles in each cell is 2. To make the connection
to HES, observe that if we identify the single-particle
Hilbert space dimension d(n) with the number of cells
(rather than distinct energy levels) that any one of the
n particles can occupy, we see that adding two particles
reduces d(n) by one – i.e. this choice of d(n) satisfies Eq.
(2).

More generally, following Murthy and Shankar38, we
can argue that Eq. (3) correctly describes the dimen-
sion of the many-body Hilbert space of the CSM for
N = 1 + np, if we take d(N) to be the number of
cells of size ω available to a particle added to a system
with N particles. To match Haldane’s assumption of
a system with a finite Hilbert space, we constrain the
maximum single-particle energy to be ε0max = kmaxω.
This gives a maximum shifted single particle energy of
εmax = ω (kmax − (1− g)(N − 1)). If we divide these
shifted energies into cells of size ω, we find a total of
d = kmax − (1 − g)(N − 1) such cells. (Here, we choose
N such that (1 − g)(N − 1) ∈ Z, i.e. N = 1 + np; the
cases that kmax or (1 − g)(N − 1) is not an integer are
discussed in Appendix A). It follows that

kmax = d+ (1− g)(N − 1) . (10)

The total number of many-body states must therefore
be given by the number of ways to arrange N fermions
into the first kmax eigenstates of the 1D simple harmonic
oscillator, which is given by Eq. (3), with d(N) = d −
g(N − 1), where d describes the number of energy cells
available for the first particle to occupy.

Thus quite generally, we recover the counting appro-
priate to HES by treating each energy cell of size ω as
comprising a single quantum state. As noted above, this
state can contain a maximum of ceil(1/g) particles; hence
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if g = q/p, adding p particles decreases the number of
available states by q, in agreement with Haldane’s ansatz.

One might wonder whether choosing a cell size of
ω is a fundamental requirement for obtaining a de-
scription of the CSM in terms of particles that obey
HES. Suppose we divide the spectrum into cells with
n levels, each of size ngω, with g = q/p. There
are a total of ncell = floor[εmax/(ngω)] + 1 =
floor[(kmax − (1− g)(N − 1)) /ng] + 1 cells available to
the first particle in the system. Thus with this cellula-
tion, we obtain:

kmax = ng(ncell − 1 +R) + (1− g)(N − 1) . (11)

where R is the remainder of the quantity (kmax − (1 −
g)(N −1))/ng. In this case, we see that the total Hilbert
space size does not satisfy Eq. (1) with d(N) = ncell −
g(N − 1); instead, we must take d(N) = ng(ncell − 1 +
R) − g(N − 1). If we choose a cell size that is not an
integer multiple of ω, such that ng is non-integral, then
ng(ncell− 1 +R) is not an integer in general, and cannot
be identified with d(1) − 1; hence we cannot obtain a
description of our counting in terms of free HES particles.

Moreover, suppose we choose cells of size mω,m ∈ Z,
and, as above, consider particle numbers N where (N −
1)g is an integer. (In this case mR = mod((kmax − (1−
g)(N − 1)),m) is also an integer). Then, formally, we
recover Eq. (2) with d(1) − 1 = m(ncell − 1) + mR,
and d(N) = d(1)−g(N−1). In particular, the statistical
parameter is still g, even though the maximum number of
particles in a cell is nowm ceil(1/g), in contradiction with
our basic expectation of exclusion for HES particles.58

Thus we see that a cell size of ω is the unique correct
choice to interpret excitations in the CSM as a gas of
free HES particles.

C. Occupancy constraints of HES
particles in the CSM

As observed above, choosing HES quantum states to
correspond to energy cells of size ω automatically pro-
duces one constraint on the occupancy of our quantum
states: namely, we can have no more than ceil(1/g) par-
ticles in each state. However, as emphasized by Murthy
and Shankar38, this is not the only constraint governing
how these states can be occupied. To see why this is so,
consider the case of semions (g = 1/2), in which case
the shifted single-particle energies are ε(k) = k− 1

2N(k),
where N(k) is the total number of particles with energy
less than ε(k). If we enumerate the particles in terms
of increasing energy, then particles 1, 3, 5, ... have inte-
ger energies (in units of ω), while particles 2, 4, 6, ... have
half-integral energies. Thus if there is only one particle
in the 1st energy cell, then the lowest energy particle in
the 2nd cell must have half-integral energy – and thus the
second cell can only contain a single particle.

For the case g = 1/m, these constraints can be solved

exactly in the following way.37,38 If ni represents the num-
ber of particles in cell i, the allowed many-body states
of the CSM correspond to sequences of partitions of m,
with an arbitrary number of zeros inserted between each
non-zero element. For example, with g = 1/2 in a sys-
tem of d = 4 cells and N = 5 particles, we may have
(n1, n2, n3, n4) = (2210), (2201), (2021), (0221), (2111),
or (1121), since the partitions of 2 are [2], [11]. One
can check the Haldane formula (Eq.(3)) gives exactly
D5(1/2, 4) = 6.

For our purposes, it will be useful to introduce a dif-
ferent representation of the allowed occupancy configu-
rations, which is convenient for the second-quantized for-
malism which we will use to study the dynamics of HES
particles. Fig. (1) summarizes this picture for the case
g = 1/2. We replace the two energy levels in each cell
with a pseudospin index α = 0(1), represented in Fig. 1
by the upper and lower rows of states. Thus pseudospin-
1 (0) particles have half-integer (integer) energies. If we
enumerate the particles i = 1, 2, ... in order of increas-
ing energy, then the constraints can be summarized as
follows: (i) If the ith particle is in the jth cell and has
pseudospin 0, the i + 1st particle, which by definition is
in the kth cell with k ≥ j, necessarily has pseudospin 1;
(ii) If the ith particle occupies the jth cell and has pseu-
dospin 1, the i+ 1st particle, which occupies the kth cell
with k > j, necessarily has pseudospin 0.

For g = 1/m, with m an integer, we can generalize
this picture as follows. We replace the m distinct ener-
gies within each cell of size ω with a pseudospin index
α = 0, 1, ...m−1, where particles of the same pseudospin
have energies that differ by an integer multiple of ω. Di-
agramatically, we represent this with m chains, instead
of the two shown in Fig. (1). Enumerating the parti-
cles in order of increasing energy, we find that if the ith

particle has pseudospin α, the i+ 1st particle must have
pseudospin α + 1 mod m. This implies that if the ith

particle has pseudospin α = 1, then the i − 1st particle
must be in a cell of lower energy. (By definition, it can-
not be in a cell of higher energy). Similarly, if the ith

particle has pseudospin α = m, then the i + 1st particle
must be in a cell of strictly higher energy. For g = 1
(g = 1/m,m → ∞), this reproduces fermionic (bosonic)
exclusion statistics.

Evidently, these constraints ensure that the ground
state has n1 = n2 = nfloor(N/m) = m, with the remain-
der of the particles in the floor(N/m) + 1st cell. As for
the excited states, they are constructed by moving parti-
cles to higher-energy cells, while respecting the energetic
ordering of the pseudospin indices. In terms of the occu-
pancies ni, this gives exactly the configurations identified
by Murthy and Shankar. Fig.(2) shows the example of
g = 1/3, d = 3 and N = 4, for which the allowed states
are (310), (301), (031), (211), (121), since the partitions of
3 are [21], [12] and [111]. One can check that this agrees
with the formula in Eq.(3), which gives D4(1/3, 3) = 5.

Finally, we extend our description to g = q/p, for
which Ref. 38 did not explicitly solve the constraints.59
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Figure 2. The ground state (3300...) (a) and an excited state (211200...) (b) of the ideal gas of HES particles with g = 1/3.
Other excited states can be generated by moving one or more particles up in energy, while respecting the rule that the single-
particle energies must be ordered by increasing pseudospin, as described in the main text.
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Figure 3. The ground state (3232...) (a) and an excited state (3112...) (b) of the ideal gas of HES particles for g = 2/5. In
this case there are five pseudospin chains , or α = 1, 2, ..., 5, which are labeled in the order of first 5 particles’ energies in the
ground state. The first cell consists of only 3 levels, compared to 5 levels in the case of g = 1/5.

Here q, p are coprime integers with q < p. In the ground
state, the occupancies of the cells first floor(gN) cells are
(x1, x2, ..., xq, x1, x2..., xq, x1, x2......). Here the repeated
block [x1, x2, ..., xq] is the solution to the q linear equa-

tions:

n∑
i=1

xi = ceil(n
p

q
), n = 1, 2, ..., q. (12)
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For example, if g = 2/5, we have x1 = ceil(5/2) = 3, and
x1 +x2 = ceil(5), implying that x2 = 2. Thus the ground
state is (323232...).

Excited states are obtained by increasing εs(k, g) for
one or more particles. Since the particles are identical,
we can generate all such configurations by increasing k
for some number of particles in a way that preserves the
particle ordering in energy space. As a consequence, we
need think only of processes in which a particle changes
its energy by an integer amount –i.e. where both the
pseudospin of each particle, and the ordering of different
pseudospins in energy, are preserved.

The resulting allowed occupancy patterns of a 1D
ideal gas of HES particles with g = q/p can be con-
structed as follows. Our elementary building blocks
consist of all partitions of the basic occupancy pattern
(x1, x2, ..., xq), with zeros inserted at arbitrary posi-
tions in the sequence. Excited states are obtained by
concatenating these elementary building blocks. For
example, if g = 2/5 above, the elementary building
blocks are formed by first choosing one of the four
partitions {[3], [12], [21], [111]} of 3, followed by one of
the two partitions of 2: {[2], [11]}. Explicitly, this gives
[32], [311], [122], [1211], [212], [2111], [1112], [11111].
Excited states are described by concatenating
these building blocks, with zeros inserted at ar-
bitrary locations in the sequence. For g = 2/5
and N = 6, the possible concatenations are
[321], [2121], [1221], [11121], [3111], [21111], [12111],
and [111111]. If we take the number of cells d to be 5
the last partition is not allowed, and there are 28 ways
of inserting zeros in the remaining partitions to fully
describe the occupancies of all 5 cells, matching the
prediction of Eq.(3)that D6(2/5, 5) = 28.

As for the g = 1/m case described above, it is con-
venient to introduce a diagrammatic visualization of the
allowed occupancy patterns. For g = q/p, for all cells
except the first there are p distinct energies (modulo ω),
which we represent with p possible pseudospin values.
The first cell has only ceil(1/g) possible energies, due
to the fact that there are no cells below it that can be
occupied; hence we assign it only ceil(1/g) pseudospin
values. In this representation, the constraints are as fol-
lows. First, when we enumerate the particles in order
of increasing energy, if the ith particle has pseudospin α,
then the i + 1st particle has pseudospi α + 1 mod p. In
general, the i + 1st particle cannot be in a lower-energy
cell than the ith particle, i.e. if the ith particle is in the
jth cell, then the i + 1st particle is in the kth cell with
k ≥ j. Further, we may have k = j only if in the ground
state the ith and i+1st particles are in the same cell. The
ground state and one excited state are shown for the case
g = 2/5 in Fig.(3).

In summary, our diagrammatic representation of the
many-body eigenstates of the CSM captures the physics
underpinning HES as follows. First, although the un-
derlying particles in the CSM are fermions, by grouping
the energy levels into cells of size ω, and identifying ni as

the occupancy of the ith cell, we obtain many-body occu-
pancy patterns that exhibit exact HES. In this descrip-
tion, HES arises due to inter-cell constraints in the al-
lowed occupancy patterns. Second, we may conveniently
represent the allowed occupancy configurations using a p-
leg fermionic ladder, with a pseudospin index α to keep
track of which leg each particle occupies. In this repre-
sentation the contstraints can be described straightfor-
wardly: for example, an α = 1 particle must be followed
by an α = 2 particle occupying either the same cell or
a cell of higher energy, while an α = p particle must be
followed by an α = 1 particle in a cell of strictly larger
energy.

D. Thermodynamics in the limit
KBT ∼ ω

The description of the HES Fock space outlined above
allows us to evaluate the partition function for HES par-
ticles exactly at low temperatures KBT ≈ ω using a
Markov Chain Monte Carlo (MCMC) method. Note that
our algorithm assumes that all pseudospin levels in the
same cell have the same energy, and is thus a slight sim-
plification of the exact Calogero-Sutherland model. We
now use this to compare the exact thermodynamics of
HES particles with that described by Wu’s approxima-
tion, in the regime KBT ∼ ω where the latter is not
well-controlled.

Before discussing our exact results, it is worth re-
viewing what can be deduced about thermodynamics
of HES particles on general grounds, and from Wu’s
approximation.23,28,49,51,53,56 First, the distribution func-
tion of HES particles (with 0 < g ≤ 1) is necessarily
similar to the Fermi-Dirac distribution function, in the
sense that both have a Fermi level, with states far below
Fermi level fully occupied, and states far above it empty.
This simply follows from the existence of a maximum
number of particles per cell. Second, the existence of
this Fermi level ensures that the low temperature specific
heat scales linearly with T , since only states within KBT
of the Fermi surface can be thermally occupied, with an
average energy increase proportional to KBT .49,56,60,61

Both of these features are apparent in the numerical re-
sults for g = 1/2 and g = 2/3, shown in Figs. (4), (5),
and (6).

However, our numerical results also highlight some fea-
tures not captured by Wu’s approximation, as it assumes
that the number of particles in each cell is large. Notably,
for 1/g non-integral, the occupancy of energy cells below
Fermi energy is not uniform, because the ground state
does not consist of a uniform occupation within each cell.
Fig. (4a) shows this difference for g = 2/3, where the
ground state is given by (2, 1, 2, 1, 2, 1, ...). Wu’s approx-
imation cannot resolve this fine structure in the occu-
pancy of adjacent energy levels, and instead predicts a
uniform plateau at the height of the average occupation
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Figure 4. (a) Exact distribution function of an ideal gas of g = 2/3 HES particles at temperature T = ω compared to Wu’s
approximation. The 2-cell structure of the ground state (212121......) is not captured by Wu’s approximation. (b) Averaging
the exact distribution function over 2 cells with both a forward (n̄i = 1/2(ni + ni+1) and backward (n̄i = 1/2(ni + ni−1) 2-cell
average gives a distribution that matches well to Wu’s result away from the Fermi level. (c) Averaging over 3 adjacent cells
reduces the magnitude of the oscillations below the Fermi surface, but does not eliminate them. (d) Difference between the
various MCMC averages and Wu’s approximation. The error of each MCMC data point is 0.003 with 90% confidence.

number. We can resolve the discrepancy for states below
the Fermi level by averaging the MCMC results over an
even number of cells ( Fig. (4b-c)); this leads to a dis-
tribution that resembles Wu’s both well below and well
above the Fermi surface, and shows quantitative differ-
ences near the Fermi energy. (Averaging over an odd
number of adjacent cells ( Fig. (4c)), in contrast, does
not remove the discrepancy.)

Moreover, for every g 6= 0, 1, in the regime KBT ∼ ω
we expect quantitative differences with Wu’s prediction.
This is because in this regime, the number of particles in
each cell is not large, as a cell’s energetic extent must be
small relative to KBT . Fig. (5b) shows the differences
between the two distributions at energies near the Fermi
level for g = 1/2, which is not greatly reduced by aver-
aging over multiple cells. However, even in this regime
such differences are small for all values of g that we have
examined.

A final interesting feature not captured by Wu’s ap-
proximation is that for fixed temperature T , the energy
expectation values are the same for different species of
HES particles (shown for g = 1/2 and g = 2/3 in Fig.(6)),

where we fix the ground state energy to be zero. We will
elaborate on the origin of this phenomenon in Sec. V,
where we show that this holds for all different values of
g. This leads to a surprising result: the thermal energy
of the ideal gas of HES particles, relative to the ground
state, doesn’t depend on g.

IV. Second quantization of HES
particles

In order to study the dynamics of (open) systems with
HES, it is convenient to use a second-quantized formal-
ism appropriate to the constrained Hilbert space. Here
we develop such a formalism, based on the exact de-
scription of the constrained Hilbert space described in
Sec. III C. Several protocols for second quantization of
HES particles62–65 have been proposed; however many of
these do not fully capture the constraints on Fock space.
Specifically, Ref.63 introduces a probabilistic treatment of
the exclusion constraints or g = 1/m, treating the occu-
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Figure 5. (a) Exact distribution functions of g = 1/2 HES particles with T = ω calculated using MCMC, compared to Wu’s
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(c) Heat capacity vs. temperature (both in units of ω) with linear fit (R2 = 0.985) for g = 1/2. The error of MCMC in this
case is 0.003 ((a) and (b)) and 0.06 (c) with 90% confidence.
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vs temperature, both measured in units of ω. The results for
both values of g agree to within the statistical error. Error
bars indicate a 90% confidence interval.

pancy probabilities of different energy levels as indepen-
dent, and hence does not exclude configuration such as
|...m,m−1,m...〉, which we have shown are not in the true
many-particle Fock space. The construction of refs.62

and64 similarly respects the generalized Pauli exclusion,
but does not discuss the structure of the inter-level occu-
pancy constraints. Ref.65 discusses a second quantization
specific to the Calogero-Sutherland model, which does
fully capture the constraints in Fock space. The frame-
work we present here is equivalent to theirs, but has the
advantage that it can be interpreted straightforwardly in
terms of free fermion operators and constraints, which
we will use to understand the impact of constraints on

relaxation dynamics in the next section.

A. Basic formulation: definitions of
states and operators

As described above, the HES particles of the Calogero-
Sutherland model with g = q/p can be described us-
ing a p-leg (or p pseudospin) fermionic ladder. Our sec-
ond quantization procedure thus begins with the set of
fermion creation and annihilation operators fαi , (f

α
i )†,

where i indexes the energy of the cell (εi = iω), and
α is the pseudospin. To obtain a second-quantized rep-
resentation of HES particles, we must account for two
differences relative to ordinary fermionic ladders. First,
the number operator Ni associated with HES particles
in cell i is described by ignoring the fermion pseudospin
α, and simply counting the total number of fermions in
a given cell i:

Ni =

p∑
α=1

n
(α)
i , (13)

where n
(α)
i = fα†i fαi is the fermion number operator for

the state in cell i with pseudospin α.

Second, we must impose the occupancy constraints on
our Fock space, which we do by projecting states in the
fermionic Fock space onto states in the constrained Fock
space. Thus a state |Ψ〉h in the Fock space of HES par-
ticles can be written as, for g = q/p,

|Ψ〉h =
∏
⊗i
|Ni〉 = P

∏
⊗i

∣∣∣n(1)
i , n

(2)
i , ..., n

(p)
i

〉
, (14)

where P is a projector onto states obeying the HES oc-
cupancy constraints.
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To describe the possible operators acting on this Fock
space, it is useful to introduce the creation and annihila-

tion operators ĥ†i ,ĥi:

hi =

p∑
α=1

f
(α)
i , h†i =

p∑
α=1

f
(α)†
i . (15)

The operator hi creates a superposition of all possi-
ble ways that one fermion can be added to cell i, be-
fore imposing the constraints. Physical operators acting
within the constrained Fock space of HES particles can
be expressed in terms of linear combinations of operators
On,m, where On,m is a product of n fermion creation op-
erators and m fermion annihilation operators, projected
to the constrained Hilbert space:

On,m = Ph†i1h
†
i2
...h†inhj1hj2 ...hjmP

=
∑
{αk}

Pf
(αi1 )†
i1

f
(αi2 )†
i2

...f
(αin )†
in

f
(αj1 )
j1

...f
(αjm )
jm

P.

(16)

Here the sum in the second line is over all possible pseu-
dospins, and as above P projects onto states satisfying
the constraint. For example, the HES number operator
N̂i can be expressed:

Ni ≡ Ph†ihiP =

p∑
α=1

Pf
(α)†
i f

(α)
i P +

∑
α6=β

Pf
(α)†
i f

(β)
i P .

(17)

The second term is zero because the constraints do not al-
low pseudospin- changing processes. The first term does
not change the occupancy of any pseudospin level, and
thus is always non-zero provided it acts on a state within
the constrained Fock space. Thus we recover the ex-

pression above, Ni =
∑p
α=1 n

(α)
i P . (In Eq. (13) we have

dropped the projector, as we are implicitly assuming that
Ni acts only on states within the constrained Fock space.)

B. Tools for calculating matrix elements
of HES operators

For practical purpose, we would like to derive a general
expression describing how an arbitrary second-quantized
operator of HES particle acts on states in the constrained

Fock space. This must be done with care, since∑
{αk}

Pf
(α1)†
i1

f
(α2)†
i2

...f
(αn−1)
in−1

f
(αn)
in

P

6=
∑
{αk}

Pf
(α1)†
i1

Pf
(α2)†
i2

P...Pf
(αn−1)
in−1

Pf
(αn)
in

P. (18)

For example, the O1,1 operator Ph†ihiP cannot be ex-
pressed as a product of an O1,0 operator and an O0,1

operator. This is because such products have the form

Ph†iPhiP , but PhiP =
∑
α Pf

α
i P is zero unless hi an-

nihilates a particle in the highest energy occupied cell,
since in all other cases it fails to preserve the pseudospin-

energy ordering. On the other hand Ph†ihiP is non-zero
acting on any state in which there is at least one particle
in the ith cell, irrespective of the occupancy of cells with
higher energy.

Here we describe some tools to quickly
determine whether an arbitrary operator

Pf
(α1)†
i1

f
(α2)†
i2

...f
(αn−1)
in−1

f
(αn)
in

P acting on any state |Ψ〉h
is zero or not. If it’s non-zero, the associated matrix
elements are the same as those of the relevant fermionic
operator. We will first consider single-particle processes,

described by operators of the form Pf
(α)†
i f

(β)
j P . These

are the processes relevant to relaxation dynamics, which
we will study in Sec. V. We then briefly comment on
the more general case.

1. Single-particle processes

We begin by considering operators of the form

Pf
(α)†
i±1 f

(β)
i P , with (g = 1/2, α, β = 1, 2), which describe

processes that “hop” fermions between cells i and i+ 1,
taking a many-body state of energy E to one with en-
ergy E ± ω. Within the constrained Fock space, such
processes must satisfy two conditions. First, we require
that α = β. This is because for α 6= β the resulting fi-
nal states do not obey the correct ordering of pseudospin
relative to energy. Second, in order to maintain the cor-
rect pseudospin order, an α = 1 fermion cannot hop past
an α = 2 fermion, and vice versa. More specifically, an
α = 1 fermion in the ith cell can move to the i+ 1st cell
only if n

(2)
i = 0; it can move to the i − 1st cell only if

n
(2)
i−1 = 0. Similarly an α = 2 fermion in the ith cell can

move to the i+1st cell only if n
(1)
i+1 = 0, and to the i−1st

cell only if n
(2)
i = 0. For example, in Fig.(1a) the α = 1

particle in cell 2 cannot hop to cell 3, while in Fig.(1b),
the α = 2 particle in cell 4 cannot hop to cell 3. (In
contrast, the α = 2 particle in Fig.(1a) ( α = 1 particle
in Fig.(1b)) can hop up (down) in energy.)

The remaining matrix elements of the opera-

tor Pf
(α)†
i±1 f

(α)
i P , when acting on states |Ψ〉h ≡

P |..., Ni, Ni+1, ...〉 = P
∣∣∣..., n(1)

i , n
(2)
i , n

(1)
i+1, n

(2)
i+1, ...

〉
, can

be obtained by dropping the projectors P and using the
usual fermionic operator relations. For example,
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Pf
(1)†
i+1 f

(1)
i P

∣∣∣..., n(1)
i , n

(2)
i , n

(1)
i+1, n

(2)
i+1, ...

〉
= (−1)n

(2)
i n

(1)
i (1− n(1)

i+1)P
∣∣∣..., n(1)

i − 1, n
(2)
i , n

(1)
i+1 + 1, n

(2)
i+1, ...

〉
(19)

= n
(1)
i (1− n(1)

i+1)(1− n(2)
i )P

∣∣∣..., n(1)
i − 1, n

(2)
i , n

(1)
i+1 + 1, n

(2)
i+1, ...

〉
. (20)

In the last line, we have used the fact that, if the initial
configuration is allowed by the constraints, the hopping

process creates an allowed configuration only if n
(2)
i = 0;

this ensures that the matrix element is always posi-
tive.Similar expressions hold for the α = 2 process, and
for hopping processes to cells of lower energy (see Ap-
pendix B).

We can now straightforwardly generalize this analy-

sis to processes of the form Pf
(α)†
j f

(β)
i P , and general g.

First, as above, the operator is non-zero only if α = β.
Second, processes in which a particle of pseudospin α
hops past a particle of pseudospin α ± 1 fail to preserve
the order of pseudospins relative to energy. Here our
definition of “past” includes a particle of lower (higher)
pseudospin in the same cell for processes that decrease
(increase) the energy. In other words, we find that single-
particle processes can never hop a particle past any other
particle. As a consequence, the matrix elements of non-
vanishing single-particle operators are always 1, as they
never exchange fermions. In Appendix B, we give an ex-
ample of how the above rules can be used to compute

Ph†p+1hpP |Ψ〉h for g = 1/3.

A convenient way to describe the allowed single-
particle hopping processes is to define a “box” for each
particle. The left (right) boundary of the box is fixed
at the position of the nearest particle on the left (right),
which necessarily has pseudospin α − 1 (α + 1) modulo
p for g = q/p. The hopping constraints for single parti-
cle processes can then be viewed as a constraint that the
particle cannot hop past the boundaries of this box. (An
example is shown in Fig.(7).) We define the box number
` of a particle of pseudospin α by counting the number
of particles with the same pseudospin, but lower energy.

Enumerating the particles in order of increasing energy,
the 1st p particles have box number ` = 1, the 2nd p par-
ticles have box number ` = 2, and so on. Because each
particle can hop only within its box, these box numbers –
as well as the pseudospin ordering within each box – are
necessarily conserved under any dynamics that respects
the constraints.

It is straightforward to see that this description cap-
tures the structure of excited states described in Sec.
III C. Recall that the ground state of ideal gas of g = q/p
HES particles is described by the occupancy pattern
(x1, x2, ..., xq) (x1+x2+...+xq = p), repeated for all cells
below the Fermi level (except possibly the last, which
may be partially occupied). The excited states are ob-
tained by moving particles above the Fermi level while
conserving both the pseudospin ordering in each box, and
the box number of each particle – in other words, they
are obtained by moving the boundaries of each box while
preserving the particle ordering. This leads to occupancy
patterns obtained by concatenating the integer partitions
of (x1, x2, ..., xq), and inserting zeros at arbitrary points
in the sequence.

2. Multi-particle processes

We now turn to more generic particle-number-
conserving operators, of the form On,n =

P
∏
f

(α1)†
i1

...f
(αn)†
in

f
(β1)
j1

...f
(βn)
jn

P . For general g = q/p,
the number of particles of each pseudospin must be
conserved; otherwise, the pseudospin-energy ordering
cannot be preserved. Further, suppose that our operator
destroys a set of particles with pseudospin {αk}, and
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Figure 8. Allowed (a,b, and d) and forbidden (c) two-particle hopping process. (a) Pf
(1)†
i+1 f

(1)†
i+3 f

(1)
i+4f

(1)
i P and (b)

Pf
(1)†
i+3 f

(1)†
i+1 f

(1)
i+4f

(1)
i P are allowed two-particle processes connecting the same initial and final states, which differ by a rela-

tive − sign. (c) represents an illegal 2-particle hopping, because the final state is not in the Fock space of HES particles; in

contrast, process (d) Pf
(2)†
i+1 f

(1)†
i+2 f

(1)
i+3f

(2)
i P , which preserves the pseudospin-energy ordering, is allowed.

box numbers {`k}. There are two possibilities: first,
our operator could delete an integer number of boxes.
The resulting occupancy pattern will also satisfy the
constraints, and creation operators can then re-insert
complete boxes at arbitrary energies, as long as they
do not “chop up” any of the existing boxes. Second,
our operator could annihilate only some of the particles
in box `i. In this case the resulting occupancy pattern
is not in the constrained Fock space. To ensure the
final state satisfies the occupancy constraints, acting
with the creation operators must fill the holes in box
`i. In other words, a general particle-number-conserving
operator can be viewed as describing multi-particle
hopping processes in which each particle’s pseudospin
and box number are conserved. However, unlike the case

of single-particle-hopping operators Pf
(α)†
j f

(α)
k P , the

matrix elements of multiple-particle-hopping operators
can involve an odd number of fermion exchanges, and
thus can be negative. Fig.(8) shows some examples of
two-particle-hopping processes for g = 1/2.

Operators that do not conserve particle number can be
expressed as a product of a particle-number-conserving
operator, times some numbers of either only creation

or only annihilation operators, such as f
(α)†
i f

(β)†
j and

f
(α)
i f

(β)
j . The whole operator acting on a state is non-

zero only if both components of the operator acting indi-
vidually on the state give non-vanishing results. For the
part consisting of only creation (only annihilation) opera-
tors to be non-zero acting the state, it must either create
(annihilate) a set of particles with energy strictly greater
than the existing (remaining) particles in the system, or
insert (delete) a complete box into the system.

The above rules are sufficient to deter-
mine whether a general operator of the form

Pf
(α1)†
i1

f
(α2)†
i2

...f
(αn−1)
in−1

f
(αn)
in

P annihilates a state

|Ψ〉h. If |Ψ〉h is not annihilated, the relevant matrix
element can be calculated from the usual calculus of the
fermionic operators f

(α)
i , f

(β)†
j .

V. Dynamics

In the previous section, we have shown how HES in
the Calogero-Sutherland model is intimately linked to
the emergence of constraints in the allowed occupancy
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Figure 9. Energy expectation value versus time at temperature T = 0.01ω. In the top two panels, the initial density matrix
is a random one in the subspace of E = 5. In the bottom two panels, we start with a random density matrix in the subspace
spanned by the three states [221]e, [2111]e and [11111]e.(This notation of states are introduced in Sec.(V D)). In (a) and (c),
the only interaction channel turned on is k = 1. In (b) and (d), the only interaction channel turned on is k = 2. In all four
cases, the curve for g = 1/2 exactly falls on the top of the curve for g = 2/3. Time and energy are in units of 1/ω and ω
respectively, and the rate is taken to be Γ0 = 10ω.

configurations of the many-body Hilbert space. We have
also shown that these constraints have a minor impact
on properties in thermodynamic equilibrium.

We now turn to an area where the constraints can
be expected to have a more noticeable physical impact
– namely, dynamics. Because the Calogero-Sutherland
model is integrable, here we will study open-system dy-
namics, in which an ideal gas of HES particles is coupled
to an external bath. Our main focus will be on under-
standing how the constraints affect relaxation times in
our HES system, relative to systems of free fermions.
As one might expect, we find that the constraints typi-
cally slow relaxation times relative to fermionic systems–
though, surprisingly, the magnitude of this effect is inde-
pendent of g. We also find an interesting exception: when
the bath can only increase or decrease the energy of the
system by ω, we show that for any rational g ∈ (0, 1],
the relaxation rate is equivalent to that of an ideal gas of
spinless fermions.

Here, we analyze energy relaxation in HES systems
using the Lindblad formalism, which successfully models
relaxation of energy (among other observables) provided
that (1) the system-bath coupling is weak compared to
the scales of both system and bath Hamiltonains, and

(2) the bath is well-approximated as a thermal resevoir,
meaning that the relaxation time-scale of the system is
long compared to the correlation time of the bath. In
practice, these conditions are experimentally realized in
a number of cold-atom systems (see, e.g.66,67); here we
assume a bath and system-bath coupling with these prop-
erties, and investigate the resulting energy relaxation dy-
namics of HES particles.

A. Review of the Lindblad formalism

We first briefly review the Lindblad formalism (see
Ref.68 for a pedagogical overview). Suppose that our
ideal gas of HES particles is coupled to an external
(bosonic) bath, via the Hamiltonian:

H =HS +HB +HBS

=
∑
i

εiPh
†
ihiP +

∑
j

εjb
†
jbj + λ

∑
i,k

(b†kPh
†
ihi+kP + h.c.),

(21)
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Figure 10. Time evolution of energy and occupation numbers near the Fermi level in the low- temperature timit (T = 0.01ω),
for both kmax = 1 (a single relaxation channel), and kmax = 2 (energy changes of ω and 2ω are allowed). Time and energy
are shown in units of 1/ω and ω respectively. The initial state has 6 particles fully occupying the cells of energy 3ω, 4ω and
5ω, with the lowest energy level being 0. The rate Γ0 = 10ω. (a) Occupation number of the level just below the fermi level
vs. time. (b) Occupation number of the fermi level vs. time. (c) Occupation number of the level just above the fermi level vs.
time. (d) Total energy vs. time.

where εn = nω (n = 0, 1, 2...), Ph†ihiP and Ph†ihi+kP

are given by Eq.(16), and b†j (bj) creates (annihilates) a
boson with energy εj . For simplicity, we assume that the
coupling constant λ is independent of the energy level.
It is convenient to split the interaction between the sys-
tem and the bath into different channels according to the
value of k. For instance, for the channel of k = 1, par-
ticles in the ideal gas system can only move up or down
by one energy unit ω.

In general, when the coupling is weak and the bath can
be treated as a thermal resevoir (which we will assume
here), the time evolution of the density matrix of our
system can be described using the Lindblad formalism.69

For a Hamiltonian of the form in Eq. (21), the Lindblad
equation has the form

d

dt
ρ =− i[H0, ρ]

+
∑

k,j,a=±

Γka

[
LkjaρL

†
kja −

1

2
{L†kjaLkja, ρ}

]
,

(22)

where H0 is the Hamiltonian of the ideal gas system,

and the sum runs over all energy levels j and interaction
channels k. Here a = + for a process that creates excita-
tions in the system, while a = − for a relaxation process.
Explicitly, the associated Lindblad operators are:

Lkj+ = Ph†j+khjP , Lkj− = Ph†jhj+kP . (23)

The rates Γk+ and Γk− are given by

Γk+ = Γ0nB(kω) , Γk− = Γ0(1 + nB(kω)) , (24)

where Γ0 = 2π|λ|2D (D is the density of states in the
bath), and nB(ε) is the Bose-Einstein distribution func-
tion.

In practice, we will solve the Lindblad equation (22) by
considering a finite set {k ≤ kmax} of interaction chan-
nels between the system and bath, such that the allowed
transitions have energy kω, with k ≤ kmax. For sys-
tems where only energy cells within a finite distance of
the Fermi level can deviate from their ground-state oc-
cupation numbers, we can solve Eq. (22) numerically by
simulating a system with a finite number of energy cells.
We expect that the dynamics will be well-approximated
by such a finite-level system when βω is larger than unity,
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Figure 11. Time evolution of energy and occupation numbers near the Fermi level in the intermediate- temperature timit
(T = ω), for both kmax = 1 and kmax = 2. (a) Occupation number of the level just below the fermi level vs. time. (b)
Occupation number of the fermi level vs. time. (c) Occupation number of the level just above the fermi level vs. time. (d)
Total energy vs. time. The initial state and all other parameters are the same as in Fig.(10).

such that excitations in the bath are exponentially sup-
pressed with k, and the equilibrium distribution of our
HES particles deviates from the ground state only on a
finite number of levels near the Fermi energy.

B. Lindblad relaxation dynamics of
HES systems

To illustrate how constraints can have a dramatic qual-
itative impact on relaxation processes, we begin with a
somewhat contrived example. Suppose that, rather than
coupling our system to a many-body thermal bath, we
couple it to a system of oscillators with a discrete spec-
trum, such that the allowed transitions in the bath can
change the energy only by multiples of 2ω. We initialize
our HES system in a high-energy many-body eigenstate
for which the difference in energies between any two suc-
cessive occupied levels is at most 2ω. In terms of the
underlying fermions, such states correspond to clusters
of some number l of consecutive occupied orbitals, sep-
arated by a single unoccupied orbital. Since any given
fermion can change its energy only by a multiple of 2ω,
relaxation processes require “hopping” a fermion past an-
other fermion in energy space – i.e. by having the second-

lowest energy particle in a given cluster decrease its en-
ergy by 2ω. However, this transition is not allowed for
HES particles, since it fails to respect the pseudospin-
energy ordering; hence this particular initial configura-
tion is stable. Thus, if we allow for an appropriately
fine-tuned bath (or fine-tuned couplings to the bath), the
constraints associated with HES can lead to high-energy
excited states that cannot relax at all.

This phenomenon is illustrated for g = 1/2 and g =
2/3 in Fig. (9b) and (9d), which compare the time
evolution of these two HES systems to that of spin-
less fermions (g = 1), with only the k = 2 channel
(i.e. only transitions that change the energy by 2ω).
In Fig. (9b), the system is initiated in a random ini-
tial state with energy 5ω. In Fig. (9d), we show the
time evolution of three of these states, which for k = 2
are completely unable to relax for HES particles due to
the constraint. For g = 1/2, in our particle occupancy
representation, these excited states are [...2221102000...],
[...2221111000...] and [...222122000...], with the ground
state being [...22222000...]. For g = 2/3, with
ground state [...212121000..], they are [...21210111000...],
[...21201201000...] and [...2111121000...]. Though the
similarities between these states are not apparent in
the occupancy representation that we use here, in Sec.
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Figure 12. Energy dissipation rate γ ≡ −d log(E(t))/dt vs. energy E(t), as extracted from the time-dependent relaxation
dynamics of both spinful fermions and semions. (a) T = 0.01ω, kmax = 1. (b) T = 0.01ω, kmax = 2. (c) T = ω, kmax = 1. (d)
T = ω, kmax = 2. The energy of the many-body ground state is assumed to be zero. Both quantities are plotted in units of ω.
The initial state and all other parameters are the same as Fig.(10).

(V D) we will introduce an energy-based representa-
tion of the many-body states, in which these corre-
spond to the same states, [221]e, [2111]e and [11111]e.
We also show the time evolution of the correspond-
ing states for spinless fermions, which in occupancy
representation are [...11101011000...], [...111011101000...]
and [...111011111000...]. In the channel k = 2, the
fermionic states can respectively relax to [...11101000...],
[...1110101000...] and [...11101000...] by hopping a
fermion past another fermion of lower energy. (Since the
initial energy is an odd multiple of ω, clearly for k = 2 the
system cannot relax to its true ground state regardless of
the dynamics). For HES particles, in contrast, there are
no allowed relaxation transitions of energy 2ω, and the
configurations are stable. Evidently, there are allowed
transitions of energy ω, and coupling to such transitions
allows our HES systems to relax, as seen in Fig. (9a) and
(9c). In this sense, the stability of these configurations
results from a fine-tuning of the system-bath coupling.

Fig. (9) also illustrate a second striking feature of
relaxation in HES systems. Panels (a) and (c) show
relaxation for two different initial configurations, for
g = 1, 1/2, and 2/3, in the case that the only allowed
transitions have energy ω (i.e. k = 1). Strikingly, the
relaxation dynamics is identical for all three systems, in

spite of their very different constraints. Panels (b) and
(d) show relaxation for these same values of g and choices
of initial states, but now with the only allowed transitions
having emergy 2ω (i.e. k = 2). In this case, we see that
spinless fermions (g = 1) relax more quickly than HES
particles, but that the relaxation dynamics is identical for
g = 1/2 and g = 2/3. In the remainder of this section,
we will show that this universal relaxation dynamics is a
ubiquitous feature of HES particles, and explain why, for
k = 1, it corresponds to that of spinless fermions.

Before doing this, however, it is worth emphasizing
in what sense the relaxation dynamics of HES particles
is “slow”. A useful benchmark for the effect of particle
statistics on dynamics is to compare the relaxation time
of a spinful fermion system and a HES system of semions
(i.e. g = 1/2), since both allow at most 2 particles in a
given energy cell. This is shown for T � ω in Fig.(10), for
kmax = 1 and 2 (note that the latter includes both k = 1
and k = 2 channels), which also show the time evolution
of the occupancy of a few levels near the Fermi level. Fig.
(11) shows the intermediate temperature regime, T = ω,
again for kmax = 1 and 2. In all cases, energy relaxes
more slowly for semions than spinful fermions. In ad-
dition, these figures again exhibit the qualitative behav-
ior described above. For kmax = 1, the relaxation rates
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Figure 13. Energy dissipation rate γ ≡ −d log(E(t))/dt vs. energy E(t), for g = 1/2 (blue) and spinful fermions (red), with (a)
kmax = 1 and (b) kmax = 2 at T = 0.01ω. Here we compare curves resulting from the time evolution of several different initial
states, including states with different initial energies (corresponding to the largest projection of data points onto the x-axis),
and different initial states with the same total energy. Note that the y-axis scale in (a) goes from 0 to 3, while in (b) it goes
from 0 to 8. The rate Γ0 = 10ω.

of semions are identical to spinless fermions (which in
turn necessarily relax more slowly than spinful fermions).
For kmax = 2, semions relax more slowly than spinless
fermions, which in turn relax more slowly than spinful
fermions.

C. Relaxation rates from relaxation
paths

To explain the qualitative features of Figs. (9) - (11),
we now review how the number of relaxation paths avail-
abe to a system at a given time t determines its instan-
taneous relaxation rate γ(t). Our analysis focuses on
the low-temperature regime T � ω, where excitation
processes can be neglected. In the next section, we will
compare how HES occupancy constraints affect the num-
ber of such relaxation paths, relative to those available
for spinless fermions, thereby quantifying the impact of
constraints on relaxation dynamics.

We can see that the energy relaxation shown in
Figs.(9)-(11) depends on the number of available relax-
ation paths in two ways. First, the dynamics is not de-
scribed by a single relaxation rate. Rather, it has the

form E(t) = E0 exp[−β(t)], where the instantaneous dis-
sipation rate γ ≡ dβ/dt varies with time. It is conve-
nient to convert this time-dependence to a dependence
on the energy E(t), and plot γ = −d log(E(t))/dt vs
E(t) for the various conditions, as shown in Fig.(12).
Moreover, the effective dissipation rate at a given energy
depends not only on the energy, but also on the initial
state of the system. This is shown in Fig. 13, which plots
γ = −d log(E(t))/dt vs E(t) for kmax = 1 and kmax = 2
at T = 0.01ω with different initial states. Each line rep-
resents the dynamics of a single initial many-body state.
We see that the curves tend to agglomerate after some
dependence on the initial state, but do initially show a
significant dependence on the specific choice of initial
state. Together, Figs. (12) and (13) clearly show that
how quickly the system relaxes depends on its current
configuration.

This dependence arises because relaxation processes
must satisfy the occupancy constraints, which restrict
the number of paths available between a given state of
total energy E, and states of total energy E − ω. We
illustrate this with a simple example. Consider a 2-level
system (with single-particle energy levels 0 and ε), con-
taining either two spinful fermions, or two semions with
g = 1/2 (see Fig.(14)). Suppose both systems are ini-
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Figure 14. (a) Four possible states of 2 spinful fermions in
a 2-level system. (b) Three possible states of 2 semions in
a 2-level system. Starting with the excited state (1), spinful
fermions can go through either state (2) or state (3) to relax
to ground state (4), while semions can only reach ground state
(3) through state (2).

tially in the state of energy 2ε, with both particles in the
excited state. For spinful fermions there are two available
relaxation paths between this initial state and the ground
state, as either the spin up or the spin down fermion may
relax first. For semions, on the other hand, the semion
with pseudospin α = 1 must relax first, and there is only
one possible relaxation path. If the probability of inter-
acting with the bath per unit time is the same for all
particles, then the energy of the fermionic system will
initially approach the ground state at twice the rate as
for the semionic system.

To quantify the relationship between relaxation paths
and the instantaneous relaxation rate γ(t) more precisely,
we consider initializing our system in an eigenstate. In
this case the density matrix is diagonal in the energy
eigenbasis, and the time evolution of the vector ~ρ of di-
agonal elements of density matrix (defined by ~ρ · î ≡ ρii)
is described by

d~ρ

dt
= (

∑
k,a=±

Γk,aAk,a)~ρ. (25)

Here, Ak,± is a lower (upper) triangular matrix encoding
the relaxation (excitation) paths for channel k. The off-
diagonal entry (Ak,±)βα = 1 if a process in which a single
particle moves k units down (up) in energy leads to a
transition between eigenstate α and eigenstate β, and is
0 otherwise; these correspond to processes described by

LkjaρL
†
kja in Eq. (22). The diagonal entry −(Ak,±)αα

describes the total number of transitions out of eigenstate
α by moving a single particle down (up) in energy by k
energy levels; such processes are described by the anti-
commutator in Eq. (22). This ensures that all columns
in Ak,± sum to zero, and Eq. (25) conserves |~ρ| (i.e.
conserves probability).

If the matrix B ≡
∑
k,a=± Γk,aAk,a, and {~xa} is non-

degenerate, such that its eigenvectors span the whole

Hilbert space, Eq. (25) is solved by

~ρ(t) =
∑
a

cae
−λat~xa , (26)

where {ca} specifies a choice of initial eigenstates, {−λa}
are the eigenvalues of B are the corresponding eigenvec-
tors. Since B conserves probability, one of the eigen-
values is zero; the corresponding eigenvector gives the
steady-state density matrix, for which the energy takes
on its value in thermal equilibrium. Moreover, in the low
temperature limit of interest here, B is a lower-triangular
matrix. In this case, we have

− λa = Baa =
∑
k

Γk,−np(a,Ea − kω), (27)

where np(a,Ea − kω) is the total number of states of
energy Ea − kω that can be reached from state a using
single-particle processes. In other words, −λa is given
by the total number of relaxation paths from a to any
state of lower energy, weighted by the corresponding de-
cay rates Γk,−.

We can use Eq. (26) to solve for the instantateous
relaxation rate γ(t) as follows. Defining ~ε as a row vector
of energies in the basis used to construct ~ρ, we have

〈E(t)〉 = ~ε · ~ρ(t) = ~ε ·
∑
a

cae
−λat~xa ≡

∑
a

caEa(t) (28)

where Ea(t) = ~ε · ~xae−λat is a single dissipation mode
associated with eigenvector ~xa. The instantaneous relax-
ation rate is γ(t) ≡ −d log(〈E〉)/dt thus given by:

γ(t) =

∑
a caEa(t)λa∑
a caEa(t)

. (29)

Eqs. (27) and (29) quantify how the instantaneous re-
laxation rate is determined by the number of relaxation
paths into and out of of each state a.

For a given initial configuration in the low temperature
limit, the total energy E = E(t) decays monotonically
with t, such that we can express t in terms of the average
energy E to obtain γ = γ(E). In Appendix (C), we use
this fact to estimate how relaxation rates of channels k =
1, k = 2 and k = 3 depend on energy at low temperatures
for very high-energy initial states.

D. Universal Lindblad dynamics of HES

Having argued that differences in relaxation rates stem
from differences in the number of available relaxation
paths in the presence of constraints, we now focus on un-
derstanding how the number of relaxation paths available
to a particular system depends on the HES parameter g.
We will show that for all rational g 6= 0, 1 the number
of relaxation paths is universal. In other words, there is
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Figure 15. The three many-body states of g = 1/2 HES
particles with energy 3ω (a), (b) and (c) correspond to the
three energy assignments [3]e, [21]e and [111]e respectively.
All excited particles are boxed.

a universal relaxation rate common to all HES systems.
We further show that with a single interaction channel
k = 1 this relaxation rate is identical to that of spin-
less fermions, while for k > 1 HES systems generically
have slower relaxation rates than spinless fermions. This
explains the striking dynamics observed in Fig. (9).

To establish this universality, we first show a one-to-
one correspondence between ordered integer partitions
[x1, x2, ...xn]e (x1 ≥ x2 ≥ ... ≥ xn) and many-body
eigenstates of both HES particles and spinless fermions.
(Note that this representation of the excited states is
distinct from that of Murthy and Shankar38 described
in Sec. III C). In both cases we set the energy of the
many-body ground state to zero, and take the single-
particle spectrum to consist of discrete energy levels εi,
with εi+1− εi = ω. We assign an index i to each particle
in the many-body ground state as follows. First, parti-
cles in cells farther from the Fermi surface have higher
index: for g = 1/p, i = 1...p for particles in the first cell
below the Fermi surface, and so on. Second, for particles
in the same cell, particles with higher pseudospin have
lower index. Then a many-body excited state can be de-
scribed by a sequence of integers [x1, x2, ...xn]e, where xi
indicates how much energy the ith particle has gained rel-
ative to the many-body ground state, in units of ω– i.e.
particle 1 moves up by x1ω, particle 2 moves up by x2ω,
etc. The energy E of the corresponding excited state is
given by E = ω

∑
i xi – i.e. [x1, x2, ...xn]e is an ordered

integer partition of E/ω. Fig.(15) shows three states [3]e,
[21]e and [111]e with total energy 3ω for g = 1/2.

Clearly, all ordered integer partitions of m give excited
statess with energy mω. Moreover, this correspondence
is one-to-one: every excited state with energy mω cor-

responds to an ordered integer partion of m. To obtain
excited states with energy mω above the ground state,
the energy mω must be distributed among some number
of excited particles, i.e. the excited state is necessarily
described by some partition ofm. For g ∈ (0, 1), however,
the HES occupancy constraints ensure that this partition
must be ordered, since every excited state must respect
the pseudospin ordering, and hence is equivalent to a con-
figuration that can be obtained by exciting particles from
the ground state such that the ordering of their energies
is preserved– i.e. any particles of index i gains at least as
much energy as every particle of index j > i.70 For g = 1,
or spinless fermions, there is no pseudospin, and hence
no ordering constraint. However, since only states corre-
sponding to distinct occupancy patterns of excited levels
are distinct, not every partition of m describes a distinct
excited state. Indeed, since every occupancy pattern can
be obtained by exciting particles from the ground state
while preserving the ordering of their energies, each dis-
tinct excited state can be identified with an ordered par-
tition of m. Thus for any g ∈ (0, 1], we have a one-to-one
corresponce between the ordered integer partitions of m
and excited states with energy mω.

To illustrate how this works, consider the many-body
eigenstates of E − E0 = 3ω. Regardless of the choice of
g we find three such states, corresponding to the three
integer partitions of 3 , i.e. [3]e, [21]e and [111]e (see
Fig. (15)). For semions, for example, where the ground
state is |...2222000...〉, [3]e, [21]e and [111]e respec-
tively refer to the states |...222100100...〉, |...22201100...〉
and |...2211200...〉. For spinless fermions, where the
ground state is |...11111000...〉, [3]e, [21]e and [111]e
respectively correspond to the states |...1111000100...〉,
|...111010100...〉 and |...11011100...〉.

Thus, we see that any excited state of energy E in a
HES system with any rational 0 < g ≤ 1 can be specified
by an ordered partition of E/ω. What about the allowed
transitions between such states? For spinless fermions
(g = 1), a transition between states [x1, x2, ...xj , ...xn]e
and [x1, x2, ...x

′
j , ...xn]e exists if x′j 6= xi + i− j for any i,

and |x′j − xj | ≤ k, where k is the largest energy transfer
allowed with the bath. The second partition need not be
ordered; in general the equivalent ordered partition dif-
fers from the original one at more than one point in the
sequence. For HES particles (0 < g < 1), however, we
have seen above that preserving the pseudospin ordering
also requires that transitions cannot move HES particles
past each other. (More precisely, such transitions would
require moving an entire cell’s worth of particles, i.e. it
would require multi-particle transitions, which we do not
include here). For a single interaction channel with k = 1
in Eq.(21), these two constraints amount to the same
thing, and the number of relaxation paths out of a given
eigenstate is the same for HES particles as for spinless
fermions. For k > 1, generically we find that some tran-
sitions that are allowed for spinless fermions are gener-
ically forbidden for HES particles, reducing the number
of available relaxation paths and slowing the overall re-
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laxation rate.

To see how this leads to universal Lindblad dynamics,
observe that the 1-1 correspondence between the excited
states of our HES system and those of a system of spinless
fermions always allows us to write the relevant Lindblad
operators in a common basis, given by the integer parti-
tions [x1, x2, ...xn]e, xi+1 ≤ xi. For k = 1, we also find
that in this basis the allowed transitions are the same
for any rational g ∈ (0, 1]. The non-vanishing matrix
elements of single-particle-hopping operators are neces-
sarily +1 since no fermion exchange is allowed. It follows
that the k = 1 Lindblad matrices of all species of HES
particles are identical. Thus, we have shown the surpris-
ing result that for k = 1 the relaxation dynamics of any
HES system is identical to that of a system with spinless
fermions, as seen in Fig. 9 (a) and (c). For k > 1, we
have shown that the dynamics of different species of HES
particles are identical for rational g ∈ (0, 1), though in
this case they are not equivalent to spinless fermions, as
seen in Fig. 9 (b) and (d).

Our proof of universal dynamics also explains why dif-
ferent species of HES particles have the same thermal
equilibirum energy, shown in Fig.(6), assuming the many-
body ground state energy is 0. In the basis of ordered
integer partitions, different species of HES particles have
the same Lindblad transition matrices for all interaction
channels. Therefore, the Lindblad dynamics of different
species of HES particles will relax to the same steady-
state Gibbs density matrix in the basis of ordered integer
partitions, which leads to identical thermal energy.

VI. Discussion and summary

This work details the Lindblad dynamics of a system
obeying Haldane Exclusion statistics (HES), coupled to
a bosonic thermal bath. We have shown how the con-
straints on the occupancy of different energy levels that
define HES generically lead to slower energy relaxation,
and in some situations can even lead to blockaded re-
laxation and stable excited states. Moreover, we have
shown that for rational g ∈ (0, 1), HES systems coupled
quadratically to a bosonic thermal bath exhibit universal
energy relaxation dynamics, in the sense that the relax-
ation is independent of the parameter g. An interesting
corolary of this result is that the energy of an HES system
in thermal equilibrium is also independent of g.

One key takeaway from our study is that, unlike in
the context of thermodynamics, where neglecting inter-
level occupancy constraints leads at worst to small quan-
titative corrections in most measurable quantities, in the
context of dynamics, the constraints between different
energy levels have distinctive, physically observable con-
sequences. For example, the slower relaxation dynamics
of semions relative to spinless fermions is a direct conse-
quence of the inter-level occupancy constraints, which re-
duces the number of relaxation paths for semions. Indeed

both the universal relaxation dynamics, and the presence
of relaxation blockade, are possible only when such con-
straints exist.

It is worth pointing out that we do not expect these
qualitative results to be sensitive to the specific method
used to model the bath, and can thus reasonably be ex-
pected to apply to energy relaxation even in situations
where the approximations leading to the Lindblad mas-
ter equation fail to apply. This is because the mapping
between HES and spinless fermions is a feature only of
the system, and hence any model of energy relaxation
for HES particles can be mapped onto a model of energy
relaxation in spinless fermions.

In establishing these results, we have also described a
second-quantized treatment appropriate for HES parti-
cles, which is based on a comprehensive microscopic pic-
ture of the corresponding allowed occupancy patterns,
which generalizes the results of Ref. 38. This second-
quantized description gives an appealingly simple pic-
ture of the constraints, in terms of multiple flavors of
fermions that are restricted to respect a particular pseu-
dospin ordering in energy space. Though other frame-
works for second quantization of particles with novel ex-
clusion statistics exist62–65, ours has the advantage of
allowing a straightforward computation of matrix ele-
ments, with projections that are easily implemented nu-
merically. As such, this formalism may be useful for in-
vestigating the impact of inter-occupancy constraints on
other aspects of HES systems.

For example, Wu’s approximation, which ignores inter-
level occupancy constraints, has been employed to study
many response functions in HES systems, including elec-
trical and thermal conductance45 and shot noise46. The
premise of these studies is that the main role of statis-
tics is to alter the underlying distribution in occupancies
of various states, and that this distribution is well de-
scribed by Wu’s approximation. If the number of states
at the relevant energy density is large, we expect this to
be correct; however, it would be interesting to search for
transport regimes where this approximation may break
down.

It is also interesting to compare our results, which
describe a universal dynamics independent of g, to the
dynamics that emerges from the Boltzmann equation.
The latter has been studied by several authors41–44, us-
ing techniques in which occupancy constraints between
different energy levels are neglected. In general, the asso-
ciated dynamics – including effective relaxation rates as
calculated by a modified Fermi’s Golden Rule41– depends
on g, although some transport quantities are found to be
universal.43,45 Though our analysis does not immediately
lend itself to studying transport, it does suggest that the
occupancy constraints could be qualitatively important
for Boltzmann relaxation dynamics as well, and it would
be interesting to understand how incorporating the exact
constraints changes these results.
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Appendix A: Dimension of many-body Hilbert
space at arbitrary particle number

Eq.(3), which appears elsewhere in the
literature27,28,38, does not in general produce an integral
many-body Hilbert space dimension. This is because for
g = q/p, the expression d(N + ∆N) = d(N) − ∆Nq/p
gives an integer single-particle Hilbert space di-
mension only if ∆N = np. Thus we may take
d(Ni) = di(1)− g(Ni − 1) only if Ni = np+ 1 with n an
integer.

For a generic particle number N = np + m (1 ≤ m ≤
p), we can instead use our understanding of the HES
constraints to count the single-particle and many-body
Hilbert space dimensions d(N) and DN (g). d(N) can
be calculated using Eq.(2): d(N) = d(m) − nq, where
d(m) = d(1) − floor((m − 1)q/p). Here, we use the fact
that if the particle number is enough to fully occupy one
cell, the number of accessible cells to each particle de-
creases by one.

In the context of the CSM, as discussed in the main

text, the dimension of the many-body Hilbert space is:

DN (g) =

(
kmax − kmin + 1

N

)
. (30)

where kmax and kmin are determined by the maximum
and minimum shifted single-particle energies εmax

s and
εmin
s , respectively. We wish to show that this is the cor-

rect Hilbert space dimension for our HES particles, which
will be true if kmax − kmin + 1 = d(N) +N − 1. Setting
εmin
s = kmin = 0 for simplicity, this will be true provided

that

d(N) = kmax + 2−N. (31)

With the shifted energy levels divided into cells of
size ω, i.e. [0, ω), [ω, 2ω), [2ω, 3ω)..., we find d(1) =
floor(εmax

s /ω) + 1. Substituting εmax
s /ω = kmax − (1 −

q/p)(N − 1), we obtain d(1) = kmax + 2 − N + nq +
floor((m− 1)q/p). Thus,

d(N) = d(m)− nq
= d(1)− floor((m− 1)q/p)− nq
= kmax + 2−N. (32)

Appendix B: Matrix elements of generic single-particle operators for g = 1/2

For g = 1/2, the matrix elements for hopping a particle to a neighboring cell are:

Pf
(1)†
i+1 f

(1)
i P

∣∣∣..., n(1)
i , n

(2)
i , n

(1)
i+1, n

(2)
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〉
= n

(1)
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i+1)c
(1/2)
1 (i)P

∣∣∣..., n(1)
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〉
, (33)

Pf
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where c
(1/2)
1 (i) = 1− n(2)

i , c
(1/2)
2 (i) = (1− n(1)

i+1) describe the effect of the left-most projector. For hopping processes
to more distant cells, we again have the appropriate fermionic matrix element, multiplied by a projector that ensures
that our particle cannot hop past any particle of the opposite pseudo-spin (which, in configurations allowed by the
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constraint, is sufficient to also ensure it cannot hop past any particles of the same type) :
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Again, we find that the non-zero matrix elements of single-particle-hopping processes can only be 1.
Note that within a given cell, only one of the two species of particles can have a non-zero hopping matrix element

in either direction: if n
(2)
i = 0 then there is no particle on the top ladder to hop; on the other hand, if n

(2)
i = 1, then

particles of type 1 cannot hop to cells of higher energy. Similarly, if n
(1)
i 6= 0, particles of type 2 cannot hop to cells

of lower energy. Hence for an allowed occupancy |...Ni, Ni+1, ...Ni+k, ...〉 of the energy cells,

Ph†i+khiP |...Ni, Ni+1, ...Ni+k, ...〉 = |...Ni − 1, Ni+1, ...Ni+k + 1, ...〉 . (34)

Next, we consider a similar calculation for g = 1/3. Substituting the expressions of h†p+1 and hp into

Ph†p+1hpP |..., Np, Np+1, ...〉, we get
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Evidently, all the three of the final microscopic states are identified with the same HES confuguration
|..., Np − 1, Np+1 + 1, ...〉.

As for g = 1/2, the constraints impose considerable structure on the non-vanishing matrix elements. First, the

signs (−1)n
(2)
p +n(3)

p , (−1)n
(3)
p +n

(1)
p+1 and (−1)n

(1)
p+1+n

(2)
p+1 have been dropped, since particles cannot hop past each other.

Second, only one of the three matrix elements can take the value +1; the other two are zero. For example, n
(1)
i = 1,

then matrix elements hopping particles of type 2 or 3 to a cell of lower energy vanish, with similar constraints for other

configurations. Indeed, both of these conditions are a generic feature of single-particle-hopping operators (Ph†khlP ) for
any g = q/p. This structure simply reflects the fact that pseudospin-energy ordering prevents particles from hopping
past each other: a fermion of pseudospin i1 cannot move up in energy past a fermion of pseudospin j1(j1 > i1), and
a fermion of pseudospin i2 cannot move down past a fermion of pseudospin j2(j2 < i2). Thus at most one of the
possible fermionic hoppings is allowed.

Appendix C: Estimating relaxation rates at
high energies

Since the instantaneous relaxation rate depends on the
weighted average of relaxation paths, we can estimate
the energy dependence of typical relaxation rates in high
energy states by examining the distribution P (N(E)) of
available transition paths at each energy E, for a given
choice of interaction channels.

We illustrate this for the case of a single interaction
channel, k = 1. A many-body excited state of energy
E is described by an ordered integer partition of E,
[x1, x2, ...xn]|ω

∑
i xi = E, with xj=1 ≥ xj . For k = 1,

transitions to a state represented by [x1, x2, ...xj−1, ...xn]
are allowed only if xj ≥ xj−1 + 1. We call a consec-
utive set of particles with the same xj a cluster; when
xj+1 ≥ xj−1 + 1, we say there is a gap between two adja-
cent clusters. For example, in Fig. 15, the configurations
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Figure 16. The average number of relaxation paths N̄(E) of
all states with energy E for the interaction channel k = 1
versus energy. The exact result is fitted by a trial solution
N̄(E) = a +

√
b+ dE, where a = −0.1449, b = 0.0795 and

d = 0.6014/ω. The inset shows the differences between exact
results and the fit.
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Figure 17. The average number of relaxation paths N̄(E) of
all states with energy E for the interaction channel k = 2 and
k = 3 versus energy. The data fit well to the line N̄(E) =
aE+ b, with a = 0.0305/ω and b = 0.9282 (a = 0.0201/ω and
b = 0.4875) for k = 2 (k = 3). R2 of the two fits are 0.999.

shown in (a) and (c) have only one cluster, while the con-
figuration in (b) has two. Then the number of relaxation
paths available to a given configuration is equal to the
number of clusters.

To understand the typical relaxation dynamics, we

wish to describe the average number of relaxation paths
N̄(E), and hence the average number of clusters, in a
configuration of total energy E. Suppose that we have a
typical configuration N̄(E), and let us consider the pos-
sible confugrations with total energy E + 1 that can be
obtained by exciting a single particle in this configura-
tion. If we excite a particle that is in a cluster of size
greater than one, then a new cluster will be created if
and only if the gap to the next highest energy cluster
has size greater than 1 – i.e we take xj → xj + 1, with
xj+1 − xj > 1. If the particle that we excite is in a clus-
ter of size one, then we can either decrease the number of
clusters (if xj+1 − xj = 1), or leave it unchanged. Since
there are a total of N̄(E)+1 clusters (including the lowest
energy cluster, i.e. the Fermi sea), and we must average
over all possible moves that raise E by ω, we conclude
that:

N̄(E + 1) = N̄(E) +
c(E)

N̄(E) + 1
, (36)

where c(E) = (pg(E) + pc(E)− 1)N̄(E) + 1, with pc(E)
the probability of a cluster containing more than one
particle, and pg(E) being the probability that the gap
between two clusters is greater than one. At high ener-
gies, we can approximate this by a differential equation
dN/dE = c/N , where for k = 1 we find a good fit to our
numerical data (shown in Fig.(16)) by taking c(E) = c
to be independent of energy. This gives an approximate
functional form N̄(E) = a+

√
b+ dE with a, b and d con-

stant. This suggests that for highly excited states that
have been relaxing for some time (such that they have
attained a typical distribution of clusters), we will find

γ̄(E) ∼
√
E for k = 1.We note that the exact simulations

presented in the main text are performed on relatively
small energies, and hence need not exhibit this regime.

For k = m > 1 (but still with a single relaxation chan-
nel) we may follow a similar logic, by defining a cluster
as a contiguous set of xj such that xj1 − xj < m. In
other words, our new clusters contain energy gaps up
to size mω, since HES particles on the interior of such
clusters cannot relax. Following the same logic as for
k = 1, we can obtain a similar difference equation relat-
ing N̄(E + 1) and N̄(E), with c(E) replaced by c′(E) =
(p′g(E) + pc(E)− 1)N̄(E) + 1. Here, p′g(E) is the proba-
bility of an energy gap greater than m energy units. Nu-
merically, we find in this case that c(E) ∼ cN̄(E)+1 (see
Fig.(17)), such that at high energies, we have dN/dE = c
and solutions depend linearly on E. Thus, the best es-
timation of γ(E) from our result for k = 2 and k = 3 is
γ(E) ∼ E.
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